
CLUE: Safe Model-Based RL HVAC ControL Using Epistemic
Uncertainty Estimation

Zhiyu An
University of California, Merced

zan7@ucmerced.edu

Xianzhong Ding
University of California, Merced

xding5@ucmerced.edu

Arya Rathee∗
University of California, Santa Cruz

arathee@ucsc.edu

Wan Du
University of California, Merced

wdu3@ucmerced.edu

ABSTRACT
Model-Based Reinforcement Learning (MBRL) has beenwidely stud-
ied for Heating, Ventilation, and Air Conditioning (HVAC) control
in buildings. One of the fundamental problems is the large amount
of data required to train a neural network for building dynamics
modeling. In this paper, we developed CLUE, a safe MBRL HVAC
control approach that can achieve low human comfort violation
with a dynamics model trained on a small dataset. We used Gauss-
ian Process (GP) as the building dynamics model, which provides
the uncertainty of each output. The uncertainty result is then in-
tegrated into a safe HVAC control algorithm. Although GP has
been studied for HVAC control, this work provides a data-efficient
GP modeling method. We designed a novel meta kernel learning
technique that incorporates domain knowledge from historical data
of multiple buildings to set the GP kernel hyperparameters. Our
method can significantly reduce the amount of data required for GP
hyperparameter setting. Furthermore, we incorporate the GP-based
uncertainty into a Model Predictive Path Integral (MPPI) process
to find a safe, energy-efficient action for each control cycle. We
generate a large number of action trajectories by the GP building
dynamics model, and find the optimal trajectory by a novel MPPI
objective function that considers the uncertainty of every action
in all trajectories. We then execute the first action of the optimal
trajectory. Extensive experiments in a simulated five-zone building
show that CLUE only needs seven days of training data to provide
comparable energy saving as the state-of-the-art MBRL method,
but with 12.07% less comfort violations. Our code and dataset are
available at https://github.com/ryeii/CLUE.

CCS CONCEPTS
• Computing methodologies→ Control methods.

∗This work was accomplished when Arya Rathee was an undergraduate student at UC
Merced and conducted an internship in Dr. Wan Du’s research group.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BuildSys ’23, November 15–16, 2023, Istanbul, Turkey
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0230-3/23/11. . . $15.00
https://doi.org/10.1145/3600100.3623742

KEYWORDS
Epistemic uncertainty estimation,Model-based reinforcement learn-
ing, HVAC control, Model predictive control
ACM Reference Format:
Zhiyu An, Xianzhong Ding, Arya Rathee, and Wan Du. 2023. CLUE: Safe
Model-Based RL HVAC ControL Using Epistemic Uncertainty Estimation.
In The 10th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (BuildSys ’23), November 15–16, 2023,
Istanbul, Turkey. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3600100.3623742

1 INTRODUCTION
Model-Based Reinforcement Learning (MBRL) is a promising ap-
proach for optimizing Heating, Ventilation, and Air Conditioning
(HVAC) control in comparison to traditional Model Predictive Con-
trol (MPC) and Model-Free RL (MFRL) methods [21]. MPC [30]
requires an accurate building thermal dynamics model, which is
hard to formulate analytically [2]. MFRL directly learns a control
policy by interacting with the building, but it takes years to con-
verge [8, 35]. MBRL trains a building dynamics model using histor-
ical data and uses the model to find the best control action [4, 8].
One fundamental problem of MBRL-based HVAC control is the
large amount of training data required to converge. For example,
𝑀𝐵2𝐶 [8] models the building dynamics by an ensemble of deep
neural networks and uses a Model Predictive Path Integral (MPPI)
algorithm to find the best control action. The deep ensemble model
requires 183 days of training data to produce accurate predictions
for the controller.

Extensive experiments on a simulated five-zone office building
demonstrate that even if years of training data is used, the model
still has epistemic uncertainty due to the training data bias, i.e.,
the model’s predictions are not accurate at some states that the
building does not experience often. To address this problem, we
propose an MBRL-based HVAC control approach that can tolerate
the inaccuracy of the building dynamics model trained on a small
dataset. Our approach is aware of the model’s prediction uncer-
tainty and takes conservative control action when the prediction is
uncertain. To enable safe HVAC control, we needed to first quantify
the epistemic uncertainty of building dynamics models.

Epistemic uncertainty estimation has been used to improve the
control performance in robotic motion planning [3] and RL in
general [5]. For problems with low dimensions and discrete state
spaces, such as multi-armed bandits [28], the count-based method
[27] is used. It estimates the model error on an input by counting the
number of data points in the training data with this input. However,

149

https://github.com/ryeii/CLUE
https://doi.org/10.1145/3600100.3623742
https://doi.org/10.1145/3600100.3623742
https://doi.org/10.1145/3600100.3623742
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600100.3623742&domain=pdf&date_stamp=2023-11-15

BuildSys ’23, November 15–16, 2023, Istanbul, Turkey An et al.

building dynamics involve high dimensional continuous variables,
which makes count-based methods unsuitable. Additionally, deep
ensemble (DE) [5, 18] uses several neural networks to collectively
make a prediction and measures the level of agreement between
the predictions as an uncertainty estimation result. As introduced
above, it requires a large amount of data to train the neural networks
for HVAC control.

To close this gap, we propose CLUE, a novel MBRL system for
safe HVAC control, which uses a Gaussian Process (GP) model
for the uncertainty-aware modeling of building dynamics. A GP
model takes the state of the building (zone temperature, outdoor
temperature, occupancy, etc.) and an action (heating and cooling
setpoints) as inputs. It outputs a prediction of the state in the next
time step as a Gaussian distribution comprised of a prediction mean
and a variance. The variance is larger when the prediction is less
certain, usually due to the lack of data about the given input. We
used this variance as an indicator of epistemic uncertainty. Previous
research in building control has demonstrated that GP models,
in terms of model error, have the potential to outperform neural
networks, random forests, and support vector machines [13, 20].
However, to incorporate GP into a safe and data-efficient HVAC
control process, CLUE has two novel components. 1) Although
GP methods are non-parametric, they require a predefined kernel
function, which has a set of hyperparameters to instantiate. We
design a new training procedure of GP-based building dynamics
modeling, called meta kernel learning, which significantly improves
the efficiency of the GP hyperparameter setting. 2) We incorporate
the GP-based uncertainty into an MPPI algorithm to find a safe,
energy-efficient action.

Selecting appropriate kernel parameters for GP with limited
data remains a challenge [22]. Traditional kernel selection either
relies on human experts to hand-pick the kernel parameters or uses
gradient descent to train them. These methods are either costly or
require large amounts of data to train a suitable kernel. If the kernel
parameters are unsuitable, GP may perform poorly [10]. To address
this issue, we designed a meta kernel learning procedure. Our key
observation is that while it is sometimes difficult to obtain a large
amount of historical data for a target building, it is easy to obtain
large and comprehensive datasets from other buildings. With meta
kernel learning, the reference data from multiple buildings enables
the building dynamics model to automatically learn an effective
kernel initialization, which can significantly reduce the learning
burden without impacting the model’s accuracy. In our experiment,
we found that our method outperformed all baselines in terms of
modeling accuracy and uncertainty estimation accuracy.

