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ABSTRACT
Online probabilistic topic models serve as essential analytical tools

within Cyber-Physical Social Infrastructure Systems (CPSIS), en-

abling the analysis of real-time data streams. These models em-

power operators and decision-makers with actionable insights,

anomaly detection, predictions, optimized resource allocation, user

engagement, and social feedback, all critical for responding to

evolving CPSIS conditions. While these models use inferred topic-

assignment distributions to create lower-dimensional representa-

tions, applying them to online user-generated streams, like social

media and community apps, has historically posed challenges due

to sparse relevant content, leading to suboptimal performance. Our

study proposes a novel and expanded version of topic models that

integrates the variational lower bound with a linear reward func-

tion, supervised by a label associatedwith the confidence of relevant

content presence. We introduce a learning algorithm designed for

these augmented topic models. Our empirical experiments, con-

ducted on real-world datasets, provide compelling evidence that

our approach uniquely enhances the potential of any topic model in

CPSIS for downstream tasks in information management. These en-

hancements encompass improved topic interpretability, enhanced

data labeling precision, and the refinement of similarity metrics,

reinforcing the effectiveness of our online confirmation-augmented

probabilistic topic modeling approach in processing and analyzing

CPSIS real-time data streams.

CCS CONCEPTS
• Information systems→ Data streammining; Data streaming;
• Computing methodologies→ Online learning settings.

KEYWORDS
information augmentation, online machine learning, topic models,

variational bayes
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1 INTRODUCTION
Consider a scenario in which online data streams are leveraged by

Cyber-Physical Social Infrastructure Systems (CPSIS) such as emer-

gency response, disaster management, or public health monitoring

and disease control systems. Due to the real-time coordination in

place in these systems, they rely on user-generated data (e.g., social

media content, data generated through traffic-information appli-

cations, health-related data, and emergency hotlines) to monitor,

detect, and respond to events and trends in a timely and effective

manner. These systems, depending on the specific monitoring re-

quirements, operate within a predefined spatiotemporal window,

which is typically a short timeframe that encompasses real-time

data collection and response. In this context, additional data be-

comes available online, helping to identify when and where specific

relevant information may emerge after a certain delay. The objec-

tive is to develop a topic model based on the online data stream,

with a focus on the topics of interest. The model continuously

learns from historical and real-time data to enhance its detection

algorithms and improve response strategies.

Streaming data analysis in this way is crucial, as it enables the

discovery of relevant topics within the selected content, which in

turn plays a pivotal role in tasks like information augmentation

[13, 19, 22], detecting traffic or crisis events[4, 15, 18, 20, 24], and

more. The key component of the aforementioned studies is the topic

representations inferred from short text-based data. Conventional

topic models, such as Latent Dirichlet Allocations (LDA) [3] and

Mixture of Unigrams (MUG) [10], when operating in fully unsu-

pervised settings, often exhibit suboptimal performance resulting

from the sparse presence of relevant contents. The reasons for this

can be attributed to two factors: (1) user-generated data being ex-

ceptionally brief [7, 21], and (2) online data inherently containing

noise [9]. While various unsupervised topic models have been de-

veloped to address data sparsity [11, 16], less emphasis has been

placed on leveraging the data itself for model enhancement. Explicit
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methods for improving data quality through post-processing and

annotations are often time-consuming and costly, especially given

the online nature of the data [2].

In this study, as we introduce this challenge, our approach aims

to integrate online data with topic models. We do so by introducing

a confidence score associated with the periodic arrival of content of

interest, which is derived from the combination of various sources

of information. To demonstrate the aforementioned scenario involv-

ing online data, we provide a real-world example. Consider the data

source as a stream of tweets within a specific geographic area, re-

calling that the Twitter API V2 has enabled streaming via bounding

boxes [6]. Suppose we are interested in posts related to emergency

events within this area. Waze, one of the largest GPS navigation

apps, offers interactive features that allow users to share real-time

traffic information and report crisis events. For the purposes of this

study, Waze can serve as a valuable information resource, as its data

can be correlated with the presence of relevant tweets within a com-

mon spatiotemporal window. One valuable aspect is nThumbsUp,
which reacts and directly reflects the event’s significance within the

online community. The primary concept here is to gather data that

quantifies confidence within a smaller online community. If this

score reaches a significant level, it may indicate that a larger online

community, such as Twitter, is also discussing events of interest.

See Figure 1 for the schematic demonstration.

The main problem addressed in this study is the design of models

capable of interactively confirming the presence of relevant infor-

mation within the topic representations of interest, particularly

in an online context. To the best of our knowledge, no prior stud-

ies have specifically addressed this setting leveraging a confidence

score as a form of weak supervision to enhance an otherwise purely

unsupervised model. We propose a novel online machine learning

framework that integrates a linear reward function linked to the

confirmation confidence (e.g., nThumbsup) with the variational-

Bayesian lower bounds of probabilistic topic models. The only mod-

ification applied to the topic model involves the incorporation of a

variational distribution for document-topic assignments through

a bilinear function that connects variational posterior parameters

and confirmation parameters. Our experimental results, obtained

using real-world data, highlight the following advantages of the

entire framework:

(1) The linear reward function for confirmation will eventually

reveal topics linked to the events of focus.

