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ABSTRACT
Inspecting and manipulating runtime behavior of Android appli-
cations is a common need in mobile security research. However,
existing tools lack a holistic application-agnostic approach. They
either require changes to be manually adapted to each target ap-
plication, or they focus exclusively on executable code parts, ne-
glecting the key role the application manifest and resources play in
the Android ecosystem. This limits their use for research purposes,
where a specific series of modifications on various app components
frequently has to be applied to a whole body of applications.

In this paper, we present A2P2, a flexible patching pipeline for
compiled Android applications. Our system encompasses a custom
declarative patch format for specifying complex manipulations on
all parts of an application package. Patch projects are developed
inside the Android Studio IDE and compiled into patch packages.
These may then be applied to an arbitrary number of application
package (APK) files through our flexible patching pipeline imple-
mentation. Existing pipeline stages may be freely arranged and
augmented with user-supplied custom stages so that entirely new
sophisticated transformations may be implemented from a range of
core primitives. For manipulating Dalvik bytecode, we provide two
different rewriting backends and an abstraction that enables addi-
tion of new rewriting technologies transparently to patch projects.

We demonstrate A2P2’s efficiency and efficacy by providing
estimates for deployment speed and effects on compatibility, appli-
cation size, and runtime performance for typical use cases. Lastly,
we implement A2P2 patches that reproduce previous research and
facilitate common security analysis tasks.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering; • Soft-
ware and its engineering→Application specific development
environments.
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1 INTRODUCTION
As part of their work, mobile security researchers commonly face
the need to inspect and manipulate the runtime behavior of closed-
source Android applications. This may be necessary for analyzing a
suspectedly malicious program, reverse-engineering a proprietary
protocol, assessing the security of an unknown piece of software,
or detecting and mitigating a particular class of vulnerabilities.

Over the past decade, a number of solutions for inspecting and
manipulating application runtime behavior have been proposed.
From these, three different technical approaches can be derived,
each with its own advantages and disadvantages.

(1) System Modifications. Root privileges can be utilized on the
Android platform for either replacing parts of the system
components that form the application runtime [7], or for
attaching to an application process during execution [5].
However, gaining root privileges requires modifying the
OS installation, which impacts the entire software stack on
the device and not just individual applications. Addition-
ally, application patching tools proposed as part of research
are often designed for aiding inexperienced developers or
advanced users in retrofitting security improvements into
compiled apps. In these scenarios, the resulting apps are
installed on real-world devices, where making root permis-
sions available to the user must be considered a security
risk.

(2) Virtual Containers. Some solutions execute target applica-
tions within the context of a container application, e.g. [3].
From the perspective of the OS, the target application lives
in the process of the container application, which grants
it arbitrary capabilities for runtime manipulation without
requiring root permissions. However, this setup also con-
siderably limits the OS integration of the target application.
Additionally, it requires the container application to stati-
cally pre-request all permissions any contained application
may need later, which qualifies as an extreme case of over-
permissioning.

(3) Repackaging. Applying changes directly onto the applica-
tion package (APK) file [13, 15] allows modifying any aspect
of the contained files, such as the executable code or the
application manifest. All changes only affect the target appli-
cation and can be conveniently redistributed for installation
on unmodified Android systems. However, modifying the
APK file requires resigning it, which may lead to issues. Still,
in research scenarios where root privileges are not avail-
able, repackaging is the most reliable way for inspecting
and manipulating Android application runtime behavior. We
therefore concentrate on this technology in the following.
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Although multiple repackaging tools are readily available for
applying user-specified changes to a given APK file, their use for
research purposes is limited. Many research use cases involve ap-
plying a given change to a whole body of diverse applications.
However, available tools either require changes to be manually
adapted to each individual target APK file or only allow modifying
the executable parts of the APK, entirely neglecting the central role
of the Android manifest as the contract between the application
and OS. Due to this lack of existing tooling, researchers commonly
had to implement their own purpose-built tools [4, 8, 11, 16], wast-
ing resources that they may instead have invested into their core
contributions.

We introduce A2P2 to address this evident gap in research tool-
ing. To the best of our knowledge, our patching pipeline is the first
solution for developing and deploying holistic application-agnostic
patches to compiled Android applications.

Our key contributions are:
• We propose an application-agnostic patch format that allows
declaratively specifying complex changesets to Dalvik byte-
code, Android manifest and application resources, as well as
addition of arbitrary files into a compiled Android applica-
tion package. The format entails a developer-facing source
variant (A2P2 patch project) as well as a compiled binary vari-
ant (A2P2 patch package) for feeding into the deployment
pipeline.

• We present a suite of tools for developing and compiling
changesets, as well as for applying them to concrete com-
piled Android application packages (APK files). The deploy-
ment components are organised in a fully customizable patch
deployment pipeline. We provide full implementations of
all pipeline stages needed for deploying our patch format.
Additionally, our solution allows users to supply custom
pipeline stages that may specify complementary changes
procedurally, utilizing our low-level manipulation primitives
for various Android-specific file formats.

• We provide performance and compatibility metrics for evalu-
ating A2P2’s efficacy and showcase a set of example patches
that demonstrate how our patching pipeline facilitates mo-
bile security research.

• We make our entire toolchain (including development tools
and deployment pipeline) available to the research commu-
nity under an open-source license. 1

The remainder of this paper is organized as follows: Section
2 lays out the necessary background knowledge. Section 3 then
introduces the overall architecture of the A2P2 system. Subsequent
Sections 4 and 5 describe our patch format design and pipeline
implementation, which are then evaluated in Section 6. We discuss
limitations of our concept and plans for future work in Section 7,
highlight related publications in Section 8 and conclude this paper
in Section 9.

2 BACKGROUND
In this section, we summarize background information on Android
application development, the APK format, and the ART runtime.
1Source code is available at https://extgit.iaik.tugraz.at/fdraschbacher/a2p2

2.1 Android Application Development Process
Google provides an official Android Studio IDE for developing
Android applications. Key components of an application project
are:

• Android manifest: An XML file declaring the permissions
required for operation and the functionality (Activities, Ser-
vices, ContentProviders) exposed to the rest of system. If
any such externally exposed characteristic is to be added
to or removed from the application, the change needs to be
reflected in the manifest for the system to pick it up.

