
Characterizing the Use of Code Obfuscation in Malicious and
Benign Android Apps

Ulf Kargén
ulf.kargen@liu.se

Linköping University
Linköping, Sweden

Noah Mauthe
noah.mauthe@cispa.de

CISPA Helmholtz Center for
Information Security
Saarbrücken, Germany

Nahid Shahmehri
nahid.shahmehri@liu.se
Linköping University
Linköping, Sweden

ABSTRACT
Obfuscation is frequently used by both benign and malicious An-
droid apps. Since static analysis of obfuscated apps often produces
incomplete or misleading results, the problems of identifying and
quantifying the use of specific obfuscation techniques in apps has
received significant attention. Even though several existing works
have addressed these problems, most studies focus on data obfusca-
tion methods such as identifier renaming and string obfuscation,
while more advanced code obfuscation methods, such as reflection
and control-flow obfuscation, have received less attention. More-
over, existing approaches to detecting Android code obfuscation
have significant limitations, as shown by a detailed survey that we
present as part of this paper. This is in part due to a fundamental
“bootstrapping” problem: since, on one hand, the landscape of An-
droid code obfuscation is poorly known, researchers have very little
guidance when designing new detection methods. On the other
hand, the lack of detection methods mean that the obfuscation
landscape is bound to remain largely unexplored.

In this work, we aim to take the first steps towards addressing
this “bootstrapping” problem. To this end, we propose two novel
approaches to obfuscation detection and perform a study on over
200,000 malicious apps, in addition to 13,436 apps from Google
Play. In particular, we propose a new anomaly-detection-based
method for identifying likely control-flow obfuscation, and use it
to perform what is, to the best of our knowledge, the first empirical
study of control-flow obfuscation in Android apps. In addition to
presenting new insights into the use of control-flow obfuscation, we
also propose a new approach to characterizing the use of reflection-
based obfuscation, which allows us to corroborate earlier findings
indicating that this type of obfuscation is much more common in
malware than in benign apps.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Software
reverse engineering; Software security engineering; • Computing
methodologies→ Anomaly detection; • General and reference
→ Empirical studies.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0772-8/23/08.
https://doi.org/10.1145/3600160.3600194

KEYWORDS
Android, code obfuscation, obfuscation detection, empirical study,
graph anomaly detection, malware

ACM Reference Format:
Ulf Kargén, Noah Mauthe, and Nahid Shahmehri. 2023. Characterizing the
Use of Code Obfuscation in Malicious and Benign Android Apps. In The
18th International Conference on Availability, Reliability and Security (ARES
2023), August 29–September 01, 2023, Benevento, Italy. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3600160.3600194

1 INTRODUCTION
Recent studies [8, 10] have shown that obfuscation is frequently
used by both benign and malicious Android apps. In the former it
is used to prevent intellectual property theft and ad-fraud, while
in the latter it is used as a means to evade detection by antivirus
systems, and to delay analysis of malicious behavior. Static analysis
of obfuscated apps often produces incomplete or misleading results.
For example, string encryption can be used by malware to hide
malicious URLs from antivirus scanners, while reflection can be
used to hide calls to sensitive APIs, or to disrupt static security
analysis methods by hiding certain information flows [13]. Similarly,
control-flow obfuscation can impede static information-flow analysis
by hiding the original control-flow structure of an app.

For the above reasons, both the problem of determining whether
or not an app uses a specific obfuscation technique, as well as the
problem of quantifying the prevalence of different obfuscation tech-
niques, has received significant attention in the Android security
community. While several works have addressed the aforemen-
tioned problems, most studies to date focus on data obfuscation
methods such as identifier renaming and string encryption, which
primarily serve to impedemanual analysis by hiding semantic clues
about program behavior from reverse-engineers. All implementa-
tions of both identifier renaming and string encryption share a
common trait, namely that they work by scrambling a sequence
of characters (an identifier or a string literal). Therefore, these
techniques can be detected with reasonable generality by identify-
ing deviations from an expected character-frequency distribution
[8, 20, 22]. More advanced code obfuscation methods, such as reflec-
tion and control-flow obfuscation, exhibit a much greater diversity
in terms of possible implementation approaches. Therefore, design-
ing a “universal” detection method for either class of obfuscation
technique is very challenging. Furthermore, any attempt to create
such a detector is faced with a significant “bootstrapping” problem:
on the one hand, since the landscape of Android code obfuscation
techniques is not well-known, it is hard to know which app fea-
tures to focus on, and even harder to estimate a detector’s ability

https://orcid.org/0000-0002-3009-4314
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600160.3600194
https://doi.org/10.1145/3600160.3600194
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600160.3600194&domain=pdf&date_stamp=2023-08-29


ARES 2023, August 29–September 01, 2023, Benevento, Italy Ulf Kargén, Noah Mauthe, and Nahid Shahmehri

to generalize (since the degree of representativeness of any ground
truth cannot be known). On the other hand, the lack of reliable
detection methods means that the obfuscation landscape is bound
to remain largely unexplored. Due to these challenges, the exist-
ing literature on Android code obfuscation detection is relatively
small and tends to be limited in scope. Moreover, existing detection
techniques tend to either be overly simplistic or fail to generalize.
For example, in previous work [8, 12, 25], reflection-based obfusca-
tion is simply detected based on the presence of calls to the Java
reflection API. During our empirical study, we found this approach
to be inadequate, since nowadays the vast majority of apps appear
to make use of reflection. Moreover, in the few previous works
where control-flow obfuscation is considered, detection is based
on machine learning models that are trained and evaluated on (at
most) a handful of implementations of a set of specific obfuscation
techniques [4, 11, 20, 29]. Such approaches are likely to generalize
poorly to in-the-wild apps.

In this work, we aim to take the first steps towards address-
ing the aforementioned “bootstrapping” problem, by performing
an exploratory study of in-the-wild use of code obfuscation on
Android. To support our study, we have developed two new meth-
ods for triaging Android apps for the presence of, respectively,
reflection-based obfuscation and control-flow obfuscation. In con-
trast to earlier work, we have strived to make minimal assumptions
about the nature of code obfuscation techniques when designing
our methods. Our exploratory study comprises over 200,000 mali-
cious apps from the AndroZoo [3] dataset, as well as 13,436 apps
crawled from Google Play. As part of the study, we have performed
a detailed manual analysis of over 400 apps, with the dual purpose
of validating the effectiveness of our triaging methods, and to gain
deeper insights into Android code-obfuscation use in the wild.

1.1 Identifying Code Obfuscation Use
Since there are several use cases for reflection in Android apps,
detecting reflection-based obfuscation by simply checking for use
of the reflection API is insufficient. In contrast to earlier work,
our method instead focuses on the way reflective method calls are
made.We argue that reflective calls that are trulymeant to obfuscate
the call target are less likely to provide the class or method name
arguments as constant string literals, since this would still allow
automated static recovery of the target. Instead, if a reflective call
is used with the intent of obfuscating the code, it is more likely
that the target name is dynamically computed during runtime (for
example, as the return value of another call). We henceforth refer
to this case as dynamic reflection. By making a distinction between
dynamic reflection and reflection lookups using literal arguments,
we argue that our empirical results are more likely to give a better
indication of actual reflection-based obfuscation use.

For empirically investigating the prevalence of control-flow ob-
fuscation, we note that existing detection approaches are, on a
fundamental level, ill-suited for the task. As existing works ([4, 11,
20, 29]) rely on machine learning models that are trained to recog-
nize specific tools or techniques, they make the implicit assumption
that these tools or techniques are representative of all (or most)
types of control-flow obfuscation encountered in the wild. The
authors, however, make no attempt to justify this assumption. We

argue that asserting such an assumption to hold true a priori would
in fact be virtually impossible, given that control-flow obfuscation
is such a broad category of techniques. Instead, we propose an ap-
proach based on anomaly detection. We train an anomaly detector
on a set of non-obfuscated apps, and then use that model to detect
deviations from “normal” control-flow structure.

1.2 Contributions
In summary, the main contributions of this paper are as follows:

• We perform an in-depth survey of existing efforts to detect
and empirically study code obfuscation use in Android apps,
and summarize their findings.

• We perform a large-scale study to characterize the use of
code obfuscation in both benign and malicious Android apps.

