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ABSTRACT

Being on a mushrooming spree since at least 2013, malware can

take a large toll on any system. In a perpetual cat-and-mouse chase

with defenders, malware writers constantly conjure new methods

to hide their code so as to evade detection by security products.

In this context, focusing on the MS Windows platform, this work

contributes a comprehensive empirical evaluation regarding the

detection capacity of popular, off-the-shelf antivirus and endpoint

detection and response engines when facing legacy malware ob-

fuscated via more or less uncommon but publicly known methods.

Our experiments exploit a blend of seven traditional AV evasion

techniques in 16 executables built in C++, Go, and Rust. Further-

more, we conduct an incipient study regarding the ability of the

ChatGPT chatbot in assisting threat actors to produce ready-to-use

malware. The derived results in terms of detection rate are highly

unexpected: approximately half of the 12 tested AV engines were

able to detect less than half of the malware variants, four AVs ex-

actly half of the variants, while only two of the rest detected all

but one of the variants.
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1 INTRODUCTION

Over the last three decades, the endless struggle between evildo-

ers and defenders has become an ongoing cat-and-mouse game.

Malicious software, commonly referred to as malware, is a low-

hanging fruit for threat actors due to the ever-increasing variety

of applications and services offered in cyberspace. When combined

with legacy social engineering techniques, like phishing, malware

is one of the most effective means of inflicting damage on the tar-

get computer system. Indeed, according to Statista, during 2022,

the worldwide number of malware attacks reached 5.5 billion, an

increase of 2% compared to 2021 [22].

Malware is often disguised as a legitimate application, making

it easier to deceive the end-user in executing it [3]. Moreover, mal-

ware is a key factor in the creation of botnets, which are often

exploited to launch large-scale catastrophic distributed denial of

service (DDoS) attacks [10]. Each bot is a piece of malware that re-

ceives orders from a master via a command and control (C2) infras-

tructure. Code obfuscation is one of the several techniques used by

malware to elude static analysis methods and legacy anti-malware

solutions. Typically, detection is done by comparing the hash of

the considered file with the known malware hashes stored in a

database.

AV software is the commonest defense against malware. As al-

ready pointed out, legacy AVs use signature-based detection to

identify known malware, and heuristics-based detection to per-

ceive previously unseen malware based on its behavior. Moreover,

defenders are increasingly employing advanced approaches, such

asmachine learning (ML), to detect and safeguard against newmal-

ware. That is, traditional (shallow) or deep learning techniques

are exploited to train malware detection models, which are then

used to detect previously unseen malware families and polymor-

phic strains [4, 7].

On the other side of the spectrum, to evade both traditional

and signatureless malware detection, aggressors use assorted tech-

niques, including code obfuscation, polymorphism, and packing.

Code obfuscation renders malware code difficult to read and un-

derstand by humans and machines. Moreover, polymorphism is

used to create malware variants that can alter their signature or be-

havior to deceive the underlying detection mechanisms. Last but

not least, packing is used to compress and encrypt malware code

to make it cumbersome for antivirus software to analyze. More

http://arxiv.org/abs/2305.04149v1
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recently, adversarial ML has demonstrated that signatureless mal-

ware ML models are susceptible to gradient-based and other so-

phisticated attacks [4]. That is, through specific techniques, includ-

ing generative adversarial network (GAN), the attacker’s generator

model learns to produce evasive variants that appear to be drawn

from the benign class.

Until now, several researches [2, 15, 21, 23] have assessed AV so-

lutions with regard to their efficiency in detecting malware. Never-

theless, as also demonstrated by the work at hand, despite the sub-

stantial progress, defensive solutions, including AV and endpoint

detection and response (EDR), seem to present shortcomings, even

when it comes to the detection of old-school malware, which in

turn questions their effectiveness. In this context, the present work

provides a comprehensive assessment of the ability of well-known

AVsand EDRswhen dealing with legacymalware code, which how-

ever is obfuscated via more or less uncommon but publicly avail-

able methods. Particularly, the main contributions of this work vis-

à-vis the relevant literature can be summarized as follows.

Our contribution:Wemeticulously evaluate the detection per-

formance of 16 commonly accepted and popular products, twelve

AVs and four EDRs, when copyingwith obfuscated legacy malware.

Obfuscation is done through custom-made, but publicly known

and easily accessible techniques. Particularly, the conducted anal-

ysis involves the injection of a mix of seven traditional AV evasion

techniques in 16 executables, developed in three popular program-

ming languages, namely C++, Go, and Rust. On top of that, we

contribute a preliminary study regarding the capability of the Chat-

GPT chatbot in aiding malicious parties to build turnkey malware.

The remainder of the paper is organized as follows. The next sec-

tion briefly examines the prior art in this field. Section 3 offers the

necessary background information. Section 4 details our testbed

and methodology, while Section 5 presents the results. The last

section concludes and offers directions for future work.

2 RELATED WORK

The current section briefly reviews the most closely related works

to ours in the literature so far. The focus is on malware obfuscation

and other evasion tactics, as well as contributions that experimen-

tally assess the detection ability of AV and similar products. There-

fore, works that examine different aspects, say, static and dynamic

malware analysis techniques, are purposefully left out. The analy-

sis is confined to the period between 2010 and 2023, considering

both survey works as well as research contributions.

