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ABSTRACT
Intrusion detection systems (IDS) play a key role to assure security
properties of modern computer networks. IDS are often based on
machine and deep learning techniques; as such, IDS are vulnerable
to various forms of adversarial attacks. This paper presents an
initial case study on the robustness of machine learning for network
intrusion detection against adversarial attacks. Experiments are
based on a recent fix of the widely-used CICIDS2017 benchmark
dataset, two well-known machine learning techniques for intrusion
detection (i.e., deep autoencoders and decision trees), and the virtual
adversarial method (VAM) to generate the adversarial examples.
Based on the data and experiments at hand, the results providemany
interesting findings on the robustness of the IDS models assessed.
The autoencoder-based IDS is more robust to evasion rather than
overstimulation. On the contrary, the decision tree is vulnerable to
evasion; moreover, changes to the learning parameters can strongly
affect the robustness of the decision tree against the VAM attack.
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1 INTRODUCTION
The ever-increasing use of the Internet technologies, the diffusion
of IoT and mobile computing devices and the use of relatively “in-
secure” software have given an exponential boost to cyber attacks.
Terms such as Denial of Service (DoS), phishing, cyber frauds, iden-
tity theft, data exfiltration and ransomware have broken into our
everyday lives. Unfortunately, these phenomena are not just annoy-
ances, but they can lead to severe disruptions, negation of privacy
and huge monetary losses. As a matter of fact, protecting citizens
and businesses from cyber attacks has become an indispensable
goal for governments. The final solution to this problem requires a
diffused culture of security that currently is lacking (and it will be
lacking for many years in the future). People should be aware of the
risks and learn to protect credentials, passwords and devices; web
sites and data centers should be suitably configured and adopt only
secure software, just to mention a couple of issues. In the mean-
time, a viable solution is to protect current intrinsically-insecure
networks and systems from external intrusions.

In this context, the use of intrusion detection systems (IDS) plays
a key role. Commercial IDS solutions exist and are widely used;
however, they often are just palliatives, due to the high volume
of attacks and the continuous exploitation of just-discovered vul-
nerabilities in hardware and software (0-day exploits). At the state
of the art, the use of machine learning (ML) and deep learning
(DL) for intrusion detection is an active research field [12]. Many
ML(DL)-based IDS proposals in the literature can attain very high
recognition rates of attacks, at least on the reference datasets com-
monly used as benchmarks [32]; unfortunately, they seem to be not
equally effective on real-world network traffic [1, 5, 39]. Moreover,
ML(DL)-based IDS can be rather “fooled out” by adversarial exam-
ples, which are obtained by applying imperceivable perturbations
to the legitimate input [10, 15, 37].

This paper presents an initial case study on the robustness of
machine learning against adversarial attacks in network intrusion
detection. For instance, in the context of IDS adversarial attacks
aim to cause evasion, i.e., intrusion patterns going undetected, or
overstimulation, i.e., patterns that generate many false alerts. The
case study is based on twowell-knownmachine learning techniques
for intrusion detection, i.e., deep autoencoders and decision trees,
and the virtual adversarial method (VAM), which is used to generate
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the adversarial examples. We use normal and DoS flow records1

from a recent fix of the widely-used CICIDS2017 public intrusion
detection dataset. The flow records are used to obtain different IDS
models, at first; VAM is used to perturb the values associated with
the flow records in order to implement a feature-level attack against
the IDS models.

The results provide many interesting findings on the robustness
of the IDS models, which are comprehensively assessed by the
typical metrics of of recall (R), precision (P), F-score, false positive
rate (FPR) and accuracy (A). We found out that the autoencoder-
based IDS is more robust to evasion rather than overstimulation.
On the contrary, the decision tree is much more vulnerable to
evasion; moreover, changes to the learning parameters can strongly
affect the robustness of the decision tree against the VAM attack.
While this study should be contextualized with respect to the data
and experiments at hand, we made sure to base our findings on
both a semi-supervised (autoencoder) and a supervised (decision
tree) learning technique, independent data splits to separate the
generation of the IDS models from the adversarial examples, and
several parameterization of both the IDSmodels and the VAM attack
in order to mitigate the threats to validity of our study.