• Program code: Google recommends implementing program
logic in Java or Kotlin, although integrating native code is
possible for performance-critical program parts or incorpora-
tion of existing components. The Java Native Interface (JNI)
enables interaction between native (C/C++) and managed
(Java/Kotlin) code.

• Resources: These include files that define UI layout structures,
strings for localisations, images and many more.

• Other assets: Files that are copied into the application package
in verbatim during build, i.e. in an unaltered form.

During build, various human-readable parts of an application
project are transformed into representations more suitable for exe-
cution and packed into an Android Application Package (APK) file.
The Gradle build system and an Android-specific plugin are used
for coordinating and configuring the tasks involved in the build
process. Java and Kotlin code is compiled into Java bytecode using
the javac compiler, then further transformed into Android-specific
Dalvik bytecode by the d8 build tool. The Android manifest and
XML resources are compressed into an Android-specific binary
XML representation. A resource index is assembled that assigns
each resource an identifier that can be used for cross-referencing.

2.2 Android Package Format
The APK file format is used for deploying a compiled Android ap-
plication to a device for installation. At the outermost layer, an APK
file is a ZIP archive whose contents follow a well-defined structure.
The core components of an APK file are stored in the top level
of the ZIP container. These comprise the Android manifest in the
AXML binary XML format and one or multiple Dalvik Executable
(DEX) files that hold the Dalvik bytecode for the Java and Kotlin
classes that implement the program logic. The ARSC file plays a
key role in organizing the resources within an APK file. It contains
a detailed resource index that not only allows unique identification
of resources but also is structured in a way that enables dynam-
ically selecting resource values at runtime depending on device
characteristics such as screen size or configured locale.

Before an APK file can be installed onto an Android device, it
needs to be signed with a self-signed developer certificate. This
ensures that application updates can only be installed if they stem
from the same developer as the original installation.

For efficiency reasons, modern Android applications may be
composed of multiple APK files that carry the same package name
and are signed with the same developer certificate. All individual
APK files need to be installed onto the device for the application to
be operational.

https://extgit.iaik.tugraz.at/fdraschbacher/a2p2
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2.3 Android Runtime
The Dalvik bytecode stored in DEX files encodes program func-
tionality in the instruction set of a register-based virtual machine.
This ensures a compiled application is compatible with any Android
device, no matter its native CPU architecture. The Android Runtime
(ART) is the system component responsible for implementing the
virtual machine instruction set. It executes Dalvik bytecode through
a combination of interpretation, ahead-of-time (AOT) compilation,
and just-in-time (JIT) compilation. Instead of initializing a fresh
runtime instance at every application launch, application processes
are forked from a special process called Zygote that already pre-
initialized the most frequently used framework classes. A list of
these classes may be obtained from the publicly-readable file at
/system/etc/preloaded-classes on a device.

3 A2P2 OVERVIEW
In this section, we describe the core goals and concepts of the A2P2
system from a high-level perspective.

Most fundamentally, A2P2 seeks to keep the entry barrier for
implementing common patch use cases low while still offering the
maximum degree of flexibility for advanced patching needs. For
maintaining a low entry barrier, we propose a custom declarative
patch format and all tooling required for developing and deploying
patches to compiled APK files. We accomplish flexibility by struc-
turing the deployment functionality as a fully extensible patching
pipeline that offers the framework and primitives for efficiently
implementing arbitrarily complex APK transformations. Figure 1
illustrates how a patch in the A2P2 format can be deployed by
configuring and executing a suitable A2P2 pipeline instance.

3.1 Declarative Patch Format
Our declarative patch format is designed for specifying changes in a
generic form once and deploying them to an arbitrary number of ap-
plication packages later. We accomplish this by focusing supported
changes on the interface between the platform and application.
Fundamentally, this entails the Android manifest, where an app
registers its key components to the system and declares the permis-
sions it requires for its operation. Our custom XML patch format
supports specifying arbitrary modifications to manifest contents, in-
cluding addition, deletion, and modification of element or attribute
nodes. Second, the A2P2 patch format also allows addressing the
APIs that form the functional interface between the OS and an ap-
plication. An annotation-based domain-specific language enables
precisely intercepting method invocations to system framework or
third-party library APIs. Replacement methods are implemented in
Java, may manipulate or inspect passed parameters and invoke the
original method implementation. Furthermore, patches may specify
resources for addition into target APK files’ resource index in a way
that does not collide with existing resource identifiers while still al-
lowing to reference them in the patch project’s code or application
manifest. Lastly, our patch format also allows provisioning assets or
native libraries for addition into target APKs. Before a patch project
can be used in the deployment pipeline, it is transformed into a
patch package, which contains machine-readable representations
of all changes that already resemble the respective target structures
inside APK files.

Manifest Patch
Human-Readable Patch Format A2P2 Patch Project

Patch Buiild

Glue Code

Annotation Processor

Android Build Tools
(Custom Gradle Plugin)

Manifest Changes Java Changes Resources &
Native Libs

A2P2 Pipeline

Patched App

   Unpack Apply
Patch

Custom
Stage Pack Sign

Target App

Binary Patch Format

Patch Package

A2P2 Patch Package

Figure 1: Core components of the A2P2 system: Patches in
the A2P2 patch format can be deployed by configuring and
executing a pipeline instance that uses the Apply Patch stage.

3.2 Development Tooling & Patching Pipeline
A2P2 includes all tooling required for building patch packages, as
well as for deploying them into application package (APK) files.

For lowering the entry barrier to A2P2, our development tooling
integrates into the Android Studio IDE so that patch projects can
be constructed in an environment Android researchers and prac-
titioners are already familiar with. To this end, A2P2 provides a
custom Gradle plugin that can be used for organizing the structure
and build of a patch project. Transforming a patch project into a
patch package takes advantage of the official Android build tools
normally used for app development. A custom annotation processor
integrates into the build process to generate glue code that later
facilitates patch deployment.