With respect to AV evasion, the authors in [2] contributed a

comprehensive survey on malware analysis, specifically on ways

to evade dynamic analysis techniques for both manual and auto-

mated modes. In this regard, they first split the considered evasion

tactics into twomajor categories, namely detection-dependent, and

detection-independent. Secondly, they proposed a comprehensive

classification of these techniques and showcased their performance

vis-á-vis distinct detection and analysis schemes. Likewise, [12]

surveyed malware evasion techniques, covering obfuscation (in-

cluding encryption and polymorphism), fragmentation and session

splicing, application-specific violations, protocol violations, insert-

ing traffic at IDS, DoS, and code reuse attacks, such as return-oriented

programming (ROP). In addition, they discussmitigations and com-

pare evasion techniques in terms of sophistication, detection diffi-

culty, and impact. An interesting highlight from their analysis is

that obfuscation is the only evasion technique with low sophistica-

tion and detection difficulty that has a higher-than-low impact; the

rest of the techniques with medium or high impact have higher so-

phistication or detection difficulty requirements. In the same con-

text, the authors in [23] surveyed different malware obfuscation

techniques. Their analysis focused on four types of malware: en-

crypted, oligomorphic, polymorphic, andmetamorphic. For the last

two techniques, various obfuscation schemes were discussed, in-

cluding dead-code insertion, register reassignment, subroutine re-

ordering, instruction substitution, code transposition, and code in-

tegration.

In addition, the work in [15] exploited ROP for code obfuscation.

Recall that ROP, basically a powerful code reuse technique, is used

to counteract common exploit prevention schemes, including data

execution prevention (DEP) and address space layout randomiza-

tion (ASLR). Specifically, the authors highlighted two key contribu-

tions compared to the prior art. The first relates to the automatic

analysis and generation of code snippets to produce relevant ROP

chains, while the second pertains to the reuse of legitimate code

extracted from executables for the purpose of creating ROP gad-

gets. The latter are short sequences of instructions ending in a “ret”,

that is, a return command in assembly that transfers control to the

return address inserted in the stack by a “call” command. They in-

troduced a tool to effectively transform a piece of shellcode to its

ROP equivalent. This is done by reusing the available code in the

executable and then patching the ROP chain, finally infecting the

executable. According to their results, this transformation results

in an undetectable behavior when tested against the well-known

VirusTotal scanning service.

Furthermore, the authors in [18] centered on model stealing at-

tacks devoted to malware detection. A model stealing or model

extraction attack in the ML ecosystem works by querying the tar-

get model with samples and subsequently exploiting the model re-

sponses to duplicate it. Their study concentrated on standalone

malware classifiers and AV products. Among others, they detailed

a new model stealing attack, which combines transfer and active

learning, and evaluated it through a series of relevant experiments.

With respect to the benchmarking aspect, the authors in [11]

examined the effectiveness of desktop versions of a dozen of popu-

lar AV products against their VirusTotal equivalents. Their dataset

comprised 50 pieces of malware, which have been generated us-

ing 16 different open-source AV evasion tools that obfuscated two

Metasploit payloads. According to their results, desktop AV soft-

ware outperformed VirusTotal for most AV detection engines. The

authors conclude that this could be attributed either to the lack

of cloud-based detection on VirusTotal or to different configura-

tions of VirusTotal and desktop AV engines. Similarly but focused

on mobile malware only, the work in [16] evaluated Android anti-

malware software against common techniques used to obfuscate

known and unknown malware. Their results showed that none of

the 10 popular commercial anti-malware software tested was resis-

tant to the utilized techniques, which included even slight trans-

formations to known malware. This latest observation is in accor-

dance with our results showing that legacy malware obfuscated
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through publicly and easily accessible techniques is still effective

in AV evasion. The main difference is that we consider desktop AV

engines, whereas [16] limit their study to Android anti-malware

software only.

Based on the foregoing analysis, the most closely related work

to the current one is that in [11]. Particularly, quite similar to [11],

we empirically assess the faculty of 16 popular commercial AV and

EDR products in detecting legacy malware code, i.e., code that is

publicly available, say, in GitHub repositories. Nevertheless, dif-

ferently to [11], the present study examines the effectiveness of

different common and uncommon (but practicable) methods in ob-

fuscating malicious pieces of code with the aim to pass unnoticed.

3 BACKGROUND

This section summarizes the necessary background regarding the

malware detection and evasion techniques used in the context of

this paper. In short, the basic techniques used by the tested AV and

EDR products towards examining if a piece of code is malicious

or not are two [19]: signature-based and heuristic detection. On

the other hand, malware authors utilize several methods to avoid

detection; the methods used in the context of this paper are sum-

marised in Table 1.

The first detection technique typically relies on the detection of

malicious patterns by only scanning the program or piece of code

for known strings (or signatures). Other widely used methods for

signature-based detection include fuzzy hashing (a function that

compares similarities between files) and YARA rules, which are

used to create descriptions of malware families based on textual

or binary patterns. Essentially, the suspicious file is scanned for

patterns of known header files, libraries, or even packed files.

Heuristic analysis methods can be either static or dynamic, us-

ing machine learning or data mining techniques for effective mal-

ware detection. Static analysis involves decompiling a suspect pro-

gram to inspect the source code and compare it to known viruses

that reside in the heuristic database. In case a significant percent-

age of similarities is observed, the code is flagged as potentially

malicious. Dynamic heuristics on the other hand, execute the suspi-

cious piece of code inside an isolated, specialized VM, often called

“sandbox”, to test the code and decide about its functionality. Gen-

erally, dynamic analysis inspects the suspicious file during its exe-

cution and its runtime behavior is mapped to patterns of malicious

activity. Generally, contrary to signature-based scanning, which

looks to match signatures found in files with that of a database of

known malware, heuristic scanning uses various decision rules or

weighing methods.