The rest of the paper is organized as follows. Sect. 2 presents
related work in the area. Sect. 3 summarizes the dataset and tech-
niques adopted. Sect. 4 describes the generation of the IDS models.
Sect. 5 discusses the adversarial examples and the results on the
robustness of the models assessed. Sect. 6 concludes the work.

2 RELATEDWORK
Machine learning for intrusion detection. The recent trends
in security research have shown that machine learning and deep
learning are highly relevant to network traffic classification. These
techniques are often proposed as part of IDS frameworks and ap-
plications using different classification models, such as support
vector machines (SVM), decision trees (DT), k-nearest neighbors
(KNN), and artificial neural networks (ANN) [38]. In general, all
these techniques can handle large and multi-dimensional data by
automatically reducing the complexity of network traffic. An ever-
growing community of researchers and practitioners leverages
public intrusion datasets, such as UNSW-NB15 [23], NDSec-1 2016
[2], and CICIDS2017 [34], to design, evaluate and compare novel
IDS. In these collections of data, each record typically pertains to a
network flow and the label states whether it is an attack or not. It
is a fact that machine and deep learning techniques populate much
of the intrusion detection literature [42].

The state-of-the-art on network intrusion detection systems
shows the potential of autoencoders for the development of high-
performance models. In general, there are two ways to leverage the
autoencoders for intrusion detection. One possibility is to use them
for dimensionality reduction and then use well-known classifiers in
order to pinpoint the attacks, such as [19] and [40]. It is worth noting
that autoencoders were first developed as nonlinear extension of
the standard linear principal component analysis (PCA) in order to
perform dimensionality reduction [18]. The second way of using an

1A flow record – often informally called network flow – holds the values of categorical
and numeric features that provide context data and summary statistics computed from
the packets pertaining to a network flow between a source computer and a destination
across a network.

autoencoder, instead, is to train it so as to encode and reconstruct
the normal traffic. In this context, any deviation from the “normal"
traffic behavior allows us to recognize attack points [27]: this is
the solution adopted by the autoencoders considered in this work.
There are many studies in the literature that use the autoencoders
for anomaly detection. For example, in [7] is presented a cross-
device method, which allows learning a single IDS model (in lieu of
many separatemodels) atop the traffic of different Internet of Things
(IoT) devices. In [20] the authors propose Kitsune, an autoencoder-
based technique for online attack detection. The core algorithm of
the technique is KitNet, which uses a collection of autoencoders to
distinguish between normal and attack traffic. Experimental results
show the potential of Kitsune to identify different classes of attacks.
In [41], the authors show an effective deep learning method, namely
autoencoder-IDS (AE-IDS), based on the random forest algorithm.
The main innovation of the approach lies in the combination of 3-
layer shallow autoencoders and traditional unsupervised machine
learning clustering algorithm. The approach is evaluated by means
of the CSE-CIC-IDS2018 dataset. In [25] is proposed a framework for
detecting and explaining anomalies in network traffic. The authors
leverage a variational autoencoder in order to detect anomalies.
The validity of the proposal is demonstrated on the University of
Granada (UGR) dataset. A complete analysis of autoencoders for
network intrusion detection is reported in [36].

Adversarial attacks in intrusion detection.Machine learning,
although useful to tackle the growing number and increasing so-
phistication of attacks, is highly susceptible to adversarial examples
[37]. Adversarial attacks are specific kinds of attacks, which aim to
induce machine and deep learning models to produce wrong classi-
fications. This definition of adversarial attack was first introduced
and studied in the image classification domain by Goodfellow et al.
[37]. In fact, most of the adversarial machine learning research so
far has focused on image and object recognition domains. There are
many adversarial attack methods in the literature, such as the Fast
Gradient Sign Method (FGSM) [14], the Jacobian-based Saliency
Map Attack (JSMA) [30], Deepfool [22], and the Carlini Wagner
(CW) [4]. All of these algorithms heavily rely on the knowledge
of the model under attack. Therefore, it would be reasonable to
consider adversarial attacks as infeasible in intrusion detection sce-
narios, since most of the time attackers have little or no knowledge
of the machine learning algorithms adopted for the intrusion de-
tection task. However, the authors in [28, 29] highlight the concept
of transferability, in that the adversarial examples, generated for
a given model, may retain their ability to cause misclassification
when submitted to a different model.

