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ABSTRACT
Built utility infrastructures provide essential services such as water,
gas, and power to communities, and their resilient operation under
anomalies and spurious events is critical. In this paper, we study
the deployment of heterogeneous IoT sensors in geo-distributed
infrastructure networks, using stormwater as a driving usecase.
These systems are responsible for drainage and flood control, but
in doing so, serve as conduits that carry pollutants to receiving wa-
ters. The timely detection of such events is challenging, due to the
transient/random nature of pollutants, scarce historical data, and
complexity of the system. We present STEP, an integrated frame-
work for sensor placement that leverages the network structure
and topology, behavioral properties (e.g., flow rate), and community
semantics such as locations of facilities (e.g., commercial spaces, res-
idential areas, and industrial plants, etc.). We identify key metrics to
capture anomaly coverage and traceability, use past pollution inci-
dents to inform sensor deployment, and model network operations
through physics-based simulations and community-scale semantics.
STEP is evaluated on six real-world stormwater networks, which
show the efficacy of our approach over existing methods.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation; •
Computer systems organization→ Sensor networks; • Net-
works→ Network structure; Network dynamics.
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1 INTRODUCTION
Communities rely on built utility infrastructures such as water, gas,
and power as critical lifelines. These engineered systems are de-
signed and maintained by municipal agencies and service providers.
Recently, urban growth, climate change, and aging have given rise
to multiple modes of failure, which are challenging to handle due
to their continuous, transient, or sporadic natures [3, 32, 40]. For-
tunately, Internet of Things (IoT) ecosystems and new data-driven
methods have enabled smart monitoring solutions for improved
operational efficiency and resilience. In this paper, we aim to design
IoT/sensor placements to detect and trace anomalies for stormwa-
ter community lifelines. We model relevant system dynamics, and
develop a framework for IoT deployment.

Stormwater networks, also calledmunicipal separate storm sewer
systems (MS4s), consist of catch basins, outfalls, and channels which
drain rainwater and nuisance flows from urban areas to rivers, bays,
and oceans. In doing so, they can transport pollutants that lead
to water quality impairments that affect ecological processes, e.g.,
harmful bacteria, algal blooms, and ecotoxicity [4, 44]. In the US,
regulations like the 1987 Clean Water Act amendment [16] prohibit
such discharge into MS4s without permits. Here, enforcement and
compliance is difficult, as discharges can enter via thousands of
catch basins or unauthorized connections, impairing downstream
waters [37]. Thus, rapid and effective detection of anomalies or large
water quality deviations, is crucial to prevent illegal discharges and
take corrective actions.

State-of-the-art approaches for detecting anomalies rely on in-
spections, citizen reports, and manual site visits [4, 6, 45]. This “grab
sampling” covers a negligible area of the network, making it hard
to capture illicit discharges, temporally and spatially. For example,
Orange County Public Works conducts 5 annual site visits for 30
outfalls, where staff spent an hour per site for observation and
testing. This costly and time-consuming procedure measures water
quality using test kits and laboratory analysis, and take weeks to
process. As a result, current approaches fail to provide comprehen-
sive coverage and timely detection of potential issues. Fortunately,
the rise of IoT smart city initiatives has opened opportunities for
low-cost monitoring of utility lifelines [1]. Here, finding optimal
sensor deployments for geo-distributed systems is hard, due to lack
of fine grain knowledge. Understanding the evolution of anomalies
and their root cause using grab samples is imprecise, and their
transient nature requires sensor deployments to consider potential
sources. Anomalies also consist of diverse chemicals and manifest
through varying phenomena, such as turbidity, flow, and pH.

Several aspects of the infrastructure can help provide insight for
suitable sensor deployments to monitor these anomalies. First, the
network structure details physical aspects of MS4s (e.g., locations of
catch basins, pipes, etc.); this can help establish a basis for candidate
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deployment locations using properties like network centrality and
distance. This is augmented with the behavior of a network, which
captures the response to various stimuli (e.g. contaminants injected
in a catch basin), and their impact. A third factor stems from the
observation that the type of anomalies are influenced by the specific
land use in a community (residential areas, commercial spaces,
restaurants, etc.) - each with specific discharges and pollutants that
vary in frequency, type, and chemical makeup. We refer to this as
community-level semantics.

In this paper, we present STEP, a framework integrating struc-
tural, behavioral, and semantic aspects of an infrastructure net-
work to gain insights into its operation. We use historical data and
community-level semantics to construct realistic anomalies that
inform a sensor placement optimization. We derive key topologi-
cal and empirical properties from the network and physics-based
simulations. To ensure feasibility in real settings, STEP provides
tools for exploration and refinement of solutions. Key contributions
include:
• A novel approach for sensor placement in built infrastructures
using structure, behavior, and semantics (§2).
• A mathematical model to capture the structure and behavior of
infrastructure, i.e stormwater networks, and compute notions of
coverage and traceability (§3).
• A semantic approach for generating anomalies using historical
data and community land use characteristics (§4).
• Formalizing and solving the heterogeneous sensor placement
problem to address coverage and traceability, and a human-in-
the-loop to refine placement (§5 and §7).
• A detailed evaluation of STEP on six real-world stormwater net-
works provided by domain experts (§6).