• To support our study, we propose two new approaches to
identify, respectively, reflection-use for obfuscation, and
control-flow obfuscation1.

2 BACKGROUND
In this section, we provide some background on the Android system
and common methods for obfuscating Android apps.

2.1 Android Runtime Model
Android apps are typically developed using Java or Kotlin, and com-
piled to bytecode for the Android-specific Dalvik virtual machine.
Apps ship as Android Application Package (APK) files, which are
compressed ZIP archives containing one or more files of the Dalvik
Executable (DEX) format, in addition to various other assets. A DEX
file contains several classes, including bytecode for all the methods
of each class. Older Android versions used an interpreter to execute
Dalvik bytecode, but starting from version 5, Android uses the so-
called Android Runtime (ART) system, which instead pre-compiles
bytecode to native code during app installation. Android apps can
also directly invoke native code using the Java Native Interface
(JNI). In this case, native code is distributed with the app as shared
library files in ELF format, stored within the APK.

2.2 Android Obfuscation Techniques
Identifier renaming is a very commonly seen type of obfuscation
in Android apps, owing largely to the fact that the Android SDK
ships with a free tool to apply the obfuscation technique. By using
identifier renaming, human-readable identifiers for, e.g., methods,
classes or variables, are replaced by short meaningless strings. The
technique mostly aims to frustrate manual analysis by hiding se-
mantic clues about program behavior, and by making it harder
to remember identifier names. It is also sometimes used for non-
obfuscation purposes, since it tends to reduce the size of the final
APK.
String encryption is a more advanced method provided by various
commercial Android obfuscators. It works by replacing constant
strings in an app with encrypted versions. Decryption logic is then
injected into to the program at the points where the original strings
were used, so that the strings can be decrypted on demand during
runtime.
1We make our implementation available at https://github.com/NoahMauthe/ObA

https://github.com/NoahMauthe/ObA


Characterizing the Use of Code Obfuscation in Malicious and Benign Android Apps ARES 2023, August 29–September 01, 2023, Benevento, Italy

Reflection is sometimes used for obfuscation as well. The Java
reflection API allows programs to dynamically resolve class and
method names during runtime, which can be used to hide the target
of method calls from static analysis tools. However, there are many
apps that use reflection for purposes other than obfuscation. The
ability to test for the availability of a certain class or method during
runtime can be used to ensure backwards compatibility with, e.g.,
legacy APIs. Reflection can also be used to call methods that are
declared as private or protected, which can be used by apps for
accessing “hidden” parts of, for example, the Android API.

Dynamic code loading is another way to hinder static analysis.
Parts of the app’s code are stored in encrypted form, and are de-
crypted on demand during runtime using a key that is either hidden
somewhere in the app, or retrieved from a remote server. Android
provides the class DexClassLoader (and several derived classes) to
dynamically load code from a DEX or JAR (Java Archive) file. Meth-
ods from the loaded file can then be invoked using reflection. This
can be used for obfuscation by, for example, shipping an encrypted
DEX or JAR file within the APK, or retrieving such a file from the
internet. Another approach, sometimes denoted as class encryption,
is to store an encrypted class as a static byte array within another
class.

Packing is a more sophisticated version of dynamic code loading,
where the entire code of the app is stored in encrypted form, and
the original DEX file(s) of the app are replaced by a decryption stub.
Modern commercial packers typically implement the decryption
logic in native code, and only unpack the original bytecode in a
piece-wise manner as it is needed [32].

Control-flow obfuscation is a broad category of techniques,
which aim to disrupt automated static analysis or delay manual
reverse engineering. Examples of simple techniques that fall within
this category are dead code insertion or the addition of “fake”
branches protected by opaque predicates — logical expressions that
are invariant during runtime but hard to reason about statically.
Control-flow flattening [27] is a more advanced obfuscation tech-
nique, whereby every basic block of a method is moved into the
body of a dispatch loop (for example, in the form of case blocks
of a large switch statement). At the end of each block, a variable
is updated, which controls what block to be dispatched next. This
way, all static information about the control-flow structure of the
method is removed.

Control-flow obfuscation is harder to implement on Android
compared to native code or Java programs. This is because the
ART will verify during app installation that there are no data type
conflicts between register accesses along any path in the control
flow graph (i.e., that no registers could ever be written as one
type and read as another). However, Balachandran et al. [5] have
proposed an implementation of control-flow flattening for Android
that does not suffer from this problem. To further obfuscate the
control flow, their method additionally makes use of exceptions to
transfer execution in statically hard-to-predict ways.

3 PREVIOUS WORK
In this section we survey previous work on detecting and empir-
ically quantifying obfuscation, with a particular emphasis on the

two types of anti-reverse-engineering techniques that is the focus
of our work (reflection and control-flow obfuscation).

3.1 Empirical Studies of Mobile App
Obfuscation

Kühnel et al. [12] describe a system for detecting identifier renam-
ing, reflection, and encryption (where they make no distinction
between string and code encryption). Identifier renaming is de-
tected heuristically, while reflection is detected simply based on
the presence of calls to the Java reflection API. Encryption is de-
tected either based on the use of known crypto APIs, or, for custom
crypto implementations, based on the frequency of certain types of
instructions. Their evaluation on a set of malware retrieved from
VirusTota2l indicated that, out of the malware samples submitted
to VirusTotal during 2014, around 30% used reflection.

Li et al. [13] proposed a constant-propagation method to stati-
cally resolve reflective calls in Android apps. They also performed
a small-scale empirical investigation of 500 apps from Google Play,
and found that 88% used the reflection API.

Qu et al. [25] developed DyDroid, which uses both static and
dynamic analysis to detect dynamic code loading in Android apps.
Moreover, it is capable of detecting identifier renaming, reflection,
and anti-decompilation tricks. Like Kühnel et al., they simply detect
the presence of calls to the reflection API. They used their tool to
evaluate almost 60,000 apps collected from Google Play in 2016,
and found that only 0.24% used dynamic loading of encrypted code
for obfuscation, whereas 52% used reflection.

Wang et al. [28] studied the prevalence of obfuscation in iOS
apps. They first filtered apps based on the presence of identifier
remaining, and then manually analyzed apps that had scrambled
identifier names to detect the use of other obfuscation techniques.

A large-scale empirical study on the use of identifier renaming
in Google Play apps was performed by Wermke et al. [30].

Another large-scale study of obfuscation use in Android appswas
performed by Dong et al. [8] in 2016 and 2017. They scanned over
100,000 apps from three distinct datasets (Google Play, third-party
market apps, and malware) for the presence of identifier renam-
ing, string encryption, and reflection. The former two techniques
were detected using machine learning (ML), whereas reflection,
like in previously mentioned works, was detected by the presence
of related API calls. Similar to the results by Qu et al., they found
that around 50% of apps used reflection, with no notable difference
between benign and malicious apps. Furthermore, in a somewhat
similar vein to Li et al. [13], Dong et al. performed intraprocedural
static slicing to “reassemble” string arguments to reflection API calls
(i.e., method and class names) that were constructed dynamically
by the app. The reassembled targets of reflected calls were analyzed
to find the most frequently invoked methods in each dataset. This
indicated that benign apps typically appeared to use reflection for
backward compatibility (checking for the presence of certain APIs),
and to call hidden API methods. Malware, on the other hand, ap-
peared to more frequently employ reflection in order to make the
code harder to understand.

The study by Dong et al. indicated that string encryption was
relatively rare, and almost exclusively used by malware. A more

2https://www.virustotal.com/



ARES 2023, August 29–September 01, 2023, Benevento, Italy Ulf Kargén, Noah Mauthe, and Nahid Shahmehri

recent study by Glanz et al. [10], employing a more comprehensive
detection method, instead indicates very high adoption rates among
both benign and malicious apps.

Mauthe et al. [19] studied the decompilation failure rates (i.e.,
the percentage of methods that fail to decompile in an app) of four
decompilers on both benign and malicious Android apps. While
failure rates were generally low, they were about an order of mag-
nitude greater for malicious apps. Ad-supported apps from Google
Play were also found to have more decompilation failures than
non-ad-supported ones. The authors theorized that this was due
to higher adoption rates of code obfuscation in malware and com-
mercial apps. A preliminary manual investigation also showed that
several of the decompilation failures in Google Play apps were
indeed due to control-flow obfuscation. However, for most apps
(both benign and malicious), failures appeared to be induced by
high code complexity rather than obfuscation. The authors there-
fore proposed that the decompilation failures on obfuscated code
were a side-effect of increased complexity, rather than the intended
purpose of applying obfuscation.