Recent work on adversarial attacks from a security perspective
can be found in [11], [33] and [17]. Countermeasures to poisoning
attacks have also been proposed. These are based on data saniti-
zation (i.e., a form of outlier detection) [24] and multiple classifier
systems [3]. The authors in [35] show the perspective of real enter-
prises about adversarial attacks. They state that modern organiza-
tions are aware of these problems, but do not consider adversarial
attacks as a top-priority because there are no defensive mechanisms
that are truly effective in real environments. The interested reader
is referred to the survey by He et al. [15] for a complete taxonomy
of adversarial machine learning for network intrusion detection
systems.
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Table 1: Total records and number of normal/attack records
by data split used in our study.

total (records by type)
data split records normal attack
IDS_TRAINING 190,516 123,825 66,691
IDS_VALIDATION 36,696 23,755 12,941
IDS_TEST 36,870 24,045 12,825
ADV_TRAINING 190,729 123,994 66,735
ADV_BASELINE 9,170 2,925 6,245
total 463,981 298,544 165,437

3 DATASET AND TECHNIQUES
In this section we describe the reference dataset, the techniques
used to obtain the IDS models and the adversarial attack.

3.1 Dataset: CICIDS2017 (2021 update)
The dataset considered for the following experiments is CICIDS2017,
produced by the Canadian Institute for Cybersecurity [34]. The
dataset is provided both as a set of pcap files and bidirectional
labeled flow records (csv files). In the latter format, the records
were obtained by CICFlowMeter2 and consist of categorical and
numeric features computed from the packets exchanged between a
source computer and a destination across a network. More recently,
the authors of [13] provided an update of CICFlowMeter aiming
to fix some major issues pertaining to the termination of TCP flows
– leading to fragments of incorrectly truncated flows in the original
dataset – and an updated release of the CICIDS2017 dataset3, release
which is the one used in the following experiments.

CICFlowMeter generates records made of 83 features, such as
source-destination IP address and port, duration, number and length
of packets, flag counts, min, max, mean, and standard deviation of
the packet inter-arrival times. Thus, each record has a fixed-length
of 83 values plus a class label, which states if it is an attack or not.
CICIDS2017 consists of normal and attack flow records. Records
were collected through a five-day capture campaign from July 3,
2017 to July 7, 2017 and made available in day-by-day csv files
(ranging from monday.csv to friday.csv).

Our study is based on 463,981 normal and DoS attack flow
records belonging to the wednesday.csv file of the CICIDS2017
collection. DoS attacks are a relevant case study due to their ever-
increasing spread and volume, also in the form of Economic Denial
of Sustainability (EDoS), i.e., a new security and economic threat to
cloud computing [8]. For the purposes of this study the flow records
are arranged into five disjoint data splits – serving different steps
of the experiments presented below – listed in Table 1 along with
their size. Splits are obtained through a stratified random sampling
approach with no replacement from the wednesday.csv file. DoS
attacks addressed by the study are GoldenEye, Hulk, Slowhttptest
and Slowloris. It is worth noting that we remove non-relevant
and biasing features (i.e., id and timestamp of the records, source
IP address and port, destination IP address and port) before the
experiments; removal leads to the use of 77 out of 83 features (label
excluded).

2https://github.com/ahlashkari/CICFlowMeter
3https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html

Figure 1: Representation of an autoencoder.

3.2 IDS Techniques
3.2.1 Autoencoder. The first intrusion detection method con-
sidered in this study is based on use of an autoencoder (AE).
Autoencoders are a class of feedforward neural networks designed
to reconstruct the input data point at the output layer. The archi-
tecture of an AE consists of input, output and one (more) hidden
layer(s). Typically, the input layer has the same length as the output
layer. The middle (hidden) layer of an autoencoder is also known
as the bottleneck layer and its dimension is lower than the in-
put/output layer. The layers that come before the bottleneck make
up the encoder, while the layers that come after the bottleneck
make up the decoder. When multiple hidden layers are added to
provide depth, the resulting neural network is known as deep or
stacked autoencoder. Figure 1 shows the representation of an
autoencoder with three hidden layers. In the following experiments,
an autoencoder is fed with n-dimensional points x= [𝑥1,𝑥2,...,𝑥𝑛],
where x is a vector of n real numbers, such as a flow record rep-
resenting network traffic for the dataset used in the experiments.
The encoder transforms x into y, i.e., a lower dimensionality rep-
resentation of x at the bottleneck. On the other hand, the decoder
transforms y into an n-dimensional point z=[𝑧1,𝑧2,...,𝑧𝑛]. Encoding–
decoding formulas are given in Eq. (1). They represent the case of
an autoencoder with only one hidden layer:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) 𝑧 = 𝜎′ (𝑊 ′𝑦 + 𝑏′) (1)

where W, W’, b and b’ are appropriate – obtained after training
– weight matrices and bias vectors; 𝜎 and 𝜎′ are element-wise
activation functions.