To effectively translate uncertainty estimation to safe control
actions, we developed a confidence-based control algorithm, which
allows us to safely and effectively apply MBRL when the model is
inaccurate. With the MPPI control algorithm, we first generated a
large number of action trajectories by our building dynamics model.
Trajectories are the sequences of actions for the coming future time
steps. TheMPPI finds the trajectory that provides the highest energy
savings and lowest human comfort violation rate. The controller
then executes the first action of that trajectory. To incorporate
GP-based uncertainty estimation in the above MPPI process, we
developed a two-stage uncertainty-aware HVAC control algorithm
that selects an action with a high reward and confidence. First, we

used a threshold to filter out the trajectories whose first action has
high uncertainty. Even if these trajectories are selected, their first
actions cannot be executed due to high uncertainty. To find the best
confidence threshold for safe HVAC control, we needed to know
the relationship between the confidence value provided by the GP
model and the expected model error. We designed an algorithm
that can optimize the uncertainty threshold offline by testing the
dynamics model on historical data. Second, we selected the optimal
trajectory with a new MPPI objective function that considers the
uncertainty of every action in all the remaining trajectories. Finally,
we designed a fallback mechanism that employs a relatively reliable
default control policy to override the MBRL control actions when
no safe action is selected by the above control process.

We evaluated CLUE with comprehensive simulations in a 463𝑚2

five-zone office building in three cities with EnergyPlus [9]. We
first tested the uncertainty estimation accuracy of the proposed GP-
based building dynamics model. The results show that the building
dynamics model in CLUE outperformed all baselines in terms of
modeling and uncertainty estimation accuracy. We then employed
CLUE to control the simulated building and compared the human
comfort and energy consumption between our system and the
state-of-the-art MBRL solution. CLUE on average reduced comfort
violations by 12.07% compared to the state-of-the-art MBRLmethod,
with similar energy-saving and excellent data efficiency, i.e., CLUE
reduced the data requirement from hundreds of days to only seven
days.

In summary, this paper provides the following contributions.
• We are the first to include epistemic uncertainty estimation
in shooting-based MBRL methods for HVAC control.
• We develop CLUE, a safe MBRL HVAC control system that
adopts two novel design components, meta kernel learning
and confidence-based control.
• We conducted comprehensive experiments with EnergyPlus
simulations.

2 MBRL FOR HVAC CONTROL
HVAC control can be formulated as a Markov Decision Process
(MDP), denoted asM : {S,A, 𝑟 ,P, 𝛾}, consisting of the state space S,
the action spaceA, the reward function 𝑟 : S×A→ R, the dynamics
function P(𝑠′ |𝑠, 𝑎) and discount factor 𝛾 . At each time step 𝑡 , the
controller is in state 𝑠𝑡 ∈ S, executes some action 𝑎𝑡 ∈ A, receives
reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡), and transitions to the next state 𝑠𝑡+1 according
to the dynamics function 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡). At each time step, the
goal is to choose the action that maximizes the discounted sum of
future rewards, given by

∑∞
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′), where 𝛾 ∈ [0, 1] is
the discount factor that prioritizes near-term rewards.

MBRL-based control has two parts: the dynamics model and the
controller. The dynamics model is used to make predictions, which
are then used by the controller to choose an action. Let 𝑓\ (𝑠𝑡 , 𝑎𝑡)
denote a learned discrete-time dynamics model parameterized by \ ,
given a set of historical data {(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)}𝑛 . The dynamics model
takes the current state 𝑠𝑡 and action 𝑎𝑡 and outputs a prediction
of the next state at 𝑠𝑡+1. The controller then solves the following
optimization problem:

(𝑎𝑡 , · · · , 𝑎𝑡+𝐻−1) = arg max
(𝑎𝑡 ,· · · ,𝑎𝑡+𝐻−1)

𝑡+𝐻−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′) (1)

150

CLUE : Safe Model-Based RL HVAC ControL Using Epistemic Uncertainty Estimation BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

15 20 25 30 35
Zone state (°C)

0.000

0.025

0.050

0.075

0.100

0.125

Pr
ob

ab
ilit

y
de

ns
ity

0.0

0.5

1.0

1.5

2.0

M
od

el
 e

rro
r (

°C
)

Training data distribution
Average absolute model error

Figure 1: Model errors are >10× higher in
data-sparse regions vs. data-dense regions.

10 20 30 50 100 300 600 1200
0

2

4

6

Ab
so

lu
te

 m
od

el
 e

rro
r (

°C
)

Training set size (days)
Figure 2: Model error distribution vs.
training data set size.

0 25 50 75 100 125
0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e

de
ns

ity

20 days
100 days
600 days
1200 days

Temporal distances (time steps)
Figure 3: CDF of the distances between
model errors for each training set size.

Disturbances Outdoor Air Drybulb Temperature (◦𝐶)
Outdoor Air Relative Humidity (%)
Site Wind Speed (𝑚/𝑠)
Site Total Radiation Rate Per Area (𝑊 /𝑚2)
Zone People Occupant Count (𝑁𝑜.)

Zone State Zone Air Temperature (◦𝐶)
Action Zone Temperature Setpoint (◦𝐶)

Table 1: State and action variables.

The controller picks the action sequence that maximizes the cumu-
lative discounted rewards of the future 𝐻 time steps. In practice,
it is often desirable to solve this optimization at each time step,
i.e., executing only the first action from the sequence and then re-
planning at the next time step with the updated state information.
While the random shooting method [32] is often used to solve the
optimization problem in Eq.1, recent work has shown that MPPI is
able to provide better optimization results [8]. To enable the above
MBRL-based HVAC control process, we referred to𝑀𝐵2𝐶 [8] for
the following three MBRL components.

States. A state is a set of variables that are used as inputs and
outputs of the building dynamicsmodel.We define two sets of states:
the disturbances and the zone state. The variables associated with
these states are specified in Table 1. The disturbances comprises
of variables that do not depend on the control action of the HVAC
system, including weather conditions and occupancy. The zone
state variable is the temperature of the controlled thermal zone,
which depends on our control action and is used to calculate the
building system reward.

Actions. The action is the temperature setpoint of the controlled
thermal zone. In our experimental platform, the maximum and
minimum temperature setpoints for the HVAC system are 30◦𝐶
and 15◦𝐶 , respectively. Each controlled thermal zone is associated
with a heating setpoint and a cooling setpoint, resulting in an action
dimension of 2 for each zone.

Rewards. In our experimental platform, we adopted the same
reward function as described in [16], represented by Eq. 2. The com-
fort zone is defined by two temperatures, 𝑧 and 𝑧, which represent
the upper and lower bounds for the zone temperature, respectively.
Here, 𝑧 denotes the upper comfort limit, and 𝑧 denotes the lower
comfort limit. At each time step 𝑡 , 𝑍𝑡 represents the zone tempera-
ture, and 𝐸𝑡 represents the total energy consumption. To balance
the relative importance of comfort and energy consumption, we
used a weight variable𝑤𝑒 ∈ [0, 1]. This weight variable allows us
to adjust the trade-off between comfort and energy consumption

according to the specific requirements of the system.

𝑟 (𝑠𝑡) = −𝑤𝑒𝐸𝑡 − (1 −𝑤𝑒) (|𝑍𝑡 − 𝑧 |+ + |𝑍𝑡 − 𝑧 |+) (2)

In Eq. 2, we set 𝑤𝑒 = 0.1 during occupied periods and 𝑤𝑒 = 1
during unoccupied periods. 𝐸𝑡 is approximated by the L-1 norm of
the difference between the zone temperature set point (action) and
the zone temperature at the current time step, i.e. the amount of
heating/cooling provided by the HVAC actuator [4]. The lower and
upper comfort limits 𝑧 and 𝑧 are 20◦𝐶 and 23.5◦𝐶 , respectively, for
the winter and 23◦𝐶 and 26◦𝐶 for the summer.