Deployment tooling consists of a flexible pipeline design. As part
of this design, we specify a chainable pipeline stage interface. Ev-
ery stage implements a transformation on the currently processed
target application package, optionally incorporating additional con-
figuration or input files. An arbitrary number of pipeline stages
and respective configuration or input files can be arranged into
a sequence, forming a pipeline instance. A body of application
packages (APK files) can then be filled into the pipeline and pass
through the stages one by one. After undergoing the sequence of
transformations implemented by the configured pipeline stages,
each input package exits the last stage as an APK file again.

Our pipeline design and interface were kept generic so that
users can implement and supply custom stages for integration
into pipeline instances together with readily made stages shipped
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with our A2P2 reference implementation. Among these pre-built
stages, we provide essential functionality for unpacking, packing,
and signing application packages, as well as an Apply Patch stage
for applying patch packages in our declarative patch format.

The Apply Patch pipeline stage takes advantage of primitives for
parsing and manipulating AXML, ARSC, and DEX data structures,
as well as our respective patch formats. For deploying code changes,
A2P2 supports two rewriting backends that differ in compatibility
characteristics.

4 PATCH FORMAT
This section describes our declarative patch format, which com-
prises the human-readable source variant we term A2P2 Patch
Project, as well as A2P2 Patch Package, a binary variant that fa-
cilitates deployment.

The A2P2 patch format was designed to be application-agnostic
yet easy to use. To this end, our patch project and patch package
structures as closely as possible follow those of application projects
and application packages, respectively. Changes to a given applica-
tion component (e.g., the application manifest, code, or resources)
are specified in the same general file format as their respective
target. For example, changes to the application manifest XML file
are themselves specified inside an XML file. In the following, we
describe how patch projects can specify changes to the different
components of an Android application package (APK file).

4.1 Application Manifest Changes
Changes to the application manifest are specified in the Android-
Manifest.xml file of the patch project, which we term manifest
patch file. While the manifest patch file would pass validation as
an application manifest, it contains custom XML elements that
specify a sequence of transformations to be applied to a target
APK’s application manifest file during patch deployment. The avail-
able XML elements are loosely based on RFC5261 [14] but adapted
for the Android-specific AXML format and enhanced by XPath
placeholders in added or replaced values.

Every transformation element encodes a combination of a se-
lector and an operation. The selector is an XPath expression that
specifies the precise subject or subjects (one or multiple element,
attribute or text nodes) of the modification. Available operations are
addition, replacement, or insertion of elements or attributes. Listing
1 showcases an example manifest patch file taking advantage of all
supported transformation elements.

4.1.1 Add Element. Addition of new elements or attributes can be
accomplished using the <add sel="..." pos="..."/> element
in the manifest patch file. The sel attribute contains the selector
expression, while the optional pos attribute encodes where exactly
in relation to the selected node or its child nodes the addition should
be applied. Possible values are prepend, before, and after. All
child elements of the add node in the patch manifest file are added
as children to target nodes. If no child elements are provided, all
attributes of the add node are copied to selected target nodes.

4.1.2 Replace Element. The <replace sel="..."/> element al-
lows replacing elements or attribute values. If its selector in the
sel attribute targets an element, the latter will be replaced with the

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android. ⌋

com/apk/res/android"
xmlns:patch="http://schemas.android. ⌋

com/apk/res-auto"

↩→

↩→

↩→

package="com.a2p2.sample.patch">

<patch:add sel="manifest">
<metadata android:name="patched"

android:value="true" />↩→

</patch:add>

<patch:replace

sel="manifest/application/activity/@name">↩→

$${globalize(xpath("/manifest/@package"),

xpath("."))}↩→

</patch:replace>

<patch:remove

sel="manifest/application/@testOnly"/>↩→

</manifest>

Listing 1: Example manifest patch file

first child node of the replace element, including all attributes and
children. If the XPath selector targets attributes, the replacement
value is to be provided as the text content of the replace element.

4.1.3 Remove Element. Lastly, elements or attributes may be re-
moved by utilizing the <remove sel="..."/> element.

4.1.4 Placeholder Expressions. Added values may include place-
holder expressions. These are string tokens prefixed with $$ and
surrounded by curly braces. The $${xpath(...)} placeholder al-
lows including results of XPath expressions evaluated in relation to
the replaced element. The $${globalize(...,...)} placeholder
expression combines a relative class name (first parameter) and
its package name (second parameter) into a fully-qualified class
name. $${appendeach(...,...)} appends the string passed as its
second parameter to every element in the semicolon-delimited list
of strings in the first parameter. Placeholder expressions may be
nested, enabling very complex combined expressions.

4.2 Java Execution Flow Changes
Fundamentally, A2P2’s execution flow manipulation operates by in-
terceptingmethod calls. Since this scheme is particularly suitable for
manipulating the interaction between an application and Android
framework APIs, it caters to our philosophy of application-agnostic
patching. Only static methods, instance methods, and constructors
that are publicly visible may be intercepted.

For every target method intercepted, patch developers imple-
ment an interception handler. Inside a patched application, this
interception handler will be called in place of the target method.
In a patch project, interception handlers are implemented as static
Java methods that accept the same arguments, return the same
type and throw the same exceptions as the target method. Every
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interception handler needs to be marked with an annotation that
encodes the target class and method it wishes to intercept. For con-
venience, multiple interception handlers for methods of the same
target class may be combined into one Java class, in which case the
target class annotation may be used at class level and is inherited
by all contained interception handlers. Listing 2 takes advantage of
this feature and demonstrates all possible interception annotations.

In addition to interception handler implementations, patches
may contain arbitrary Java or Kotlin code. This is necessary for use
cases where patches need to augment existing app functionality,
e.g. by adding core components such as activities or services. These
can be injected into the application manifest through the manifest
patch file and backed by an implementation in the patch’s code. All
code is compiled into DEX files during patch build, which are to be
copied into target application packages during patch deployment.

Whenever an application wishes to call the original implementa-
tion of an interceptedmethod, it can take advantage of the Original-
Methods class generated by A2P2’s build tools. This class exposes a
function for every intercepted method. How exactly these exposed
functions implement the invocation of original method implemen-
tations depends on the employed rewriting backend (see Section
5.3). This abstraction enables adding arbitrary rewriting backends
without modifying patch projects.

