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ABSTRACT
Renewable energy transition and decarbonization pose significant
challenges for grid-interactive efficient building communities. The
optimization of intermittent renewable energy can be achieved
using advanced control architecture and energy storage, enhanc-
ing energy flexibility. Reinforcement learning (RL) offers poten-
tial solutions, but its scalability and computational demands in
large-scale settings remain unclear. This paper examines the scala-
bility of Soft-Actor Critic (SAC) in multi-agent systems, compar-
ing decentralized-independent SACs and centralized SACs using
CityLearn, an OpenAI Gym environment. We consider neighbor-
hoods consisting of 2 to 64 single-family residential buildings, each
equipped with cooling and heating storage devices, domestic hot
water storage devices, electrical storage devices, and solar PV sys-
tems. Our findings suggest that independent controllers outperform
the centralized controller with increasing number of buildings. We
also show that the performance on the building level can differ
from the aggregated performance.
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1 INTRODUCTION
Residential buildings contribute significantly to energy consump-
tion and greenhouse gas emissions [5] making the transition to
renewable energy sources and grid decarbonization critical for
achieving zero-emission buildings [8]. However, these renewable
sources can introduce grid instability due to supply-demand mis-
matches [18]. Grid-interactive efficient buildings (GEBs) can coun-
teract these mismatches by providing flexibility services to the
grid [10]. Although Demand Response (DR) programs have found
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success in commercial and industrial sectors, their application in res-
idential buildings is still emerging and relies on distributed energy
resources (DERs). Despite the potential of residential buildings to
contribute to DR, their independent participation may not yield op-
timal performance at the aggregated level. Aggregators can enhance
this performance by coordinating and selling energy flexibility. Ad-
vanced control algorithms, like Model Predictive Control (MPC) [3]
and Reinforcement Learning Control (RLC) [12, 16, 17] have shown
promise in various DER control applications. But their scalability,
especially RLC’s in multi-agent systems remains unclear.

In this paper, we aim to investigate this scalability issue. Specif-
ically, we compare the performance of decentralized and central-
ized Soft-Actor Critic (SAC) agents: Using CityLearn, we assess
the control performances in neighborhoods ranging from 2 to 64
single-family buildings. We seek to address the gap between SAC
controllers in multi-agent systems and the scalability associated
with managing residential energy flexibility. In particular, we will
address the following questions: (1) How does the performance of the
controllers at different scales compare, and what are their advantages
and limitations? (2) How do key performance indicators (KPIs) reflect
the impact of scaling up the multi-agent system on load shaping and
the management of residential energy flexibility?

2 METHODOLOGY
2.1 Reinforcement Learning
Reinforcement learning (RL) is a machine learning subfield for
sequential decision-making problems [13]. RL agents learn by inter-
acting with the environment to maximize the rewards they receive.
The Markov Decision Process (MDP) formalizes RL using a tuple
(𝑆,𝐴, 𝑃, 𝑅), where agents interact using state (𝑆) and action (𝐴)
spaces. At each timestep 𝑡 , the agent observes a state (𝑠𝑡 ), takes an
action (𝑎𝑡 ), and transitions to a new state (𝑠𝑡+1) based on a transition
probability function (𝑃 ). The agent then receives a reward signal
(𝑟𝑡+1) using the reward function (𝑅) to quantify its immediate per-
formance. The objective of the agent is to learn the optimal control
policy (𝜋 ) that maximizes the expected cumulative reward.

Here, we are interested in cases where no prior information on
the transition probabilities exists, and where both action and state
space are continuous. Therefore, we explore the soft-actor critic
(SAC) algorithm, a model-free, off-policy RL algorithm that has
been employed in similar prior works [11]. The SAC architecture
employs two deep neural networks to approximate the state-value
function and the action-value function [6]. The actor network maps
the current state to the action that it estimates to be optimal, while
the critic network evaluates those actions by computing the value
function [13]. SAC uses entropy maximization in order to maximize
both entropy and expected rewards, which promotes greater policy
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exploration, preventing the algorithm from prematurely converging
to suboptimal solutions, and contributing to stable training. SAC
also exhibits the advantage of reusing experiences, enabling efficient
policy learning with fewer data samples, and handle complex and
high-dimensional state and action spaces.