2 TRACING ANOMALIES
We address the role of sensor placement in isolating anomalies in
community-scale infrastructures. In the stormwater setting, anom-
alies, i.e. contaminants, may be introduced sporadically at different
locations/times; their propagation depends on physical attributes
and may have a transient presence in the network. Such sporadic
and transient anomalies must be captured using appropriate sensors
at well-chosen locations. Our goal is to develop a sensor placement
technique to select the types/locations of sensors for deployment,
to detect and trace diverse anomalies. We review related work in
fault/anomaly identification in water networks, address limitations,
and then describe the STEP approach.
2.1 Related work and Limitations
The sensor placement problem has been studied in the drinking
water domain, with the goal of finding suitable deployments to
monitor a community network. Key objectives include: contam-
inant detection time [24, 30]; population impact [7, 39, 46]; and
coverage [29, 41], among others. Early work [7] proposed mixed
integer programming (MILP) to optimize a placement using limited
sensors. This was extended in [8, 48] to address robustness when
using failure-prone sensors. However, MILP often scales poorly,
which has promoted greedy heuristics which exploit submodular-
ity [17, 27, 29, 46]. Efforts to define multi-criteria objectives [27, 29],
and the role of topology [17, 46] have also been explored. Others
propose genetic algorithms, which can perform well with greedy

heuristics, but trade off guarantees of optimality [24, 30, 39, 41].
Recently, methods have considered parallel architectures [14] and
imperfect sensors [18].

After sensors are deployed, the next logical step examines the
problem of anomaly detection. Prior work has utilized statisti-
cal tests, time-series analysis and machine-learning (ML) based
methods for anomaly detection. Early techniques relied on scoring
data and running statistical tests to determine outliers, including
ANOVA [10], Grubb’s test [15], PCA [11], and more. Time-series
analysis methods, such as ARIMA [2, 5] were also developed, which
leveraged moving averages and forecasting to capture and predict
patterns/trends to detect anomalies. These techniques need signif-
icant human interpretation and tuning, making them difficult to
apply at scale. Recently, this has given rise to ML models, which
provide a framework for automation. Among these, were decision
trees [25], support vector machines [12], Bayesian networks [19],
and most recently, deep learning [31, 35].

A key limitation with several existing methods is the assumption
of homogeneity in both sensors and contaminants, i.e., all sensors
may detect the presence of all contaminants. In real-world cases,
contaminants are varied and produce phenomena that propagate
differently in the sensorized infrastructures. Sensor capabilities can
also be varied in type and cost, which impact the quality of the
resulting deployment. We argue that incorporating the appropriate
type of sensor at meaningful locations is essential for instrumenting
more of the network within a constrained budget. The feasibility of
deployments proposed by algorithms also requires the involvement
of domain experts and practitioners.

2.2 The STEP Approach and Architecture
We propose an integrated approach to the heterogeneous sensor
placement problem, entitled STEP, which coalesces multiple as-
pects - structural, behavioral, and semantic - of the infrastructure
to gain insight into a suitable deployment. As described earlier,
network structure examines how nodes are positioned and inter-
connected, which can help derive metrics such as node centrality
and distance. The operational aspects of the network capture the
behavior of the system in response to stimulus (e.g., contaminant
propagation through nodes), and are guided by physics-based prin-
ciples. Then, semantics detail the correlation between properties of
anomalies (e.g., frequency, type, environmental impacts), and their
likelihood of occurrence when specific community infrastructures
lie upstream (e.g., industrial plant). These semantic land uses cap-
ture how people interact with the community and land. Anomalies
are observed by sensors, but budget limits of agencies dictate the
extent of sensing and instrumentation. Thus, our goal is to find the
best placement (sensor types/locations) to maximize the ability to
cover and trace anomalies introduced in the network.

Fig. 1 shows the high-level framework of STEP. We assume that
the underlying network structure and associated historical data
are provided by domain experts a priori. Using domain knowledge
and/or public data, e.g., OpenStreetMap [33], we obtain information
on landuse. Together, this allows us to learn and model realistic
anomalies which then informs a semantics-aware anomaly gen-
eration process. The constructed anomalies are used to observe
network behavior via physics-informed simulations. STEP derives
topological and empirical network properties, and proposes a sensor
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Figure 1: STEP Components and Workflow

placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate effective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and define
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node 𝑣 𝑗 ∈ V is a junction (candidate location for instrumen-
tation) and edge (𝑣

𝑖
, 𝑣

𝑗
) ∈ E is a conduit with flow from 𝑣𝑖 to 𝑣 𝑗 .