3.2 App Obfuscation Detection
In addition to the detection methods proposed in the aforemen-
tioned empirical studies, several works propose dedicated methods
for detecting specific types of obfuscation.

APKiD [1], is a well-known signature-based detector, which can
detect, among other things, packing and obfuscation, by scanning
for signatures of specific obfuscation tools. An obvious limitation
of signature-based detection is that custom obfuscation schemes
cannot be detected.

Several works also propose machine-learning-based approaches
for obfuscation detection. Wang and Rountev [29] proposed an
ML based technique to learn signatures of specific obfuscators and
packers, based on the presence of certain strings in an app. Similarly,
Kaur et al. [11] proposed a fingerprinting approach based on visual
representations of Android APKs, for the same purpose.

Bacci et al. [4] applied several different ML algorithms for the
problem of identifying obfuscation in Android apps. They con-
sidered identifier renaming, string encryption, and several code
obfuscation methods, and found that these techniques could be de-
tected with an accuracy of 80–100%. However, since their training
and evaluation data was generated using their own implementa-
tions of various code obfuscation techniques, it is unclear to what
degree (if at all) their approach generalizes to in-the-wild apps.

Another ML based approach was proposed by Mirzaei at al. [20].
Their system AndrODet uses online learning for the detection of
identifier renaming, string encryption, and control-flow obfuscation.
A comment paper by Mohammadinodooshan et al. [21], however,
pointed out that the datasets used for training and evaluating string
encryption detection is biased, and demonstrated that the accuracy
of AndrODet drops dramatically if non-biased datasets are used.
AndrODet’s control-flow obfuscation detection also has several
limitations. Firstly, it has a limited accuracy of around 70%, and
secondly, the fact that only a single obfuscation tool (Allatori) was
used to generate training and evaluation data might reduce its ca-
pacity to generalize. Moreover, the construction of the training and

evaluation data sets for control-flow obfuscation detection poten-
tially suffer from the same bias as described in the aforementioned
comment paper.

Mohammadinodooshan et al. proposed an alternative ML ap-
proach based on anomaly detection for identifying obfuscated
strings in apps [22].

3.3 Summary of Previous Work
To summarize, to the best of our knowledge, all previous efforts
to quantify the use of reflection-based obfuscation rely on simply
checking for usage of the reflection API. Such approaches cannot
distinguish between legitimate uses of reflection, and reflection
for obfuscation purposes. As for detection of control-flow obfus-
cation, three approaches can be identified: (1) detection based on
manually-crafted obfuscator signatures (as used by, e.g., APKiD), (2)
using ML for automatically learning such signatures ([11, 29]), and
(3) attempting to train an ML classifier to detect general signs of
control-flow obfuscation ([4, 20]). Both the works in the latter cate-
gory, however, use training data based on single implementations
of a small set of obfuscation transformations, making it unlikely
that the detectors will generalize well.

Moreover, as a general observation, it is also evident that empir-
ical results can vary significantly, depending on the approach used
for compiling datasets and the techniques used for detection.

4 APPROACH
In this section we describe the methodology of our study. We be-
gin by giving a brief description of the datasets used, and then
outline the design and implementation of our analysis framework,
including our proposed new methods for identifying likely use of
reflection-based obfuscation and control-flow obfuscation.

4.1 Datasets
We used two primary datasets in the study. The first one consists
of 13,436 apps crawled from Google Play in 2020. The dataset was
compiled by downloading all apps in the “most popular” and “top-
grossing” subcategories of the 34 app categories present in Google
Play at the time, with the intention of focusing on apps with the
greatest degree of end-user exposure. (Paid apps were excluded.)
We divided the Google Play apps into two categories, based on
whether they appeared to be commercial (i.e., for-profit) or not.
Apps were categorized as “commercial” if they either used ads
(according to Google Play metadata), or if they requested permis-
sion for in-app payments (the “com.android.vending.BILLING”
permission). This yielded a split with 9,725 “commercial” apps and
3,711 “non-commercial” ones, referred to henceforth as the GPlay-C
and GPlay-NC datasets, respectively.

The second dataset consists of malware from the AndroZoo
dataset [3], which is a large and continuously updated collection
of Android apps. Each app was scanned at Virus Total (VT) at the
time it was added to the dataset, which allows us to filter apps
based on the total number of antivirus products that flagged it
as malicious. We choose a threshold of at least 20 detections for
considering an app as malicious, corresponding to roughly one
third of all scanners used by VT. Randomly sampling apps based on
this threshold yielded 236,888 samples, added to AndroZoo between



Characterizing the Use of Code Obfuscation in Malicious and Benign Android Apps ARES 2023, August 29–September 01, 2023, Benevento, Italy

2012 and 2021 (according to the vt_scan_date entry in the listing
of app metadata). (See Appendix A for the exact yearly distribution.)

The AndroZoo dataset contains 10,186 “synthetic” malware sam-
ples from the PRAGuard dataset [18], which were created by run-
ning a commercial obfuscator on a set of malicious apps. Since
we are interested in characterizing obfuscation use of in-the-wild
malware, we excluded all PRAGuard apps from sampling.

Finally, we additionally make use of 3,037 open-source apps
retrieved from the F-Droid3 repository in 2020.

4.2 System Design
Our system is implemented using the Python-based Android app
analysis platform Androguard4, which can extract the bytecode
of each method present in an APK, and perform various types
of analysis on it. Additionally, it implements its own decompiler
for reconstructing Java source code or the corresponding abstract
syntax tree (AST) from the Dalvik bytecode of a method.

An overview of our system design is shown in Figure 1. The
primary contributions of our work are highlighted in boldface. We
use Androguard to extract a bytecode-level control-flow graph
(CFG), which is used by our system to detect potentially control-
flow obfuscated methods. A random sample of suspect methods is
then analyzed manually, in order to draw conclusions about the
use of control-flow obfuscation in different types of apps. There
are two main reasons why we operate on the bytecode-level CFG,
rather than using decompiled Java code: firstly, it allows a canonical
representation of a method’s control-flow, which is independent of
any particular decompiler’s interpretation of the code. Secondly, it
allows us to handle CFGs that are non-reducible or otherwise hard
to represent with higher-level code constructs.

In contrast, when detecting dynamic reflection, it is necessary
to lift the Dalvik bytecode to a higher abstraction level, since we
need to reconstruct the arguments to API calls. Therefore, we make
use of Androguard’s built-in decompiler, and its feature to allow
user-defined analysis directly on intermediate ASTs.

Below, we describe the design of our detectors for control-flow
obfuscation and reflection-based obfuscation in detail.

4.2.1 Control-Flow Obfuscation. Detectors for control-flow obfus-
cation that rely on signatures are only able to detect obfuscation
applied by specific tools. Methods that rely on discriminative ML
classifiers have a similar limitation: such classifiers are trained on
examples from two classes (obfuscated and non-obfuscated), and
learn to recognize differences between the two. However, presented
with a type of obfuscation that was not in the original training
data, this type of classifier is unlikely to perform well. To make mat-
ters worse, due to the “bootstrapping” problem that we discuss in
Section 1, feature engineering, hyperparameter tuning, and model
evaluation is essentially impossible to carry out in a reliable way,
since the generality of any validation or testing data cannot be
estimated. In this work, we instead aim to use ML in an exploratory
fashion, allowing us to take the first steps towards characterizing
the Android control-flow obfuscation landscape.

Based on the aforementioned challenges, the following require-
ments for an ML detector can be identified:
3https://f-droid.org/
4https://androguard.readthedocs.io/en/latest/

R1 Scalability. Since we need to analyze millions of methods,
scalability is an important baseline requirement.

R2 No labeled data. Since no unbiased labeled datasets are
available, the approach cannot rely on labeled datasets.