3 MOTIVATION
To understand the prediction performance of existing state-of-the-
art MBRL methods [8, 32], we performed a set of EnergyPlus simu-
lations [9, 24] in a 463𝑚2 building with five zones [16, 25]. In this
simulation, we utilized an actual 2021 TMY3 weather profile from
Pittsburgh, PA [16]. We employ a single climate for motivation
experiments, while the actual analysis encompasses three climate
zones. To investigate the prediction errors of building dynamics
models, we experimented with the state-of-the-art deep ensem-
ble method introduced in [8]. Specifically, we examined three key
aspects: first, the relationship between model errors and the dis-
tribution of training data; second, the impact of varying training
data sizes; and third, the temporal distribution of significant model
errors.

Experiment results. Figure 1 depicts the relationship between
the distribution of the training data and the prediction error of
the building dynamics model. The model was trained on 120, 000
time steps (3.42 years) of data collected with the default rule-based
controller for 150 epochs and a learning rate of 1𝑒 − 3 to ensure
convergence. After training, we employed the model to predict the
subsequent 3000 time steps and recorded the prediction errors along
with the corresponding zone state at the prediction’s input, i.e., the
starting zone state. To better analyze the results, we categorized
the model errors based on the zone temperature in their inputs and
calculated the average model errors for each bin.

In Figure 1, we found that the deep ensemble exhibited signifi-
cantly higher errors when predicting in data-sparse regions of the
state space. Notably, the deep ensemble model displayed greater
accuracy when the zone state that fell within the temperature range
of 15◦𝐶 to 25◦𝐶 . Although the average model error is 0.29◦𝐶 , the
model error consistently exceeded 1◦𝐶 when the zone state ex-
ceeded 32◦𝐶 . The highest model error recorded was 9.36× higher
than the average error and a staggering 15325× higher than the
smallest model error.

151

BuildSys ’23, November 15–16, 2023, Istanbul, Turkey An et al.

To understand the substantial prediction errors observed in the
deep ensemble models, we employed Kernel Density Estimation
(KDE) to analyze the density distributions of the collected training
data comprising 10,000 transitions. The blue curve presents the
typical distribution patterns of the training data for the dynamics
model in MBRL-based HVAC control. It exhibits two clear modes
around 17.5◦𝐶 and 21◦𝐶 , representing the predominant temper-
atures during night and day. The majority of the transition data
clusters around one or two central modes. The intrinsic bias in
the thermal data adversely affects the prediction accuracy of data-
driven dynamics models.

Two Questions Arise: The first question pertains to whether
training models on more historical data can mitigate disastrous
model errors. Unfortunately, the answer is no. We trained a deep
ensemble model on different data sizes, ranging from 10 to 1200
days, and assessed its absolute error on the subsequent 30 days.
The result is shown in Figure 2. We considered a model error larger
than 2°C as unacceptable, since in the building sensor domain, a 2°C
deviation from the true temperature is considered a sensor fault
[17]. Despite training with nearly 4 years of data, model errors
larger than 2°C persisted, i.e. 2.1% of all predictions deviated more
than 2°C from the ground truth. The epistemic uncertainty from
intrinsic bias in building thermal data significantly impacts accurate
predictions, resulting in sub-optimal actions.

The second question revolves around whether we can ignore
model errors if they occur independently over time, allowing the
thermal system to tolerate short periods of controller glitches. Un-
fortunately, the answer is also no. To answer this question, we
employed the deep ensemble model to make predictions with each
of the 3000 time steps (one year) of data in the previous experiments,
recorded the model errors, and flagged the model errors that exceed
2◦𝐶 . Then, we went through all model errors in chronological order
and recorded the number of time steps until we encounter every
other flagged model error, i.e. the temporal distances between adja-
cent flags. Finally, we plotted the cumulative density function of
the distances. To show how the trend changes with the size of the
training data set, we conducted the above experiment four times
using the same deep ensemble model trained on datasets of different
sizes, ranging from 20 to 1200 days. The results are shown in Figure
3. Our analysis reveals that a significant majority (ranging from
68% to 89%) of the distances are 0, which means that the sizeable
model errors are often consecutive. In other words, the majority of
high model errors occur in clusters. If these errors are ignored, the
thermal system potentially faces hours of controller dysfunction.

Our Key Idea. Based on the above observations, our main goal
is to mitigate the adverse effects of high model error caused by
distribution bias. Rather than attempting to refine the model or the
training process to reduce the error, which we have shown might
be unfeasible, we designed a procedure that identifies and alerts
the controller when the model error will be high in the current
time step. In essence, our system predicts the uncertainty about
the model’s prediction using its training data and the current input.
Once a high error state-action pair is flagged, we either discard
the prediction and opt for more confident alternatives, or in cases
where no prediction is highly confident, allow the building’s default
controller to override the control action, compensating for the lack
of data in that region of the state space.

4 THE DESIGN OF CLUE
In this section, we describe the design of CLUE, including problem
formulation, modeling system dynamics with the Gaussian process,
and confidence-based MPPI controller.

4.1 Overview
Figure 4 depicts the overview of CLUE. At a high level, CLUE com-
prises two major components: a building system dynamics model
and an MPPI-based controller. Our building dynamics model is a
Gaussian process (GP) model which takes the current state of the
building HVAC system as an input, and outputs the next state of the
building HVAC system with a confidence interval. The prediction
and the confidence interval are then used by the confidence-based
controller to choose the best action.

The workflow of CLUE is summarized as follows. Initially, the
system performs meta kernel learning (Section 4.3) to compute the
GP prior without any previous knowledge about the target building
B. Meta-kernel learning uses reference data, i.e. any data collected
from other buildings or via simulations, to learn an initialization
of the GP kernel. Once the historical data of the target building
is available, the system fits a GP using data solely from the target
building while incorporating the learned GP prior. The result is the
final building dynamicsmodel.CLUE then optimizes the uncertainty
value threshold 𝜖 , which is stored in the MPPI algorithm.

Upon deployment, the system initiates the confidence-based
control procedure. At each control step, our system generates MBRL
prediction trajectories using the GP model. Any trajectory where
the uncertainty of the first time step exceeds the threshold 𝜖 is
discarded. If all trajectories are discarded, the system sends the
default controller action to the actuator. Otherwise, the remaining
trajectories are utilized by an MPPI to compute the optimal action
sequence 𝑎(·). The first action from this sequence is then sent to
the actuator.

Lastly, the system awaits a single time step interval (e.g., 15
minutes in our case), observes a new state, and appends the corre-
sponding tuple to the historical dataset DB before starting a new
planning cycle.

4.2 Modeling Building Dynamics with GP
We model the building dynamics using GP, and use the variance
of each prediction as the uncertainty value, i.e. higher variance in-
dicates higher uncertainty. We concatenate the environment state
(outdoor air temperature, humidity, occupancy, etc.) and the zone
states (zone air temperature) together to form 𝑠𝑡 ∈ S, then con-
catenate 𝑠𝑡 with the action 𝑎𝑡 ∈ A (heating and cooling setpoints)
to get the input variable. We will denote the input variable as
𝑥 ∈ X = S ×A for simplicity. The output variable is the zone state
at the next time step 𝑠𝑡+1. To make the notations consistent, we
denote target output variable for 𝑥𝑖 to be 𝑦𝑖 . We further define our
historical data set as D = (𝑋,𝑌) = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1.