(2) Empirically, simple baseline models, LDA and MUG, when

augmented with the confirmation model, yield improved se-

mantic interpretations. The results imply that the framework

can be extended to other topic models.

(3) Our method can improve downstream tasks for event detec-

tion and data augmentations. Additional experiments demon-

strate improvements in data labeling for classification and

in measuring similarity/dissimilarity.

(4) A real-world case study demonstrates a potential implemen-

tation of our model for augmenting Waze alerts using the

nThumbUps feature.

The remainder of this paper is organized as follows: In Section 2,

we review literature on topic models and their applications. Section

3 introduces essential preliminary notations and problem state-

ments. Section 4 delves into the primary methodology. Section 5

outlines the experiment design and results, while, Section 6 provides

a case study.

2 LITERATURE REVIEW
To the best of our knowledge, this presents the first attempt at the

interactive learning of a confirmation model and a topic model

within an online setting, aiming to address the problem we have

presented. Our work is related to probabilistic topic models with

variational inferences and their applications in event detection and

information augmentation.

One of the earliest probabilistic topic models is the well-known

Latent Dirichlet Allocation introduced by Blei, Ng, and Jordan [3].

The parameter estimation of LDA is challenging as the posterior dis-

tribution is computationally intractable [14]. Variational inference,

where the posteriors are assumed to be multinomial and Dirich-

let [3], has been one approach to address this issue. Hoffman et

al. present the online versional variational inference of LDA [5].

However, LDA and many of its extended versions struggle with

learning topics from documents in the format of short texts, such as

social media data from Facebook or Twitter, which typically contain

only one or two topics, rather than a mixture of all topics [16]. One

preliminary model for addressing the sparsity of topics in short text

is the mixture of unigrams model [10]. This idea has been further

extended by Lin et al. to a dual-sparse topic model [7]. Other works

address the sparsity issue by expanding the dimensionality, such

as a bi-term model [21]. We refer to two surveys on probabilistic

topics addressing the issue of sparsity in short texts [11, 16]. While

various modeling methods exist, limited attention has been paid to

incorporating data and weak supervision into variational inference

in topic models, which is the focus of what we propose.

CPSISs rely on robust information management practices includ-

ing the application of topic models to collect, process, and analyze

real-time data streams from diverse sources. These analyses are vi-

tal for detecting events, anomalies, emerging patterns, and ensuring

the seamless operation of these systems. Topic models are particu-

larly effective in event detection and information augmentation. In

event detection, the objective is to measure the uniqueness of iden-

tified patterns in the data. In information augmentation, the goal is

to match similar content from different information sources to pro-

vide comprehensive context and background for users. Technically,

both tasks often employ topic models for either (1) data labeling

[4, 13, 15, 19] or (2) similarity measurement between topic distribu-

tions of two documents, [22, 22, 24]. The former serve as sources

of data annotations for supervised/semi-supervised [13, 15, 19]

classifiers, while the latter aims to retrieve lower dimensional rep-

resentations for clustering analysis. For example, by computing the

cosine similarity between the target and a potential candidate, we

can assess the relevancy [20, 22] or uniqueness [24] of the candidate

compared to the central topic.

3 DEFINITIONS AND PRELIMINARIES
3.1 Problem Statements
Let 𝑡 ∈ [𝑇 ] represent discrete timestamps where [𝑇 ] = {1, 2, . . .𝑇 }.
We assume that at each 𝑡 ∈ [𝑇 ], we are provided with a set of
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Figure 1: Illustration of a real-world scenario. The left-hand side is a Waze alert, which has nThumbsUp being constantly
collected from online users to support the reliability of events. The right-hand side is the pool of tweets being posted within
the same spatial-temporal window. In the real world, if an event has influenced a relatively small online community, the same
event may have already influenced larger online communities, such as Twitter.

tweets 𝐷𝑡 ⊂ D, where each 𝑑 ∈ 𝐷𝑡 is a vector in the bag-of-words

format. In addition, we are given a binary label𝑦𝑡 ∈ {0, 1}, but there
is no guarantee that 𝑦𝑡 will arrive at timestamp 𝑡 . It is common

for 𝑦𝑡 to have a certain delay. A value of 𝑦𝑡 = 1 indicates the

presence of some 𝑑 of interest, while 𝑦𝑡 = 0 indicates the absence

of such 𝑑 of interest. A real-world example of 𝑦𝑡 is the nThumbsUp
illustrated in 1. We should manually tune a threshold 𝜏 such that if

nThumbsUp > 𝜏 we set 𝑦𝑡 = 1 and 0 otherwise.

We present the formulation of topic modeling in terms of dimen-

sional reduction. That is:

Problem 1. Given 𝐷𝑡 , learn/update the parameters of a topic
modelH : D → R𝐾 , where𝐾 is the number of topics and

∑
𝑘 H(𝐷𝑡 )𝑘 =

1.

Therefore, the output is a 𝐾 dimensional multinomial distribu-

tion over 𝐾 topics of 𝐷𝑡 . Meanwhile, the confirmation model can

be defined as follows:

Problem 2. Given 𝐷𝑡 , learn/update the parameters of a reward
function 𝑓 : D ×Y → R so that it will gain more reward if 𝑦𝑡 = 1

prior to the reveal of the ground truth 𝑦𝑡 .

