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ABSTRACT

Increasing interdependencies between critical infrastructures and
digitization increase the vulnerability to cyber-attacks and cyber-
physical attacks. Incidents have multiple direct and indirect con-
sequences, including cascading effects, and a formal analysis is
strongly recommended to understand these effects. This paper
shows how threat identification and impact evaluation for interde-
pendent critical infrastructures can be supported by two existing
tools. The approach is illustrated with an example based on a run-
ning EU project.
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1 INTRODUCTION

Protection of Critical Infrastructures (Cls) is challenging for many
reasons. A CI consists of numerous cyber and physical components
that influence each other. CIs depend on one another and exchanges
goods and data [22]. Recent incidents [4, 15, 21] rose the aware-
ness of cyber-attacks and their impacts in both cyber and physical
domain [12].
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The analysis of threats to interconnected critical infrastructures
contains two major steps: identification of threats and evaluation of
these threats. Both can be supported by existing tools. ThreatGet is a
tool that allows a static threat identification [1]. Threat Propagation
Engine (TPE) [2] is a simulation framework that mimics how a
threat can propagate through interdependent Cls.

In this paper we show how these two tools can be combined to
identify and analyse threats in interconnected Cls. The approach is
illustrated through an example inspired by a pilot case in the EU
funded project PRAETORIAN [20].

2 RELATED WORK

Recent incidents increased the awareness of CI operators to cyber-
attacks and advanced attacks such as Advanced Persistent Threats
(APTs) [26]. Such incidents demonstrated the need for robust ap-
proaches for identifying, assessing, and mitigating cyber risks [7].
Currently, these tasks are often treated domain-specific [9]. The
ThreatGet tool can be utilized to identify cyber threats across vari-
ous scientific fields, including automotive, railways, Cyber-Physical
Systems (CPS), Internet-of-Things (IoT), and other domains [24].
In the course of PRAETORIAN it has been extended to also detect
physical threats.

Cyber and physical threats to critical infrastructures are dis-
cussed in multiple scientific contributions. Various attributes of
cyber attacks in CI are summarized in [17] and an applicable set of
protection mechanisms for mitigating these risks is provided. In ad-
dition, an analysis of the cyber vulnerabilities of Critical Energy In-
frastructures systems is presented in [19]. The authors highlighted
the different cyber vulnerabilities in critical energy infrastructures
where cyber-attacks occur.

Recent incidents have also demonstrated far-reaching conse-
quences of physical incidents [18], but also of cyber attacks such
as the Wannacry ransomware [5] and the NotPetya malware [8]
or targeted attacks [6]. The TPE allows estimation of impacts of
a cyber, physical or cyber-physical threat [23]. The simulation is
based on a probabilistic model of threat propagation [11] that com-
bines information from various operators and experts about the
local situation to get a holistic view. It is a generalization of a model
of malware spreading through a heterogeneous network [13].
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3 THREAT IDENTIFICATION

Due to the high complexity of interdependent CIs and the increasing
cyber threats, a formal threat identification process is crucial. In
this work, we use ThreatGet because it provides an innovative
rule-based approach for identifying cyber threats in system models.
ThreatGet is a threat modeling tool developed by the Austrian
Institute of Technology [1]. The tool uses a system model and
formal rules to identify security vulnerabilities that may result in
unforeseen negative consequences. It has been developed in the
context of automotive security.

Therefore, as part of our research activities in the PRAETORIAN
project [20], we have developed a catalog of components for the
CIs that encompasses a wide range of system components. These
components can be utilized to model different CI models. Each
component within the catalog is accompanied by a set of security
properties, which are defined as a collection of protection mecha-
nisms designed to address various cyber incidents.