R3 No hyperparamter tuning. Most ML algorithms have sev-
eral tunable parameters, which must be determined empiri-
cally, typically using cross-validation on a validation dataset.
Since, in our setting, no (unbiased) validation datasets are
available, we cannot rely on hyperparameter tuning at all. In
other words, it must be possible to assign reasonable values
to all hyperparameters based on a clear intuition, rather than
using cross-validation. This is a very strong requirement,
which rules out most “off-the-shelf” approaches.

Due to R2, we have chosen to base our approach on anomaly
detection, which is an instance of so-called one-class classification.
Instead of learning to recognize differences between classes, an
anomaly detector learns a model of the distribution of one class
(the “normal” class). The model can then be used to identify outliers
by measuring howmuch a specific sample deviates from the learned
distribution. In our setting, the detector will identify methods that
exhibit control-flow patterns that deviate substantially from typical
code. While the use of anomaly detection has the benefit of not
being biased towards specific techniques or implementations, it
is important to note that the lack of validation data means that
it is not possible to gauge the recall of our model in the general
case. While our manual analysis (Sections 4.2.2 and 5.2) allows us to
investigate the precision (or false positive rate), it is quite likely that
the detector is incapable of detecting certain types of control-flow
obfuscation (i.e., it likely exhibits false negatives). In this study, we
have chosen to acknowledge this limitation, which fundamentally
stems from the aforementioned “bootstrapping” problem. Instead,
we use the detector in an exploratory fashion to perform the first
empirical study of in-the-wild use of control-flow obfuscation, in
the hope that this could pave the way for future investigations
into the subject. In the following, we outline the design of our
control-flow anomaly detector.

Like most machine learning methods, classical anomaly detection
algorithms expect a set of fixed-size feature vectors as input. For
our use case, however, anomaly detection needs to be applied to the
CFGs of methods in an app.While a relatively large body of work on
techniques for applying anomaly detection on graphs exist (see for
example the survey by Akoglu et al. [2]), most existing methods fo-
cus on identifying anomalies within a graph, e.g., anomalous nodes
or edges. In comparison, relatively few works have addressed the
problem of identifying anomalous samples within a set of graphs.

Classical methods for computing pairwise graph similarity, such
as graph edit distance [6] or graph kernels [26], do not scale to
millions of graphs, and can therefore be ruled out due to R1. In-
stead, it is necessary to employ a so-called graph embedding, which
transforms a graph to an approximate vector representation, so that
a classical ML algorithm can be used. The vector representation is
constructed in such a way that similar graphs tend to be located
close to each other in the vector space. Many recent works (for
example, [9, 14, 31, 33]) have shown neural-network-based graph
embeddings to be highly effective for estimating code similarity.
Such embeddings are created by training a neural network on a



ARES 2023, August 29–September 01, 2023, Benevento, Italy Ulf Kargén, Noah Mauthe, and Nahid Shahmehri

Decompilation
Google Play

Malware

F-Droid

Datasets

Packed?

CFG
(bytecode level)

Manual analysis

Control-flow 
obfuscated?

Training data

{0,1,4,2,0,9,3}

Custom vector 
embedding

Anomaly detection

Androguard AST
(source code level)

Reflective-call 
analysis

Likely 
reflection-based 

obfuscation?

DEX-file 
analysis

APKiD

Jadx

Figure 1: Overview of our system design.

(large) set of representative samples. After training, a graph can
be fed into the network, yielding the equivalent vector represen-
tation. However, in our quite unique setting, this requirement for
pre-training constitutes a significant disadvantage for mainly two
reasons. Firstly, existing neural-network-based embedding tech-
niques were not originally designed with anomaly detection in
mind. As pointed out by, e.g., Ma et al. [17], this could lead to
poor detection performance. For example, if the neural network is
trained on “normal” graphs, the resulting embeddings might fail
to capture precisely those properties that are important for iden-
tifying anomalous graphs. Secondly, many neural-network-based
methods require extensive hyperparameter tuning to perform well
for a particular task, violating R3. Consequently, we have chosen to
design our own custom graph embedding, which we describe next.

Graph embedding. Our vector-embedding approach works by
performing a fixed-depth traversal from each node in the CFG. We
exhaustively traverse down every path of (at most) 𝑛 hops, and
record the frequency of every encountered node subsequence of
length 1..𝑛. (That is, the frequency of every subsequence of length
𝑘 for every 𝑘 ∈ {1..𝑛}.) We denote such a node subsequence as a
control-flow n-gram. Feature vectors consist of n-gram frequencies
normalized on the CFG node count, so that each possible n-gram
has a corresponding dimension in feature space. An important
property of this approach is that it can capture both local and
global characteristics of a graph. Specifically, sequences of control-
transfer operations (n-grams) capture local context, whereas the
total n-gram counts capture information about global context.

The node attributes thatmake up our n-grams reflect the different
types of possible control-transfer operations between basic blocks
in a CFG. We define 7 ways in which the flow of execution can be
transferred from one basic block to another:

(1) Conditional branch (if-test instructions)
(2) Unconditional branch (goto instructions)
(3) Switch (packed-switch or sparse-switch instructions)
(4) Fall-through to next basic block
(5) Throw (explicitly raised exceptions using throw)
(6) Exception (implicitly raised exceptions)
(7) Return from method

In addition to different kinds of branch operations, we also included
control-transfers that happen due to exceptions, since some ad-
vanced obfuscation schemes use exceptions to obscure a method’s
control-flow structure (see Section 2.2). An illustrative toy example
of applying our embedding technique can be found in Appendix B.

The only parameter that needs to be tuned with our approach is
the maximum size 𝑛 of n-grams, where larger 𝑛 gives more local
context. If we want to capture context both before and after each
node, 𝑛 should intuitively be at least 3. On the other hand, since
feature vectors contain one element for each possible n-gram, the
dimensionality of feature vectors is exponential in 𝑛. As a trade-off,
we opted to use 𝑛 = 5, which yields 10,885 unique n-grams, after
pruning n-grams with Return nodes that are not the last element
of the sequence (and therefore cannot exist).

Anomaly detection. Due to R3, we have chosen to use Isolation
forest [16] for anomaly detection, since it, in contrast to most other
anomaly detection algorithms, does not require hyperparameter
tuning. Similar to algorithms like, e.g., Random forest, Isolation
forest trains an ensemble of decision trees, with the important dif-
ference that the split at each node of a tree is chosen completely
at random during training The algorithm continues to expand the
tree until every sample is isolated into its own leaf node. The gist
of the algorithm is that, when applying such random decision trees
to new samples, the traversal tends to terminate at leafs at a lower
depth for anomalous samples. The average termination depth across
the ensemble can therefore be used to compute an anomaly score,
reported as a real value between -1.0 and 1.0, where lower means
more anomalous. The anomaly threshold is often determined based
on the training data, as a percentile of the training sample scores. In
addition to requiring essentially no hyperparameter tuning, Isola-
tion forest has two other desirable features for our use-case: being
an ensemble-of-trees method, it can capture non-linear relation-
ships between features, and, more importantly, it can effortlessly
handle very high-dimensional data, which is not the case for many
other anomaly detection algorithms.

Training data was gathered by using Androguard to extract
bytecode-level CFGs for every method in the 3,037 F-Droid apps.
As developers of open-source apps have little incentive to obfuscate
their code, we expect control-flow obfuscation to be very rarely



Characterizing the Use of Code Obfuscation in Malicious and Benign Android Apps ARES 2023, August 29–September 01, 2023, Benevento, Italy

encountered in this dataset5. Since it is not meaningful to apply
control flow obfuscation to methods with trivial control flow, we
considered only methods with a bytecode size of at least 600 B and
at least 30 nodes in the CFG, both during training and classifica-
tion. Pruning F-Droid methods below these thresholds yielded a
final selection of 182,380 methods, which we used for training. We
used the Isolation forest implementation in scikit-learn [23]. The
ensemble size was set 6 to 300 and trees were grown to their full
depth.

During analysis of the datasets, we ran the anomaly detector on
each method that met the aforementioned minimum-size require-
ment. In order to avoid excessive disk usage during data collection,
we only recorded the anomaly score for methods with a score below
-0.30, corresponding roughly to the lower (i.e., most anomalous) 5th
percentile of anomaly scores in the F-Droid training data.