G is characterized by several properties to model the physics of
flow/contaminant propagation. Let 𝑝𝑎(𝑣 𝑗 ) be the direct parents of
𝑣 𝑗 in G , and 𝑝𝑎𝑡ℎ(𝑣𝑖 , 𝑣 𝑗 ) be the path of nodes observing flow from
𝑣𝑖 to 𝑣 𝑗 .

Community Model. To model the community, let semantic
land use 𝑢𝑚 ∈ U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each 𝑢𝑚 can
produce different types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node 𝑣 𝑗 , letU(𝑣 𝑗 ) denote the semantic land
uses near 𝑣 𝑗 , and 𝐴𝑟𝑒𝑎(𝑣 𝑗 , 𝑢𝑚) denote the area near 𝑣 𝑗 with land
use 𝑢𝑚 . Each 𝑢𝑚 is assigned a priority 𝜆𝑚 (defined by a domain
expert) that represents the importance of monitoring anomalies
from 𝑢𝑚 .

Sensor Model. We define a sensor 𝑠𝑙 ∈ S with the 3-tuple
(𝑝

𝑙
, 𝜖𝑎𝑐𝑐
𝑙

, 𝑐𝑙 ), which describes a sensor measuring phenomenon 𝑝
𝑙

with Gaussian error 𝜖𝑎𝑐𝑐
𝑙

. Its cost 𝑐𝑙 includes purchasing hardware,
deploying it in the field, and maintaining it over time. We let S(𝑝 )
be the set of sensors measuring 𝑝 .

Anomaly Model. We define a transient anomaly 𝛼
𝑘
∈ A using

the 5-tuple (𝑣∗
𝑘
, 𝑡𝑠
𝑘
, 𝑡𝑒
𝑘
,P

𝑘
, 𝑢

𝑘
), which describes an anomaly origi-

nating at node 𝑣∗
𝑘
with duration (𝑡𝑠

𝑘
, 𝑡𝑒
𝑘
). The phenomena P

𝑘
are

produced by 𝛼
𝑘
, and detected by a sensor 𝑠𝑙 iff its measured phe-

nomenon 𝑝
𝑙
is in P

𝑘
. The anomaly is more likely to be produced

by the land use 𝑢
𝑘
. We use A(𝑣𝑖 ) to denote the set of anomalies

whose origin node is 𝑣𝑖 . We let 𝑡𝑖𝑚𝑒 (𝛼
𝑘
, 𝑣∗
𝑘
, 𝑣 𝑗 ) be the time taken

for 𝛼
𝑘
to propagate from 𝑣∗

𝑘
to node 𝑣 𝑗 (which is∞ if flow from 𝑣∗

𝑘
cannot reach 𝑣 𝑗 ).

Definition: Placement. We represent a candidate placement,
X, as a matrix whose entries 𝑥𝑙 𝑗 = 1 iff a sensor 𝑠𝑙 is deployed at
node 𝑣 𝑗 , and 0 otherwise.

Definition: Node Coverage. A typical definition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we define coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage 𝐶𝑂𝑉 , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node 𝑣𝑖 is covered by X if at least 𝜌% of the anomalies originating
at 𝑣𝑖 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor 𝑠𝑙 must observe anomaly 𝛼

𝑘
, i.e.,

𝑝
𝑙
∈ P

𝑘
, and the propagation time to an instrumented node 𝑣 𝑗

is bounded by 𝜏 , i.e., 𝑡𝑖𝑚𝑒 (𝛼
𝑘
, 𝑣∗
𝑘
, 𝑣 𝑗 ) ≤ 𝜏 . We express these with

𝑂𝐵(𝑙, 𝑘) and 𝑃𝑇 (𝑘, 𝑗). Note that 𝑣 𝑗 must lie downstream of 𝑣∗
𝑘
in

G for 𝑡𝑖𝑚𝑒 (𝛼
𝑘
, 𝑣∗
𝑘
, 𝑣 𝑗 ) to be bounded by 𝜏 . The indicator function

“1 [𝑠𝑡𝑚𝑡]” is 1 if statement 𝑠𝑡𝑚𝑡 is true, and 0 otherwise.

𝐶𝑂𝑉 (X,A,G) = 1
|V |

∑︁
𝑣𝑖 ∈V

𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (𝑣𝑖 ,X,A(𝑣𝑖 )) (1a)

𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (𝑣𝑖 ,X,A(𝑣𝑖 )) =

1


∑︁

𝛼
𝑘
∈A(𝑣𝑖 )

∑︁
𝑣𝑗 ∈V

∑︁
𝑠𝑙 ∈S

𝑥𝑙 𝑗𝑂𝐵(𝑙, 𝑘)𝑃𝑇 (𝑘, 𝑗) ≥ 𝜌 |A(𝑣𝑖 ) |
 (1b)

Definition: Traceability. We define traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetG𝑢𝑝𝑣𝑗 be the upstream subgraph of node 𝑣 𝑗 induced from
the nodes V𝑢𝑝

𝑣𝑗 upstream of 𝑣 𝑗 . Then, let G𝑢𝑝𝑣𝑗 ,𝛼𝑘 ,X
be an induced

subgraph of G𝑢𝑝𝑣𝑗 , consisting of nodes 𝑣𝑖 where the anomaly 𝛼
𝑘

originating at 𝑣∗
𝑘
would first be observed by a sensor at 𝑣 𝑗 . Then,

the traceability 𝑇𝑅 for placement X is the average proportion of
nodes that lie in each G𝑢𝑝

𝑣𝑗 ,𝛼𝑘 ,X
, for the given anomalies A, as in

Eqn. 2.