Modeling with GP involves a two-stage process. It starts from a
pool of candidate functions (GP prior) and computes beliefs con-
ditioned on training data (GP posterior). We will introduce both
stages in the following.

First, we choose a function that, intuitively, quantifies the sim-
ilarity between two inputs, i.e. 𝑘 : X × X → R. This function is

152

CLUE : Safe Model-Based RL HVAC ControL Using Epistemic Uncertainty Estimation BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

Reference building data Learned kernel
Final building

dynamics model

Meta learning Finetuning

Confidence-based Controller

Fallback mechanism

Trajectory
reward

Trajectory
confidence Trajectory prediction

Action decision

Actuator

Building Dynamics Model - Gaussian Process w/ meta kernel learning

Controller - Model Predictive Path Integral w/ confidence

Figure 4: Overview of the proposed CLUE system.

called the GP kernel. The idea is that buildings in similar states
that are taking similar actions should transition to a similar state.
Thus, if 𝑘 (𝑥1, 𝑥3) > 𝑘 (𝑥2, 𝑥3), then 𝑦1 should be more indicative
about 𝑦3 than 𝑦2 when extrapolating on 𝑥3. Notably, each variable
in our inputs contributes differently to the similarity to other in-
puts, depending on their level of impact according to the unknown
dynamics function. The kernel function addresses this difference us-
ing adjustable parameters, dubbed hyperparameters. CLUE adopts
the Radial Basis Function (RBF) kernel represented by Eq. 3. The
RBF kernel is known for its expressive nature and has previously
been used to model building thermal dynamics [20]. The hyperpa-
rameters are \ : {\scale,Θ}, where \𝑠𝑐𝑎𝑙𝑒 represents a scalar value,
and Θ is an 8 × 8 matrix. Overall, the kernel parameters involve a
total of 65 real numbers. The selection of these parameters is crucial
as their values significantly impact both the modeling accuracy and
the uncertainty estimation accuracy.

The second stage involves fitting data and making predictions.
CLUE uses the exact regression technique, where we first compute
the covariance matrix 𝐾 := 𝑘 (𝑋,𝑋), and then calculate the GP
posterior by Eq. 4 and Eq. 5, where 𝐼 is the identity matrix and
𝜎2𝑛 is the noise variance (default to be 0) to account for aleatoric
uncertainty. From this posterior, the prediction of 𝑦∗ at 𝑥∗ follows
a Gaussian distribution as per Eq. 6.

𝑘 (𝑥, 𝑥 ′) = \scale exp
(
−1
2
(𝑥 − 𝑥 ′)⊤Θ−2 (𝑥 − 𝑥 ′)

)
(3)

𝑚post (𝑥) =𝑚(𝑥) + 𝑘 (𝑥,𝑋) (𝐾 + 𝜎2𝑛𝐼)−1 (𝑦 −𝑚(𝑋)) (4)

𝑘post (𝑥, 𝑥 ′) = 𝑘 (𝑥, 𝑥 ′) − 𝑘 (𝑥, 𝑋) (𝐾 + 𝜎2𝑛𝐼)−1𝑘 (𝑋, 𝑥 ′) (5)

GP(𝑥∗) = N(𝑚post (𝑥∗), 𝑘post (𝑥∗, 𝑥∗)) (6)
The prediction mean𝑚post (𝑥∗) represents the most likely model

outcome, while the variance 𝑘post (𝑥∗, 𝑥∗) indicates the level of un-
certainty associated with the model outcome given data D and
input 𝑥∗. The variance of prediction 𝑦∗ is higher if 𝑥∗ is in the data-
scarce region of the input space X than if 𝑥∗ is in the data-dense
region. Therefore, we use variance as the indicator of epistemic
uncertainty.

4.3 Meta Kernel Learning
To effectively model the building dynamics with GP, we optimize
the initialization of the kernel parameters using data from a diverse
set of reference buildings. To achieve this goal, we develop a new
meta kernel learning method that combines two techniques, i.e.,
meta learning [11] and kernel learning [10].

Given a set of training dataD : {𝑋,𝑌 }, kernel learning [10] auto-
matically optimizes the kernel parameters using gradient descent. It
defines the loss function as the difference between the GP model’s
prediction and the ground truth, L(GP\𝑘) = 𝑀𝑆𝐸 (GP\𝑘 (𝑋), 𝑌). It
calculates the gradient of the loss function with respect to the ker-
nel parameters, ∇\𝑘L(GP\𝑘), and updates the kernel parameters
with the gradient. This process is repeated for 𝑛 iterations to obtain
a set of kernel parameters with a low model error.

Meta learning [11] trains a parameterized agent on multiple di-
verse tasks, enabling the agent to learn a suitable initialization of
parameters from previously trained tasks. As a result, the agent can
swiftly adapt to new tasks. Instead of optimizing the model parame-
ters according to \∗

𝑘
= argmin\𝑘 L(GP\𝑘), meta learning optimizes

the parameters according to \∗
𝑘
= argmin\𝑘

∑
LT𝑖
(GP\𝑘), where

T𝑖 is a task. It minimizes the sum of model error across a range of
different tasks by accumulating the gradients across tasks, which
we will introduce in the following.

In our meta kernel learning, we optimize the hyperparameters
of a GP kernel, denoted as \𝑘 , using kernel learning. Rather than
referring to MDPs as tasks, we consider modeling a dataset from a
building over a specific period as a task. For instance, minimizing
themodeling loss on the data from building A in Pittsburgh between
May and August can be regarded as a task. The loss of the model on
a task is defined in Eq. 7, which represents the model error of GP
when using a kernel with hyperparameters \𝑘 on the mentioned
dataset.

The objective of meta kernel learning is to minimize the sum of
model errors across all tasks. We denote the set of tasks as 𝑝 (T).
The objective function is defined in Eq. 8.

LT𝑖
(GP\𝑘) = 𝑀𝑆𝐸 (GP\𝑘 (𝑋T𝑖

), 𝑌T𝑖
) (7)

153

BuildSys ’23, November 15–16, 2023, Istanbul, Turkey An et al.

\∗
𝑘
= argmin

\

𝑛∑︁
𝑖=1

LT𝑖
(GP\𝑘) |T𝑖∼𝑝 (T) (8)

Algorithm 1:Meta Kernel Learning
Input: 𝑝 (T): distribution over all building data
Parameter : {𝛼, 𝛽} step size hyperparameters

1 Randomly initialize \𝑘
2 while not converged do
3 Sample batch of building data {T1, · · · , T𝑖 } ∼ 𝑝 (T)
4 for all T𝑖 do
5 GP← GP Fit(𝑋T𝑖

, 𝑌T𝑖
)

6 \ ′
𝑘
← \𝑘 − 𝛼∇\𝑘LT𝑖

(GP\𝑘)
7 \𝑘 ← \𝑘 − 𝛽∇\

∑
LT𝑖
(GP\ ′

𝑘
)

We present our design of the meta kernel learning procedure
in algorithm 1. The kernel parameter is optimized using gradients
accumulated across many tasks, and therefore improving the kernel
while avoiding overfit to a single task. For the step size hyperparam-
eters, we chose 𝛼 = 𝛽 = 1𝑒 − 3. This selection of step size leads to
a relatively slower training process. However, in our experiments,
we specifically chose a small step size to ensure convergence. The
result of meta kernel learning is a set of kernel parameters that
serve as the initialization of the kernel for the GP building dynam-
ics model to be finetuned on the target building data. Once meta
kernel learning is applied, we can obtain a building-specific kernel
by fine-tuning the trained kernel using a minimal amount of data
from the target building through traditional kernel learning.