It is important to note that Sub-problem 1 is an unsupervised

learning problem and Sub-problem 2 is supervised. Although, these

two problems may initially appear independent of each other, the

primary contribution of this study is to propose a model capable

of effectively addressing both problems interactively in an online

machine-learning setting. We will demonstrate that by simultane-

ously solving Sub-problem 2, which involves confirmation, along-

side Sub-problem 1, the model can yield a more focused (or skewed)

distribution of topics of interest.

Table 1 provides a summary of all the notations used in this

study and their corresponding descriptions.

Table 1: Notations and Descriptions

Notations Descriptions
𝐷𝑡

The set of documents (e.g. tweets) collected at time 𝑡
𝑦𝑡 The binary label indicating the existence of targeted tweets at 𝑡
𝑇 The maximum amount of timestamps

𝐾 The Number of the topics.

𝑊 The set of words.

𝛽𝑘 The random latent variables of word-topic distribution.

𝛾𝑑 The random latent variables of document-topics distribution.

𝜋 The parameters of the linear reward function for confirmation.

𝜙𝑑𝑤𝑘 The parameter of the variational posterior 𝑞 (𝑍𝑑𝑤 = 𝑘 ) .
𝛾𝑑 The parameters of the variational posterior 𝑞 (𝜉𝑑 )
𝜆𝑘 The parameters of the variational posterior 𝑞 (𝛽𝑘 )
ˆ𝜃𝑡 All parameters of the topic model depends on 𝑡
¯𝜃 All parameters of the topic model independent of 𝑡

3.2 Variational Lower Bounds
Let 𝑍 𝑡 represent all the latent variables of the topic models param-

eterized by 𝜃𝑡 = ( ¯𝜃, ˆ𝜃𝑡 ) ∈ Θ, the variational lower bound of a topic

model with given 𝐷𝑡 is:

log𝑝 (𝐷𝑡 |𝜃𝑡 ) ≥ E𝑞 (𝑍 𝑡 ) {log 𝑝 (𝐷𝑡 , 𝑍 𝑡 |𝜃𝑡 )} − E𝑞 (𝑍 𝑡 ) {log𝑝 (𝑍 𝑡 )}
:= ℓ (𝜃𝑡 |𝐷𝑡 )

(1)

where 𝑝 (𝑍 𝑡 ) is the prior distribution and 𝑞(𝑍 𝑡 ) is a variational

posterior distribution we select. For generality, 𝜃𝑡 has parts ¯𝜃 inde-

pendent of 𝑡 .

4 PROPOSED METHOD
4.1 Online Machine Learning
Our method further requires that the topic models must have a

K-multinomial variational posterior. For instance, in LDA, there is

a variational posterior of the per-word 𝑤 ∈ 𝑊 topic assignment

𝑞(𝑍𝑑,𝑤 = 𝑘) = 𝜙𝑑𝑤𝑘 [5]. In MUG, there is a variational posterior of
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per-document topic assignment 𝑞(𝑍𝑑 = 𝑘) = 𝜙𝑑𝑘 [10]. The key idea
of the interactive model is to introduce a linear reward function

parameterized by 𝜋 ∈ R𝐾 such that

∑
𝑘 𝜋𝑘 = 1. We assume LDA

is the topic model for the rest of the section. The linear reward

function is defined as:

𝑓 (𝜋 |𝜙𝑡 , 𝐷𝑡 , 𝑦𝑡 ) =
∑︁
𝑑∈𝐷𝑡

∑︁
𝑤

∑︁
𝑘

𝜋𝑘𝜙
𝑡
𝑑𝑤𝑘

𝑦𝑡 (2)

The linear rewards’ parameters 𝜋 interact with the LDA model

via the posterior distribution such that;

𝑞(𝑍 𝑡
𝑑𝑤

= 𝑘) = 𝜙𝑡
𝑑𝑤𝑘

𝜋𝑘/(
∑︁
𝑘 ′
𝑞(𝑍 𝑡

𝑑𝑤
= 𝑘′)) (3)

Let us take a closer look at the linear function. When 𝑦𝑡 = 1,

which happens when we have enough confidence to confirm the

presence of relevant 𝑑 ∈ 𝐷𝑡 , the multinomial distribution 𝜙𝑡
𝑑𝑤𝑘

temporarily assumed given to us must be distinct from 𝑦𝑡 = 0. For

maximizing

∑𝑇 ′
𝑡=1

𝑓 (𝜋𝑡 |𝜙𝑡 , 𝐷𝑡 , 𝑦𝑡 ) for every 𝑇 ′ ∈ [𝑇 ], the problem
is equivalent to the well-known online learning problem: learn

from 𝐾 experts’ advice [1]. 𝜋 is encouraged to assign more weights

to the topics that frequently appear when 𝑦𝑡 = 1.

The main idea is to maximize both the linear reward function

and the variational lower bound of the topic models simultaneously.

