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ABSTRACT
As more distributed energy resources become part of the demand-
side infrastructure, it is important to quantify the energy flexibility
they provide, as well as identify the best control strategies to accel-
erate their real-world adoption. CityLearn provides an environment
for benchmarking of simple and advanced control algorithms in
virtual grid-interactive communities. The updated CityLearn v2
environment introduced here extends the v1 environment to pro-
vide load shedding flexibility through heating ventilation and air
conditioning power control coupled with a data-driven tempera-
ture dynamics model. The updated environment also includes the
functionality to assess the resiliency of control algorithms during
power outage events.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
The shift from fossil-fuel energy sources to renewable energy sources
(RESs) and the electrification of end-uses are pathways towards
climate change mitigation, but risk creating new challenges for the
electricity grid if mismanaged. The intermittency of RESs could
undermine grid resilience due to the mismatch between electric-
ity generation and end-use demand [11]. Furthermore, extreme-
weather events such as heat waves and winter storms can cause
both increase in demand and decrease in supply due to power out-
ages.

While distributed energy resources (DERs) are able to provide
load shifting and shedding flexibility [7], it is challenging to control
DERs to serve diverse occupant behaviors and coordinate multiple
resources in many buildings. Advanced control algorithms such
as model predictive control (MPC) [4] and reinforcement learning
control (RLC) [6] can effectively manage DERs, by adapting to
unique building characteristics while, cooperating towards grid-
level energy flexibility and resiliency objectives. As more DERs
become part of the demand-side infrastructure, it is important to
quantify the energy flexibility that they provide, as well as identify
best control strategies to accelerate demand response (DR) program
adoption.

CityLearn, is an open-source Gym environment for the easy im-
plementation and benchmarking of simple, e.g., rule-based control
(RBC) and advanced control algorithms for DR in grid-interactive
communities [12]. It has been applied in voltage regulation [9],
transfer learning [8], and meta-reinforcement learning [13] prob-
lems. In contrast to its alternatives e.g., ACTB [5] and BOPTEST
[3], it supports district-level and multi-agent control and does not
require a compute-intensive co-simulation engine by using simpli-
fied first-order energy models compared to DOPTEST [2]. Here, we
introduce the CityLearn v2 environment that improves on the v1
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Figure 1: CityLearn v2 environment and control interaction.

environment to provide load shedding flexibility through heating
ventilation and air conditioning power control coupled with a data-
driven temperature dynamics model. Additionally, our updated
environment includes the functionality to assess the resiliency of
control algorithms during power outage events.

2 CITYLEARN
The CityLearn environment (Fig. 1) includes simplified energy mod-
els of buildings that contain heating ventilation and air conditioning
(HVAC) systems (heat pumps and electric heaters) and energy stor-
age systems (ESSs) storage. Each building’s space cooling, space
heating and domestic hot water (DHW) heating end-use loads are
independently satisfied through air-to-water heat pumps. Alterna-
tively, electric heaters in place of heat pumps can be used to satisfy
space and DHW heating loads. ESSs are charged by the HVAC sys-
tem that satisfies the end-use that the stored energy services. All
HVAC systems as well as plug loads consume electricity from any
of the available electricity sources including the grid, photovoltaic
(PV) system, and battery. RBCs, RLC or MPC agent(s) manage load
shifting in the buildings by determining how much energy to store
or release at any given time. The control architecture is either one
agent to many buildings (centralized) or one agent to one building
(decentralized) with optional information sharing amongst agents.

With CityLearn v21, the agents can also, control the available
power from the HVAC system to shed space thermal loads, preheat,
or precool the building. The consequence of the controlled power
on the indoor dry-bulb temperature, i.e., the building dynamics, is
modeled using a long short-term memory (LSTM) surrogate model
based on the work by Pinto et al. [10].

CityLearn v2 also provides the functionality to assess the re-
siliency of control algorithms during power outage events. CityLearn
v2 provides a stochastic power outage model based on System Av-
erage Interruption Frequency Index (SAIFI) and Customer Average
Interruption Duration Index (CAIDI) distribution system reliability
1https://www.citylearn.net

metrics [1] such that it is generalizable by providing custom or
location-specific metrics.

3 CONCLUSION
We introduce the CityLearn v2 environment in this short paper
that extends the control capabilities of the previous v1 environment
as well provides support for power outage simulation. This new
environment contributes to the limited tools for district-level and
multi-agent control benchmarking and energy flexibility assess-
ment of a diverse set of distributed energy resources.
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