The quality of the reconstruction is measured by the reconstruc-
tion error (RE), i.e., the difference between the reconstructed, i.e.,
z, and the original version of the input, i.e., x:

𝑅𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑧𝑖 − 𝑥𝑖 )2 (2)

where 𝑧𝑖 and 𝑥𝑖 (with 1≤𝑖≤n) denote the components of the output
and input vectors, and 𝑛 is the dimensionality. It is worth noting
that z is also known as the reconstruction of x.

IDS approach. In general, an autoencoder is trained with the
data points contained in a training set. Each point x of the training
set is fed to the autoencoder, and weight matrices and bias vectors
are progressively adjusted in order to minimize the difference be-
tween x and its reconstruction z. After training, the autoencoder

https://github.com/ahlashkari/CICFlowMeter
https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html
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will reconstruct accurately, i.e., with low RE, future points “sim-
ilar” to those used for training. Based on this principle, in order
to pursue an IDS approach, we build up an autoencoder and we
train it solely by means of normal data points, i.e., flow records
related to traffic collected under “normal” network operations; after
training, the autoencoder can identify any instance not conforming
to the model as a potential intrusion. Therefore, a properly trained
autoencoder is able to correctly reconstruct normal data points
with low RE (good reconstructions), while it will generate high RE
(bad reconstructions) for data points corresponding to intrusions.

The above approach assumes that the training data has labeled
instances only for the normal class and falls within the larger scope
of semi-supervised anomaly detection [9]. In order to discriminate
normal and intrusion records we apply a cut-off detection thresh-
old to the RE. In particular, we set the detection threshold in a
semi-supervised manner. The threshold is computed through a
small (i.e., 10%) disjoint subset of the training set, which we call
the threshold set. An outlier detection algorithm is applied to the
threshold set in order to discriminate inliers from outliers. Inliers
and outliers are fed to the autoencoder by generating two separate
vectors of reconstruction errors, i.e., inliers and outliers, respec-
tively. The threshold is set to obtain an optimal balance between
inliers and outliers, i.e., inliers whose RE is below the threshold
against outliers characterized by a RE above the threshold. The
interested reader is referred to [6] for the details of the threshold
selection method.

3.2.2 Decision Tree. The second technique considered in this
paper is the decision tree (DT). The decision tree is a popular
machine learning algorithm widely-used for both classification and
regression problems. In the context of a classification problem, a
decision tree is a tree-like structure where each node is a predicate
tested on a feature, each link is a decision, and each leaf is an
outcome. The goal is to learn simple decision rules from the data
to create a model that predicts the value of a target variable. Given
a dataset, a decision tree groups and labels data points that are
similar between them, and searches for the best rules that split the
data points that are dissimilar until the splits reach a given degree
of similarity. In general, the main goal of a decision tree is to find
the best splits between nodes that optimally classify data points
into the correct categories. Therefore, the whole process can be
represented in a tree-like structure, and the model generated can
be summarized as a set of “if–then" rules. In its simplest form, a
decision tree is identified by three types of nodes: root node, which
is the beginning of the tree; internal node, which is a sub-node that
might be further split into additional sub-nodes; leaf node, which is
a sub-node that cannot be split into further additional sub-node and
represents a possible outcome. The number of levels, not including
the root node, defines the depth of a tree. The majority of decision
trees deal with the classification problem, which is also the primary
concern of this study.