On the flip side, malware writers exploit different methods to-

wards hiding the malicious code and elude detection. Table 1 re-

caps some of the most prominent traditional AV evasion methods

used in our analysis [2]. The right column of the table designates

the targeted type of malware code analysis considered in the con-

text of this work for each evasion technique. One of themost preva-

lent methods to bypass malware analysis relies on the elimination

of the prospect to match a malware part with a known signature.

This can be easily achieved by hiding the code, say, by means of

encryption. This technique entails splitting the malware into two

pieces, the body, and the encryption/decryption function. The lat-

ter function is used to encrypt the body of the malware before its

propagation. Then, when the malware is about to be executed, the

function is used to decrypt the body of the malware which is then

executed as usual. Taking AES as an encryption/decryption func-

tion example, a variety of encryption modes of operation can be

used, including AES-CBC, AES-CFB, and others.

Evasion technique Code analysis methods

Encryption Signature

Process injection Signature, Heuristic

Manual shellcode mem loading Signature, Heuristic

API hashing Signature, Heuristic

Junk data Signature

Multiprocessing Heuristic

Chosen shellcode Heuristic

Table 1: Malware evasion techniques used in the context of

this work

With reference to Table 1, process injection is another wide-

spread defense evasion technique used to elude signature and heuris-

tic analysis. In this case, the adversary injects pernicious chunks

in the address space of a legitimate process; essentially, the mali-

cious code is triggered when the legitimate process is executed. In

this way, the malicious code running in the context of a legitimate

process may enable access to the resources of the latter. Since the

execution is masked under a legitimate process, the malicious code

can stay under the radar of security products. For more informa-

tion on process injection, the reader is referred to [8] and [13].

A third approach to overcome both types of malware analysis

concerns themanual loading of a shellcode in the victim’s memory.

This, typically, involves a call to the VirtualAllocEx orWriteProcess-

Memory application programming interface (API). Specifically, this

technique is used to defeat certain detection methods that rely on

static analysis, since the code is only loaded at runtime and, there-

fore, is expected to be invisible to the underlying analysis system.

Traditionally, if a piece of software needs to call a function of the

Windows API, say, CreateFileW to create a file, the software would

need to reference the API name “directly” in the code. However,

by doing so, the name of the API is left present in the code. This

enables the defender to easily identify what the piece of suspicious

code might be doing.

API hashing is another technique used by malware creators to

overcome signature-based and heuristic analysis. With reference

to the MS Windows OS, a piece of malware would typically pop-

ulate the import address table (IAT) with references to API func-

tion names it uses, such as VirtualAlloc, CreateFileW, CreateThread,

andWaitForSingleObject. The analysis of the IAT by a security ana-

lyst, however, could easily reveal what actions a suspicious piece of

code performs. By using API hashing, an attacker can avoid this by

obfuscating the function calls using hashing. In other words, the

names of API functions are replaced with a hashed value, which

generates a unique checksum for every file. The digests are used

to carry out the API calls in a pseudonymous manner. This makes

it harder for analysts and security products to expose the malevo-

lent tasks performed by a malware.
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Hiding the malicious code inside junk data is another popular

old-school technique among malware creators. This involves ap-

pending junk data to the malware executable to inflate the file size

in hopes of staying below the radar of, say, YARA rules.

Creating or injecting multiple processeswith different shellcodes

is yet another technique used to evade AV solutions. The main

idea behind this concept is as follows. The malware author cre-

ates or injects multiple instances of a process, each with a different

shellcode, into a target system. Then, the coder monitors antivirus

detection and identifies which shellcode(s) has not been detected.

Finally, the malicious payload can be executed in the undetected

shellcode.

The last technique, namely chosen shellcode based on condition,

is similar to the previous one but here the shellcodes are selected

based on the target system’s specifications and configuration. The

first step in this case is to identify the target system and collect in-

formation, such as OS version and installed AV software. Then, the

malware author develops multiple shellcodes based on the condi-

tions of the target system and executes them to identify a shellcode

that goes undetected by the AV.

It should be noted here that the combination of two or more

techniques of Table 1 or the utilization of the same schememultiple

times, depending on the case, is also a viable approach.

4 TESTBED AND METHODOLOGY

As already pointed out, the goal of the present work is to assess

the capacity of popular AV and EDR products in detecting legacy

malware when obfuscated with the techniques of Table 1. The ex-

periments were performed on a Windows 11 Enterprise Edition

VM equipped with 8 GB RAM and a quad-core CPU. Each one of

the selected AV products was evaluated on a separate, clean VM

instance, provisioned with the latest OS updates. After its installa-

tion, each AV had access to the Internet. The malicious executables

were transferred over the Internet using public file transfer appli-

cations, like Filebin.

A dozen of the currently most popular AV products were tested,

as presented in Table 2. We split the various products into free

and trial/paid editions. As observed from the same table, we ad-

ditionally evaluated four EDRs, specifically those which offer a

free trial period. Note that each EDR suite incorporates one cen-

tral cloud web application that allows the management of a set of

connected (slave) devices. This caters for protecting the end-user

of each one of the slave devices and alerting them when detecting

a suspicious action. The version of each evaluated security product

is mentioned in Table 2.