4.2.1 Intercepting Static Methods. For intercepting a static method,
the corresponding interception handler needs to bemarked with the
@PatchStaticMethod annotation. The name of the target method
is either assumed to be identical of the interception handler or
passed explicitly as an argument to the annotation. Interception
handlers for static methods may call the original implementation
of the target method through the OriginalMethods abstraction.

4.2.2 Intercepting Constructors. The @PatchConstructor anno-
tation encodes interception handlers for constructor invocations.
Since Java identifies constructors solely by their signature, no addi-
tional name parameter or naming convention is necessary.

Due to specifics of the Dalvik bytecode format and ART runtime
which are further discussed in Section 5.3.1, constructor intercep-
tion handlers do not have a means to explicitly call the original
constructor implementation.

4.2.3 Intercepting Instance Methods. Interception handlers for in-
stance methods may be marked with the @PatchInstanceMethod
annotation. The same name rules and original method invocation
mechanism apply as for static method interception.

A particularity of instance methods in the Dalvik bytecode for-
mat is that they carry the instance object as an implicit first ar-
gument. In the Java and Kotlin programming languages, this first
argument is accessible by using the this keyword. Since that key-
word may only be used in instance methods, static interception
handlers for instance methods take the instance object as their
explicit first argument.Code inside interception handlers may use
this instance object for accessing member variables, or pass it to
the OriginalMethods abstraction for invoking original method
implementations.

4.2.4 Patch Inference. An important detail about the semantics of
instance method interception requires further discussion. In many
Android framework APIs, only the abstract type of objects passed

from the system to the application is known. This affects arguments
that the framework passes when invoking an application’s lifecycle
or callback methods, as well as results returned from framework
methods.

For example, consider the Activity.getContext() method. Its
return value is only guaranteed to extend from the abstract Context
class. The exact concrete type of the returned object is not known
before runtime and may in fact differ between applications. This
potentially leads to problems if a patch wishes to intercept an in-
stance method of the Context class. In most cases where the exact
instantiation type of abstract framework types and interfaces is not
known, it is desirable to intercept calls to all corresponding imple-
mentations in subclasses. Consider a patch that wishes to intercept
calls to the abstract Context.getSystemService()method. In the
absence of knowledge about the possible concrete implementations
of this class (in the system framework or in the code of target ap-
plications), the most sensible approach for the patch is to intercept
all implementations in all subclasses of the Context class.

This consideration plays an important role in the semantics of
our execution flow patches. For maintaining application-agnosticity,
we require all instance method patches to target those classes in
the inheritance tree that first define the target method. Our build
and deployment tools take care of enforcing this requirement and
inferring patches to all possible subclasses both in framework and
application code. These semantics do not have any practical conse-
quence on the expressiveness of our Java patch format. Interception
handlers that wish to only target specific subclass implementations
may simply check the runtime type of the instance object and use
the OriginalMethods interface for invoking the original imple-
mentation for all types they are not interested in.

4.3 Adding Resources
Resources in the patch project will be copied into any target ap-
plication package the compiled patch package is applied to. Differ-
ent resource types and configurations are fully supported. Cross-
references between resources, as well as resource references in
patch code (interception handler or otherwise) or the manifest
patch file, may be used in patch projects and remain functional
through patch deployment.

4.3.1 Avoiding resource identifier conflicts. As described in Section
2, an index of all resources in an Android application project is
created during compilation and stored in the ARSC file inside the
APK package. As part of the indexing process, the aapt2 build tool
assigns a unique integer identifier to each resource. Resources of
the same type receive consecutive identifiers. For cross-referencing,
Android’s build tools automatically generate a Java class that maps
between a human-readable resource file name and its integer identi-
fier. The mapping is implemented by exposing a final static integer
field for each resource, named after its file name and hardcoded
to its integer identifier. Developers may thus conveniently refer-
ence resource identifiers through their corresponding fields in the
generated Java class. During compilation, all final static integer
references are inlined, which means that the convenience added
by this approach does not have any runtime costs. Since inlined
resource identifiers inside Dalvik bytecode can not reliably be dis-
tinguished from arbitrary hardcoded integer values, this scheme
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@PatchClass("java.net.Socket")
public class SocketSamplePatch {
// Intercept Socket creation
@PatchConstructor
public static void init(Socket thiz, InetAddress

address, int port) throws IOException {↩→

try {
thiz.setSendBufferSize(4096);

} catch (SocketException ignored) {}
}

// Intercept calls to Socket.setSocketImplFactory
@PatchStaticMethod("setSocketImplFactory")
public static void

interceptionHandler(SocketImplFactory fac)
throws IOException {

↩→

↩→

}

// Intercept calls to instance method of same name
@PatchInstanceMethod
public static boolean isConnected(Socket thiz) {
return OriginalMethods.java_net_Socket. ⌋

isConnected(thiz) || true;↩→

}
}

Listing 2: Example execution flow patch

impedes changing resource identifiers in compiled application pack-
ages. However, given the predictable nature of resource identifiers
and the fact that the ARSC index for patch packages is assembled
by the standard aapt2 tool, identifier conflicts between resources in
the application package and the patch package are to be expected.

To avoid this problem, the A2P2 patch package format takes
advantage of a namespacing mechanism Android normally uses to
distinguish between application and system resources . We alter
the ARSC data structure inside patch packages to use a package
identifier (0x8f) that differs from that used in applications (0x7f).
Since the package identifier constitutes the higher-most byte of
every resource identifier, this effectively prevents collisions.

4.4 Additional assets and native libraries
Patch packages may contain additional asset files or native libraries.
During patch deployment, these are copied to locations in the target
application package that correspond to their locations in the patch
package. It is worth noting that files in the patch package overwrite
equally named files in the application package. If replacement is
not desired, patch developers must take care to choose names and
locations that are unlikely to occur in application packages.

5 A2P2 DEVELOPMENT AND DEPLOYMENT
TOOLS

In this section, we discuss the tools we implemented to support our
A2P2 patch design. The A2P2 distribution comprises all software re-
quired for developing patch projects and compiling them into patch

packages, as well as for applying patch packages to application
packages.