In the context of online convex optimization, we set 𝑔(𝜃𝑡 , 𝜋) =

ℓ (𝜃𝑡 |𝐷𝑡 ) + 𝑓 (𝜋 |𝜙𝑡 , 𝐷𝑡 , 𝑦𝑡 ), and the benchmark of success is:

R(𝜋𝑡 , 𝜃𝑡 ) := max

𝜋,𝜃𝑡

∑︁
𝑡

𝑔(𝜃𝑡 , 𝜋) − 𝑔(𝜃𝑡 , 𝜋𝑡 ) (4)

subject to constraints

∑
𝑘 𝜙

𝑡
𝑑𝑤𝑘

= 1 and

∑
𝑘 𝜋

𝑡
𝑘
= 1, and recall that

𝜙𝑡 ∈ Θ and R is the regret function.

4.2 An Online Algorithm
To solve the online problem, we derive an online algorithm with a

theoretically guaranteed bound on the regret function R. Due to
page limit, we only present the iterative updates on 𝜋𝑡 and 𝜙𝑡 and

refer to [5] for the rest of the other parameters’ updates.

For LDA, there are two additional prior distributions:

𝛽𝑘 ∼ Dirichlet(𝜂) (5)

where 𝛽𝑘 ∈ R |𝑊 |
is a distribution over words for each topic. Besides,

for each document 𝑑

𝜉𝑑 ∼ Dirichlet(𝛼) (6)

where 𝜉𝑑 ∈ R𝐾 is a distribution over topics. 𝜂, 𝛼 ∈ R are two scalar

hyperparameters of the model, which define the Dirichlet priors to

be symmetric.

The variational inference of LDA also requires the variational

posteriors of 𝑞(𝛽𝑘 ) and 𝑞(𝜉𝑑 ). They are;

𝑞(𝛽𝑘 ) = Dirichlet(𝜆𝑘 ) (7)

and

𝑞(𝜉𝑑 ) = Dirichlet(𝛾𝑑 ) (8)

where 𝜆𝑘 ∈ R |𝑊 |
and 𝛾𝑑 ∈ R𝐾 are vector parameters. In terms of

𝜃𝑡 , 𝜆 = ¯𝜃 since it does not depend on time 𝑡 , and (𝛾𝑡 , 𝜙𝑡 ) = ˆ𝜃𝑡 since

the document 𝑑 ∈ 𝐷𝑡 depends on time 𝑡 .

Algorithm 1

1: procedure OnlineModel(𝐾, 𝛼, 𝜂, 𝜌0, ¯𝜃0, 𝜋0
)

2: for 𝑡 ∈ 𝑇 do
3: 𝑦𝑡 has been revealed at time 𝑡 .

4: while Change of | 1

𝐾

∑
𝑘 𝛾

𝑡
𝑑𝑘

| ≤ 0.00001 do

5: 𝜙𝑡
𝑑𝑤𝑘

∝ exp(E𝑞{𝛽𝑘𝑤} + E𝑞{𝜉𝑑𝑘 } −
𝑦𝑡

𝜋𝑡
𝑘

)

6: Update
ˆ𝜃𝑡 based on [5].

7: end while
8: Solve

¯𝜃𝑡Δ, 𝜋
𝑡
Δ = arg max 𝑔(𝜃𝑡 , 𝜋) − ∥𝜋 ∥2

9: s.t.

∑
𝑘 𝜋𝑘 = 1

10:
¯𝜃𝑡 = (1 − 𝜌𝑡 ) ¯𝜃𝑡−1 + 𝜌𝑡 ¯𝜃𝑡Δ

11: 𝜋𝑡 = (1 − 𝜌𝑡 )𝜋𝑡−1 + 𝜌𝑡𝜋𝑡Δ
12: Update 𝜌𝑡+1

13: end for
14: end procedure

Assuming a learning rate 𝜌𝑡 is given to us, our online algorithm is

based on the incremental updates from each subproblem’s optimal

at 𝑡 . For each 𝑡 ∈ [𝑇 ], the subproblem is:

¯𝜃𝑡Δ, 𝜋
𝑡
Δ = arg max 𝑔(𝜃𝑡 , 𝜋) − ∥𝜋 ∥2

s.t.

∑︁
𝑘

𝜋𝑘 = 1
(9)

where a ℓ-2 regularizer, ∥𝜋 ∥2
, is added to the objective. The incre-

mental updates for these two time-independent variables are:

¯𝜃𝑡 = (1 − 𝜌𝑡 ) ¯𝜃𝑡−1 + 𝜌𝑡 ¯𝜃𝑡Δ (10)

𝜋𝑡 = (1 − 𝜌𝑡 )𝜋𝑡−1 + 𝜌𝑡𝜋𝑡Δ (11)

In addition, solving𝜙𝑡
𝑑
is different from the above online problem

as the solution in nature depends on time 𝑡 . The subproblem for 𝜙𝑡

given 𝜋𝑡 and 𝜃𝑡 attained from the updates is:

max 𝑔(𝜃𝑡 , 𝜋𝑡 )

s.t.

∑︁
𝑘

𝜙𝑡
𝑑𝑤𝑘

= 1, ∀𝑑 ∈ 𝐷𝑖 , ∀𝑤 ∈𝑊 (12)

The above subproblem has a closed-form solution as well.