IDS approach. The optimal training of a decision tree is an NP-
hard problem. Therefore, training is generally done using heuris-
tics that lead to a non-optimal, but close to optimal, decision tree
[16]. During training, the decision tree starts at the root node and
distributes the training set along the internal nodes. This process
continues as a loop and is repeated at each internal node until all the

leaves are in the proper order. The result is that the features at every
leaf node are from the same class. The specific tree-like structure
that is learned from the training set depends on user-supplied hyper-
parameters, which drive the creation of the predicates (i.e., nodes)
meant to classify a given input data point – network flow record
in this study – connections and depth of the tree. Typical hyper-
parameters are max_depth, which regulates the length of the path
from the root to the furthest leaf of the tree; and min_samples_leaf,
which indicates the minimum number of data points to be collected
at a leaf during the training phase. Based on these core principles,
in order to pursue an IDS, we set up and train a decision tree with
a root node, where the input data points are passed through. There-
fore, to classify a data point, one starts at the root of the decision
tree and follows the branch indicated by the outcome of each test
until a leaf node is reached. The name of the class at the leaf node is
the resulting classification (i.e., normal or attack in our case study).
It should be noted that the decision tree is a supervised classifica-
tion technique. At training time it requires both normal and attack
data points, and the availability of the labels in order to infer the
decision predicates.

3.3 VAM
This study is based on the virtual adversarial method (VAM), i.e.,
a perturbation method based on virtual adversarial training [21].
Given the classifier to be attacked and an original example 𝑥 , VAM
produces the adversarial example 𝑥𝑎𝑑𝑣 = 𝑥 + 𝑒𝑝𝑠 · 𝑑 , where 𝑑
maximizes the Kullback-Leibler divergence 𝐾𝐿[𝐹 (𝑥) | |𝐹 (𝑥 + 𝑑)] as
in [26]. It should be noted that F(x) are class probabilities, which are
typically returned by the softmax function applied to the classifier
logits 𝑍 (𝑥), i.e., 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑍 (𝑥)), with 𝑍 : 𝜒 → R𝐾 (where 𝜒 is the
space of the inputs and 𝐾 the number of the classes). VAM does not
require too much information (e.g., loss function or the decision
boundaries of the classifier) to be applied; as such, it is particularly
suitable in intrusion detection because attackers have scarce or no
information regarding the target IDS .

The Kullback-Leibler divergence is usually applied on two statis-
tical distributions in order to evaluate the amount of information
lost when the first distribution is approximated with the second.
It is worth noting that VAM was originally meant to support the
training phases of a given model in order to avoid overfitting [21].
By introducing VAM examples in the training dataset, it is possible
to make the model more flexible and resilient to potential data and
concept drift. This assumption can be leveraged in adversarial con-
texts. In fact, an altered example crafted to cause an information
loss – submitted to a ML model – may cause it to respond in an
unexpected way, possibly causing a misclassification.

VAM is implemented here by means of the cleverhans (version
2.1.0) python library, which uses an iterative approach. Iterations
are controlled by the num_iterations parameter. At each iteration,
the perturbation is scaled by the xi parameter and then summed
to the original example in order to obtain the logits of the altered
example and the KL metric. The final operation consists of the
computation of the gradient of the KL metric with respect to the
perturbation. At the end of the iterations, the perturbation is scaled
by the eps parameter before being added to the original example 𝑥
in order to generate 𝑥𝑎𝑑𝑣 .
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Table 2: Performance of the IDS models (measured with IDS_TEST).

conf. parameters R P F-score FPR A
AE_1 bottleneck = 9 epochs = 120 batch size = 1,280 0.974 0.980 0.977 0.011 0.984

autoencoder AE_2 bottleneck = 8 epochs = 120 batch size = 1,024 0.959 0.984 0.971 0.008 0.980
AE_3 bottleneck = 8 epochs = 90 batch size = 1,024 0.956 0.986 0.971 0.007 0.980
DT_1 min_samples_leaf = 100 0.997 0.999 0.998 0.000 0.999

decision tree DT_2 min_samples_leaf = 200 0.995 0.994 0.995 0.003 0.996
DT_3 min_samples_leaf = 250 0.991 0.996 0.994 0.002 0.996

3.4 Evaluation Metrics
Given an IDS model obtained by applying the techniques above,
the performance at detecting normal and attack records in a dataset
is measured by the typical metrics of recall (R), precision (P), F-score,
false positive rate (FPR) and accuracy (A). The metrics are computed
as follows:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 F-score = 2 · 𝑃 · 𝑅
𝑃 + 𝑅

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 𝐴 =
𝑇𝑁 +𝑇𝑃

𝑇𝑁 + 𝐹𝑃 +𝑇𝑃 + 𝐹𝑁

where True Positive (TP) and True Negative (TN) represent the
number of records that are correctly classified by the IDS, while
False Positives (FP) and False Negatives (FN) indicate the misclas-
sifications. For example, TP is the number of attack records that
are deemed attacks by the IDS; on the other hand, TN are normal
records that are deemed normal by the IDS.