5.1 Development Tools
A2P2 patch projects are developed inside the Android Studio IDE.
The software components required for adapting the IDE to our
purposes are implemented in a custom plugin for the Gradle build
system and an annotation processor.

5.1.1 A2P2 Gradle Plugin. Since the A2P2 patch project and patch
package formats closely resemble the respective Android appli-
cation formats, our Gradle plugin extends the standard Android
Gradle plugin. It integrates our annotation processor into the build
process, configures the non-standard aapt2 resource namespace,
and exposes new build tasks for the patch package. Furthermore, it
automatically adds dependencies to our patch base libraries, which
contain definitions for patch annotations, as well as parts of the
rewriting backend logic.

5.1.2 Annotation Processor. The A2P2 annotation processor (AP)
holds a key role in the build process of an A2P2 patch project. It
validates execution flow patches, implements parts of the infer-
ence logic for execution flow patches, and generates glue code for
different rewriting backends.

For validating execution flow patches, the AP parses the class-
path dependencies of the patch project, in particular the android.jar
file included in the Android SDK distribution. This file contains stub
implementations of all classes and interfaces in public Android APIs.
The AP looks up the target methods of interception handlers in the
classpath and compares the declared parameters, return types, and
thrown exceptions. If a specified target method could not be found
or a mismatch in the signature is detected, the AP aborts the build.
It thus helps prevent bugs in patches that would otherwise later
manifest in obscure runtime issues after patch deployment.

Inference of execution flow patches in the AP works by con-
structing a class inheritance hierarchy from the patch project’s
classpath dependencies. Using this information, the AP generates
additional annotations for consumption during patch deployment.

The glue code generated by the AP is needed for abstracting
away the implementation details of different rewriting backends,
as well as for facilitating later patch deployment. Generated code
parts constitute wrappers around interception handlers, as well
as implementations of the OriginalMethods class for invoking
original method implementations.

5.2 Deployment Tools
A2P2’s deployment functionality is organized in a flexible transfor-
mation pipeline. Our implementation in the Java programming lan-
guage may be used as a standalone command-line tool or integrated
into other projects as a Java library. The logic for applying our
declarative patch format is implemented in a pipeline stage. Other
provided stages implement functionality for unpacking, packing,
and signing application packages, or adding asset files. All stages
follow a generic pipeline interface that facilitates the development
of custom stages as well as extending existing stages.

The general procedure including pipeline instantiation and exe-
cution is depicted in Figure 2. We call the entirety of pre-installed
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$java -jar a2p2.jar file1.apk ./folder_of_APKs !
unpack ! apply patch_static.zip static !
custom_stage ! pack ! sign ! ./output

↩→

↩→

Listing 3: Example A2P2 pipeline invocation

and custom pipeline stages the stage repository. A pipeline instance
is assembled as a parameterized sequence of stages from this stage
repository. The pipeline instance is then executed on a concrete
set of APK files. Every stage operates on a pipeline context, which
represents the output of the previous stage in the execution. The
result of a successful execution of the pipeline instance is a set of
transformed output APK files.

5.2.1 Pipeline Implementation. The command line interface to our
pipeline implementation allows configuring pipeline instances and
executing them on a specific body of applications in one invocation.
An example invocation is shown in Listing 3. Individual stages are
specified by their name and separated using an exclamation mark
character. Additional space-delimited arguments may be passed to
each stage. A list of all known stages (the stage repository) and their
supported arguments may be obtained by invoking the command
line interface without any parameters. Custom stages may be added
to the stage repository as jar files installed to a specific subdirectory
of the A2P2 pipeline distribution.

5.2.2 Apply Patch Stage. The logic required for applying a patch
package to an application package is implemented in the Apply
Patch stage. Besides the mandatory path to a patch package, the
user may optionally specify the rewriting backend. By default, static
rewriting is employed.

5.2.3 Custom Stages. Pipeline instancesmay include custom stages
implemented by third parties. Every stage must extend from our
abstract Stage class, which provisions functionality for querying
stage metadata (such as its name), configuring a concrete stage
instance, and executing its transformation on a pipeline context.
Custom stages may take advantage of A2P2’s utility classes for
replacing or inserting instructions in method implementations in-
side Dalvik bytecode, manipulating binary AXML files, or altering
ARSC files.

5.3 Rewriting Backends
Our build and deployment infrastructure supports two different
rewriting backends for applying execution flow patches to DEX files.
Static rewriting bakes all changes directly into DEX files, which
means that the runtime overhead of interception is minimal, and
the resulting patched application package is fully compatible with
any device that supported the original APK. Dynamic rewriting
injects a native library into application packages that applies code
manipulations at runtime. In contrast to static rewriting, this ap-
proach supports intercepting invocations through Reflection or JNI
but relies on implementation details of the ART runtime that differ
between devices, CPU architectures and ART versions.

A2P2 patch projects may be developed independently of the
rewriting backend that is later used for deployment. Still, com-
piled patch packages in our current implementation are specific
to a rewriting backend. During patch deployment, the user has to
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Figure 2: Pipeline instantiation and execution

ensure the supplied patch package is coherent with the specified
rewriting backend. The A2P2 build tools and deployment pipeline
were designed so that new rewriting backends may be incorporated
without changing any code in patch projects.

5.3.1 Static Rewriting. The static rewriting implementation scans
Dalvik bytecode for invocation instructions, replacing references
to methods targeted by execution flow patches with references to
the corresponding interception handler.

For constructor interception, the call to the interception handler
is injected as an additional instruction that does not replace the call
to the constructor but immediately follows it. This is necessary be-
cause the Dalvik bytecode specification does not permit passing an
allocated object to another method before its constructor has been
called. Since the added interception handler invocation changes
the addresses of subsequent instructions, our rewriting backend
updates all offsets and ranges in affected try/catch or switch/case
blocks, goto or jump instructions, and debug items.

Patch inference for classes implemented in application code
works by scanning the app’s DEX files for subclasses of all classes
targeted by interception handlers. It is worth pointing out that super
calls (invoking the super class’s implementation of the currently
executed method) are ignored in static rewriting. This is because the
corresponding invoke-super instruction may only be used inside
of class context, which means that the originally called method
would not have been accessible to interception handlers. In practice,
since our patch format is designed to focus on the interface between
application and framework code, this limitation doesn’t have any
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negative consequences on patch developers. Our static rewriting
implementation builds upon low-level DEXmanipulation primitives
of the open-source dexlib22 library.