𝜙𝑡
𝑑𝑤𝑘

∝ exp(E𝑞{𝛽𝑘𝑤 } + E𝑞{𝜉𝑑𝑘 } −
𝑦𝑡

𝜋𝑡
𝑘

) (13)

The above equation implies that if𝑦𝑡 = 1, and the topic weight for

confirmation 𝜋𝑡
𝑘
is small,𝜙𝑡

𝑑𝑤𝑘
tends to be zero. If𝑦𝑡 = 0, we recover

the same update as in [3, 5]. Algorithm 1 describes all computations

for each 𝑡 ∈ [𝑇 ]. Overall, we repeat the computations of the two

time-dependent parameters 𝜙𝑡
𝑑
and 𝛾𝑡 until the convergence of 𝛾𝑡

is satisfied.

5 EXPERIMENTS
To verify the effectiveness of our augmented model, we experi-

mented with real-world data. We considered two standard prob-

abilistic models, LDA and MUG, due to their efficient variational

inference [3, 5]. Importantly, our method is compatible with any
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probabilistic topic model featuring a multinomial per document-

topic variational posterior distribution, a structure found in many

existing models [7, 21, 23]. Future research may explore integrating

our approach with other topic models.

We employed our model for two key downstream tasks in in-

formation science: data labeling and similarity measurement. The

first task involves obtaining interpretable topic representations and

assessing clustering correlation with human-generated labels. The

second task leverages the representational space to reveal semantic

content similarities and dissimilarities between documents.

5.1 Data and Ground Truth Labels
Hurricane-related Tweets. We will conduct experiments on a

real-world Twitter dataset during Southern US hurricanes to evalu-

ate disaster information augmentation in real-world applications

[13, 15]. The dataset includes manually generated labels for five

different classes. The data set consists of geotagged tweets collected

from three hurricanes that occurred in Florida in 2020: Hurricane

Eta (31/10/2020-14/11/2020), Hurricane Isaias (31/7/2020-4/8/2020),

and Hurricane Sally (14/9/2020-28/9/2020). The entire data set con-

sists of 10,210 tweets, which are evenly distributed over the first

four categories of events as below:

(0) Broadcast/News - Includes tweets related to news, govern-

ment updates, alerts, and official sources information.

(1) Power - Includes tweets related to power outages, power

lines/systems, lights, Wi-Fi, Internet connectivity, etc.

(2) Traffic Incident - Includes tweets related to car crashes, road

congestion, evacuations, traffic updates and incidents.

(3) Forecast/Weather - Includes tweets related to weather con-

ditions, forecasts, rainfall, flooding, etc.

(4) Miscellaneous - Includes tweets that do not fit into other

categories or are unrelated to the disaster.

Waze. A Waze alert is in a standardized schematic of Type plus
Subtype and Description. An example of a traffic alert is provided:

alert: Traffic Accident, Minor Accident o𝑛𝐼 − 75, 𝑅𝑒𝑎𝑟 − 𝑒𝑛𝑑
The content of these alerts tends to be similar due to the limited

format and the specific categories used to describe the incidents.

This categorization enables rapid identification of the alert’s nature,

including incident type (e.g., accident) and severity (e.g., minor).

5.2 Metrics
Perplexity. We use perplexity on out-of-sample data as as a model

fit measure [5]. Perplexity is defined as the geometric mean of the

inverse marginal likelihood of each word in the tweet set.

Topic Coherence. The two downstream tasks necessitate that

topic representations are interpretable for readers. Topic Coher-

ence (TC) measures the degree of semantic similarity among high-

scoring words (top 15 in our case) [12]. We employ the "Umass"

version of TC [8], which calculates the word-wise score function

based on the document co-occurrence of the two words. The overall

score is obtained by summing the score of every word-word pair

and taking the average among all topics.

Adjusted Mutual Information. Normalized Mutual Information

measures the agreement between two clusters and quantifies the

similarity between two cluster assignments [17]. In our experiment,

we have labeled tweets in 5 categories, denoted as 𝐶 ∈ [𝐾]. To
match the number of classes, we set 𝐾 = 5 resulting in an assign-

ment score into 5 clusters. For each tweet 𝑑 ∈ 𝐷 , we assign it to

the cluster with the highest score denoted as𝐶
′ ∈ [𝐾]. The mutual

information is measured as:

𝑀𝐼 (𝐶,𝐶
′
) =

𝐾∑︁
𝑖=1

𝐾∑︁
𝑖=1

|𝐶𝑖 ∩𝐶
′
𝑗
|

|𝐷 | log
2

|𝐷 | |𝐶𝑖 ∩𝐶
′
𝑗
|

|𝐶𝑖 | |𝐶
′
𝑗
|

Normalized Mutual Information (NMI) is a normalization of

mutual information, which scales the score between 0 and 1. A

higher NMI score indicates a higher level of agreement between

the two clusters. The Adjusted Mutual Information (AMI) is an

extension of NMI that takes into account the size of clusters, making

the score independent of size 𝐾 .

Recall. The recall score of a binary classificationmodel is computed

as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

5.3 Experiment Designs
We conducted our experiments in an online machine-learning set-

ting using real-world data but with simulated streams for event

types of Traffic Incident and Forecast Weather. In the simulation, at

each time step 𝑡 , a batch of tweets and a binary label𝑦𝑡 are sampled.