4.2.2 Manual analysis of control-flow obfuscation. For our manual
analysis, we randomly sampled 200 apps from each of the GPlay-C,
GPlay-NC, and malware sets. Apps that had no methods with an
anomaly score below the threshold were removed from the three
samples, and the most anomalous method in each of the remaining
apps where analyzed manually using the decompiled source code.
We choose the decompiler Jadx7 for the analysis, as it was shown to
be the most effective decompiler in the study by Mauthe et al. [19].

4.2.3 Reflection-Based Obfuscation. During the initial stages of
our study, we found that 99.5% of the Google Play apps contain
at least one reflective method lookup. (The corresponding figures
for the malware and open-source apps where 84.7% and 74.8%, re-
spectively.) Therefore, the approach used in earlier works of simply
checking for use of the Java reflection API is clearly inadequate
for modern apps. Instead, it is necessary to differentiate between
typical use-cases for reflection, as opposed to reflection-based ob-
fuscation. Using scriptable analysis environments like Androguard,
it is trivial to extract the names of reflectively called methods, if the
name is provided as a string literal when invoking the reflection
API. Moreover, it is also often straightforward to reconstruct the
fully qualified name, using an approach similar to Li et al. [13] or
Dong et al. [8] (see Section 3.1). For this reason, we argue that devel-
opers who truly intend to use reflection as a means of obfuscation
are more likely to refrain from exposing class and method names
as constant string literals. While there are many legitimate reasons
why an app might use dynamic reflection, our approach is based
on the hypothesis that apps where an abnormally large proportion
of reflective method lookups use non-literal arguments are strong
suspects for reflection-based obfuscation.

To detect dynamic reflection, we make use of Androguard’s built-
in decompiler to generate ASTs for each method, and traverse ASTs
to detect calls to the methods getMethod and getDeclaredMethod
in the Class class. These methods are used to reflectively resolve
public and non-public methods, respectively. Using the AST, we can
determine if the name arguments to these methods are provided as

5A small amount of “pollution” in the training dataset does typically not adversely
affect the performance of Isolation forest [16].
6We opted to increase the ensemble size compared the default 100 trees, since our
model is very complex with many features. Using more trees will never hurt the
accuracy of Isolation forest, but comes at the cost of increased computation time.
7https://github.com/skylot/jadx

Table 1: App distribution based on the number of reflective
method lookups.

Lookups Malware F-Droid GPlay-C GPlay-NC
0 45,302 770 10 52
1–10 112,516 399 104 116
10–100 65,391 1,735 1,173 1,017
100–1000 12,437 133 8,428 2,510
≥1000 1,242 0 10 16

literals, or, for example, as the return value from another method.
Note that Androguard performs constant propagation. This allows
us to detect cases where a string literal is assigned to a local variable,
which is later used (unmodified) in a call to the reflection API.

An abnormality threshold for the ratio of non-literal method
lookups can be decided by using the F-Droid apps as a baseline for
non-obfuscated apps, similar to thewaywe use F-Droid as a baseline
for control-flow anomaly detection. Concretely, we (admittedly,
somewhat arbitrarily) define the threshold as the 99th percentile of
this ratio for F-Droid apps.

In order to derive a rough estimate of the precision of our de-
tection approach (in the absence of actual ground truth data), we
also performed a manual analysis of a random subset of apps that
ended up above the threshold in each dataset. Apps where classified
as true positives if they appeared to use dynamic reflection for no
other apparent reason than to impede static analysis, whereas apps
that appeared to have a legitimate reason to use dynamic reflection
was classified as false positives. A detailed breakdown of the results
are presented in Section 5.1. It should be noted that, similar to the
control-flow anomaly detector, we cannot estimate the recall of our
dynamic-reflection obfuscation detector. It is, for example, possible
that our 99th percentile threshold is too high, causing us to miss
some obfuscated apps. Moreover, apps that use naive non-dynamic
reflection-based obfuscation cannot be detected with our approach,
although from a practical point of view, such obfuscation should
be less of a concern for advanced static analysis tools, as explained
above.

5 RESULTS
In this section, we present the results of our empirical evaluation

5.1 Reflection-based obfuscation
As explained in Section 4.2, we base our analysis for detecting likely
use of reflection-based obfuscation on the ratio of reflective method
lookups that use non-literal method names. As the first step of our
exploratory analysis, we studied the distribution of this ratio for
different types of apps. However, one factor that makes comparing
the ratios for different datasets more complicated is that the total
number of reflective method lookups differ significantly between
the datasets, as can be seen fromTable 1. For example, around 20% of
both the malware and F-Droid apps contain no calls to getMethod
or getDeclaredMethod, whereas almost all the Google Play apps
have at least one such call. To reduce the risk of drawing incorrect
conclusions due to this imbalance, we bin all apps based on the
order of magnitude of reflective method lookups in the app (the



ARES 2023, August 29–September 01, 2023, Benevento, Italy Ulf Kargén, Noah Mauthe, and Nahid Shahmehri

same way as in Table 1), and analyze each bin separately. Figure
2 shows violin plots of the per-bin distributions for each dataset.
Since it is difficult to draw any conclusions for apps with very
few lookups, we omit the “1–10” bin. Clearly, the malware dataset
stands out in comparison to the others for both the “10–100” and
“100–1000” bins, with a significantly larger number of apps with
high ratios. For example, in the “100–1000” bin, around 40% of the
malware apps have ratios higher than 0.3, while the corresponding
figures for the F-Droid and Google Play apps are 0% and 0.9%,
respectively. Interestingly, for the (very small) bin with a thousand
or more lookups, the malware apps have very low ratios, while the
handful of Google Play apps (26 ones) that end up in this bin have
very high ratios. When invoked on these Google Play apps, APKiD
found signatures of commercial obfuscators (Specifically, Arxan,
DexGuard and Gemalto) for all apps except one. It is possible that
these apps use class encryption, which would require reflective
invocation of methods in encrypted classes. DexGuard, for example,
is known to implement this kind of obfuscation [18].

Figure 3 shows the distributions for all apps with at least 10
reflective method lookups. The same pattern seen in the binned
case can be seen here for the malware apps.

The horizontal dashed line in Figure 3 denotes the 99th percentile
for F-Droid apps, which we define as the abnormality threshold
(see Section 4.2.3). 16,107 malware apps, corresponding to 20.4% of
malware with at least 10 lookups, or 6.8% of all malware, end up
above the threshold. The corresponding numbers for the Google
Play and F-Droid apps are 170 and 19 apps, respectively.

We also scanned the apps with APKiD 2.1.2, in order to compare
our findings with a state-of-the-art signature-based obfuscator de-
tector. Running APKiD on the 170 Google Play apps revealed that
77 (45%) matched signatures for commercial obfuscators or packers,
compared to around 2.5% of Google Play apps overall. This indicates
that much of the (suspected) reflection-based obfuscation in Google
Play apps is due to the use of third-party obfuscation tools. In com-
parison, only around 12% of malware above the reflection threshold
match a corresponding APKiD signature, while 6.3% of all malware
apps match such a signature, indicating a weaker correlation. This,
in turn, would indicate that malware authors more frequently apply
reflection-based obfuscation by hand or using custom tools.

Manual analysis. The above results are in line with the qualitative
analysis by Dong et al. [8], which indicated that reflection-based
obfuscation was significantly more common in malware. However,
as explained in Section 4.2.3, in order to investigate the validity of
our approach, and to gain further insights into the use of reflection-
based obfuscation in Android, we also performed a manual analysis
of a random sample of all apps that ended up above the threshold
(i.e., above the F-Droid 99th percentile) within each dataset. 35 apps
were sampled from each dataset. In addition, we also analyzed the
19 apps from F-Droid that constituted the 99th percentile. Here, we
considered an app as using reflection-based obfuscation if it applied
transformations to method-name arguments that appeared to serve
no other purpose than to prevent static resolution of reflective call
targets. As expected, none of the F-Droid apps showed signs of
this kind of obfuscation. However, for the other datasets, we found
evidence of obfuscated call targets in a large proportion of the
apps that were analyzed. For the Google Play dataset, we observed

0.0

0.2

0.4

0.6

0.8

1.0
10–100 reflective methods

0.0

0.2

0.4

0.6

0.8

1.0
100–1000 reflective methods

GPlay-C GPlay-NC Malware F-Droid
0.0

0.2

0.4

0.6

0.8

1.0
≥1000 reflective methods

N
o
n
-l

it
e
ra

l 
m

e
th

o
d
 r

a
ti

o

Figure 2: Distributions of non-literal method lookups binned
on the number of lookups per app.