For the needs of this work, 16 malware variants were created,

as recapitulated in Table 3 for easy reference. The table is split into

three parts, namely Original, Modified, and ChatGPT, correspond-

ing to the three stages described in the rest of this section. The

corresponding variants are evaluated in subsections 5.1 to 5.3, re-

spectively.

Initially, three different malicious code snippets were built us-

ing three popular programming languages, namely C++, Go, and

Rust. The latter two languages were purposefully chosen to eval-

uate the capacity of security products to detect malware written

in modern languages. For all three code snippets, except our own

Product name Version

AV

Free editions

Avast 230320-4

AVG 230327-12

Avira 1.1.84

MS Defender 1.385.1272.0

Trial/Paid editions

Webroot 23.1

Eset Smart Security Premium 16.0.26.0

Bitdefender Total Security 26.0.34.145

Kaspersky Small Office Security 21.9.6.465

Sophos Home 4.3.0.5

MalwareBytes 4.5.24

McAfee Total Security 19.21.167

Norton 22.23.1.21

EDR solutions

Bitdefender Gravity Zone 7.8.4.270

Sophos Central 2022.4.2.1

ESET Protect Cloud 10.0.2045.0

MS 365 Defender N/A

Table 2: List of tested AV/EDR products as of 30 March 2023

(N/A: not applicable)

code, we heavily reused “as is” publicly available malware code

from GitHub [1, 5, 14]; this satisfies the objective of evaluating the

capability of security products in detecting legacy malware. For

reasons of reproducibility, all the three above-mentioned code snip-

pets are available on a publicly accessible GitHub repository [6].

Furthermore, we exploited the Sliver1 and NimPlant2 C2 frame-

works and Metasploit framework (MSF) to enable the attacker to

acquire a reverse connection after the malware is executed. These

three frameworks have been intentionally selected for the follow-

ing reasons. First, Metasploit is the commonest penetration testing

tool, and it is highly expected to be flagged by most AVs. Second,

Sliver is a modern C2 solution that has been used in the wild, as

a Cobalt Strike replacement [9]; therefore, it is also anticipated to

be flagged by AVs. Third, NimPlant is not yet a very popular light-

weight first-stage C2 implant written in Nim, meaning that its de-

tection may be more difficult for antiviral software.

Generally, such frameworks have the ability to generate differ-

ent types of files, which if executed, would return a shell connec-

tion to the attacker. Regarding Sliver and NimPlant, such files (also

known as implants) can have the .dll, .exe, or .bin suffix. Among

others, Metasploit can generate a hex string (the binary value of

the string in hexadecimal notation) that the coder can then include

in its own codewritten in a supported programming language, e.g.,

Go, Rust, and others. After that, if the compiled file is executed and

the hex string is loaded into a process, the attacker will receive a

shell connection. Note that this also requires the attacker to start

a listener in the specific framework. For Sliver, we used the mTLS

listener, which establishes the default mutual TLS (authenticated)

1https://github.com/BishopFox/sliver
2https://github.com/chvancooten/NimPlant
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connection. For NimPlant and Metasploit, we exploited the default

TCP listeners. The (default) beacon mode was used for Sliver and

NimPlant and the session mode for Metasploit.

To cover different cases regarding the viral software, we chose

the hex string method fromMetasploit and the binary format (.bin)

from Sliver andNimPlant. Precisely, through Sliver, we created a bi-

nary file, while for Metasploit we used themsfvenom tool to gener-

ate a shellcode specifically for the Go language in the variants con-

tained in the Modified part of Table 3. Note that as shown in line

5 of Table 3, the original Go code included a hex string that would

pop up the Windows calculator, if the file is executed successfully.

Additionally, the Go code included a manual way of allocating OS

memory and executing the relevant process. Both the .bin file and

the shellcode were encrypted by means of either AES-CBC or AES-

CFB and imported to the original malware code snippets. Namely,

the .bin files were imported to the C++ and Rust versions, and the

shellcode to the Go snippet. The above-mentioned malware vari-

ants are included in the six topmost rows of Table 3, where the first

three rows refer to the original executable files as generated from

each framework, without the use of any additional method.

As a second stage, with reference to Table 3, we altered the orig-

inal code of C++, Go, and Rust, in order to make detection harder.

These eight modifications are given in the mid-part of the table,

under the “Modified” title. Precisely, the first variant of the origi-

nal C++ code was modified to include junk binary data. Junk data

were generated via the /dev/urandom, which provides an interface

to the Linux kernel’s random number generator, allowing one to

specify the size of the created file. This technique was also used

for the Rust and Go code snippets, as shown in Table 3. In all cases,

the size of the produced random data file was 80 MB, except for

variants destined to test the Avast and AVG products; in the lat-

ter case, the file size was 300 MB. This was done because, based

on our preliminary tests, the Avast and AVG AV products flagged

every executable file under 300 MB for further checking to their

cloud services. Most probably, this behavior is on the grounds that

our executables were unsigned. Nevertheless, via the simple trick

of surpassing this file size threshold, we forced the Avast and AVG

AVs to analyze our executables on the spot and not flag them for

being unsigned, causing their cloud services to be invoked. Further,

a second modification regarding the C++ code was to include both

Sliver and NimPlant binaries, with the purpose to execute them at

the same time and inject different processes.