𝑇𝑅 (X,A, G ) = 1
|A |

∑︁
𝛼
𝑘
∈A

∑︁
𝑠𝑙 ∈S(P𝑘 )

∑︁
𝑣𝑗 ∈V

����V𝑢𝑝

𝑣𝑗 ,𝛼𝑘
,X

���� / ��V �� (2)

Definition: BetweennessCentrality. Identifying nodes through
which more flow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node 𝑣 𝑗 empiri-
cally measures the number of anomalies observed at 𝑣 𝑗 before time
threshold 𝜏 , as shown in Eqn. 3.

BTN(𝑣𝑗 ) =
∑︁

𝛼
𝑘
∈A

1
[
𝑡𝑖𝑚𝑒 (𝛼

𝑘
, 𝑣∗

𝑘
, 𝑣𝑗 ) ≤ 𝜏

]
(3)

Definition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which flows combine, which then requires more
sensors to monitor. We define branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(𝑣𝑗 ) =


1 if IsRoot(𝑣𝑗 )

BC𝑚𝑎𝑥
𝑝𝑎 (𝑣𝑗 )

+
∑︁

𝑣𝑖 ∈𝑝𝑎 (𝑣𝑗 )

BC(𝑣𝑖 )
BC𝑚𝑎𝑥

𝑝𝑎 (𝑣𝑗 )
− 1 else

where: BC𝑚𝑎𝑥
𝑝𝑎 (𝑣𝑗 )

= max
𝑣𝑖 ∈𝑝𝑎 (𝑣𝑗 )

BC(𝑣𝑖 )
(4)
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Physics-informed model for infrastructure behavior. Net-
work behavior, as a response to stimuli (e.g., anomalies), are funda-
mentally governed by physical laws of the conservation of mass
(Eqn. 5a) and momentum (Eqn. 5b). The Environmental Protection
Agency Storm Water Management Model (EPA SWMM) [22] is
a simulator developed by domain experts that models and solves
these equations to portray the operation of the network. Multiple
physical attributes are utilized, including the distance 𝑥 , time 𝑡 , flow
area 𝐴, flow rate 𝑄 , hydraulic head 𝐻 , friction slope 𝑆𝑓 and gravity
𝑔. Details on solving these equations are provided in [22].

𝜕𝐴

𝜕𝑡
+ 𝜕𝑄

𝜕𝑥
= 0 (5a)

𝜕𝑄

𝜕𝑡
+ 𝜕 (𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴 𝜕𝐻

𝜕𝑥
+ 𝑔𝐴𝑆𝑓 = 0 (5b)

4 SEMANTICS-AWARE MODELING AND
GENERATION OF ANOMALIES

We show how potential anomalies are extracted from past data
to inform the sensor deployment process. Our workflow profiles
anomalies from historical water quality grab sample data, and cor-
relates potential origins with nearby community-level semantics.
STEP then generates new potential anomalies based on the land
uses in the network.

Let the historical water quality grab sample datasetD be a set of
5-tuples (𝑡 , 𝑣 , 𝑓 , 𝑜, 𝑝 ), representing a flow 𝑓 that propagates water
quality observations 𝑜 of a phenomenon 𝑝 at node 𝑣 at time 𝑡 . In
MS4s, observed phenomena include turbidity, temperature, flow
rate, etc. [9]. We assume such data is captured by water agencies
for regulatory compliance.

Extracting anomalies from water quality data. We describe
how physical features of anomalies are extracted from historical
data, and used to learn a semantic map. This starts by construct-
ing a uniformly distributed set of anomalies which may occur in a
given network, and simulating their propagation using a physics-
based simulator like [22]. Anomalies are then grouped based on
their initial features and simulated behavior in the network using
agglomerative clustering [20]. These groups represent profiles of
anomalies with similar impact in the network. Each grab sample
measurement inD is matched to the closest anomaly profile above.
This is used to identify a set of potential origin nodes, and their
corresponding start and end times. Note that the phenomena pro-
duced by the historical anomaly is given, and labeled by domain
experts using simple thresholds.

The semantic map constructed using historical data depends
on the origin node of the anomaly, and the semantic land uses
that lie upstream. To identify a correlation between semantic land
uses and different sets of phenomena, we construct a probabilistic
semantic map based on the anomalies extracted from D . For each
node 𝑣 at which historical data was captured, letM𝑢𝑝

𝑣 denote the
total area of each semantic land use 𝑢 that lies upstream of 𝑣 . We
then sumM𝑢𝑝

𝑣 across these nodes for each semantic land use, and
normalize as needed. After this semantic map is constructed, we
iterate through the set of historical anomalies, and assign a semantic
land use “cause”, based on the set of potential origin nodes.