GPlay-C GPlay-NC Malware F-Droid
0.0

0.2

0.4

0.6

0.8

1.0

N
o
n
-l

it
e
ra

l 
m

e
th

o
d

 r
a
ti

o

Figure 3: Distributions of non-literal lookups for all apps
with more than 10 reflective method lookups.

reflection-based obfuscation in 29 (83%) of the “noncommercial”
apps, and in 13 (37%) of the “commercial” ones. The corresponding
figure was 20 (57%) for the malware apps. These findings clearly
indicate that, in a large proportion of apps with high ratios of non-
literal reflective call targets, obfuscation is indeed the underlying
reason. Furthermore, combined with the distributions of non-literal
lookups (Figure 3), our manual analysis indicate that dynamic re-
flection appears to be a relatively common form of obfuscation in
malware. APKiD found signatures of packers or obfuscators in 17
out of the 29 GPlay-NC apps, and in 10 of the 13 GPlay-C apps. In
contrast, only 3 out of the 20 malware apps matched a signature.
This is in line with the above hypothesis that malware authors more
frequently apply custom obfuscation, rather than using commercial
tools.



Characterizing the Use of Code Obfuscation in Malicious and Benign Android Apps ARES 2023, August 29–September 01, 2023, Benevento, Italy

The most common pattern, observed among the vast majority of
the obfuscated apps, was applying string encryption to the method-
name argument when invoking the reflection API. This was the
case for all of the 42 Google Play apps, and for 18 out of the 20
malware apps. It should be noted, however, that it is generally not
possible to determine if the developers of an app have targeted the
reflection API specifically when applying string encryption, or if the
obfuscation of call targets is simply a side effect of liberal overall
use of string encryption. Since we observed instances of string
encryption unrelated to reflective calls in many of the analyzed
apps, we suspect that the latter case is common.

Two malware apps were observed to use techniques other than
string encryption to obfuscate call targets. One app loaded method
names from an array, using a complex array-index calculation, while
another app instead fetched method names from an array that was
dynamically loaded from a file. One Google Play app also combined
string encryption with loading method names from a file.

Turning our view to false positives, the majority of such cases
were due to code from the Google Mobile Services (GMS) API,
constituting 77% of all false positives in the malware and Google
Play datasets. Most false positives appeared to be due to a particular
method, which seems to load advertisements by invoking a class
loader, and subsequently calling methods from the loaded class.
Other common cases of false positives included custom wrappers
around the reflection API for implementing, e.g., error handling.

5.2 Control-flow obfuscation
Here, we present the manual analysis of the 200 apps that were sam-
pled from each dataset, as described in Section 4.2.2. Interestingly,
we also noticed here that many false positives were due to methods
from the GMS API. These methods often make use of large switch-
case blocks for implementing optimized string lookup tables, where
the string is compared using a hard-coded hashCode instead of us-
ing a slower character-by-character comparison. Incidentally, this
makes their control structure similar to that of methods obfuscated
with control-flow flattening. Prior to conducting the manual analy-
sis, we filtered out GMSmethods based on their fully qualified name,
using the regular expression “com/google/android/.*gms/”. This
reduced the sample sizes to, respectively, 57, 100, and 142 apps, for
the GPlay-C, GPlay-NC, and malware sets.

Overall, the manual analysis revealed 10 cases of control-flow
obfuscation in the GPlay-C sample, 15 in the GPlay-NC sample,
and 12 among the sample of malware apps. There was no clear
correlation among our high-anomaly samples between the anomaly
score and the likelihood of a method actually being obfuscated, with
a range of anomaly scores between -0.305 and -0.366 being observed
for obfuscated methods. Running APKiD on the obfuscated apps
yielded only two matches (one GPlay-C app and one malware app),
both matching a signature for the DexGuard obfuscator.

The types of obfuscation that we identified could broadly be
divided into two classes:

• Control-flowflattening, characterized by “while(true)” loops
with large switch statements using random “magic num-
bers” for the cases. We observed 4 instances each of this for
the two Google Play datasets, and 6 among the malware.

• Artificially convoluted control-flow structure, including large
nested if, switch, or while statements, or nested combina-
tions of those. Other observed techniques were excessive
use of fall-throughs in switch statements, and one case of
using nested while and try statements inside the cases of a
large switch statement. In several methods, highly complex
arithmetic was also used in conditional statements.

Sometimes, combinations of the two were also used.
We also observed one instance of what appeared to be reflection-

based obfuscation (among the malware), one instance of excessive
class overloading, and one instance of package flattening (i.e., to
collapse a hierarchical package structure into a flat one), both of
the latter in the GPlay-C sample.

The GPlay-C and malware sets contained a pair each of identical
obfuscated methods, i.e., methods that were found in two different
sampled apps. In all three datasets, there were also several cases of
highly similar obfuscated methods encountered in different apps.
This could be due to the use of obfuscated libraries within the apps.

Large switch-case blocks (similar to those in GMS) were common
culprits for false positives. try statements with many catch blocks,
or nested try statements, also caused several false positives.

As a final observation, the decompiler used for the analysis (Jadx)
failed on many of the high-anomaly methods. However, only in
one out of the 37 cases where Jadx failed the method was actually
obfuscated. Instead, the decompiler appeared to predominantly fail
when confronted with “legitimate” use of large switch-statements
or deep levels of nesting. This is in agreement with the results by
Mauthe et al. [19] (c.f., Section 3.1).

6 DISCUSSION
As mentioned in Section 3.3, the exact figures obtained from empir-
ical studies of obfuscation tend to vary significantly, depending on
the methodology and datasets that are used. Therefore, attempting
to determine definitive figures for the adoption rate of different
obfuscation techniques is not meaningful, and this has not been the
purpose of our work. Instead, we have aimed to better characterize
the in-the-wild use of reflection-based obfuscation and control-flow
obfuscation. Below, we summarize the main takeaways of our work,
identify avenues of future work, and discuss threats to validity.

6.1 Summary and Main Takeaways
Reflection-based obfuscation. Since the vast majority of apps
today make use of reflection, the presence of calls to the reflection
API is entirely inadequate as an indicator of reflection-based obfus-
cation. Naive attempts at obfuscation that use hardcoded arguments
to the reflection API can be defeated with limited effort, using mod-
ern analysis environments. Therefore, we have focused on the more
challenging case where arguments are dynamically generated, and
proposed the ratio of reflective method lookups with non-literal
arguments as an indicator of this type of obfuscation. Our manual
analysis suggests that a high such ratio is indeed a fairly strong in-
dicator of reflection-based obfuscation. (Using our “99th percentile”
threshold, around 60% of sampled apps from both the malware and
Google Play datasets showed signs of reflection-based obfuscation.)

Our results also indicate that obfuscation based on dynamic re-
flection is significantly more common in malware. Moreover, as



ARES 2023, August 29–September 01, 2023, Benevento, Italy Ulf Kargén, Noah Mauthe, and Nahid Shahmehri

shown in Figure 2, this difference cannot be explained by malware
simply having fewer reflective calls than benign apps. Our findings
are in agreement with earlier results [8], which indicated that the
use of reflection for obfuscation purposes is more common in mal-
ware than in benign apps. Although determining absolute figures
for the prevalence of reflection-based obfuscation in malware is
not possible using our methodology, we concluded that around 7%
of the malware apps in our dataset had a non-literal lookup ratio
higher than the 99th percentile of the (presumably non-obfuscated)
F-Droid apps. Out of themanually analyzed random sample of those,
57% turned out to use obfuscated reflective call targets. A reasonable
ballpark figure for the prevalence of this kind of obfuscation in mal-
ware could therefore be around 5–10%, but more detailed studies
would be needed to confirm that. Based on our findings, we rec-
ommend researchers applying static analysis on Android malware
to first triage apps for dynamic reflection, since this obfuscation
interferes with, e.g., static call-graph reconstruction