The batch size is uniformly distributed between 10 and 15. If 𝑦𝑡 = 1,

relevant tweets related to the targeted event type were included in

the batch, ranging from 5 to 1, while the remaining tweets were ran-

domly selected from the Miscellaneous class. The label 𝑦𝑡 was only
revealed to the model after 𝑡 . Additionally, to test the robustness of

the model, the accuracy of𝑦𝑡 could be compromised to some extent.

The overall expectation of the model augmented with the confirma-

tion we proposed is that it will gradually outperform the baseline

model in all evaluation metrics regardless of the perturbation in 𝑦𝑡

and 𝐷𝑡 .

Hyper-parameters. In our online machine learning framework

we consider several hyper-parameters that impact the performance

of the model: (1) 𝐾 the number of topics, (2) 𝜌𝑡 , the step size of

updating parameters at each step, (3) 𝑁 , the number of runs of each

experiment, (4) 𝑒𝑡𝑎, the hyperparameter of the prior 𝛽 , and (5) 𝛼 ,

hyperparameter of the prior 𝜉 . Throughout the experiments, we

take 𝜌𝑡 = (𝑡 + 2)−0.7
for 𝑡 ∈ [𝑇 ] and 𝛼, 𝜂 = 1

𝐾
. We enumerate 𝐾

from the set of {5, 12, 15, 21}. Let 𝑁 = 30. All experimental results

are aggregated from the 𝑁 samples. For 𝑦𝑡 , we test a label accuracy

of {70%, 80%, 90%}. The experiments are performed on a computer

with AMD Ryzen 7 5700G 3.80GHz CPU, 16GB memory, and Nvidia

Ge-Force RTX 3060 graphics.

Labeling Data. A core task task in employing topic modeling in

information studies is to label data based on the clusters inferred

by the models [13, 15]. we adhered to the standard practice of

randomly reserving 10% of the data as a test set for each run. We

then evaluated the AMI between the ground truth labels and the

cluster assignments obtained from the topic model, considering a

total of 𝐾 = 5.
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Matching Similar Tweets. For each Waze alert, one of the exper-

iments in this study is to match its content with tweets found in a

nearby spatial-temporal window. We, therefore, treat a Waze alert

as another tweet and compute the cosine similarity scores of every

other tweet within the specified window.

For each 𝑦𝑡 = 1 revealed afterward, we retrieve the top 5 tweets

with the highest similarity scores, considering them as the predicted

relevant tweets. We assess the success of this matching process by

reporting the recall. Note that we do not compare the models based

on precision. This is because the baseline methods employed in this

study are inherently unsupervised, meaning they do not utilize 𝑦𝑡 .

Consequently, the unsupervised topic model consistently output

matched tweets, regardless of 𝑦𝑡 , which results in low precision.

Baseline. To demonstrate the effectiveness of the augmented mod-

els, we also include a baseline model with:

𝜋𝑘 =
1

𝐾

the parameters remain constant throughout the online experiment.

We use Online Mixture of Unigrams (OMUG) and Online Latent

Dirichlet Allocation (OLDA) to denote the baseline models.

5.4 Results
Convergence and Fit. The perplexity of all models is presented

in Figure 2.Each sub-figure represents instances of LDA and MUG,

along with their respective 95% confidence intervals. The results

indicate that the convergence criteria are satisfied. The inclusion of

the augmented linear reward function and the new posterior does

not impede the training of the topic models. All models exhibit

a good fit when measured on the held-out evaluation dataset. In

general, when the value of 𝐾 is large, we can anticipate that the

model will require more computations to converge.

For 𝐾 = 21, the LDA model augmented with the component

we proposed takes 60 timestamps, denoted as 𝑡 , to reach a similar

perplexity level as a baseline LDAmodel using variational inference

with 40 timestamps. However, for MUG model, when 𝐾 = 21, the

OLDA, 𝐾 = 5 OLDA, 𝐾 = 21

OMUG, 𝐾 = 5 OMUG, 𝐾 = 21

Figure 2: The Perplexity of Models in 𝑡

OLDA, 𝐾 = 5 OLDA, 𝐾 = 15

OLDA, 𝐾 = 21 OMUG, 𝐾 = 5

OMUG, 𝐾 = 15 OMUG, 𝐾 = 21

Figure 3: The Topic Coherence of Models in 𝑡 . The Y-axis is
the Perplexity. X-axis is the number of timestamps 𝑡 .

augmented version never reaches the same level of perplexity as

the baseline within 100 iterations. In addition, LDA exhibits slower

convergence when the accuracy of 𝑦𝑡 goes down. In contrast, MUG

demonstrates robustness under the uncertainty of 𝑦𝑡 .

It’s important to note that the convergence on the held-out

dataset does not necessarily prevent overfitting of the models. This

consideration holds significance when analyzing the other experi-

mental results presented below.

Interpretability of Topics. Our second remark is that our method

significantly improves the semantic interpretability of topics in

terms of topic coherence. As shown in Figure 3, the augmented LDA

significantly outperforms the baseline LDA after 50-60 iterations.