For the Go executable, first, we added encryption/decryption,

the MSF shellcode, and generated two versions, i.e., one with junk

and another without junk data as shown in lines 9 and 10 of Ta-

ble 3. For the Rust instance, we slightly modified the original code,

removing the sleep functions and the conditional execution, i.e.,

the executable in the original version had to be executed from a

start command with the activate argument.

Next, as exhibited in lines 11 and 12 of Table 3, two versions

were created, with and without junk data. Moreover, as demon-

strated in line 13 of the same table, we replaced Sliver binary with

that of NimPlant and kept the junk data. The last Rust variant in-

cluded both Sliver and NimPlant binaries along with junk data.

For this variant, we observed that some AVs were able to detect

the Sliver process. Therefore, to avoid detection, the code was in-

structed to check if the directory of one of these AV exists. If true,

the executable loaded into the injected process the NimPlant bi-

nary.

As an additional step, ChatGPT was assessed in terms of pro-

ducing effective malicious code. A first observation was that Chat-

GPT was unable to produce encryption/decryption functions cor-

rectly for Windows 11 APIs; human intervention was needed in all

cases for correcting the generated code. For this reason, another ap-

proach was used, namely opening a listener to the victim and hav-

ing the attacker connect to it. In this way, the encryption function

is not needed, and in any case, it enabled the malware to masquer-

ade as a legitimate process since many applications establish Inter-

net connections in this way. As a result, ChatGPT code included

only a process injection function, with and without junk data, and

a shellcode generated by ChatGPT. This shell initiates a TCP con-

nection between the attacker and the victim. The attacker sends a

cmd command, the victim retrieves the command, executes it, and

sends the result back to the attacker.

All executables in Table 3 have been programmed for stealthy

operation, preventing visual notifications, such as the cmd win-

dow pop-up. To treat each Sliver, NimPlant, or Metaspoit connec-

tion similarly, we waited for 5 min after its establishment. Then,

we executed one command every 2 min, for a total of 10 min. Sub-

sequently, we started all over again, waiting for a further 5 min

period. If the antiviral product did not block the executable after

three consecutive loops, command execution was ceased, classify-

ing the corresponding variant as undetectable.

5 EXPERIMENTS

5.1 Original executables

As a first step, we evaluated the detection capacity of every AV

product against each original malicious executable (.exe) file. The

detection ratio per AV product is seen in the rightmost column of

Table 4. The results for MSF were according to our expectations,

i.e., all AVs detected the malicious executable, even before a user

managed to execute it. This means that in all cases, the static an-

alyzer in each AV flagged it as malicious. However, this is not the

case with both Sliver and NimPlant, where only half of the AV solu-

tions managed to flag both executables as malicious. The detection

rate was even worse for the other three executables: only five out

of 12AVsmanaged to detect all three executables, whereas twoAVs

detected none of them. C++ and Rust had the best score, evading

five out of the 12 AVs each.

Considering all the original executables, the comparison between

free and paid AVs shows that the former scored better. Indeed, half

of the free AVs identified all malware and only 17% of the evasion

attempts were successful. On the other hand, only 1 out of 8 paid

AVs identified all malware, and the rate of successful evasions al-

most doubled, climbing to 33%. In total, approximately 28% of all

executables managed to evade AV scanners; this corresponds to 20

successful evasions over 72 tests.

5.2 Use of common evasion techniques

In this experiment, we used common evasion techniques, as de-

scribed in Section 3 and demonstrated in the “Modified” part of

Table 3. Such techniques include using uncommon programming

languages for implementing existing malware, adding AES-CBC
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No Exe Enc PI APIH MSF shell MSF calc Sliver NimPlant JD Multi Chosen Manual CS

Original

1 MSF ✓

2 Sliver ✓

3 NimPlant ✓

4 C++ ✓ ✓ ✓ ✓

5 Go ✓ ✓

6 Rust ✓ ✓ ✓

Modified

7 C++ ✓ ✓ ✓ ✓ ✓

8 C++ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 Go ✓ ✓ ✓

10 Go ✓ ✓ ✓ ✓

11 Rust ✓ ✓ ✓

12 Rust ✓ ✓ ✓ ✓

13 Rust ✓ ✓ ✓ ✓

14 Rust ✓ ✓ ✓ ✓ ✓ ✓

ChatGPT

15 ChatGPT ✓ ✓

16 ChatGPT ✓ ✓ ✓

Table 3: List of the 16 generated instances of malware (Enc: encryption, PI: process injection, APIH: API hashing, MSF: Metas-

ploit framework, JD: junk data, Multi: multiprocessing, Chosen: chosen shellcode, Manual: manual execution of process in

memory, CS: custom shell)