The tool manipulates a threat database comprising a wide range
of cyber threats described in a dedicated language developed to
imitate the behavior of cyber incidents within the connected sys-
tem components. The threats are described as rules, which can be
utilized by ThreatGet’s rule engine to identify existing security
vulnerabilities in the system models. ThreatGet was mainly focused
on cyber threat investigation, but in the PRAETORIAN project, we
extended the capabilities of ThreatGet to include physical threat
investigations as well. Furthermore, we update and enhance this
database to ensure its relevance in addressing cyber and physical
threats related to CL

The rule engine of ThreatGet plays an essential role in the process
of identifying and analyzing threats. It applies all the rules defined in
its threat database to the given system model in order to identify any
potential cyber and physical threats that could propagate through
the system network. These rules assist in determining whether any
of the applied security properties for each system component or
connection could be violated as a result of cyber incidents.

In addition, ThreatGet automatically determines the severity
level of each identified threat and estimates the overall risk within
the model. The overall risk estimation highlights all security issues
that require more security concerns [24].

3.1 Model for Threat Identification

A model of a CI system using the ThreatGet catalog describes the
cyber and physical components, as well as the interconnections
between them. This paper uses a running example that describes
in detail a power plant and a hospital and some first responders on
a higher level, i.e,, as a single element, as shown in Figure 1.

The model describes the interconnections between physical and
cyber components in the power plant (upper part) and the hos-
pital (lower part). Physical components include an entrance Gate,
the Flood Gate that controls the water stream before passing the Dam
at the power plant and a Water Sensor at the hospital that detects a
possible rise of the water level. Cyber components include compo-
nents that manage and control the information flows between the
interconnected system parts within these premises. For example,
the IT System manages the patient records and stores any related
medical data. This component includes an asset called Sensitive Data
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Figure 1: ThreatGet model for power plant and hospital

(illustrated by the letter "A"). This asset represents a critical element
within our system model that requires more security attention. It
indicates that the IT System has classified data that could be prone
to any potential cyber risks. The next section shows the potential
cyber-physical threats identified by ThreatGet due to violation of
security properties.

3.2 Identified Threats

ThreatGet facilitates threat investigation to identify potential cy-
ber and physical threats within the system model that may target
specific component or assets. Each component and asset contains a
wide range of security properties describing protection mechanisms
for addressing cyber-physical incidents. ThreatGet determines po-
tential cyber-physical threats that violate any of these properties
and lead to any successful cyber-physical attacks. According to
the previously discussed CI network model, shown in Figure 1, the
tool identifies a set of cyber and physical threats. Table 1, shows a
selection of threats identified by ThreatGet.

As shown in Table 1, each threat has an impact on a specific
cyber or physical component within the system model by com-
promising one or more of its security properties. For instance, the
first threat, "Illegal processing of data," violates the authorization
mechanism of the hospital’s IT system, which could potentially
jeopardize the confidentiality of sensitive patient records stored
within that component. The sensitive data is considered a critical
asset; therefore, it is defined in Table 1 as an affected asset that
requires additional protection.

The threat "Vulnerability due to absence of backup for sensitive
data" is another cyber threat that can impact the IT system in the
hospital. This threat could be triggered if no defined data backup for
a hospital’s sensitive information, such as patient medical records.
Furthermore, a potential cyber attack on the hospital’s IT system
could lead to the loss of sensitive information and potentially to
the demand of a ransom.
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Table 1: Selected cyber and physical threats according to ThreatGet’s outcomes

Absence of Backup for Sensitive Data

# Threat Title Affected Components | Affected Assets | Violated Properties
1 | Illegal processing of data sensitive data Authorization

1 ility D
2 Vulnerability Due to IT System hospital —_ Data Backup

Unauthorized access to critical premises | Power Plant gate

Physical Access Control

2 | Damage Dam risk Dam

Physical Access Control

ThreatGet also identifies threats related to malicious physical
actions. The first threat in the Physical Threats category, "Unautho-
rized access to critical premises”, occurs when there is a violation
of the physical access control security property at the power plant
gate. That could lead to multiple consequences because an unau-
thorized person can enter a critical location like the power plant.
Another physical threat identified by ThreatGet is the "Damage
Dam risk," which compromises the physical access security control
of the dam.