4.4 Confidence-based Control
CLUE uses online planning with MPPI to select actions. Given
the building state 𝑠𝑡 at time 𝑡 , the prediction horizon 𝐻 , and an
action sequence 𝑎𝑡 :𝑡+𝐻 = {𝑎𝑡 , ..., 𝑎𝑡+𝐻 }, our GP-based building
dynamics model GP(𝑥∗)makes predictions 𝑠𝑡 :𝑡+𝐻 . At each time step
𝑡 , the MPPI controller applies the first action 𝑎𝑡 of the optimized
action sequence. Thus, it is critical that the first prediction of the
trajectories has low model error. The uncertainty estimation does
not directly translate to the expected model error. We translate
the model error threshold to an uncertainty value threshold by
testing the model on historical data. Then, CLUE identifies and
filters out prediction trajectories whose uncertainty value exceeds
the threshold.

4.4.1 Uncertainty Threshold Translation. Let the uncertainty value
provided by the GP dynamics model at input 𝑥 be 𝜎 (𝑥), model error
threshold be 𝑒∗ (measured in absolute error in Celsius degrees),
and flagging threshold be 𝜖 ∈ R+. If 𝜎 (𝑥) > 𝜖 , the state-action
pair is flagged to have a high model error. Given an 𝑒∗ specified
by the engineers, the ideal translator maximizes the number of
model errors>𝑒∗ flagged while minimizing the flags that have low
model errors, i.e., the translator maximizes true positives and true
negatives.

To find the appropriate threshold 𝜖 , we use an offline procedure
that optimizes 𝜖 from historical data. Given a set of historical data
of the target building D : {𝑋,𝑌 }, we employ the current model
GP to make a prediction on every input 𝑥𝑖 ∈ 𝑋 in D and generate
prediction results (®̀, ®𝜎) = GP(𝑋), where ®̀ is the predicted building
state and ®𝜎 is the uncertainty value.We can then calculate ®𝑒 = |𝑌−®̀|,

which is the absolute model error inferred by testing the current
model with the historical data. For all predictions {(`, 𝜎)}𝑛 , we
solve the following optimization problem:

minimize: count(|𝑦𝑖 − `𝑖 | < 𝑒∗) − count(|𝑦𝑖 − `𝑖 | > 𝑒∗)
s.t. 𝜎𝑖 > 𝜖

By maximizing true positives and true negatives, CLUE finds the
appropriate 𝜖 to be used for future predictions using the current
model 𝐺𝑃 . This method works with any model error threshold
𝑒∗ ∈ R+ specified by the engineers. CLUE applies this process
offline to get the optimal flagging threshold, which is used in the
confidence-aware MPPI control process.

4.4.2 Confidence-Aware MPPI. . At each planning cycle, the MPPI
controller computes a number of trajectories. CLUE checks the
uncertainty value of the first time step of each trajectory and flags
the trajectories that are expected to exceed the given model error
threshold using the flagging threshold computed by the uncertainty
threshold translator. Then, CLUE discards all trajectories that are
flagged. This excludes high uncertainty thresholds from being used
for action selection.

After filtering out trajectories according to their uncertainties,
the confidence-based MPPI selects an optimal trajectory from the
remaining trajectories. Although all remaining trajectories have
low uncertainty at the first time step, the uncertainty values at
the future time steps should also be considered, since they are
related to the uncertainty of the predicted future rewards of the
trajectories. CLUE addresses this by incorporating uncertainty into
the optimization objective function, Eq. 9, where _ is a factor used
to balance the magnitudes of uncertainty and reward. In other
words, Eq. 9 determines the action sequence of the trajectory that
maximizes the sum of discounted rewards while minimizing the
sum of discounted uncertainty values. The design rationale behind
Eq. 9 is that since the controller computes a roll-out trajectory
in a bootstrap manner, i.e., for every time step in the prediction
horizon, the impact of the model accuracy diminishes. In this design,
the uncertainty value is discounted at the discount rate 𝛾 to take
account of the relative importance of each uncertainty value. This
modified objective function enables the controller to simultaneously
optimize for both high reward and low uncertainty.

𝑎(·)∗ = argmax
𝑎 (·)

𝐻∑︁
𝑡=1

𝛾𝑡 (𝑟 (𝑥𝑡) − _𝜎 (𝑥𝑡)) (9)

𝑎new = 𝑎prev +
∑𝐾
𝑘=1 𝛿𝑎𝑘 exp(

1
[

∑𝐻
𝑡=1 𝛾

𝑡 (𝑟 (𝑥𝑡) − _𝜎 (𝑥𝑡)))∑𝐾
𝑘=1 exp(

1
[

∑𝐻
𝑡=1 𝛾

𝑡 (𝑟 (𝑥𝑡) − _𝜎 (𝑥𝑡)))
(10)

Implementing the designed optimization objective function into
MPPI controllers is a straightforward and widely applicable process.
To illustrate, we provided an example using the MPPI controller em-
ployed in recent research on HVAC control [8]. MPPI approximates
the optimal action sequence by assessing the expected rewards
of random trajectories and calculating the weighted sum of their
action sequences using exponential weighting with respect to the
cumulative discounted rewards generated by the action sequences
[29]. A generic implementation of MPPI for HVAC control would
use Eq. 2 for reward, such that 𝑅 =

∑𝐻
𝑡=1 𝛾

𝑡𝑟 (𝑠𝑡), where 𝐻 is the
prediction horizon length. In order to implement our proposed

154

CLUE : Safe Model-Based RL HVAC ControL Using Epistemic Uncertainty Estimation BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

method, we modify the reward function to match the objective
function in Eq. 9. The result is Eq. 10, where 𝑎 is an action sequence,
𝐾 is the number of trajectories, 𝛿𝑎𝑘 is the action perturbation, and
[is a hyperparameter. Eq. 10 shows how the weighted exponen-
tial sum of action sequences is now calculated with respect to the
discounted sum of the system rewards and their confidence. In a
similar manner, other MBRL controllers can implement our design
by replacing the reward evaluation function.

4.4.3 Fallback Mechanism. When all trajectories exhibit high un-
certainty, CLUE falls back to using the default controller as a safe
and dependable alternative. Current HVAC systems’ default con-
troller is rule-based control, which mostly provides conservative
and safe actions.

5 EVALUATION
We conducted two sets of experiments to evaluate CLUE. First, we
tested the modeling accuracy of GP with meta kernel learning and
the uncertainty prediction accuracy of the fallback mechanism.
Second, we deployed CLUE in the simulated environments and
compared its performance with the state-of-the-art solutions.

5.1 Experiment Setting
5.1.1 Platform Setup. We used EnergyPlus [9] for high-fidelity
building simulation, PyTorch [23] as the deep learning library, GPy-
Torch [12] for GPU-accelerated GP kernel learning, and Sinergym
[16] as the virtual testbed that facilitates interaction with Energy-
Plus in Python. Sinergym [16] sends the action chosen by CLUE to
the EnergyPlus simulation session and sends the state observations
back to CLUE. All software used for our experiment is open source.

5.1.2 Implementation details. Throughout our experiments, we
used consistent experiment hyperparameters. We used epochs=150,
learning_rate=1e-3, and weight_decay=1e-5 for DE models, iter-
ation=800 and learning_rate=1e-2 for GP kernel learning, and it-
eration=200 and learning_rate=1e-2 for GP kernel finetuning. We
used MSE as the loss criterion and Adam as the optimizer for all
training. For meta kernel learning, the GP model trains on 35, 040
time steps (1 year) of data from each reference building. For the
MPPI controller, we used the optimal hyperparameter configura-
tion tested in [8], i.e. sample_number=1000 and horizon=20. For
confidence-based MPPI, we used _ = 1𝑒 − 2.