AV MSF Sliver NimPlant C++ Go Rust Quar. DR

Free edition

Avast ✗* ✗ ✗ ✗ ✗ ✗ 1/6 6/6

AVG ✗* ✗ ✗ ✗ ✗ ✗ 1/6 6/6

Avira ✗* ✓ ✗* ✗* ✗* ✗* 5/6 5/6

MS Defender ✗* ✗* ✗* ✓ ✓ ✓ 3/6 3/6

Trial/Paid edition

Webroot ✗* ✗ ✗ ✓ ✓ ✗ 1/6 4/6

Eset ✗* ✓ ✗* ✓ ✗* ✗ 3/6 4/6

BitDefender ✗* ✗* ✓ ✗ ✓ ✓ 2/6 3/6

Kaspersky ✗* ✗* ✓ ✗* ✗* ✓ 4/6 4/6

Sophos ✗* ✗ ✓ ✗ ✗ ✗ 1/6 5/6

MalwareBytes ✗* ✗* ✗* ✓ ✗ ✓ 3/6 4/6

McAfee ✗* ✓ ✗* ✓ ✓ ✓ 2/6 2/6

Norton ✗* ✗* ✗* ✗* ✗* ✗ 5/6 6/6

Total 0/12 3/12 3/12 5/12 4/12 5/12 – –

Table 4: Results regarding the original executables of Table 3. The ✗ and ✓symbols per AV line are seen from the attacker’s

perspective, standing for “detect” and “evade”, respectively. The same symbols are used the same way in the rest of the tables

of this section. The star superscript denotes a quarantined (after successful detection) executable file. (Quar.: quarantined file,

DR: detection ratio)
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encryption to theGo executable [20], and refactoring the Rust code

to avoid signature detection. The corresponding results are pre-

sented in Table 5. Overall, in comparison with the original exe-

cutables shown in Table 4, we observed that the detection rate of

both free and paid AVs dropped significantly when we employed

simple malware modification techniques.

Regarding the first technique, the use of an uncommon language,

like Go or Rust, can increase the chances of evading AV software.

Indeed, with reference to the first column of Table 5 and compared

to Table 4, when combining Go with MSF shellcode the evasion

rate increased from 33% to 58%. As seen in the second column of

Table 5, refactoring the Rust code increased the evasion rate from

42 to 50%, i.e., an increase of 19%.

Another simple approach was based on augmenting the size of

an executable file with randomized data; this also proved to be

highly effective in evading AV solutions. To this end, we imple-

mented a test scenario in which a malicious executable was en-

larged by 100 MB using randomly generated data to prevent detec-

tion. Our results showed that the evasion rates of all executables

vastly increased. In more detail, for C++ the evasion rate raised

from 42 to 75% (an increase of 79%), for Go from 33 to 67% (an in-

crease of 100%), and for Rust from 42 to 92% (an increase of 120%).

In addition, we tested the Rust code with the NimPlant binary file;

in this case, the results were the same as with Rust with only ran-

domized data.

The next scenario involved loading both Sliver and NimPlant bi-

nary files on different processes, during the same execution.When

using this technique with C++ we managed to evade an extra AV

solution compared to using C++ with randomized data only, as

shown in Table 5. Taking a closer look at this additional AV so-

lution, we discovered that it was unable to detect and trace one of

the two processes of the malicious executable. Using the same ap-

proachwith Rust and combining it with the chosen shellcode based

on condition technique, as described in Section 3, we managed to

bypass all AV solutions. More specifically, the condition we used

was to check which AV solution was installed in the target OS and

utilize the binary that could evade this AV.

5.3 ChatGPT

Ever since the release of the popular ChatGPT tool, various mali-

cious groups have attempted to exploit its capabilities to develop

undetectable malware programs [17]. For this reason, as already

mentioned in Section 4, we investigated the possibility of using

ChatGPT 3.5 (v. March 14) for developing malware with the C++

programming language, which is the most prevalent language for

this purpose. Our aim was to make ChatGPT generate malicious

code independently without any assistance in the coding process.

To achieve this, we posed a question, received a response, tested

the response using a compiler, and provided compile errors as feed-

back to the tool to rectify any errors. In the end, this attempt was

unsuccessful since ChatGPT had issues in generating a functional

obfuscating code instance, such as encoding or encryption, for C++

and the latest native APIs of Windows 11.

Consequently, we adopted an alternative approach to generate

the obfuscating code. We asked ChatGPT to produce a simple TCP

listener, similar to an SSH listener, which would enable an attacker

to connect and execute Command Prompt (cmd) commands, uti-

lizing only native APIs of Windows. A precondition for making

the listener operational was to have the firewall port required for

connection open. Nevertheless, we considered this condition as be-

yond the scope of our paper, assuming that the user could already

have this port open, since many legitimate programs, such as MS

Teams, could request such access or be easily tricked to open it

using other methods, such as social engineering.

Even though the usual approach would be for the victim to con-

nect to a C2 server, the above unconventional method allowed us

to evaluate the potential of ChatGPT to meet the same objective

of executing malicious commands to a victim’s system remotely.

The first scenario in this case was for the attacker to establish a

connection to the deployed malware using a standard connection

tool, such as Netcat, and generate various cmd commands; the cor-

responding detection rates for each AV are provided in Table 6.

In the second scenario, we analyzed the executable produced

by the code snippet provided by ChatGPT, and subsequently, we

added a randomly generated 100MB file and repeated the test. Sim-

ilar to the previous subsections, adding junk data proved to be very

effective in evading AVs; here, four additional AV solutions were

evaded, which corresponds to a 79% increase compared to the first

scenario. Overall, only 3 out of 12 AVsmanaged to detect bothChat-

GPT scenarios, whereas on the other end, five detected none. In

order to ease the reproducibility of our experiments, the relevant

code by ChatGPT has been made publicly available in the main

GitHub repository of this project [6].

5.4 EDR analysis

To complement our study, we also scrutinized common EDR solu-

tions that provided trial versions for evaluation purposes. Table 7

contains the respective detection rates of each executable when

analyzed by each EDR product, namely “Bitdefender Endpoint Se-

curity”, “Sophos Endpoint Agent”, and “ESET Endpoint Security”.