Generating new anomalies using semanticsWe use the se-
mantic map M constructed above to generate 𝑁 new potential

Algorithm 1: Generate Semantic Anomalies
Input: Graph G = (V , E ) , Historical Anomalies Aℎ𝑖𝑠𝑡 ,

SemanticMapM, int 𝑁
Output: Anomalies A𝑠𝑒𝑚

1 A𝑠𝑒𝑚 ← ∅
2 for 𝑖 ← 1..𝑁 do
3 𝑢

𝑘
← 𝑃𝑖𝑐𝑘𝐿𝑎𝑛𝑑𝑢𝑠𝑒 (Aℎ𝑖𝑠𝑡 ,M)

4 𝑣∗
𝑘
, 𝑡𝑠
𝑘
, 𝑡𝑒
𝑘
← 𝑃𝑖𝑐𝑘𝑂𝑟𝑖𝑔𝑖𝑛𝐴𝑛𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (V ,𝑢

𝑘
,M)

5 P
𝑘
← 𝑃𝑖𝑐𝑘𝑃ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑎 (𝑢

𝑘
)

6 A𝑠𝑒𝑚 ← A𝑠𝑒𝑚 ∪ {𝐴𝑛𝑜𝑚𝑎𝑙𝑦 (𝑣∗
𝑘
, 𝑡𝑠
𝑘
, 𝑡𝑒
𝑘
, P

𝑘
,𝑢

𝑘
) }

7 return A𝑠𝑒𝑚

anomalies for the infrastructure network.We construct a new anom-
aly 𝛼

𝑘
by selecting a candidate semantic land use 𝑢

𝑘
to serve as

the “cause” of the anomaly. Here, each 𝑢
𝑘
has weight equal to

the number of historical anomalies that correlated with 𝑢
𝑘
inM.

This semantic land use is leveraged in selecting all other physi-
cal aspects of the new anomaly. In particular, the candidate origin
node 𝑣∗

𝑘
is chosen with weight equal to the semantic land use area

𝐴𝑟𝑒𝑎(𝑣∗
𝑘
, 𝑢

𝑘
), i.e., nodes with more area for 𝑢

𝑘
are chosen with

higher likelihood. The time period (𝑡𝑠
𝑘
, 𝑡𝑒
𝑘
) is chosen by sampling a

normal distribution on the start/end time of historical anomalies
caused by 𝑢

𝑘
. Lastly, the set of phenomena P

𝑘
produced is chosen

based on the correlation to 𝑢
𝑘
inM.

5 THE INTEGRATED STEP SOLUTION AND
PLACEMENT ALGORITHM

The STEP approach solves the heterogeneous sensor placement
problem by integrating structural, behavioral and semantic proper-
ties of an infrastructure network. We introduce a novel information
theoretic abstraction called semantic entropy, and utilize it with the
network properties defined in §3 to develop a scalable solution for
coverage and traceability.

Definition: Semantic Entropy. The skewness in the distribu-
tion of upstream semantic land uses can provide insight into the
potential causes of an anomaly. For instance, if an anomaly occurs
in a region primarily consisting of a specific semantic land use, it
becomes easier to attribute the anomaly to that particular land use.
This can be utilized to develop a knowledge base for identifying
the potential causes of new anomalies. Eqn. 6 defines the semantic
entropy SE for semantic land usesU; in the graph G𝑢𝑝𝑣𝑗 .

SE(U, G𝑢𝑝𝑣𝑗 ) =
∑︁

𝑢𝑚 ∈U (𝑣𝑗 )
𝜆𝑚 ·

(
−𝑃 (𝑢𝑚 ) log𝑃 (𝑢𝑚 )

)
where: 𝑃 (𝑢𝑚 ) =

∑︁
𝑣𝑖 ∈V

𝑢𝑝
𝑣𝑗

©­­«
𝐴𝑟𝑒𝑎 (𝑣𝑖 ,𝑢𝑚 )∑

𝑢𝑚 ∈U
𝐴𝑟𝑒𝑎 (𝑣𝑖 ,𝑢𝑚 )

ª®®¬
(6)

We adapt the information-theoretic definition of entropy in [42]
to measure the skewness of semantic land uses. Let 𝑃 (𝑢𝑢𝑝𝑚 ) indicate
the proportion of the total area allocated for land use 𝑢𝑚 ∈ U in
the nodes of G𝑢𝑝

𝑣𝑗 ,𝑝,X
, to the total area of regions in G𝑢𝑝𝑣𝑗 . Then, the

semantic entropy is defined as the sum of −𝑃 (𝑢𝑢𝑝𝑚 ) log 𝑃 (𝑢
𝑢𝑝
𝑚 ), over

all semantic land uses𝑢𝑚 ∈ U, weighted by priority 𝜆𝑚 of𝑢𝑚 . This
represents the weighted average amount of “information” (i.e., bits)
needed to describe the upstream distribution of semantic land uses.
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5.1 Placement Optimization
The core optimization relies on mixed integer linear programming
(MILP), to produce optimal sensor deployments for a given network.
However, due to the large, geo-distributed scale of many utility
infrastructures, pure MILP solutions can be prohibitively difficult
to solve without reducing its complexity. Thus, we utilize a graph
partitioning strategy to split the network into smaller pieces to
solve, and merge partial solutions using heuristics and domain
expert feedback.