5.1.3 Environment selection. We conducted our simulation with a
463𝑚2 building with five zones [16] in three climate-distinct cities
from January 1st to January 31st and July 1st to July 31st. To test
CLUE’s generalizability, we carefully chose three cities in the United
States—Pittsburgh, Tucson, and New York—as our experiment envi-
ronments. Each city represents a distinct climate type: Pittsburgh
has a continental climate (ASHRAE 4A), Tucson has a hot desert
climate (ASHRAE 2B), and New York has a humid continental cli-
mate (ASHRAE 4A) [26]. Actual 2021 TMY3 weather data for those
cities are used [16]. This deliberate diversity in climate conditions
allows our simulations to yield comprehensive insights applicable
across various regions and climates.

5.1.4 Performance Metrics. We use two different sets of perfor-
mance metrics to evaluate the uncertainty estimation accuracy and
building control efficiency respectively.

Jan(P) Jan(T) Jan(N) July(P) July(T) July(N) Avg.0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n
ab

so
lu

te
 e

rro
r (

°C
)

GP
DE
GP-M (ours)

Figure 5: Model accuracy results.

1) Metrics for the uncertainty estimation:
• Accuracy: the sum of true positive (TP) and true negative
(TN) results divided by the total number of results.
• Precision: the number of TP results divided by the number
of all positive results.
• Recall: the number of TP results divided by the number of
all samples that should have been identified as positive.

Note that we did not use the 𝐹1 score metric due to its equal
weighting of precision and recall [14], which does not align with our
control system’s objective. Instead, we directly logged the precision
and recall values for informative data representation.

2) Metrics for building control efficiency:
• Cumulative reward: the weighted sum of the building system
rewards calculated according to Eq. 2.
• Violation rate: the ratio of time steps where zone temperature
violates comfort constraints to the total number of time steps.
• Energy consumption: total energy consumption in kWh.

5.1.5 Baselines. In terms of uncertainty estimation accuracy, we
compared the performance of our method with the following base-
lines:
• Deep Ensemble [8]: an ensemble of five neural networks.
Since uncertainty estimation is not adopted in [8], we use the
uncertainty measurement method from [18], where the level
of uncertainty is measured as the variance of a prediction
Gaussian distribution: 𝜎2∗ (𝑥) = 𝑀−1

∑
𝑚 `2

\𝑚
(𝑥) − `2∗ (𝑥),

where𝑀 = 5 is the number of models, `\𝑚 (𝑥) is the model
𝑚’s prediction, and `∗ (𝑥) = 𝑀−1

∑
𝑚 `\𝑚 (𝑥) is the mean of

the predictions of all models.
• GP: GP method with kernel learning and identical uncer-
tainty estimation as our approach, representing the generic
approach for building thermal dynamics regression.

In terms of building control efficiency, we compared the perfor-
mance of our proposed system with the following baselines:
• Rule-based: the default controller of the environment.
• DE-MBRL [8]: MBRL with deep ensemble and MPPI.
• CLUE w/o CB: CLUE without confidence-based control.

5.2 Modeling and Uncertainty Estimation
5.2.1 Modeling Accuracy. We compared our solution (GP with
meta kernel learning, presented as GP-M in the figure) with the
other two baseline methods, i.e., deep ensemble (DE) and GP. The
results are shown in Figure 5. The DEmodel is trained on 2, 000 time
steps (20.83 days) of data from the target building. The GP model is
trained and fitted on the same data as above. The GP-M model first
employed meta kernel learning, then finetuned and fitted to the

155

BuildSys ’23, November 15–16, 2023, Istanbul, Turkey An et al.

same data as the DE model. We found that, in terms of the average
of all environments, the mean absolute model error of GP-M is
20.7% less than DE and 85.1% less than GP. GP-M outperformed
GP in all environments and outperformed DE in five out of six
environments. The result shows that meta kernel learning was able
to effectively learn a suitable initialization for the kernel parameters,
which significantly improved GP’s modeling performance.

5.2.2 Uncertainty Estimation Accuracy. In the following experi-
ment, we tested and compared the uncertainty estimation accuracy
of GP-M and the baselines. We added our fallback mechanism (Sec-
tion 4.4.3) to all three models and measured their abilities to accu-
rately flag model errors larger than 1◦𝐶 . We used 1◦𝐶 as a stricter
threshold compared to the sensor fault (2◦𝐶)[17]. Then, we mea-
sured the accuracy, precision, and recall of them in the subsequent
30 days of the training set. Furthermore, to test the stability of each
method, we trained new models and ran the same experiment five
times. We then calculated the mean and the standard deviations of
each result. The results are summarized in Table 2, where the best
performances for each metric in each environment are in bold.

We found that our method consistently performed better than
both baselines in terms of overall accuracy. Compared to GP, our
method had a higher recall and lower precision, i.e. GP-M correctly
flagged predominant portions of the large model errors, but also
flagged some small model errors. This shows that GP-M is more
conservative than GP, i.e. our method rather incorrectly flags a
minor model error than missing a potential model error over the
threshold.

In terms of stability, both vanilla GP and GP-M showed negligi-
ble instability (< 0.5% in all metrics). DE showed high instability
across experiment runs, with a standard deviation of as high as 12%
for recall. We attribute the high instability of the Deep Ensemble
method to the randomness of the parameter initialization and the
stochasticity of the training process of the neural network models.
In comparison, GP-based methods are significantly more resistant
to the said randomness.

5.2.3 Model Convergence. We conducted experiments to test the
time step of convergence for CLUE and its DE-MBRL counterpart in
terms of cumulative reward. The result is shown in Figure 6. In this
experiment, DE-MBRL is trained offline using different amounts
of data from the target building. Then the model freezes, and is
used to control the 5-zone building in Pittsburgh in January. CLUE
first applied meta kernel learning, then finetuned it using different
amounts of data from the target building. The GP model is then
fitted to 700 time steps of the target building data (the same data size
as in [13]) to ensure effective modeling and computation efficiency.
For the model error threshold 𝑒∗ settings, we used exhaustive search
to find the optimal settings between 0.5◦𝐶 to 3◦𝐶 .

DE-MBRL took 50 days of offline training data to surpass the
default controller and another 250 days of offline training data to
reach its peak performance. CLUE’s performance converged at 7
days of data, where further training did not improve its control
performance. With this insight in mind, we use 7 days of data for
CLUE for the remainder of the experiments.

In the following experiments, the DE-MBRL was trained on
120, 000 (3.42 years) time steps of data gathered from the target
building using the default PID controller. CLUE employed the same

10 20 30 50 100 300 600 1200
Days

130

125

120

115

110

105

100

Re
wa

rd

Default controller
DE-MBRL
CLUE

Figure 6: Data efficiency results.

Pittsburgh Tucson New York Average0.00
0.05
0.10
0.15
0.20
0.25
0.30

Vi
ol

at
io

n
ra

te
 (%

)

Rule-based
DE-MBRL
CLUE w/o CB
CLUE

Figure 7: Comfort violation rate results.