4 IDS MODELS
Setting up and training either a machine or deep learning IDS
is a complex matter and it requires establishing a large number
of parameters. As for the autoencoder, it entails the number of
hidden layers, neurons per layer, size of the bottleneck, activation
functions and optimizer (just to mention a few); on the other hand,
the decision tree is intertwined with two major parameters, i.e., the
maximum depth of the tree (max_depth) and the minimum number
of records to be at a leaf node (min_samples_leaf). We implemented
the experiments in python by using the ubiquitous Keras (version
2.4.1), tensorflow (version 2.3.0rc0) and scikit-learn (version 0.23.1)
for the autoencoder and the decision tree, respectively.

4.1 Parameterization and Training
As in any typical machine learning experiment, for both the autoen-
coder and the decision tree we set an initial mixture of parameters
and then train the model with the IDS_TRAINING data split (listed
in Table 1 as the splits below). After training, the “goodness” of the
model obtained, parameters and overfitting issues are validatedwith
IDS_VALIDATION: if the model is not satisfactory, the parameters
are adjusted and training is done again until a suitable configura-
tion is found. At the end of the procedure we found out a suitable
autoencoder whose main parameters are: five layers (made of 77,
48, 8, 48, 77 neurons, respectively), the rectified linear unit (ReLU)
activation function for all the layers except of the output layer
(using the hyperbolic tangent), the root mean squared propagation
optimizer, the mean squared error loss function (which matches

the notion of reconstruction error of the autoencoder), 120 epochs
and batch size equal to 1,024. As for the decision tree, we choose
max_depth = 10 and min_samples_leaf = 200. It is worth noting
that IDS_TEST plays no role at all during training and validation.

4.2 Evaluation
Table 2 shows the performance of different IDSmodels on IDS_TEST,
i.e., the data split that provides normal and attack records “held out”
from training and validation. The models with the above-mentioned
parameters obtained after training are AE_2 (autoencoder) and
DT_2 (decision tree). For the sake of completeness, we opt to explore
also a few combinations of parameters around AE_2 and DT_2 to
make sure our findings do not depend – by chance – on the outcome
of a single IDS model. These lead to the models AE_1, AE_3, DT_1
and DT_3 in Table 2. Overall, the values of the metrics indicate
that all the models are extremely satisfactory; however, the specific
configuration of the parameters underlie a tradeoff in the metrics.
For example, augmenting the bottleneck of the autoencoder by
1 neuron and increasing the batch size to 1,280 (AE_1) allows to
improve the R from 0.959 to 0.974 compared to AE_2; however, the
improvement of R makes the FPR worse in AE_1 with respect to
AE_2. Similar considerations hold for the decision tree, which tends
to overfit the data when min_sample_leaf is too low, as in DT_1
(FPR=0.000). Other negligible changes can be noted in Table 2. For
example, P increases from 0.984 to 0.986 between AE_2 and AE_3;
R decreases from 0.997 to 0.995 between DT_1 and DT_2.

Reasoning on the improvement or deterioration of the metrics
as affected by the parameters is beyond the scope of this paper.
These phenomena are partially known in the literature, such as
the overfitting issues. Here we aim to observe that changes of the
parameters – negligible for the legitimate examples – can strongly
compromise the ability of an IDS to tolerate adversarial examples.

5 ROBUSTNESS ASSESSMENT
We generate the adversarial examples by a transfer-based approach.
Transfer-based approaches rely on the use of a surrogate model:
(i) at first, the adversarial attack – VAM in this study – is run
against the surrogate model in order to generate the adversarial
examples, and (ii) the adversarial examples obtained are fed to the
actual model(s) to be attacked. Transfer-based attacks capitalize
on the transferability of adversarial examples [28, 29] to the actual
model(s) to be attacked. This step leverages ADV_TRAINING and
ADV_BASELINE (listed in Table 1) to ensure that the adversarial
examples are based on flow records independent of those used for
the models in Sect. 4.