Our manual analysis showed that string encryption is by far the
most common cause of statically unresolvable call targets. While it
is difficult to say how frequently string encryption was applied with
the deliberate intent to obfuscate call targets, from a practical point
of view, our results imply that most cases of dynamic reflection
could be detected by applying existing string encryption detectors
[8, 20, 22]. Based on our comparison with APKiD output, however,
it is important to use a generic string obfuscation detector, rather
than relying on signature-based detection, since malware appear to
use custom obfuscation much more frequently than benign apps.
Control-flow obfuscation. Our study showed that this kind of
obfuscation was used both in Google Play and malware apps. To
the best of our knowledge, we are the first to attempt to empiri-
cally study the use of control-flow obfuscation in the wild. Inter-
estingly, while existing literature tend to discuss relatively sim-
ple control-flow obfuscation techniques, such as junk-code inser-
tion, code reordering, call indirection, or insertion of fake method
calls [4, 7, 15, 24], we observed several instances of advanced code
obfuscation, which appeared to be variations of the control-flow
flattening technique. While the use of such advanced obfuscation
techniques does not appear to be very widespread, the results based
on our random sample of 200 apps from each dataset indicated
adoption rates of around 5–8%, with no marked difference between
malicious and benign apps. Moreover, only two of the obfuscated
apps matched an APKiD signature, indicating that custom or spe-
cialized obfuscation tools were used.

In future work, it would be interesting to study how the advanced
control-flow obfuscation techniques that we observed are used by
app developers, in order to better understand their practical impact
on the reliability of static app analysis. For example, are there
general-purpose obfuscation tools that can apply these techniques
to arbitrary code, or are the obfuscated methods that we observed
specialized implementations? As a potential example of the latter,
it is possible that the obfuscated methods are decryption routines
for custom string or class encryption implementations. Moreover,
are the obfuscated methods part of the apps’ main code, or are they
included as part of an obfuscated third-party library? The latter
case could explain why our observations were similar for both
the Google Play and malware dataset, since malware is frequently
created by repackaging of benign apps.

Another potential topic of future work would be to improve the
accuracy of our anomaly detector. One concrete improvement that
could be made, in order to reduce the number of false positives, is
to include the Google Mobile Services classes in the training data.

6.2 Limitations and Threats to Validity
We have already discussed the fundamental limitations in evaluat-
ing the recall of our detectors in Sections 4.2.3 and 4.2.1, stemming
from the “bootstrapping” problem that we face, and the resulting
lack of ground-truth data.

Limitations of the analysis framework we use, i.e., Androguard,
constitute a threat to internal validity. For example, the built-in
decompiler failed on a total of 44,827 methods (distributed across
3,766 Google Play apps, 11,556 malware apps, and 37 F-Droid apps),
preventing us from analyzing the AST for reflection use in those
cases. (Out of the failed apps, the number of failures per app was
not very large, however, with median of 3 for the Google Play and
malware apps, and 2 for the F-Droid apps.)

As with any empirical study, the particular way in which datasets
were compiled could pose a threat to its external validity. In particu-
lar, determining to what degree a malware dataset is representative
of in-the-wild malware is very challenging. This limitation also
applies to our set of AndroZoo malware. Moreover, the choice of
VirusTotal detection threshold (20, in our study) also influences
the selection of malware, where a high threshold might bias the
dataset towards easy-to-detect malware, whereas a low threshold
could lead to the inclusion of false positives (i.e., non-malware).
Another potential risk related to using a high threshold is that de-
tection rates might be lower for obfuscated malware, biasing the
dataset towards fewer obfuscated samples. It is also possible that
our selection strategy for Google Play apps influenced the results.

Finally, using the F-Droid apps for training the anomaly detector
could also pose a threat to external validity, if the open-source apps
are not sufficiently representative of Android apps in general. (The
false positives on GMS methods appear to be one example of such
lacking generality.)

7 CONCLUSION
In this work, we have characterized the use of code obfuscation in
both benign and malicious Android apps, by means of a large-scale
empirical study. In addition to a newmethod for detecting suspected
reflection-based obfuscation, we have proposed a novel approach
to triaging apps for the presence of control-flow obfuscation, based
on identifying anomalous control flow. Our approach differs from
existing works by not making assumptions on the types of obfus-
cation used in the wild, and has allowed us to perform what is, to
the best of our knowledge, the first empirical study of control-flow
obfuscation use in Android apps.

Our results indicate that reflection-based obfuscation is signifi-
cantly more common in malware, whereas control-flow obfuscation
is encountered with relatively low frequency in both benign and
malicious apps. An important finding in our study is that we iden-
tified several apps that used advanced control-flow obfuscation
techniques, which have hardly received any attention in the exist-
ing literature on Android obfuscation detection.



Characterizing the Use of Code Obfuscation in Malicious and Benign Android Apps ARES 2023, August 29–September 01, 2023, Benevento, Italy

REFERENCES
[1] 2022. APKiD. https://github.com/rednaga/APKiD
[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data mining and knowledge discovery 29, 3
(2015), 626–688.

[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories.
ACM, 468–471.

[4] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, and Francesco
Mercaldo. 2018. Detection of Obfuscation Techniques in Android Applications.
In Proceedings of the 13th International Conference on Availability, Reliability and
Security. Association for Computing Machinery, 9 pages. https://doi.org/10.1145/
3230833.3232823

[5] Vivek Balachandran, Darell JJ Tan, Vrizlynn LL Thing, et al. 2016. Control flow
obfuscation for Android applications. Computers & Security 61 (2016), 72–93.

[6] H Bunke and G Allermann. 1983. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters 1, 4 (1983), 245–253. https://doi.org/10.
1016/0167-8655(83)90033-8

[7] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. 2020. Android HIV: A Study of Repackaging Malware for
Evading Machine-Learning Detection. IEEE Transactions on Information Forensics
and Security 15 (2020), 987–1001. https://doi.org/10.1109/TIFS.2019.2932228

[8] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, XiaoFeng Wang, and Kehuan Zhang. 2018. Understanding Android
Obfuscation Techniques: A Large-Scale Investigation in the Wild. In Security and
Privacy in Communication Networks. Springer International Publishing, 172–192.

[9] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. Association for Computing Machinery, 896–899. https://doi.org/10.
1145/3238147.3240480

[10] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif, Sven Amann,
Pauline Anthonysamy, and Mira Mezini. 2020. Hidden in Plain Sight: Obfuscated
Strings Threatening Your Privacy. In Proceedings of the 15th ACM Asia Con-
ference on Computer and Communications Security. Association for Computing
Machinery, 694–707. https://doi.org/10.1145/3320269.3384745

[11] Ratinder Kaur, Ye Ning, Hugo Gonzalez, and Natalia Stakhanova. 2018. Un-
masking Android Obfuscation Tools Using Spatial Analysis. In 2018 16th Annual
Conference on Privacy, Security and Trust (PST). 1–10. https://doi.org/10.1109/
PST.2018.8514207

[12] Marian Kühnel, Manfred Smieschek, and Ulrike Meyer. 2015. Fast Identifica-
tion of Obfuscation and Mobile Advertising in Mobile Malware. In 2015 IEEE
Trustcom/BigDataSE/ISPA. 214–221. https://doi.org/10.1109/Trustcom.2015.377

[13] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming Reflection to Support Whole-Program Analysis of Android Apps. In
Proceedings of the 25th International Symposium on Software Testing and Analysis.
Association for Computing Machinery, 318–329. https://doi.org/10.1145/2931037.
2931044

[14] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph Matching Networks for Learning the Similarity of Graph Structured Ob-
jects. In Proceedings of the 36th International Conference on Machine Learning,
Vol. 97. PMLR, 3835–3845.

[15] Zhiqiang Li, Jun Sun, Qiben Yan, Witawas Srisa-an, and Yutaka Tsutano. 2019.
Obfusifier: Obfuscation-Resistant Android Malware Detection System. In Security
and Privacy in Communication Networks. 214–234.