Graph Partitioning. To ensure that the MILP is tractable, we
first partition the infrastructure graph G into multiple smaller
subgraphs using the network properties defined above. Here, it is
important to find graph partitions that group key components of
the network together, so that an optimum can be found within a
partition.

To this end, we note the role that the betweenness centrality
and branching complexity play in influencing the coverage and
traceability of a proposed placement. Since the betweenness cen-
trality measures the frequency of anomalies that pass through
nodes and the branching complexity measures the upstream flow
structure, partitioning on these metrics enables coverage and trace-
ability requirements to be met. We define ΔBTN(𝑣 𝑗 ), ΔBC(𝑣 𝑗 ),
and ΔSE(𝑣 𝑗 ) to represent the total change between the respective
metrics at node 𝑣 𝑗 and its parents 𝑝𝑎(𝑣 𝑗 ). This reflects the mea-
sured quantity at 𝑣 𝑗 without influence from upstream nodes of 𝑣 𝑗 ,
which we use to greedily partition the graph G . That is, our graph
partitioning selecting nodes to instrument which most decrease the
mean betweenness centrality, branching complexity, and semantic
entropy. The tradeoff between coverage and traceability is decided
with a weight on ΔBTN(·), ΔBC(·) and ΔSE(·). We repeat this
for the number of partitions desired, 𝑁𝑝𝑎𝑟𝑡 . Note that placing all
sensors in S at this point will help to minimize the worst case
coverage and traceability. We detail this process in Alg. 2.

Formulating a MILP and Merging the Solution. For each
subgraph, we formulate and solve the MILP in Eqn. 7. The objective
function defined in Eqn. 7a considers both coverage and traceability,
which implicitly capture the sensor placement’s capacity to detect
anomalies, and trace them to a set of potential sources, respectively.
There are two primary constraints considered in the formulation:
7b limits the budget allowed, while 7c limits the number of sensors
measuring a specific phenomenon at a node.

max
∑︁

𝛼
𝑘
∈A

∑︁
𝑥 𝑗𝑙 ∈X

𝑥𝑙 𝑗𝑤𝑐𝑜𝑣𝐶𝑂𝑉 (𝑥𝑙 𝑗 , 𝛼𝑘 ) + 𝑥𝑙 𝑗𝑤𝑡𝑟𝑇𝑅(𝑥𝑙 𝑗 , 𝛼𝑘 ) (7a)

subject to :
∑︁
sl∈S

∑︁
vj∈V

xljcl ≤ Bc (7b)∑︁
𝑠𝑙 ∈S(𝑝 )

𝑥𝑙 𝑗 ≤ 1 ∀𝑣 𝑗 ∈ V ,∀𝑝 ∈ P (7c)

Lastly, we merge the placement solutions obtained by the MILPs.
Then, each node in the placement is adjusted based on whether its
migration to an adjacent node can improve the global coverage and
traceability objectives.

Placement Refinement. While our algorithm generates an
“ideal” solution, deploying sensors at these locations may be infea-
sible or ill-advised. For instance, external factors such as potential

Algorithm 2: Sensor Placement
Input: Graph G , Sensors S, Anomalies A, int 𝑁𝑝𝑎𝑟𝑡 , Budget 𝐵
Output: Placement X

1 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 ← ∅;𝐺𝑠𝑢𝑏𝑠 ← ∅; 𝑏𝑒𝑠𝑡 ← 0; 𝑣𝑝𝑎𝑟𝑡 ← 𝑛𝑢𝑙𝑙

2 for 𝑖 ← 1..𝑁𝑝𝑎𝑟𝑡 do
3 for 𝑣𝑗 ∈ V , for each subgraph do
4 𝑠𝑐𝑜𝑟𝑒 ←

𝑤𝑐𝑜𝑣ΔBTN(𝑣𝑗 ) + 𝑤𝑡𝑟
2 ΔBC(𝑣𝑗 ) + 𝑤𝑡𝑟

2 ΔSE(𝑣𝑗 )
5 if 𝑠𝑐𝑜𝑟𝑒 < 𝑏𝑒𝑠𝑡 then 𝑏𝑒𝑠𝑡 ← (𝑠𝑐𝑜𝑟𝑒, 𝑣𝑗 ) ;
6 𝐺𝑠𝑢𝑏𝑠 ← 𝐺.𝐴𝑑𝑑𝑆𝑝𝑙𝑖𝑡 (𝑣𝑝𝑎𝑟𝑡 )