ARES 2023, August 29–September 01, 2023, Benevento, Italy M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

5.1 Adversarial Examples Generation
The surrogate model consists of a typical feedforward neural net-
work of eight fully-connected layers, i.e., six made of 77 neurons
and two made of 2 neurons. The surrogate model is trained with
the ADV_TRAINING data split. The input layer (77 neurons) maps
to the features adopted; the output layer (2 neurons) implements
a softmax function that produces the class probabilities to be con-
verted to a binary outcome (i.e., normal or attack). Other relevant
parameters include the use of the ReLU in most of the hidden layers
and other learning facets, such as epochs (5), batch size (128), opti-
mizer (adam) and loss function (softmax cross entropy with logits).
The ADV_BASELINE data split provides a set of legitimate points to
be perturbed. For each point 𝑥 in ADV_BASELINE, VAM computes
𝐹 (𝑥) on the surrogate model and generates the adversarial example
𝑥𝑎𝑑𝑣 according to the procedure described in Sect. 3.3.

We generate 12 sets of adversarial examples by varying the pa-
rameters of VAM, i.e., eps, xi and num_iterations; the sets are named
from VAM_1 to VAM_12. Table 3 shows the accuracy of the surro-
gate model with respect to each set and the corresponding values
of the parameters. It should be noted that the parameterizations
are sorted by increasing accuracy: the lower the accuracy of the
surrogate, the higher the strength of the attack. Figure 2 aims to
provide a visual understanding on the effect of the parameters. Fig-
ure 2a (accuracies obtained with xi=0.1) indicates that the largest
drop of accuracy is obtained when eps varies from 0.1 to 0.5; the
accuracy is less impacted by num_iterations, given a value of eps.
On the other hand, according to Figure 2b (accuracies obtained with
eps=0.1), an increasing value of xi causes the accuracy to increase
when num_iterations is higher than 1. It is interesting to note that
different combinations of the parameters might lead to similar accu-
racy on the surrogate model; moreover, the combinations in Table 3
are enough to elicit a significant spectrum of accuracies – strength
of the adversarial attack – that range from 0.530 to 0.900.

5.2 Results
Each VAM_i set (with i=1, 2, ..., 12) is fed to the IDS models of Sect.
4 in order to gain insight into the robustness against adversarial
examples. Just to mention a few examples, when tested with VAM_1
– accuracy on the surrogate model equals to 0.530 – AE_1 achieves

Table 3: Accuracy of the surrogate model with respect to
different parameterizations of VAM.

conf. eps xi num accuracy
iterations (surrogate)

VAM_1 0.7 0.1 15 0.530
VAM_2 0.7 0.1 1 0.557
VAM_3 0.5 0.1 15 0.560
VAM_4 0.7 0.1 10 0.574
VAM_5 0.5 0.1 1 0.589
VAM_6 0.5 0.1 10 0.603
VAM_7 0.1 0.5 1 0.694
VAM_8 0.1 0.1 1 0.719
VAM_9 0.1 0.1 15 0.720
VAM_10 0.1 0.1 10 0.764
VAM_11 0.1 0.5 15 0.839
VAM_12 0.1 0.5 10 0.900

(a) xi = 0.1 (eps and num_iterations
vary).

(b) eps = 0.1 (xi and num_iterations
vary).

Figure 2: Accuracy of the surrogate model by value of xi and
eps with respect to num_iterations.

R=0.997, P=0.824, F-score=0.902, FPR=0.455 and A=0.853, while
DT_1 achieves R=0.064, P=0.518, F-score=0.114, FPR=0.127 and
A=0.322. We collect the value of the metrics for all the 12 VAM_i
sets and the 6 IDS models (i.e., 12×6=72 combinations).

R, P and FPR are arranged into the plots in Figure 3 for the sake
of a better interpretation. The x-axis is the accuracy of the surrogate
model corresponding to a given VAM_i set (i.e, one of the values
shown in the rightmost column of Table 3); the y-axis reports R, P
and FPR obtained by the model under-test on that VAM_i set. For
example, the leftmost points of the •, △ and ×-marked data series
in Figure 3a correspond to (0.530,0.997), (0.530,0.824) and (0.530,
0.455), i.e., the above-mentioned example with VAM_1 and AE_1.
It is worth noting that the strength of the VAM attack decreases as
we move from the left to right of each plot in Figure 3.