The results indicate that the detection rates are similar to those of

the corresponding AV solutions of the same vendor. At first glance,

this suggests that EDR solutions, apart from improved administra-

tive capabilities and monitoring of devices in an infrastructure, do

not offer additional protection against the malicious executables

we implemented using simple techniques. Consequently, such at-

tacks pose a threat not only to home but also to enterprise users,

regardless of their company’s size.

5.5 Discussion

To the best of our knowledge, two of the evasion techniques used

in this paper are novel compared to existing literature: (i) manipu-

lating multiple processes with various shellcodes and (ii) choosing

a shellcode based on specific conditions (e.g., the existence of a

folder). The operation of both of these techniques has been pre-

sented in Section 3.

Overall, our analysis showed that common AV/EDR solutions

can be circumvented by employing simple, well-known techniques.

Firstly, robust encryption algorithms can provide protection against

static analysis conducted by most AVs. Secondly, the use of less

common compiled programming languages with Windows native

APIs can further assist in evading AV detection. Additionally, the
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AV Go Rust C++ ⊗ Go ⊗ Rust ⊗ Rust l⊗ C++ ⋄⊗ Rust ⋄⊗ Quar. DR

Free edition

Avast ✗ ✗ ✓ ✗* ✓ ✓ ✓ ✓ 1/8 3/8

AVG ✗ ✗ ✓ ✗* ✓ ✓ ✓ ✓ 1/8 3/8

Avira ✗* ✗* ✓ ✓ ✓ ✓ ✓ ✓ 2/8 2/8

MS Defender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0/8 0/8

Trial/Paid edition

Webroot ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 0/8 1/8

Eset ✗* ✓ ✓ ✗* ✓ ✓ ✓ ✓ 2/8 2/8

BitDefender ✗ ✓ ✗ ✗ ✓ ✗ ✗* ✓ 1/8 5/8

Kaspersky ✓ ✓ ✗* ✓ ✓ ✓ ✗* ✓ 2/8 2/8

Sophos ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ 0/8 3/8

MalwareBytes ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0/8 0/8

McAfee ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0/8 0/8

Norton ✓ ✗* ✓ ✓ ✓ ✓ ✓ ✓ 1/8 1/8

Total 7/12 6/12 9/12 8/12 11/12 11/12 10/12 12/12 – –

Table 5: Analysis of executables based on common evading techniques (Quar.: quarantinedfiles, DR: detection rate, ⊗: includes

randomly generated files, ⋄: includes both binaries, i.e., Sliver and NimPlant, l : includes NimPlant binary, ★: illustrates the

binaries that were quarantined)

AV ChatGPT ChatGPT ⊗ Quar DR ODR

Free editions

Avast ✗ ✗ 0/2 2/2 11/16

AVG ✗ ✗ 0/2 2/2 11/16

Avira ✗* ✓ 1/2 1/2 8/16

MS Defender ✓ ✓ 0/2 0/2 3/16

Trial/Paid editions

Webroot ✓ ✓ 0/2 0/2 5/16

Eset ✗* ✓ 1/2 1/2 7/16

BitDefender ✗* ✓ 1/2 1/2 9/16

Kaspersky ✗* ✗* 2/2 2/2 8/16

Sophos ✓ ✓ 0/2 0/2 8/16

MalwareBytes ✓ ✓ 0/2 0/2 4/16

McAfee ✓ ✓ 0/2 0/2 2/16

Norton ✗* ✓ 1/2 1/2 8/16

Total 5/12 9/12 – – –

Table 6: ChatGPT and final comparison (Quar: quarantined

files, DR: detection rate, ⊗: including randomly generated

file, ★: illustrates the binaries that were quarantined). The

rightmost column presents the overall detection rate (ODR),

calculated as the sum of the corresponding DRs included in

Tables 4 to 6

.

use of common C2 servers, such as Sliver and NimPlant, can pro-

vide an advantage in the evasion process. Furthermore, incorporat-

ing a randomly generated file into the compiled executable demon-

strated a significant improvement in evasion rates against all AV/EDR

solutions. It should be noted here that the final executable that

managed to evade all twelve (12) AV solutions was developed with

Rust, employed AES-CTR encryption, included randomly gener-

ated files in the code, and checked whichAVwas running in the tar-

get system before initiating the process with the binary that could

evade detection by AV/EDR.

Regarding the use of randomly generated files, this technique

increased the size of each executable file to over 30-40 MB on av-

erage, which prevented a malicious file from being uploaded for

cloud analysis. Interestingly, Avast and AVG considered a C++ ex-

ecutable file suspicious if its size was less than 300 MB. To test this,

we created two different executable files, one with a size of 120

MB and the other with a size of 320 MB, to observe how these two

AV/EDR solutions would behave. When the first file was executed,

Avast and AVG blocked it as suspicious and attempted to upload it

to the cloud, while the second file executed normally. Furthermore,

if this executable file lacked the “Mark of the Web (MOTW)” flag,

Avast, AVG, and MS Defender did not block its execution. Over-

all, Avast and AVG marked almost all executable files as malicious,

possibly because they were not signed with a certificate. Neverthe-

less, an attacker could easily circumvent this by either signing the

file with a public certificate or using the popular DLL side-loading

technique.