5.3.2 Dynamic Rewriting. Dynamic rewriting applies execution
flow changes at runtime. Through a high-priority ContentProvider
injected into target application packages, we can manipulate the
ART runtime before any third-party code is executed. The Content-
Provider parses annotation data from the patch DEX file to assem-
ble a list of methods that need to be intercepted. It then iterates
over all classes preloaded by the Zygote process to intercept all
targeted methods they implement. Lastly, we instrument the ART
runtime’s class loading mechanism to intercept targeted methods
for all classes as they are loaded. This also provides an opportunity
for inferring patches onto subclasses.

Method interception is implemented by manipulating the JIT-
compiled in-memory representation of target methods. Their pre-
amble is replaced by a trampoline to the interception handler. The
original preamble is copied to a freshly allocated executable mem-
ory region, followed by a jump to the end of its original location,
and executed whenever the original method implementation is
invoked through the OriginalMethods interface.

Because of patch inference, an interception handler for an in-
stance method may be invoked for various different concrete over-
ridden implementations of its target method. This leads to poten-
tial issues in the OriginalMethods implementations for dynamic
rewriting, where the exact originally referenced method needs to
be known for being able to call it. Due to potentially involved
super calls (which cannot be distinguished from normal method
calls), the object type alone does not suffice for identifying the
originally called method. As a solution to this problem, our dy-
namic rewriting backend takes advantage of internal mechanisms
of the java.lang.reflect.Proxy infrastructure for dynamically
generating a distinct trampoline method for every infered method
interception. These trampoline methods act as breadcrumbs in the
call stack, which we combine with a lookup table for determining
the originally called method in OriginalMethods implementations.

Our dynamic rewriting implementation integrates modified low-
level primitives of the open-source SandHook3 library.

6 EVALUATION
In this section, we provide patch case studies that demonstrate the
efficacy of A2P2 for facilitating mobile security research, as well as
performance and overhead metrics for evaluating the efficiency of
our solution.

6.1 Patch Case Studies
The patches we showcase here were chosen to demonstrate the
capabilities of our patch and pipeline design and reflect typical use
cases in mobile security research.

6.1.1 Grab’n’Run. We used A2P2 to reimplement the purpose-
built application-rewriting tool proposed by Falsina et al. [8] for
injecting their novel verification protocol for dynamic code loading
into compiled applications. Falsina et al.’s implementation involves

2dexlib2: https://github.com/JesusFreke/smali/tree/master/dexlib2
3SandHook Android ART Hook: https://github.com/asLody/SandHook

almost 1000 lines of Python code for manually manipulating the
SMALI IR representation of decompiled Dalvik bytecode and adding
permissions to the application manifest. In contrast, the A2P2 patch
can be fully implemented using our declarative patch format, which
means that all changes are specified in high-level Java and XML.
The key part of the Java execution flow patch can be found in
Listing 4 in the Appendix. It intercepts class loading through the
DexClassLoader class to verify the code that is about to be loaded.
Note how the patch intercepts the constructor to create shadow
objects that are later looked up in the interception handler for the
instance method. This pattern effectively allows replacing object
types. The loadClass() interception handler also displays how
changes to the execution flow may be applied selectively based on
the concrete instance type. While our patch implementation uses
the default A2P2 pipeline command line interface for deployment,
a more convenient custom Java program could easily be written
that integrates the pipeline as a library.

6.1.2 Cloning applications. In some scenarios, an app needs to be
installed on a device twice, e.g. when it comes preinstalled to the
device and thus cannot simply be uninstalled for replacement with
a patched version. The Android OS requires the application package
name and certain app components to be unique on the system, so
that the same APK file cannot be installed twice. While for simple
applications, changing the package name in the applicationmanifest
is enough to create an APK file that can be installed alongside the
original version, more modifications are needed in general.

We implemented an A2P2 patch project that changes the pack-
age name, custom permissions, and ContentProvider authorities
in the application manifest. A part of the patch manifest of this
project can be found in Listing 5 in the Appendix. It shows how
A2P2’s XML patch format and XPath expressions may be used
for changing the package name and various related values inside
an app’s manifest. Note how the actual package name change is
the last entry in the patch manifest. Since patch manifest entries
are applied sequentially, this allows earlier entries to reference
the original package name. This is e.g. used for globalising class
name references that were constructed relative to the package name
in the original manifest. The Java part of the patch project inter-
cepts various framework API calls so that the original package
name is spoofed to all application-facing code while system- and
world-facing code is aware of the manipulated package name. This
even entails package names sent to backend servers in HTTP re-
quest headers. We complemented our patch project with a custom
pipeline stage that also replaces the account type for app-specific
authenticators, which are required to be system-unique as well.

6.1.3 Injecting Flipper debugger. Flipper is an open-source mobile
application debugging platform maintained by Facebook. Develop-
ers may integrate plugins into their Android application project that
communicate with the Flipper desktop companion program. Flipper
offers plugins for inspecting files in app-private storage, databases,
UI layouts, or network communication. While originally intended
for debugging during application development, the platform may
also serve as a security analysis tool.

We designed an A2P2 patch that injects the base Flipper library
and several plugins into target applications. A ContentProvider

https://github.com/JesusFreke/smali/tree/master/dexlib2
https://github.com/asLody/SandHook
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added through the manifest patch initializes plugins at runtime. Sev-
eral execution flow patches are used for integrating the networking
plugin into the OkHttp stack within target applications.

6.2 Performance and Overheads
Quantifiable performance and overhead metrics include the patch
deployment duration, as well as the size and runtime overhead
incurred by applying a patch to an application package. It is worth
noting that all metrics shown reflect a pipeline configuration for
applying a patch package, utilizing the built-in Unpack, Apply
Patch, Pack and Sign stages.

6.2.1 Patch Deployment Speed. Patch deployment speed largely
depends on the sizes of patch and application packages. As a realistic
estimate, we providemeasurements for applying our relatively large
Flipper patch (see 6.1.3) to the APK file of the Wikipedia Android
app (version 2.7.50431) on a 2.3 GHz Intel i7 quad-core CPU.