Moreover, the advantage of our augmentation method becomes

more prominent as 𝐾 increases. When 𝐾 = 15 and 𝐾 = 21, the

baseline LDA tends to be overfitted after 50 iterations as evidenced

by a continuous decrease in TC. The augmented LDA does not have

this issue under all settings.

With regard to MUG, it’s worth noting that a baseline MUG

already outperforms LDA, with the optimal value ranging from

−9 to −9.5. This observation aligns with previous studies on topic

models for short texts[11]. The one-text-one-topic assumption of

short text is more reasonable than a mixture of topics, especially for

tweets [21]. Nevertheless, our method enjoys faster convergence in

terms of TC, usually within 10 iterations when 𝐾 is large. For small

𝐾 , the increase is marginal. The overfitting problem arises again as

there is a drop of TC in augmented MUG 𝐾 = 21 after 80 iterations.
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In summary, our method transforms LDA, which was not ini-

tially considered suitable for short texts, into a competitive model

compared to MUG.

Labeling Data for Classifications. To evaluate the effectiveness

of the proposed method on labeling data, we computed the AMI

between ground truth labels and cluster assignments of the held-out

data set for 𝐾 = 5. Figure 4 presents the results of the AMI for all

models. It is evident that augmented LDA consistently outperforms

the baselines. Augmented MUG, however, peaks at 60-80 iterations,

then dramatically decreases and becomes worse than the baseline

model. We identify the drop as another evidence of the overfitting of

MUG. The results suggest to use of LDA for data labeling, supported

by empirical evidence of superiority, and is consistent with [13, 15].

Interestingly, our method under the worst 𝑦𝑡 , a 70% of accuracy,

has the optimal AMI in both LDA and MUG. We investigated this

observation in-depth and provided explanations for it. First, note

that the augmented LDAwith 80% accuracy is the worst case, which

confirms that a higher accuracy does improve the model in terms

of AMI. Both 80% and 90% suffer from overfitting as indicated by

the nearly identical drop in MUG. The presence of 30% of noisy

tweets accidentally expands the training data set, which mitigates

the over-fitting issue and contributes to an LDA and a delay of drop

in MUG. The analysis suggests that our results can be sensitive to

data and hyper-parameters, such as the incremental update rate 𝜌𝑡 .

We will discuss it in the limitations section.

OLDA, 𝐾 = 5 OMUG, 𝐾 = 5

Figure 4: The Adjusted Mutual Information of Models in 𝑡

Similarity Measure. Figure 5 shows the recall of matching similar

tweets with a single Waze alert. For better visualization, we only

present two cases of accuracy, 90% and 70%. The case of 80% is

omitted since it closely resembles the other cases in LDA and it

overlaps with the baseline in MUG. The experiment of matching

similar tweets is greatly dependent on chosen hyperparameters,

particularly on 𝐾 and label accuracy. As seen, the augmented LDA

OLDA, 𝐾 = 12 OMUG, 𝐾 = 21

Figure 5: Recall of Matching Similar Tweets in Models at 𝑡

outperforms the baseline LDA across all uncertainties when 𝐾 = 12.

The recall is compromised by the lower accuracy of 𝑦𝑡 and it is be-

low the baseline for a 70% of accuracy. Other 𝐾 either have slightly

inferior performance or marginal merit compared to the baseline.

The augmented MUG dominates the baseline under 90% accuracy of

𝑦𝑡 and it is marginally enhanced compared to the baseline. Overall,

the experimental findings highlight the influence of hyperparame-

ters on the performance of matching similar tweets and reinforce

the advantages of our augmented models over baselines.

6 CASE STUDY
To demonstrate the effectiveness and potential implementation of

the proposed method in the real world, we also perform a case

study using real-world data streams.

We utilize an unlabeled data set consisting of Waze data and

tweets from 10/18/2021 to 10/31/2021 within 115 bounding boxes

covering Georgia, USA. The entire dataset consists of about 12,000

events and over 600,000 geo-tagged tweets with lengths greater

than 5. For each Waze incident, we recorded the debut time, the

current time of API calls, and the number of thumbs-ups from other

users. We consider tweets as potential matches if their debut time

is within a 30-minute time window and in the same bounding box.

To label the matches, we set 𝑦𝑡 = 1 if the number of thumbs-ups

is above 3, and 𝑠𝑡 = 0 otherwise. For each Waze alert with 𝑦𝑡 = 1,

we apply an LDA model, 𝐾 = 21, augmented with the confirmation

part to output the top four similar tweets. We randomly sampled

five instances from the results, and they are presented in Table 2.

Table 2 shows successful cases of implementing the augmented

LDA with real-world data. Nevertheless, it is important to note that

the bounding boxes used in the filtering process do not completely

eliminate other incidents that may be spatially and temporally close

to the target incident.

Waze Events Relevant Tweets

alert ACCIDENT

Accident. left two lanes blocked in Cherokee on I 575 SB after Sixes Rd/Exit 11 ATLTraffic

@MARTAservice there are multiple lights out on the walkway from Buckhead station towards Tower

Place.

ACCIDENTMINOR

I-575 S

He shoots under par and places at the national and regional tournaments

...

alert ACCIDENT

Accident. left two lanes blocked in Hapeville on I-85 SB near Sylvan Rd/Central Ave/Exit 75, stop and go

traffic b. . .

