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ABSTRACT
Homogeneous Multi-Agent Reinforcement Learning (MARL) is
well studied in games, robots, and simulations. What has not been
fully explored is the effectiveness of Heterogeneous MARL in the
building space. Heterogeneous MARL has been proven to be more
effective than Homogeneous MARL in terms of performance in
games. Heterogeneous MARL also has the added benefit of being a
more realistic simulation because no two buildings can be expected
to react in the same way. Here, we implement the MARLlib library
with the CityLearn environment to analyze the benefits of Hetero-
geneous MARL and compare them to homogeneous agents in a
small scale proof of concept.
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1 INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) has seen significant
advancements in recent years with applications spanning various
domains: from gaming [10] to driving [8]. MARL involves multiple
learning agents interacting with an environment and each other,
learning from their experiences to optimize a collective goal. The
complexity of MARL arises from the interactions between agents.
There are two types of policies that can be applied in MARL: ho-
mogeneous and heterogeneous.

We define homogeneous and heterogeneous agent policies in the
same way Kuba et al defines it. Homogeneous agent policies share
the same action space and policy parameters while heterogeneous
agent policies do not [4]. By sharing the same action space and
policy parameters, homogeneous policies are less applicable to
real life situations because it assumes [4] all agents can view and
understand the same action space. Heterogeneous policies are more
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aligned with real life scenarios because each agent would act with
differing degrees of ability.

In this paper we investigate performance of heterogeneous and
homogeneous MARL agents for battery energy storage system
(BESS) control in the CityLearn Gym environment for control
benchmarking in demand response [11]. This application presents
a unique set of challenges and opportunities, as the agents must
balance the need for energy conservation with the demands of the
grid and the building occupants.

2 METHODOLOGY
We used MARLlib as the framework to run all of the experiments.
MARLlib is a Multi-Agent Reinforcement Learning Library based
on Ray and one of its toolkits RLlib [3]. It is meant to provide conve-
nient environment wrappers, agent level algorithm implementation,
and a flexible mapping strategies. For heterogeneous agents, we
used the algorithmic implementations for HAPPO [4] and HATRPO
[4], while for homogeneous agents, we used MAPPO [13], and MA-
TRPO [7] as provided by MARLlib because it was the most recent
and well supported framework for heterogeneous policies.

We adapted the CityLearn environment to the MARLlib frame-
work to simulate the buildings. CityLearn is an OpenAI Gym en-
vironment that was created for the benchmarking of rule-based
control, model predictive control, and reinforcement learning con-
trol algorithms for demand response studies [9]. It has building,
electric heater, heat pump, thermal energy storage, battery energy
storage systems, and photovoltaic energy models as part of its ob-
servation space. This environment is necessary to simulate the data
set. This work is only concerned with controller electric storage.

For the implementation we use a real-life dataset. It is s one-year
time series from 17 zero-net energy buildings that covers the August
1, 2016 to July 31, 2017 period. This dataset was used in the NeurIPS
2022 - CityLearn Challenge [1], the third edition of The CityLearn
Challenge [5, 12]. Details on the implementation and definitions
can be found in [6]. We have chosen to isolate 2 of these buildings
(Building 1 and Building 2) to efficiently benchmark performance.

The experiment was ran with each of the listed algorithms to a)
test the MARL implementation in CityLearn and b) the effectiveness
of heterogeneous over homogeneous policies.

3 RESULTS
Our preliminary results are shown in Figs 1—3. In Fig. 1 we can
observe that the average reward is the lowest (best) for the hetero-
geneous HATRPO algorithm, though the homogeneous MATRPO
appears to be second best. It appears that the difference in perfor-
mance cannot solely be attributed to the agent types, and more
in-depth analysis is required to understand their differences. The
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loss functions shown in Figs. 2 and 3 confirm the same tendencies
and are also qualitatively similar to our prior work [2]. Overall, we
demonstrate successful integration of MARLlib with CityLearn.
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Figure 1: Mean Episode Reward. From top to bottom: HAPPO,
MAPPO, MATRPO, HATRPO
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Figure 2: Total Loss - Heterogeneous Algorithms: HATRPO
(top) and HAPPO (bottom)
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Figure 3: Total Loss - Homogeneous Algorithms. MATRPO
(top) and MAPPO (bottom)
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