2.2 Simulation Environment
We use CityLearn, an OpenAI Gym environment designed to stan-
dardize multi-agent systems control [1, 15]. CityLearn provides a
simulated environment of the demand response problem to flatten
the aggregated curve of electrical demand by controlling energy
storage devices of a variable number of buildings with diverse
characteristics. Specifically, we analyze neighborhoods ranging
from 2 to 64 buildings. These building models are created using
physics-based energy models from the End-Use Load Profile (EULP)
database and are representative of the single-family building stock
in Austin, TX, USA [4]. The buildings have diverse load profiles
and are equipped with electrical storage devices. The energy supply
units are designed to satisfy the building’s energy demand during
the simulation by incorporating a backup controller that ensures
that the energy supply units prioritize fulfilling the building’s en-
ergy demands before storing any energy.

2.3 Action-State-Reward Design
We focus on residential battery energy storage system (BESS) con-
trol. The action space is a fraction of the battery capacity to be
charged or discharged: the agent uses actions between -1 and 1
to discharge and charge the battery, respectively. The states are
variables that can be observed within the environment but are not
subject to direct control. They have a significant effect on the prob-
ability of receiving particular rewards. A total of 16 possible state
variables can be categorized as temporal (calendar), weather, dis-
trict, and building-specific states [1]. Detailed explanations of both
action and state design can be found in [11]. For any agent 𝑖 , the
reward function is designed to minimize electricity consumption
and maximize solar self-consumption to charge the BESS:

𝑟𝑆𝐴𝐶𝑖 =

𝑛∑︁
𝑖=0

−
(
(1 + 𝑒

|𝑒 | × 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝑜𝐶𝑖 ) × |𝑒 |
)

(1)

where 𝑒 is the energy use at time 𝑡 (subscript omitted), and 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝑜𝐶
𝑖

is the state of charge of the BESS in building 𝑖 . Thus, the reward
function incentivizes achieving net-zero energy by imposing penal-
ties when there is excess energy in BESS or when there’s net export
to the grid but the BESS is not fully charged. The penalty is maxi-
mized when the BESS is fully charged and there’s a net import from
the grid. However, there are no penalties or rewards when the BESS
are fully charged during net exports. For centralized agents (see
Section 2.4) the individual rewards in each building are aggregated
into one reward function for the agent. For independent agents,
there is no aggregation or reward exchange between the agents.

2.4 Control Architectures
We investigate two different types of control architectures: a fully
decentralized scheme with independent agents, where no informa-
tion is exchanged, and a fully centralized scheme where one agent

controls the BESS in every building. A third, rule based controller
(RBC) based on common practice is used as a reference.

2.4.1 Central SAC agents. 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 enables a single agent to
control all storage devices, facilitating information sharing of the
state information of all buildings in the environment. Providing all
information to one central agent presumably improves the perfor-
mance of the agent at the aggregated neighborhood level, at the
cost of longer computational and training times.

2.4.2 Decentralized-independent SAC agents. 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 control the
resources of their own building without knowing the other agents’
policies and treat them as part of the environment. The agents
independently learn and make decisions without explicit interac-
tion or information sharing with other agents. We expect this to
potentially result in better performance for individual buildings
and deteriorating performance at the aggregated level.

2.4.3 Rule-Based-Control. We use an RBC as a baseline controller
to compare the two SAC architectures. The RBC approach relies
on a best-practice heuristic collection of if-then-else rules used to
determine the best operating points within a control system [11].
However, these rules remain static, lacking the ability to automati-
cally adapt to dynamic environmental change.