For dynamic rewriting, patch deployment consists of unzipping
the APK file, adding a ContentProvider to the application man-
ifest, merging patch resources, extracting the rest of the patch
package (including native libraries and DEX files) into the target
application package, zipping the resulting APK file and signing it
again. For our test setup, this process takes about 12 seconds on
average. Static rewriting additionally involves parsing interception
handler targets from the DEX file in the patch package and iter-
ating over all instructions in the target application’s DEX files. In
our test setup, these additional steps resulted in an overall patch
deployment time of 21 seconds for static rewriting.

6.2.2 Application Size Overhead. The file size overhead of applica-
tion packages caused by our patching very closely follows the size
of the applied patch package. All patch packages contain support
files that amount to about 950 KB for dynamic rewriting and 10
KB for static rewriting. Since the size of patch packages otherwise
depends on the contents of the corresponding patch projects, we
cannot provide any more specific metrics here.

6.2.3 Application Runtime Overhead. As an indicator for the run-
time impact of execution flow patches, we timed the overhead per
call to an intercepted method. Additionally, we timed the ART ma-
nipulations carried out for every intercepted method at app launch
when dynamic rewriting is used.

For all measurements, we used a simple patch that intercepts a
constructor, static, and instance method. The interception handlers
simply invoke the corresponding original method implementations.
We then applied the patch on an application that times the execution
of intercepted methods over 100000 runs. Per-call overheads were
taken as the average over these runs. Per-method (launch time)
overheads were taken as the average time it took to carry out the
runtime manipulations required for intercepting one method (or
constructor) over 10 app launches.

The per-call overhead induced by static rewriting is almost non-
existent (77 ns at maximum). Dynamic rewriting generates a higher
overhead (we measured 43499 ns in the worst case) due to the
involved Java Native Interface calls and original implementation
lookup. Still, at less than a tenth of a millisecond, this overhead can
still be considered negligible in most practical scenarios. Complete
measurement data can be found in Table 1.

Constructor Static M. Instance M.
Static Rewriting 77 ns 23 ns 20 ns
Dynamic Rewriting 25733 ns 1779 ns 43499 ns

Table 1: Per-call runtime overhead for different rewriting
backends and method types.

Constructor Static M. Instance M.
Dynamic Rewriting 1.46 ms 0.46 ms 0.86 ms

Table 2: Per-method runtime overhead for dynamic rewrit-
ing at app launch (no launch overhead for static rewriting).

Static rewriting does not have any per-method overhead at app
launch time. For dynamic rewriting, we measured a worst-case
overhead (for constructors) of 1.45 milliseconds. Exact data can be
found in Table 2.

6.2.4 Application Compatibility. As a measure for the general com-
patibility of our patching process, we applied the Cloning patch
described in Section 6.1.2 to the 132 most popular free applications
(4 per category) from Google Play and confirmed that the patched
APK could still be successfully installed and launched on a Pixel
3 running Android 11 (Build RQ3A.211001.001). Our results show
that for static rewriting, 92 % of applications still launched, while
the success rate of dynamic rewriting was 91 %. Patching gener-
ated an installable APK file for all applications. Dynamic rewriting
caused one app to hang during launch. Other incompatibilities with
individual applications that lead to runtime issues across rewriting
backends could be attributed to signature checks (3 apps) and side
effects of the package name manipulations of the specific patch
implementation (9 apps).

7 DISCUSSION & FUTUREWORK
This section discusses known limitations in A2P2’s design, as well
as possible improvements to the current implementation.

7.1 Resigning
Some applications integrate signature checks designed for prevent-
ing malicious repackaging attacks. Unfortunately, these checks also
impact application patching for security research purposes. Still,
Ibrahim et al. [10] have recently shown that less than 0.1 % of apps
employ out-of-process app attestation. All other in-process signa-
ture check schemes may be bypassed through application patching,
and we argue this is ethically viable for security research. We note
that A2P2’s execution flow patching may be used for bypassing the
most common signature check implementations.

7.2 Malicious Patching
It is worth noting that although we designed A2P2 as a security
tool, it may be misused for applying malicious modifications to
compiled application packages, i.e. for mounting repackaging at-
tacks. These attacks may e.g. use A2P2 for creating a version of
a paid application that bypasses license checks and/or adds code
for collecting sensitive user information. However, these types of
attacks have been possible before, so we argue that A2P2’s pub-
lication does not lead to any additional harm on end users. We
hope that the availability of Android application patching tools in
general encourages more developers of sensitive applications to
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adopt out-of-process app attestation, which is the only effective
mitigation for repackaging.

7.3 Obfuscation
In principle, A2P2 is capable of not only intercepting framework
methods but also those exposed by third-party libraries. To this
end, our annotation processor can look up method definitions from
any class in the classpath of the patch project. However, implemen-
tations of these libraries are embedded in application code and may
thus be subjected to obfuscation, i.e. replacing class and method
names with undescriptive short strings during build. This technique
is commonly used by developers to thwart reverse engineering and
optimize APK size. Since our execution flow patches rely on method
and class names for identifying target methods, obfuscation may
render them ineffective. Future work could investigate how target
methods can be identified via obfuscation-resistant selectors.

7.4 Native Code
Our current patch design does not support manipulating the execu-
tion flow of native code. However, dynamic rewriting does cover
calls from native code to Java through the Java Native Interface.

7.5 Device and OS compatibility
As mentioned in Section 5.3.2, dynamic rewriting relies on imple-
mentation details of the ART runtime that differ between devices,
OS, and ART versions. We developed and tested our dynamic rewrit-
ing backend on a Google Pixel 3 running Android 9, 10, and 11.
We anticipate slight adjustments for expanding compatibility to
additional device configurations. For devices not yet supported by
dynamic rewriting, patch developers may use static rewriting.

7.6 Performance
It is worth noting that our implementation can be further optimized,
particularly for patch deployment performance. Possibilities for
enhancements would be parallelizing the processing of individual
DEX files inside the Apply Patch stage or implementing DEX, ARSC,
and AXML manipulation primitives in native code.