4 THREAT EVALUATION

In this section we investigate the consequences of some of the
detected threats. For this we use a probabilistic model that esti-
mates the impact of an incident in a network, which is described in
the next section. While the threat identification requires qualita-
tive knowledge, i.e., a formal model of the infrastructure and rules
describing dangerous configurations, the simulation of effects is
based on a probabilistic model since precise predictions are hardly
possible in such a complex environment. Parametrization of the
model (i.e., estimation of the probabilities) is time-consuming be-
cause expert knowledge is needed, but involving domain experts is
crucial to build a model that is close to reality (and therefore useful).

4.1 Probabilistic Impact Estimation

At the core of the impact estimation is a graph model that de-
scribes the interdependnecies between the CIs, called interdepen-
dency graph. It models the different ClIs, or relevant components
of CIs, as nodes and the dependencies as directed edges. The direc-
tion of the edge corresponds to the direction in which the problem
propagates, i.e., an edge X — Y means that a problem in X may
affect Y. Interdependencies can be physical, e.g., all CIs need power
to operate smoothly, but also include exchange of information, e.g.,
if a control system is used to supervise physical processes.

The interdependency graph of the considered example that is
shown in Figure 2. It differs from the ThreatGet model in Figure 1
since it describes how a problem propagates in a network rather
than understanding how problems can occur. In particular, the
interdependency graph does not have assets (as the TheratGet
model). Instead, other elements like humans or logical objects can
be included in the model, if it is relevant for the scenario (e.g., in
case of a social engineering attack).

How much a node is affected by an incident is described through
a state. The state represents the functionality or availability of a

DD Security Center ccTv

2 @ N
. Transformer Station '

Dam Flood Gate Entrance Gate .
. . Frst Responders
Power Network

Water Sensor . .
. Emergency Power Supply’ Emergency Room

IT system . .

Intensive Care
Medical Data Hospital Management

Figure 2: Simulation Model for Threat Analysis

node (depending on the nature of the node) and is described through
an integer between 1 (best) and 5 (worst), where intermediate states
correspond to different degrees of impact.

The state of a node can change due to an incident. In the prop-
agation model [11] these changes are assumed to be probabilistic
since precise predictions are practically impossible in such a com-
plex network with a huge number of influencing factors (such as
weather, time of attack etc.). Formally, for each possible threat a
transition matrix describes the reaction of the node to this threat,
e.g., Tics shown below for 3 states.

0 2/3 1/3
Tics =0 1/2 1/2{.
0o 0 1

The i—th row gives the distribution of the next state if the node is
currently in state i, i.e., tj; is the probability that the node switches
from i to j due to the incident.

There are multiple ways to estimate the transition probabilities,
depending on the amount of data that is available [14].

This reaction of a node to the considered threats is called local
dynamics, since it describes the local reaction. The simulation trig-
gers one node by sending a threat message to it, If the node reacts
by changing its state, it sends a notification to all neighbours and
these may in term react to the problem of this node. With this it is
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possible to understand the global dynamics, including cascading
effects.

In the next section, we apply this simulation model to the con-
sidered example to analyse some of the identified threats.

4.2 Impact Estimation for Selected Threats

The threats identified in Table 1 are analysed in this section with
the simulation model described in the previous section. For our
analysis we use an implementation done by the Austrian Institute of
Technology [2] in course of the PRAETORIAN project. The current
implementation allows visualization of the graph on a map by
adding coordinates to the nodes. We refrain from doing so here
because such data is sensitive and the benefit of the tool can be
shown without coordinates.

For each threat, 100 simulations were run to estimate the impact.
The timeline of one example run is shown to demonstrate how the
network changes over time, and the consequences are described.
We also give some context to illustrate how such attacks could
happen. These descriptions are either based on existing reports and
on our imagination, so they do not necessarily represent any real
threats.

4.2.1  Manipulation of Control System. Attacks on Control Systems
occur these days in many sectors, including the energy sector [3, 16].
A simulation run for an attack on the power plant’s Industrial Con-
trol System (ICS) is shown in Figure 3. If the ICS of the power plant

Time Entity Name Event New State Because Of @

Manipulation of
Control

Manipulation of
Control

1 Generator

Tra
sta

2 Power Network ~ generator limited 2 Generator

2 Power Network

Tme — 3+

Figure 3: Simulation of manipulation of ICS

is manipulated, then it is possible that generator and transformer
station have problems due to the lack of control. In that case, power
generation might be limited, which may cause problems at the
hospital, in particular in the intensive care unit.