2.5 Key Performance Indicators (KPI)
We evaluate the controllers’ performance using a set of KPIs that
are to be minimized: electricity consumption and zero net energy
on individual building level, and (annual) peak demand, average
daily peak, ramping, and 1-Load factor on the aggregated district
level (see [11] for details). The KPIs account for the deterministic
action taken after the reward has reached convergence. KPIs of
the RL agents that exceed the corresponding RBC indicate poorer
performance, while lower values indicate superior performance.

3 RESULTS
We perform our simulations on Stampede2, a high-performing com-
puter at the Texas Advanced Computing Center [2]. Stampede2
hosts 4,200 Knights Landing (KNL) nodes, each equipped with a sin-
gle processor at 1.4 GHz and 96 GB RAM. Parallelization capabilities
were also utilized to optimize the training process. Understanding
these constraints is important as they directly impact the total
training time and the feasibility of implementing the study. The
simulations consist of 50 episodes, each spanning 8760 time steps
with each time step equivalent to one hour, thereby representing
the hours in a year. We decided on 50 trials by trial and error, and
also due to our prior extensive experience working with CityLearn.
To ensure robustness, we repeat each simulation three times with
random seeds and averaging the results. We assume no distribution
shift between the training and the deployment of the RL agent.

Figure 1 shows the training curve of both SAC algorithms. Both
reward curves are normalized to the last reward value which is used
to scale the rewards between 0 and 1, enhancing interpretability and
facilitating a meaningful comparative analysis of their performance.
Initially, the agent explores, resulting in higher rewards. This in-
dicates that the agent is learning to perform better. As it learns, it
converges towards optimal policies, indicating improved perfor-
mance and stable strategy exploitation. As the number of buildings
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Figure 1: Reward curve of central SAC (left) and independent
SAC (right) agents, normalized to the final reward value. At
episode 50, the agents use the deterministic action.

Figure 2: Convergence time for central (left) and independent
(right) agents.

varies from 2 to 64, 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 demonstrates faster convergence by
leveraging its independence and smaller state space. In contrast,
𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 exhibit slower convergence due to the complexities of
controlling multiple resources, requiring more training time/data
to converge to an optimal policy. Overall, both curves eventually
converge, indicating that we have simulated a sufficient amount of
time to observe steady-state behavior. It’s crucial to recognize that
this convergence does not imply that both agents perform similarly
as the agent-environment setup is different.

Figure 2 shows the impact of scaling up the environment on
the simulation time required to reach convergence. We assume
the 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 approaches convergence at about 30 episodes, taking
on average about 4.8hr. Similarly, 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 approaches conver-
gence at around 30 episodes, but the convergence time gradually
increases from 5.2 to 49hr. This aligns with our earlier hypothesis,
suggesting that the complexity and scale of the environment impact
the convergence dynamics. Specifically, training larger districts un-
der centralized SAC controllers become computationally intensive,
resource-demanding, and costly.

Figure 3 compares the building-level KPIs, electricity consump-
tion and zero net energy, for varying the number of buildings.
Clearly, the 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 outperforms both 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 and RBC, re-
sulting in an average reduction of 33% in electricity consumption
compared to the RBC. For very few buildings (2-4), the perfor-
mance of 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 is similar to 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 (30% avg reduction).
However, as the number of buildings increases, the performance
of 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 gradually declines (9% avg reduction) relative to the
𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 , though still outperforming the RBC. For a larger num-
ber of buildings (32-64), we find that the performance for some
buildings controlled with 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 is similar to the RBC, poten-
tially negating all advantages of advanced controllers (for this KPI).
The difference between the approaches lies in the agents’ control
approach, where 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 effectively leverages their autonomy
to explore the environment and allocate resources to their own

Figure 3: Building-level KPI for each control architecture and
varying the number of buildings. Each dot is one building.