8 RELATEDWORK
In this section, we highlight previous publications that are con-
cerned with modifying some aspects of compiled Android applica-
tion packages.

8.1 Modifying APK Files
While some solutions exist for manipulating arbitrary parts of a
compiledAPKfile, none of them shareA2P2’s application-agnosticity.
Themost established tool formanipulatingAPKfiles both in academia
and in industry is Apktool4. It is capable of decompiling resources
and application manifests back into human-readable XML format
and disassemling Dalvik bytecode into the SMALI intermediate
representation. Although Apktool supports recompiling APK files
after modifications to any of its parts, changes have to be manually
applied and adapted to each target application.

4Apktool - A tool for reverse engineering Android apk files: https://ibotpeaches.github.
io/Apktool/

8.2 Manipulating Dalvik bytecode
A number of publications have proposed generic solutions for mod-
ifying the execution flow of compiled Android applications. Some
of them seek to offer a similar application-agnostic approach as
A2P2’s patch format.

The existing work that shares the most similarities with A2P2
with respect to execution flow patching is RetroSkeleton by Davis
and Chen [6]. It allows intercepting arbitrary methods using trans-
formation policies written in Closure. RetroSkeleton also follows a
similar notion of patch inference but only supports bytecode instru-
mentation, which operates similarly to our static rewriting. The
implementation was never made available to the public. Reptor by
Ki et al. [12] focuses on API virtualization, for which they go to
great lengths to accomplish method implementation replacement
instead of call replacement. However, their solution creates boiler-
plate class hierarchies that lead to considerable APK size overhead
and was never made available to the public.

Some tools decompile Dalvik bytecode to Java so they can take
advantage of established manipulation tools and techniques for the
desktop Java platform. However, this approach is prone to introduce
issues since the transformation from Java to Dalvik bytecode during
app compilation is not fully reversible in general. SIF by Hao et
al. [9] takes advantage of this approach for implementing their
instrumentation framework that allows procedural configuration of
interception targets. While their system supports complex analysis
of the control flow graph, it does not have any notion of patch
inference. Arzt et al. [2] and Ali-Gombe et al. [1] apply aspect-
oriented programming principles from the desktop Java world to
Android applications.

Beside solutions proposed by academia, Frida5 is a popular choice
for instrumenting Android applications both on rooted or unrooted
devices. It injects the V8 engine into target applications, so that
runtime manipulations can be expressed in JavaScript code. How-
ever, Frida operates by manipulating runtime structures. Similar to
our dynamic rewriting backend, it is prone to break whenever ART
implementation details change.

9 CONCLUSION
Inspecting and manipulating runtime behavior of Android appli-
cations is a common need in mobile security research. However,
existing solutions for application patching either lack a holistic view
of the application package or do not support application-agnostic
operation. In this paper, we introduced the A2P2 patch format and
deployment pipeline for remediating these limitations in tooling.
Our patch format allows declaratively specifying changes to the
application manifest and Dalvik bytecode, as well as addition of
resources, native libraries, and assets. We discussed the patch se-
mantics for different APK components, the functionality we provide
for building application-agnostic patch projects, and our extensi-
ble tooling for applying them to compiled Android application
packages. For demonstrating the efficiency of our design and imple-
mentation, we showed various performance characteristics of our
solution. Lastly, we evaluated the efficacy of A2P2 through com-
patibility tests and by showcasing patches that reproduce previous
research and facilitate security analysis.
5Frida - Dynamic instrumentation toolkit: https://frida.re

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://frida.re
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A PATCH CASE STUDY SNIPPETS

public class DexClassLoaderPatch {
static Map<String, SecureDexClassLoader> loaders = new

HashMap<>();↩→

@PatchClass("dalvik.system.DexClassLoader")
@PatchConstructor
public static void init(DexClassLoader thiz, String dexPath,

String dir, String path, ClassLoader parent) {↩→
loaders.put(thiz.toString(),

RepackHandler.generateSecureDexClassLoader(dexPath, dir,
path, parent));

↩→
↩→

}

@PatchClass("java.lang.ClassLoader")
@PatchInstanceMethod
public static Class<?> loadClass(ClassLoader thiz, String name)

throws ClassNotFoundException {↩→
if (thiz instanceof DexClassLoader) return

OriginalMethods.java_lang_ClassLoader.loadClass(thiz,
name);

↩→
↩→
SecureDexClassLoader loader = loaders.get(thiz.toString());
if (loader == null) return

OriginalMethods.java_lang_ClassLoader.loadClass(thiz,
name);

↩→
↩→
Class result =

OriginalMethods.java_lang_ClassLoader.loadClass(loader,
name);

↩→
↩→
if (result == null) RepackHandler.raiseSecurityException();
return result;

}
}

Listing 4: Grab’n’Run Patch: Securing class loading by inter-
cepting DexClassLoader methods

<!-- Permission names must be unique -->
<patch:replace sel="manifest/permission/@name">
$${xpath(".")}.patched</patch:replace>

<!-- Also adjust permission uses -->
<patch:replace

sel="manifest/uses-permission[not(starts-with(@name,
'android.permission')) and not(starts-with(@name,
'android.gms.permission')) and not(starts-with(@name, 'com. ⌋
google.android.calendar'))]/@name">$${xpath(".")}.patched

↩→
↩→
↩→
↩→
</patch:replace>

<!-- Change class reference to use full original package name -->
<patch:replace sel="manifest/application/@name">
$${globalize(xpath("/manifest/@package"), xpath("."))}

</patch:replace>

<!-- Make sure the patched app can query the original -->
<patch:add sel="manifest/queries">
<package

android:name="$${xpath(&quot;/manifest/@package&quot;)}"/>↩→
</patch:add>

<!-- Provider authorities must be unique -->
<patch:replace sel="manifest/application/provider/@authorities">
$${appendeach(xpath("."), ".patched")}</patch:replace>

<!-- Change package name by appending .patched -->
<patch:replace sel="manifest/@package">

$${xpath(".")}.patched</patch:replace>

Listing 5: App Cloning Patch: Simplified manifest patch for
making a patched app installable alongside the original
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