Disabled vehicle, shoulder blocked in CollegePark on I-285 WB near I-85 (SW ATL)/Exit 61 (WB), stop

and go traffic. . .

ACCIDENTMAJOR

I-85 S

Join the Lane Construction team! See our latest job opening here: https://xxxxxx Construction Craft-

Workers

...

alert ACCIDENT

Accident. right three lanes blocked in SandySprings on I-285 EB at Roswell Rd (GA-9)/Exit 25 (EB),

stopped traffic. . .

Accident. right shoulder blocked in Dekalb on I-285 SB at Lawrenceville Hwy (US-29)/Exit 38, stop and

go traffic b. . .

ACCIDENTMAJOR

I-285 E

Cozy Cabin Overlooks the Suwannee River: A North Florida couple builds their family-friendly forever

home along the. . .

...

alert traffic JAM

McDonough traffic might be the reason I actually atl cntrl delt

Accident, right lane blocked in Norcross on I-85 SB at Jimmy Carter Blvd (GA-140)/Exit 99, stop and go

traffic bac. . .

JAM HEAVY TRAF-

FIC I-85 N

Accident in Brevard on US 1 Both NB/SB between CO Hwy 502/Coquina Rd/Barnes Blvd and Eyster Blvd

traffic

...

alert traffic JAM

Accident, left lane blocked in Snellville on Stone Mtn Fwy (Hwy 78) WB at Scenic Hwy (GA-124)

ATLTraffic https://t.co/bABElTW6T2

Accident. two left lanes blocked. in Polk on I-4 EB before US 27 (MM 55) traffic

Closed due to accident in Osceola on Poinciana Blvd SB south of US 17-92/Orange Blossom Trail and

before Reaves Rd. . .

JAM HEAVY TRAF-

FIC I-75 S

Accident. left three lanes blocked in Jonesboro on I-75 SB after Tara Blvd/Old Dixie Hwy/Exit 235

ATLTraffic

...

Table 2: Relevant Tweets of Bounding Box 1, Accident and
Jam. Blue texts indicate a truth positive, Red texts describe
incidents that occurred in nearby bounding boxes.
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7 LIMITATIONS AND FUTUREWORKS
One of the limitations of this study is the relatively limited ex-

ploration of hyperparameters. We acknowledge that the choice of

hyperparameters, including the update weight 𝜌𝑡 = (𝑡 + 2)−0.7
, is

somewhat arbitrary and not optimized for all models. This update

rate is not suitable for MUG as it resulted in overfitting within

just 50 iterations. The update rate should decay at a much faster

rate compared to the one used for LDA. Additionally, other ini-

tialization hyper-parameters, such as 𝜌0
, 𝜂, and 𝛼 , can all impact

the performance of the two downstream tasks. In general, these

hyperparameters should be fine-tuned for each specific model aug-

mented with our proposed component. However, we adopted the

default settings from[3, 5]. In addition, our exploration was limited

to a small parameter set, with 𝐾 values chosen from 5, 12, 15, 21,

due to the considerable time required to complete each experiment

(around 1.5 hours in average). We recognize the need for a more

thorough investigation of hyperparameters as a future endeavor.

This would entail refining, parallelizing, and addressing numerical

issues in the current code implementation.

Another perturbation that our method is sensitive to is the ac-

curacy of 𝑦𝑡 . Initially, we anticipated that our method could still

perform accurately with a 55% accuracy. However, the results indi-

cate that an accuracy less than 70% will significantly compromise

the performance of our method, see Figure 5 for the case of OMUG.

We suspect that the bi-linear function may not be robust enough to

handle noise in 𝑦𝑡 . Exploring alternative stable functions as poten-

tial augmentation components is an avenue for future research.

8 CONCLUSION
Our research highlights the critical role of online probabilistic topic

models in enabling the real-time analysis of complex data streams

in Cyber-Physical Social Infrastructure Systems (CPSIS). These

models empower infrastructure operators and decision-makers to

extract actionable insights, detect anomalies, make precise pre-

dictions, optimize resource allocation, engage users, and leverage

social feedback. However, traditional probabilistic topic models face

challenges when applied to user-generated content, which is often

sparse and dynamic. We propose a novel framework that integrates

a linear reward function, guided by the confidence levels associ-

ated with relevant content, into the variational lower bound of

the likelihood of Bayesian topic models. This innovative approach

enhances topic retrieval, improving interpretability and generaliz-

ability across various topic models. Our empirical experiments and

case study, conducted on real-world datasets, showcase the effective-

ness of our learning algorithm in enhancing topic models through

two important downstream tasks: information augmentation and

event detection. It significantly improves topic interpretability, data

labeling precision, and similarity metric refinement, making it a

valuable tool for processing and analyzing real-time data streams

in CPSIS. The effectiveness of our online confirmation-augmented

probabilistic topic modeling approach for processing CPSIS real-

time data streams contributes to informed decision-making, effi-

cient infrastructure management, and proactive engagement with

evolving CPSIS conditions. In the evolving field of CPSIS, our ap-

proach shows potential for unlocking new insights and addressing

integration challenges.
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