7 𝑛𝑜𝑑𝑒𝑠 ← 𝐺𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒𝑠 (𝐺𝑠𝑢𝑏𝑠 )
8 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ← 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ∪ 𝑆𝑒𝑛𝑠𝑜𝑟𝑖𝑧𝑒 (𝑛𝑜𝑑𝑒𝑠 )
9 for G′ ← G

𝑠𝑢𝑏𝑠
do

10 A′ ← ⋃
𝑣 ∈V′ A(𝑣 )

11 𝐵′ ← 𝐵 · |A
′ |
|A| ; // Budget for subgraph

12 X′ ← Use MILP to solve Eqn. 7 with budget 𝐵′

13 Add X′ to 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

14 X ← 𝐴𝑑 𝑗𝑢𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡,ℎ𝑜𝑝𝑠 = 5)
15 return X

vandalism, location-specific communication issues, and physical
barriers preventing human access can require changes to a proposed
placement. To aid domain experts in constructing and refining a
sensor placement solution, we develop a STEP interactive toolkit
that provides user-level visualization for each step of our approach.
This allows a human-in-the-loop (i.e., domain expert) to insert
regional infrastructure networks, generate ideal placements, and
alter the suggested placement as desired. Such what-if analysis can
leverage domain expert feedback from the field and is critical in
effective community scale deployments. More details on the toolkit
are presented later in §7.

6 EXPERIMENTS
We evaluate the STEP framework for six real-world stormwater net-
works. We compare STEP against multiple baseline techniques for
sensor placement, and analyze the number of anomalies detected,
their traceability, and nodes coverage.

6.1 Experimental Setup
Real-worldNetworks. STEP is evaluated on six real-world stormwa-
ter networks covering cities in Southern California in the US. The
networks were provided by Orange County Public Works (OCPW)
and defined using EPA SWMM [22]. Fig. 2 visualizes the structure
of the networks and summarizes basic properties. We leverage
the definition of subcatchments within the EPA SWMM models to
specify the region surrounding nodes in the network. Three cat-
egories of semantic land uses are defined: (i) high priority land
uses with priority 𝜆=3: agriculture, commercial-service, industrial;
(ii) medium priority land uses with priority 𝜆=2: mixed commer-
cial and mixed urban; (iii) low priority land uses with priority 𝜆=1:
hi-density residential, lo-density residential.

Historical Data. We use historical grab sample data provided
by OCPW, which details instances where anomalous behavior was
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Figure 2: EPA SWMM Networks used for Evaluation
reported in a network and several water quality metrics were cap-
tured. The dataset contains 1292 historical grab samples from 30
different locations between 2006 and 2022 throughout each evalu-
ated stormwater network.

Sensors. We specify the water quality sensors to deploy in Ta-
ble 1. Each sensor measures a different phenomenon, and was de-
veloped by [13, 43, 47]. The sensor costs vary from $100 to $150
for hardware and deployment. Recurrent costs for continued opera-
tion and maintenance (e.g. cellular dataplan, battery replacements)
range from $300 to $350 per year, based on rates at which these
sensors stop logging data. The accuracy of the sensor is a constant
or a percentage of the quantity of the measured phenomenon, and
is empirically derived. In our simulations, we assume that sensors
can only observe an anomaly if the percent difference between its
observed value and its simulated value is under 30%.

Table 1: Sensors considered in placement
Phenomenon Accuracy Hardware & Depl. Cost Op. Cost
Turbidity 11.6% $100 $300
Depth 1 mm $150 $350

Temperature 0.5◦𝐶 $200 $300
Electric Cond. 10% $150 $300

Velocity 5 mm/s $150 $350

Anomalies. To obtain the empirical measurements necessary
to compute the metrics defined in §5, we construct two sets of
anomalies. First, we define 5 anomaly instances uniformly across
all nodes in each network. These anomalies have a random duration
of 30±5 minutes and flow rate of 0.2±0.2 cfs. The set of phenomena
produced is randomly sampled between the phenomena in Table 1.
Then, a more realistic set of anomalies, based on historical data and
semantic land uses was generated using the methodology in §4 for
evaluating the proposed placements.

Comparison Algorithms. We compare STEP against two com-
mon baseline algorithms for sensor placement optimization. The
Greedy Heuristic (Greedy) [26, 36, 38] is an algorithm that selects
sensors to deploy based on their ability to maximize a given cri-
teria. We consider two classes of baseline algorithms that operate

greedily. The first class aims to only leverage structural, i.e., topo-
logical, network properties to perform the sensor placement. These
two algorithms, Naive-COV and Naive-BTN select sensor deploy-
ment locations based on the radius-based definition of coverage,
and the global betweenness centrality, respectively. The second
class of greedy algorithms leverages both topological and empirical
network properties, to maximize coverage (COV) and traceability
(TR) directly as objectives, using the definitions provided in §3.
We also explore another commonly used sensor deployment strat-
egy: the Genetic Algorithm (Genetic) [21, 28, 34]. This technique
searches for a sensor deployment by simulating the process of nat-
ural selection and evolution. In our experiments, we consider a
population size of 1000, crossover rate of 0.8, and mutation rate
of 0.01. We similarly use coverage and traceability as objectives.
As mentioned previously, these baselines use the uniform distribu-
tion of anomalies for optimization, but are evaluated on the more
realistic, semantic-aware distribution of anomalies.