[16] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In
2008 Eighth IEEE International Conference on Data Mining. 413–422. https:
//doi.org/10.1109/ICDM.2008.17

[17] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui
Xiong, and Leman Akoglu. 2021. A Comprehensive Survey on Graph Anom-
aly Detection with Deep Learning. IEEE Transactions on Knowledge and Data
Engineering (2021). https://doi.org/10.1109/TKDE.2021.3118815

[18] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth attacks: An extended insight into the obfuscation effects on Android
malware. Computers & Security 51 (2015), 16–31. https://doi.org/10.1016/j.cose.
2015.02.007

[19] Noah Mauthe, Ulf Kargén, and Nahid Shahmehri. 2021. A Large-Scale Empirical
Study of Android App Decompilation. In 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 400–410. https:
//doi.org/10.1109/SANER50967.2021.00044

[20] O. Mirzaei, J.M. de Fuentes, J. Tapiador, and L. Gonzalez-Manzano. 2019. An-
drODet: An adaptive Android obfuscation detector. Future Generation Computer
Systems 90 (2019), 240–261. https://doi.org/10.1016/j.future.2018.07.066

[21] Alireza Mohammadinodooshan, Ulf Kargén, and Nahid Shahmehri. 2019. Com-
ment on "AndrODet: An adaptive Android obfuscation detector". CoRR
abs/1910.06192 (2019). arXiv:1910.06192 http://arxiv.org/abs/1910.06192

Table 2: Temporal distribution of malware samples in our
dataset, based on the year the samplewas added to AndroZoo.

Year Count Fraction
2012 113 0.05%
2013 6,035 2.55%
2014 29,548 12.47%
2015 36,868 15.56%
2016 71,269 30.09%
2017 10,412 4.40%
2018 31,065 13.11%
2019 39,671 16.75%
2020 7,809 3.30%
2021 4,098 1.73%

[22] Alireza Mohammadinodooshan, Ulf Kargén, and Nahid Shahmehri. 2019. Robust
Detection of Obfuscated Strings in Android Apps. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security. Association for Computing
Machinery, 25–35. https://doi.org/10.1145/3338501.3357373

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[24] Mila Dalla Preda and Federico Maggi. 2017. Testing android malware detectors
against code obfuscation: a systematization of knowledge and unified methodol-
ogy. Journal of Computer Virology and Hacking Techniques 13, 3 (2017), 209–232.

[25] Zhengyang Qu, Shahid Alam, Yan Chen, Xiaoyong Zhou, Wangjun Hong, and
Ryan Riley. 2017. DyDroid: Measuring Dynamic Code Loading and Its Security
Implications in Android Applications. In 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 415–426. https://doi.org/
10.1109/DSN.2017.14

[26] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. 2010. Graph Kernels. J. Mach. Learn. Res. 11 (aug 2010), 1201–1242.

[27] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. 2000. Software
tamper resistance: Obstructing static analysis of programs. Technical Report
CS-2000-12. University of Virginia.

[28] Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei, and
DinghaoWu. 2018. Software Protection on the Go: A Large-Scale Empirical Study
on Mobile App Obfuscation. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). 26–36. https://doi.org/10.1145/3180155.3180169

[29] Yan Wang and Atanas Rountev. 2017. Who Changed You? Obfuscator Identi-
fication for Android. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). 154–164. https://doi.org/10.
1109/MOBILESoft.2017.18

[30] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick
Traynor, and Sascha Fahl. 2018. A Large Scale Investigation of Obfuscation
Use in Google Play. In Proceedings of the 34th Annual Computer Security Ap-
plications Conference. Association for Computing Machinery, 222–235. https:
//doi.org/10.1145/3274694.3274726

[31] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-Based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. Association for Computing Machinery, 363–376.
https://doi.org/10.1145/3133956.3134018

[32] Lei Xue, Hao Zhou, Xiapu Luo, Le Yu, Dinghao Wu, Yajin Zhou, and Xiaobo Ma.
2020. PackerGrind: An Adaptive Unpacking System for Android Apps. IEEE
Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.
2996433

[33] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020.
Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity
Detection. Proceedings of the AAAI Conference on Artificial Intelligence 34, 01
(2020), 1145–1152. https://doi.org/10.1609/aaai.v34i01.5466

A TEMPORAL DISTRIBUTION OF MALWARE
SAMPLES

Table 2 shows the distribution of the AndroZoo malware of apps
based on the year of addition.

https://github.com/rednaga/APKiD
https://doi.org/10.1145/3230833.3232823
https://doi.org/10.1145/3230833.3232823
https://doi.org/10.1016/0167-8655(83)90033-8
https://doi.org/10.1016/0167-8655(83)90033-8
https://doi.org/10.1109/TIFS.2019.2932228
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3320269.3384745
https://doi.org/10.1109/PST.2018.8514207
https://doi.org/10.1109/PST.2018.8514207
https://doi.org/10.1109/Trustcom.2015.377
https://doi.org/10.1145/2931037.2931044
https://doi.org/10.1145/2931037.2931044
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/TKDE.2021.3118815
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1109/SANER50967.2021.00044
https://doi.org/10.1109/SANER50967.2021.00044
https://doi.org/10.1016/j.future.2018.07.066
https://arxiv.org/abs/1910.06192
http://arxiv.org/abs/1910.06192
https://doi.org/10.1145/3338501.3357373
https://doi.org/10.1109/DSN.2017.14
https://doi.org/10.1109/DSN.2017.14
https://doi.org/10.1145/3180155.3180169
https://doi.org/10.1109/MOBILESoft.2017.18
https://doi.org/10.1109/MOBILESoft.2017.18
https://doi.org/10.1145/3274694.3274726
https://doi.org/10.1145/3274694.3274726
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1109/TSE.2020.2996433
https://doi.org/10.1109/TSE.2020.2996433
https://doi.org/10.1609/aaai.v34i01.5466


ARES 2023, August 29–September 01, 2023, Benevento, Italy Ulf Kargén, Noah Mauthe, and Nahid Shahmehri

const/4 v0,1 (Fall-through)

mul-int v0,v0,v1

add-int/lit8 v2,v2,-1

goto -0x6 (Unconditional branch)

if-lez v2,0x7 (Conditional branch)

return v0 (Return)

1 FCR, FCU, CR, CU, 2xFC, 2xC, 2xF, R, U

2 CUC, CR, CU, UC, 3xC, R, U

3 UCR, UCU, CR, CU, 2xUC, 2xC, R, 3xU

4 R

Per-node n-grams (full paths in boldface)

{1xCUC, 1xFCR, 1xFCU, 1xUCR, 1xUCU, 

3xCR, 3xCU, 2xFC, 3xUC, 7xC, 2xF, 4xR, 5xU}

Final method signature

Figure 4: Example of our customvector-embedding approach.

B GRAPH EMBEDDING EXAMPLE
Figure 4 illustrates the process of applying our custom vector em-
bedding approach to a CFG, when using 𝑛 = 3. If we use node 2 in
the figure as an example, it can be seen that two paths of maximum
length 3 are possible: 2 → 3 → 2, and 2 → 4, corresponding to
the subsequences “CUC” and “CR”, respectively. The total n-gram
counts for each node is shown in the table below the CFG in the
figure. In addition to the n-grams corresponding to the two com-
plete paths, we get the 2-grams “CU” and “UC”, which are part of
the sequence “CUC”, as well as several 1-grams. For example, since
there are two occurrences of “C” in the first path (“CUC”), and one
in the second path (“CR”), we get a total count of 3 “C” 1-grams.
The total n-gram counts across all nodes are shown in the bottom
of the figure. To construct the final vector, these would first be
normalized by dividing by the number of nodes (4 in this case), and
then inserted as elements at their respective positions in the vector.
(The frequency counts for all other valid 1, 2, and 3-grams would
be set to 0 in the vector.)


	Abstract
	1 Introduction
	1.1 Identifying Code Obfuscation Use
	1.2 Contributions

	2 Background
	2.1 Android Runtime Model
	2.2 Android Obfuscation Techniques

	3 Previous Work
	3.1 Empirical Studies of Mobile App Obfuscation
	3.2 App Obfuscation Detection
	3.3 Summary of Previous Work

	4 Approach
	4.1 Datasets
	4.2 System Design

	5 Results
	5.1 Reflection-based obfuscation
	5.2 Control-flow obfuscation

	6 Discussion
	6.1 Summary and Main Takeaways
	6.2 Limitations and Threats to Validity

	7 Conclusion
	References
	A Temporal Distribution of Malware Samples
	B Graph Embedding Example