Pittsburgh Tucson New York Average0

200

400

600

800

1000

1200

Po
we

r c
on

su
m

pt
io

n
(k

W
h) Rule-based

DE-MBRL
CLUE w/o CB
CLUE

Figure 8: Energy consumption results.
training procedure as above. The model error threshold is set to
0.5◦𝐶 . Then, we use CLUE and the baseline methods to control the
building’s HVAC system and observed the thermal comfort and
energy-saving performances, as shown in the following subsections.

5.3 Building Control
In terms of building control, we tested CLUE along with the base-
lines in the simulated environments of a 463𝑚2 building with five
zones [16] in three climate-distinct cities.

5.3.1 Thermal Comfort. We compared the violation rates of CLUE
and the baselines in Figure 7. We found that CLUE consistently
outperforms the baseline methods in terms of violation rates. Al-
though the GP-M dynamics model used in CLUE has higher model
error compared with DE as shown in Figure 5, CLUE still achieved
a lower violation rate compared with its DE-MBRL counterpart,
while CLUE w/o CB performed worse than DE-MBRL, as expected.
This shows that CLUE is able to produce high-quality control ac-
tions even with an inaccurate dynamics model, which results in its
excellent data efficiency.

5.3.2 Energy Consumption. We compared the energy consumption
of CLUE and the baselines in Figure 8. Overall, we found that CLUE
consumes slightly more energy compared with its non-confidence-
based counterparts. This is attributed to the operation of fallback

156

CLUE : Safe Model-Based RL HVAC ControL Using Epistemic Uncertainty Estimation BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

Location Time Deep Ensemble [18] GP GP-M (ours)
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Pittsburgh, PA January .796±.00 .521±.01 .740±.01 .877±.00 .803±.00 .958±.00 .884±.00 .768±.00 .677±.00
July .831±.01 .851±.09 .160±.10 .840±.00 .809±.00 .763±.00 .961±.00 .056±.00 .999±.00

Tucson, AZ January .736±.01 .439±.08 .693±.12 .847±.00 .697±.00 .844±.00 .932±.00 .341±.00 .694±.00
July .650±.00 .489±.00 .827±.00 .844±.00 .854±.00 .860±.00 .947±.00 .036±.00 .999±.00

New York, NY January .830±.00 .403±.02 .816±.00 .855±.00 .883±.00 .728±.00 .965±.00 .299±.00 .900±.00
July .679±.00 .373±.01 .812±.01 .797±.00 .934±.00 .718±.00 .953±.00 .205±.00 .947±.00

Table 2: Uncertainty estimation experiment results.

6:00 11:00 16:00 21:00 2:00
16

18

20

22

Te
m

pe
ra

tu
re

 (
C)

CLUE w/o CB

6:00 11:00 16:00 21:00 2:00
16

18

20

22

Te
m

pe
ra

tu
re

 (
C)

CLUE

0

1

Oc
cu

pa
nc

y
Fl

ag

0

1

Oc
cu

pa
nc

y
Fl

ag

Heating setpoint
Zone temperature

Comfort threshold
Comfort violation

Fallback active
Occupancy flag

Figure 9: Analysis of the control performance gain of CLUE.
mechanism, which consumes the same amount of energy as the rule-
based controller during the time that the fallback is active. However,
the energy consumption level of CLUE is still in-line with other
MBRL methods. Notably, the low violation rate of CLUE makes it
offer more time steps of comfort per unit of energy compared with
its DE counterpart. This can make CLUE more preferable for the
applications that prioritize comfort.

5.3.3 Effect of confidence-based control. To observe the effective-
ness of the fallback mechanism, we compared CLUE with a version
without the fallback mechanism, i.e., CLUE w/o CB, in Figure 7 and
Figure 8. We found that while CLUE w/o CB performs better than
DE-MBRL in two out of three times depending on if the model error
for CLUE w/o CB is lower, CLUE was consistently superior to all
baselines. This shows that the fallback mechanism ensures a high
level of control performance even with an inaccurate model since
our method can accurately predict its own model error.

5.3.4 Analysis of the control performance gain of CLUE.. To inves-
tigate the reasons behind the building control performance gain
of CLUE compared with the baseline method, we plotted the data
from one day of our simulation experiment for CLUE and CLUE
w/o CB in Figure 9. The simulation scenario was in January, so only
the heating temperature setpoint was displayed. Out of the 85 time
steps shown in the figure, 26 time steps had the fallback mecha-
nism activated, i.e. the control action was overridden by the default
controller about 30% of the times. During a one-day period, an ideal
controller is expected to keep the zone temperature within the com-
fort range during the occupied times and let the zone naturally cool

down to the environment temperature during the unoccupied times
to save energy. There are usually two origins of performance gain
for MBRL approaches [4]. First, the MBRL controllers learn to pre-
heat the room to desired temperatures before the room is occupied
to get a lower violation rate. Second, the MBRL approaches cool
and re-heat the room repeatedly, keeping the temperature within
the comfort range while saving energy during the time periods
when the heating is turned off.

We found that the CLUE w/o CB made a mistake mid-way be-
tween 16 : 00 to 21 : 00. It falsely believed that the zone temperature
would take longer to cool down and would turn the heating off
prematurely. This usually happens when the dynamics model over-
estimates the room’s thermal capacity. The same mistake happened
to the DE-MBRL controller. After observing that the temperature
has plummeted, it underestimated the amount of heating to reheat
the zone and eventually caused 135 minutes of comfort violation.
Our method, on the other hand, detected high model uncertainty
and overrode 2 time steps of control action with the default con-
troller between 16 : 00 to 21 : 00. This successfully kept the zone
temperature within the comfort range and also within the data
distribution, allowing the controller to correctly predict the amount
of heating needed for the rest of the occupied times. As a result, the
fallback mechanism prevented 135 minutes of comfort violation.

6 RELATEDWORK
Model-Free RL for HVAC. MFRL systems train a deep policy
network for HVAC control using RL learning methods such as deep
Q-learning [7] or actor-critic method [34]. They do not rely on a
system dynamics model, but instead, a policy network that takes the
current state and predicts the optimal action through interactions
with the environment. Zhang et al. [34] implemented and deployed
a DRL-based control method for radiant heating systems in a real-
life office building. Ding et al. [7] proposed to use a deep RL model
to control all building’s subsystems, including HVAC, lighting, blind
and window systems, using a tailored reward function.
Model-Based RL for HVAC. Collecting large scale real-world
data is often difficult [31]. To improve sample efficiency, researchers
have adopted MBRL for HVAC control [8, 32]. Zhang et al. [32]
introduced an MBRL approach using a neural network to learn
system dynamics and a random shooting method MPC for building
control based on trajectory predictions. Chen et al. [4] employed
offline training using expert demonstrations to reduce the data
requirements. Ding et al. [8] expanded MBRL’s control capabilities
from a single zone tomulti-zone buildings using a neural network as
the dynamics model and a more efficient MPPI controller, achieving
convergence with 183 days of training data. However, these building

157

BuildSys ’23, November 15–16, 2023, Istanbul, Turkey An et al.

models lack uncertainty awareness and require hundreds of days
of training data to reach satisfactory performance.
Safe RL. Safe RL has emerged as a critical research area to ensure
the practical deployment of RL agents in real-world environments
without causing harm [6]. One prominent method proposed by [1]
is Constrained Policy Optimization, which adds safety constraints
to the RL problem, restricting the agent from taking actions that
violate safety requirements. However, selecting appropriate con-
straint formulations that accurately capture safety requirements
remains challenging. Similarly, Model-Based Safe RL, as proposed
by [15], employs learned environment models to simulate potential
outcomes, enabling safer exploration. However, it may yield subop-
timal real-world decisions due to potential model inaccuracies.
Safe RL for HVAC. Real-world exploration in a building can be
hazardous when the outcomes of actions are unknown. Some stud-
ies [34, 35] propose using simulators to train RL agents and then
deploying them in the building. However, safety is not guaranteed
as mismatches between simulator data and real-world dynamics
may make actions deemed "safe" in the simulator "unsafe" in reality.
Another alternative involves utilizing batch RL methods [19, 33],
which enable learning from historical data and enhancing the ex-
isting policy without requiring interactions with real buildings or
simulators during training. However, the control performance of RL
agents depends on data quantity and quality, making it challenging
to ensure optimal outcomes.