Performance Metrics. We first evaluate the efficacy of our
approach on the number of anomalies detected by each proposed
placement. Then, we compare the coverage and traceability pro-
vided by the placements, as defined in Eqn. ?? and 2. For each
comparison, we report the range of percent differences between
our approach and each baseline. This value is computed using
|𝑣 (𝑆𝑇𝐸𝑃) − 𝑣 (𝐶𝑀𝑃) |/𝑣 (𝑆𝑇𝐸𝑃), where 𝑣 (𝑆𝑇𝐸𝑃) and 𝑣 (𝐶𝑀𝑃) rep-
resent the metric value from STEP and a comparison algorithm,
respectively.

6.2 Experimental Results
We compare STEP on the number of anomalies detected, their
traceability and the number of nodes effectively monitored.

Detected Anomalies. In Fig. 3, we first report the average
number of anomalies that were captured by the proposed sensor
deployment, for each of the evaluated networks as a function of
budget. The results show that the STEP approach was generally
able to outperform each of the other baselines wrt. the number of
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(c) Santa Ana Downstream (Small 3)
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Figure 3: Number of anomalies detected in evaluation networks
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(a) Coyote Creek Upstream (Small 1)
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(b) Santa Ana Upstream (Small 2)
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(c) Santa Ana Downstream (Small 3)
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(d) Anaheim Network (Med 1)
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Figure 4: Evaluation of Network Node Traceability vs Budget

anomalies detected. The average percent difference between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66−528.13% for small networks, 32.08−309.10%
for medium networks, and 0.74−206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
effective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be significantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can effectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent difference between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30−671.65%, 43.12−400.36%, and 2.95−272.75%, for the small,
medium, and large sized networks. We similarly find that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeoff
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(a) Coyote Creek Upstream (Small 1)
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(b) Coyote Creek Downstream (Med 2)
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(c) Newport Beach (Large 1)
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Figure 5: Evaluation of Nodal Coverage vs Budget

between detecting anomalies, and tracing them back to potential
origins.

Node Coverage. Lastly, we examine the number of nodes mon-
itored by the proposed sensor deployments. Fig. 5 shows node
coverage provided by the proposed placements for one of small,
medium, and large sized networks. The results show that small and
medium sized networks receive better node coverage than when
compared to any of the baselines. The average percent difference for
these networks range between 27.45−376.67% and 43.23−300.00%,
respectively. However, we note that for the large network, this per-
cent difference drops to 2.67−140.65%. Due to the limited budget
explored for deployment in this large network, we can see that all
placement algorithms perform sub-optimally wrt. the number of
nodes covered, which also leads to a loss in traceability.

7 TOWARDS A STEP PROTOTYPE
To aid domain experts and other stakeholders in visualizing and
refining a proposed sensor placement, we developed a prototype
system to provide an interface to interact with STEP. The detailed
architecture and prototype system is shown in Fig. 6. The workflow
for our system fundamentally leverages the infrastructure graph,
historical data, and semantics-level data described earlier, from
which topological and empirical network properties are derived.
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Figure 6: The STEP Prototype Architecture

Figure 7: The STEP Interactive Dashboard

This informs a potential sensor deployment, which is provided to
domain experts through our dashboard in Fig. 7.

We envision that this is used to explore local refinements to a pro-
posed sensor placement when certain nodes are deemed unsuitable
for instrumentation because of external factors (e.g., vandalism,
communication issues, physical barriers to human access, etc.).
Then, network analytics and what-if analysis for new coverage
and traceability values when such changes occur are presented,
alongside suggestions for possible refinements. We published the
STEP prototype toolkit and dashboard on GitHub [23].

8 CONCLUSIONS AND FUTUREWORK
We presented STEP, a framework for the heterogeneous sensor
placement problem which leverages structural, behavioral, and se-
mantic aspects of community infrastructure. STEP relies on histori-
cal grab sample data and community-level semantics to learn and
construct realistic anomalies for a specific infrastructure network.
Evaluations performed on six real-world stormwater infrastructure
networks show that STEP is able to balance the tradeoffs between
coverage and traceability. To aid in the usability of STEP, we de-
veloped an interactive dashboard for visualizing and refining the
proposed sensor placement. As part of our future work, we will
integrate the proposed deployments into real-world stormwater
networks for anomaly source identification. Our experiences here
will be also used to identify elements for automation to reduce the
effort required by domain experts.
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