Figure 4: District-level KPI for each control architecture and
varying the number of buildings. The y-axis is exaggerated,
starting at 0.8, to emphasize the differences in KPI values.

building, leading to a greater overall reduction at the building-level.
Additionally, both SAC algorithms show no significant impact on
the zero net energy metric.

Figure 4 compares the (aggregated) district-level KPIs. The 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝
outperforms the RBC slightly by about 9% on the annual peak de-
mand. In contrast, the 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 does not exhibit peak demand
reduction ability as it gradually performs worse as the number of
buildings increases. Both the 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 and 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 effectively
reduce the average daily peak, showcasing their capacity to shape
the daily load curve. It is somewhat unclear why 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 seems
to display no correlation with the number of buildings. We spec-
ulate that it could be due to the fact that the peak demand KPI
is a single value measured over more than 8000 timesteps, so the
controller cannot average out a one time poor performance.

In Figure 4, we also observe that 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 exhibits poorer perfor-
mance for ramping compared to the RBC, while 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 exhibits
some adaptability to varying demand and supply conditions. As
for the 1-Load factor KPI, both SAC algorithms perform poorly
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Figure 5: Comparing the net load profile for 2 buildings (top)
and 64 buildings (bottom) during three days in July.

compared to RBC, indicating that controllers did not efficiently
utilize the building’s available capacity.

Figure 5 shows the hourly district-level net load profile for the
first 3 days of July, during which the demands are higher and load
shaping is more critical. Between the hours of 19:00 and 00:00 for
64 buildings, the central and independent SAC agents reduced the
energy usage by an average of 8.88% and 55.08%, respectively, com-
pared to the RBC. During periods with no sunlight, the SAC agents
effectively offset the load by utilizing the stored battery charge dur-
ing higher peak periods. Despite the slight drop, the independent
SAC demonstrates the best performance in load shaping compared
to both the central SAC and RBC. As expected, the net load of
the larger group (64) is smoother compared to 2 buildings due to
averaging.

4 DISCUSSION AND CONCLUSION
Our research shed light on the SAC controllers’ performance for
an increasing number of buildings in the environment. We found
that 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 has slower convergence and requires more training
time. The advantage of 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 lie in their faster convergence due
to their independence, enabling them to explore their environment
more efficiently at lower computational cost.

We find that scaling up the multi-agent system has notable im-
pact on load shaping and residential energy flexibility management.
The 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 agent was able to reduce most of the KPI metrics
but struggled to reduce ramping and 1-load factor. The 𝑆𝐴𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙
also reduced most of the KPI metrics, except for peak demand and
the 1-load factor. This may be influenced by the agents’ centralized
approach when it receives information on all buildings, potentially
allocating excessive energy for certain buildings. On the other hand,
since 𝑆𝐴𝐶𝑖𝑛𝑑𝑒𝑝 autonomously learns and adapts to its own policies,
the collective individual optimization across multiple buildings may
not always lead to the best overall performance of the entire system.

Our work demonstrates that it is critical to evaluate and integrate
multiple KPIs when optimizing grid-interactive buildings. Most
research focuses on one or few. However, they are interdependent
to achieve energy flexible buildings. For instance, the annual peak
load KPI is related to infrastructure planning, e.g. transmission
and distribution networks, while the average daily demand KPI is
relevant for reducing the need for peaker plants.

Recent research has shown that building load coordination con-
trol is important to improve grid reliability and reduce infrastruc-
ture cost [9, 14]. Our work suggests that centralized RL approaches
are more challenging to achieve while offering worse performance
compared to decentralized solutions. Similar findings have been
proposed for decentralized model-predictive control [7].

Future research in this area should focus on exploring potential
areas of improvement in the design of the reward function to further
enhance load shifting and shaping capabilities, as well as improve
the performance of the controllers. Another idea is to implement
cooperative multi-agent SAC frameworks instead of a centralized
controller as it may be possible to reduce the action space for the
controller, leading to sufficient exploration.
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