7 CONCLUSION
This paper presents CLUE, a safe MBRL approach for HVAC control,
excelling in high control performance despite training a dynamics
model with limited data. CLUE leverages GP to quantify epistemic
uncertainty caused by data scarcity. A novel meta-kernel learning
technique is developed to effectively set GP kernel hyperparame-
ters. GP-based uncertainty is integrated into a confidence-aware
HVAC control process. Extensive evaluations demonstrate a 12.07%
reduction in comfort violations and comparable energy-saving per-
formance with just a seven-day historical dataset.

ACKNOWLEDGMENTS
This work was supported in part by the UC National Laboratory
Fees Research Program grant #69763. Any opinions, findings, and
conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

policy optimization. In ICML. PMLR, 22–31.
[2] Clarence Agbi, Zhen Song, and Bruce Krogh. 2012. Parameter identifiability for

multi-zone building models. In 2012 IEEE 51st IEEE CDC. IEEE, 6951–6956.
[3] Woo-Jeong Baek et al. 2023. Uncertainty Estimation for Safe Human-Robot

Collaboration Using Conservation Measures. In Proceedings of IAS-17.

[4] Bingqing Chen, Zicheng Cai, and Mario Bergés. 2019. Gnu-rl: A precocial rein-
forcement learning solution for building hvac control using a differentiable mpc
policy. In ACM BuildSys. 316–325.

[5] Kurtland Chua et al. 2018. Deep reinforcement learning in a handful of trials
using probabilistic dynamics models. NeurIPS (2018).

[6] Xianzhong Ding and Wan Du. 2022. Drlic: Deep reinforcement learning for
irrigation control. In 21st ACM/IEEE IPSN. IEEE, 41–53.

[7] Xianzhong Ding, Wan Du, and Alberto Cerpa. 2019. OCTOPUS: Deep reinforce-
ment learning for holistic smart building control. In ACM BuildSys. 326–335.

[8] Xianzhong Ding, Wan Du, and Alberto E Cerpa. 2020. Mb2c: Model-based deep
reinforcement learning for multi-zone building control. In ACM BuildSys. 50–59.

[9] DoE. 2010. EnergyPlus Input output reference. US Department of Energy (2010).
[10] David Duvenaud. 2014. Automatic model construction with Gaussian processes.

Ph. D. Dissertation. University of Cambridge.
[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML. PMLR, 1126–1135.
[12] Jacob Gardner et al. 2018. Gpytorch: Blackbox matrix-matrix gaussian process

inference with gpu acceleration. NeurIPS 31 (2018).
[13] L Goliatt, PVZ Capriles, and Grasiele Regina Duarte. 2018. Modeling heating and

cooling loads in buildings using Gaussian processes. In IEEE CEC. IEEE, 1–6.
[14] David Hand and Peter Christen. 2018. A note on using the F-measure for evalu-

ating record linkage algorithms. Statistics and Computing 28 (2018), 539–547.
[15] Ashish K Jayant and Shalabh Bhatnagar. 2022. Model-based safe deep reinforce-

ment learning via a constrained proximal policy optimization algorithm. NeurIPS
(2022).

[16] Javier Jiménez-Raboso et al. 2021. Sinergym: a building simulation and control
framework for training reinforcement learning agents. InACMBuildSys. 319–323.

[17] Devanshu Kumar, Xianzhong Ding, Wan Du, and Alberto Cerpa. 2021. Building
sensor fault detection and diagnostic system. In ACM BuildSys. 357–360.

[18] Balaji Lakshminarayanan et al. 2017. Simple and scalable predictive uncertainty
estimation using deep ensembles. NeurIPS 30 (2017).

[19] Hsin-Yu Liu et al. 2022. Safe hvac control via batch reinforcement learning. In
ACM/IEEE ICCPS. IEEE, 181–192.

[20] Francesco Massa Gray and Michael Schmidt. 2016. Thermal building modelling
using Gaussian processes. Energy and Buildings 119 (2016), 119–128.

[21] Thomas M Moerland et al. 2023. Model-based reinforcement learning: A survey.
Foundations and Trends® in Machine Learning 16, 1 (2023), 1–118.

[22] Truong X Nghiem and Colin N Jones. 2017. Data-driven demand response
modeling and control of buildings with gaussian processes. In ACC. IEEE.

[23] Adam Paszke et al. 2019. Pytorch: An imperative style, high-performance deep
learning library. NeurIPS 32 (2019).

[24] Hamid Rajabi et al. 2022. MODES: Multi-Sensor Occupancy Data-Driven Estima-
tion System for Smart Buildings. In ACM e-Energy.

[25] Hamid Rajabi, Xianzhong Ding, Wan Du, and Alberto Cerpa. 2023. TODOS:
Thermal sensOr Data-driven Occupancy Estimation System for Smart Buildings.
In ACM BuildSys.

[26] ASHRAE STANDARD. 2020. ANSI/ASHRAE Addendum a to ANSI/ASHRAE
Standard 169-2020. ASHRAE Standing Standard Project Committee (2020).

[27] Haoran Tang et al. 2017. # exploration: A study of count-based exploration for
deep reinforcement learning. NeurIPS 30 (2017).

[28] Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algorithms and
empirical evaluation. In European conference on machine learning. Springer.

[29] Grady Williams et al. 2016. Aggressive driving with model predictive path
integral control. In 2016 IEEE ICRA.

[30] Daniel A Winkler et al. 2020. Office: Optimization framework for improved
comfort & efficiency. In 19th ACM/IEEE IPSN.

[31] Kang Yang, Yuning Chen, Xuanren Chen, and Wan Du. 2023. Link Quality
Modeling for LoRa Networks in Orchards. In 22nd ACM/IEEE IPSN. 27–39.

[32] Chi Zhang et al. 2019. Building HVAC scheduling using reinforcement learning
via neural network based model approximation. In ACM BuildSys. 287–296.

[33] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. 2022. Safe
building hvac control via batch reinforcement learning. IEEE Transactions on
Sustainable Computing (2022).

[34] Zhiang Zhang et al. 2018. A deep reinforcement learning approach to using whole
building energy model for hvac optimal control. In 2018 Building Performance
Analysis Conference and SimBuild, Vol. 3. 22–23.

[35] Zhiang Zhang and Khee Poh Lam. 2018. Practical implementation and evaluation
of deep reinforcement learning control for a radiant heating system. In ACM
BuildSys.

158

	Abstract
	1 Introduction
	2 MBRL for HVAC Control
	3 Motivation
	4 The Design of CLUE
	4.1 Overview
	4.2 Modeling Building Dynamics with GP
	4.3 Meta Kernel Learning
	4.4 Confidence-based Control

	5 Evaluation
	5.1 Experiment Setting
	5.2 Modeling and Uncertainty Estimation
	5.3 Building Control

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