The observation of the behavior of different AV solutions during

testing leads to some interesting remarks. With MS Defender, we

observed unusual behavior when executing the Meterpreter pro-

cess; more specifically, the process was flagged as malicious if we

attempted to execute commands immediately after receiving the

shell. To work around this, we waited a few minutes before ex-

ecuting commands, and the heuristic detection of MS Defender

was then unable to detect the maliciousMeterpreter process. Avira

and Kaspersky on the other hand, were able to quarantine any ini-

tially flagged malicious executable, achieving a 100% quarantine

rate. Other AV solutions could detect the malicious processes but
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EDR MSF Sliver NimPlant C++ C++ ⊗ C++ ⋄⊗ Go s Go Go ⊗ Rust Rust s Rust ⊗ Rust l⊗ Rust ⋄⊗ ChatGTP ChatGPT ⊗ Quar DR

Bitdefender ✗* ✗* ✓ ✗ ✗ ✗ ✓ ✗* ✗ ✓ ✓ ✓ ✗ ✓ ✗* ✓ 4/9 9/16

Sophos ✗* ✗* ✓ ✗ ✗ ✓ ✗* ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 3/9 9/16

ESET ✗* ✗ ✗* ✓ ✓ ✓ ✗* ✗* ✗* ✓ ✓ ✓ ✓ ✓ ✓ ✓ 5/6 6/16

MS 365 Defender ✗* ✗* ✓ ✓ ✓ ✓ ✓ ✗* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3/3 3/16

Results 0/4 0/4 3/4 2/4 2/4 3/4 2/4 1/4 1/4 3/4 3/4 3/4 3/4 4/4 3/4 4/4 – –

Table 7: EDR solutions evaluation (⊗: includes randomly generated file, ⋄: includes both binaries, i.e., Sliver and NimPlant, s:

denotes that this is the original executable found in the relevant public GitHub repository, l : includes the NimPlant binary,

★: illustrates the binaries that were quarantined)

failed to connect them back to the original executable, which left

the malicious file unquarantined and potentially harmful.Webroot

was the only AV solution that worked in collaborationwith MSDe-

fender, which may explain why their detection rates were similar.

Kaspersky had a unique behavior of asking the user to scan the

entire operating system every time a malicious file or process was

found, which could be quite burdensome for the user. However,

Kaspersky was the only AV solution that correctly detected and

stopped the malicious process of the ChatGPT executable. Finally,

when analyzing the ChatGPT executable with Avast or AVG, we

observed that as soon as the executable requested firewall access,

these AV solutions flagged it as malicious. This is an indication

that these free AVs may use generic methods to flag malicious files,

which could lead to false positives and flagging legitimate files as

malicious.

The last column of Table 6 provides a comprehensive overview

of the effectiveness of all AV solutions against the various malware

variants developed in this work. These results demonstrate that

42% of the AV solutions were found to detect less than 50% of the

malicious executables, four (33%) were able to detect exactly half

of the malicious executables, while the remaining three (25%) de-

tected more than half of the malicious executables. It is worth not-

ing here that none of the AVs detected all malicious executables,

whereas the best score was achieved by two free AVs and it was

equal to 11/16, i.e., 69% detection rate. On the paid AVs, the best

score achieved was 9/16, resulting in a detection rate of 56%. On

the other end, there were AVs scoring as low as 2, 3 and 4 out of

16, i.e., between 13 and 25%; furthermore, the detected executables

belonged exclusively to the original executables category, that is,

the topmost part of Table 3.

We found no disparity in the detection rates of AV and EDR

software from the same vendor. This suggests that EDR editions

provide the same level of protection as the relevant AVs and the

only additional features are of administrative nature, i.e., to aid in

the monitoring and management phases of an organization. Possi-

bly, to increase the detection rate of an EDR solution, this should

be properly configured, based on the needs of the relevant network

infrastructure.

6 CONCLUSIONS

Antivirus software is a key weapon in the quiver of defenders in

the never-ending fight against malware. This work investigates the

detection performance of popularAVproducts in finding malicious

pieces of code. Contrary to the existing literature, our main aim is

to assess this capacity in cases where the malware strain contains

legacy malicious code, but exploits uncommon evasion methods

to a greater or lesser extent. Altogether, with reference to Table 1,

we utilize seven malware evasion techniques, applying them ei-

ther individually or in tandem on 16 malware instances. Notably,

to the best of our knowledge, three of these techniques, namely

Junk data, Multiprocessing, and Chosen shellcode have not been

evaluated so far against standard commercial AV products. No less

important, we make an initial assessment regarding whether the

ChatGPT chatbot platform can be tricked into generating mali-

cious code that can slip through undetected. The obtained results

came largely as a surprise, showing that only two of theAV engines

(including EDRswhich revealed identical detection scores with the

AV product of the same vendor) were capable of detecting 11 out

of the 16 malware variants. This result suggests that the majority

of AVs may fail to detect legacy malware if it is concealed using

not-so-common or uncommon but still ordinary techniques, such

as encrypting the malware body, employing less popular program-

ming languages, adding junk (random) data in the executable, and

other similar methods. In this respect, AVs may provide an incor-

rect perception of security, not only lagging behind the latest and

zero-day threats but also behind inventive tricks and techniques

conjured by malware writers. Moreover, this study ends up with

a set of key observations regarding the behavior of particular AV

products when facing malware. For instance, while some AVs did

discern the malicious processes, they backfired, not isolating the

executable. A clear direction for futurework is to expand this study

by testing a richer repertoire of malware variants against a larger

set of antivirus engines.
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