4.2.2  Unauthorized Drone. A drone is detected by a drone detec-
tion system (DD). A simulation run for this event is shown in
Figure 4. Employees check if this drone is allowed (e.g., for inspec-
tion [25]) or not. If it is considered malicious, the security center is
informed and potentially also the authorities because other CIs in
the area might also be target to an attack. Even though this event
does not spread very far in the interdependency graph, it marks
the security center of the power plant and the authorities alerted
(yellow to orange, depending on the level) and more attention is
given to possible subsequent events like an attempt to get access to
the power plant.
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Figure 4: Simulation of detection of a drone

4.2.3 Unauthorized Vehicle. A vehicle is checked at the entrance
gate. If it were unauthorized and still gets access to the power plant,
attackers could damage the dam. A simulation run of this attack is
shown in Figure 5. If the van is unauthorised and successfully passes

Time Entity Name. Event New State Because Of @

0 Entrance Gate  vehicle dotection 4

1 Flood Gate 4 Entrance Gate

flood gate
damaged

2 Dam 2 Flood Gate

flood gate:

2 Water Sensor
damaged

3 Flood Gate

Hospital

water lovel high 2 Water Sensor

water lovel high 2 Wator Sensor

Figure 5: Simulation of detection of a vehicle

the gate, it could damage the flood gate. This would cause a flooding
in the surrounding area. In the considered scenario, such a flooding
might affect a hospital (which is discovered by the water sensor
in the basement). Due to the high water level in the basement, the
emergency power supply might be disrupted. If the water sensor
notices a high water level, the hospital management is informed.

4.2.4 Ransomware Attack. In a situation like a flooding, attackers
may use the stressful situation to start a ransomware attack on the
IT system of the hospital. A simulation run is shown in Figure 6. If

Time Entity Name  Event New State Because Of )
0 T system Ransomware 3
1 Medical Data ~ Ransomware 4 IT system

Hospital

Ransomware 3 IT system
Management

Hospital
Management

2 authorities Ransomware 2

Time — 2 +

Figure 6: Simulation of ransomware attack on IT System

the ransomware attack is successful, attackers get access to sensitive
data (such as medical data from patients). Such an attack affects the
hospital management as working without access to patient data is
challenging. The management will have to inform authorities.
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Besides the concrete descriptions of individual simulations (as
shown in Figures 3 to Figure 6) it is also possible to learn from the
statistics of all simulation runs of the same scenario. The relative
frequency of the states, i.e., how often a node is affected how badly,
provides information on which nodes might need better protec-
tion. It is also possible to combine such an impact assessment with
resilience frameworks [10].

5 CONCLUSION AND FUTURE WORK

This paper proposes the combination of two existing tools to iden-
tify cyber and physical threats in CI networks and to estimate the
impact of these threats. The threat identification uses a database
of rules that describe possible threat scenarios and checks if these
rules apply for the current system. This enables a systematic threat
identification. The impact of the identified threats is assessed based
on a stochastic model that describes the possible direct and indirect
effects. Simulation of such effects allows identification of cascading
effects and provides estimates of the impact for each component. In
course of the PRAETORIAN project it became clear that especially
information about intra-CI effects is of interest to CI operators.
During demonstration activities, partner emphasized that early
warnings about potential threats due to cascading effects is crucial
to respond and reduce the impact on dependent ClIs. A holistic
overview on the consequences of an incident are also relevant for
decision makers on a municipality or regional level when preparing
against considered threats or attacks.

Future work includes the creation of new rules to detect cyber-
physical threats, as well as the analysis of larger networks. A de-
scription of how the ThreatGet and the TPE support the general
risk management process is in progress. It is also intended to im-
plement an interface between the two tools to simplify the joint
use in future projects.
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