The plots reveal many interesting findings, which hold with
respect to the VAM attack and IDS models at hand (i.e, autoencoder
and decision tree).

Robustness and parameters of the IDS models. The metrics
of the autoencoder-based IDS behave similarly across AE_1, AE_2
and AE_3 (i.e., Figure 3a, 3b and 3c): R is high for all the cases; on
the other hand, P and FPR improve as the accuracy of the surrogate
improves. The IDS models based on the decision tree show quite
diverse behavior depending on the configuration DT_1, DT_2 and
DT_3 (i.e., Figure 3d, 3e and 3f): this is especially true for R. Overall,
changes to the model parameters – negligible on the legitimate ex-
amples (Table 2) – can strongly affect the robustness to adversarial
examples in a supervised approach, such as the decision tree.

Robustness and parameters of the adversarial attack. As
said above, different combinations of eps, xi and num_iterations
may lead to similar accuracy of the surrogate model. For example,
eps=0.7, xi=0.1 and num_iterations=1 cause 0.557 accuracy (surro-
gate); a similar accuracy can be obtained by lowering eps to 0.5 and
setting num_iterations=15. Notwithstanding the similar accuracy
of the surrogate, the IDS models may react differently. This can
be clearly noted for both FPR (autoencoders) and R (decision tree),
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(a) AE_1. (b) AE_2. (c) AE_3.

(d) DT_1. (e) DT_2. (f) DT_3.

Figure 3: Recall (R), precision (P) and false positive rate (FPR) of the IDS models against the adversarial examples with respect
to the accuracy of the surrogate model.

which fluctuate strongly over contiguous values of accuracies. For
example, in DT_2 R goes from 0.370 to 0.702 when the accuracy
(surrogate) goes from 0.530 (VAM_1) to 0.557 (VAM_2); however,
R goes back to 0.464 when accuracy (surrogate) increases by just
0.003, i.e., 0.570 (VAM_3). The specific parameters of VAM impact
the effectiveness of the attack.

Robustness to overstimulation. Overstimulation pertains to
patterns that aim to generate false IDS alerts [10]. A high-level
inspection of the FPRs in Figure 3 may suggest that the autoencoder
is vulnerable – high FPR – to overstimulation when the accuracy
(surrogate) is ≤ 0.603, which corresponds to VAM_6; FPR improves
sharply (e.g., it drops from 0.334 to 0.020 in AE_3) when the accuracy
(surrogate) is >0.603. The decision tree seems less vulnerable to
overstimulation. It is worth noting that a high FPR may underlie
the fact the perturbation was strong enough to make a normal
example to switch from the normal to the attack class. In this
respect, the autoencoder “genuinely” fails at not raising false alerts.

This hypothesis is supported by the fact that the highest FPR are
noted with strong parameterizations of VAM (i.e, VAM_j with j≤6).

Robustness to evasion. Evasion pertains to an intrusion pat-
tern that is modified so that an IDS will not be able to detect it [10].
According to Figure 3, the autoencoder is robust to evasion attempts.
In fact, the R of AE_1, AE_2 and AE_3 is high for all the accuracies
of the surrogate model, which means that it is unlikely that an
intrusion pattern is misclassified as normal after the perturbation.
On the contrary, the decision trees show quite diverse responses
to evasion. For example, DT_1, DT_3 are strongly vulnerable to
evasion; better results are noted in DT_2, which can tolerate eva-
sion attempts for “weak” parameterizations of VAM, e.g., accuracy
(surrogate) equal to 0.839 or 0.900 (rightmost two points of Figure
3e). It is interesting to note that DT_2 is an intermediate parame-
terization of the decision tree (i.e., not too over- or under-fitted on
the legitimate data), which may suggest the existence of a trade-off
between the generalization of an IDS model and its robustness to
adversarial examples.
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6 CONCLUSION
IDS play a key role to protect networks and systems from intrusions.
Even though ML(DL)-based IDS can attain high detection perfor-
mance, they can be fooled out by adversarial examples, obtained by
small perturbations applied to the legitimate input. In this paper we
studied the robustness of two well-known machine learning tech-
niques for intrusion detection, i.e., deep autoencoders and decision
trees, subject to adversarial examples obtained by VAM. The results
obtained highlight the strength and weakness of each technique,
pointing also out the relevance of their configuration parameters
as far as the robustness to adversarial attacks is concerned. A po-
tential limitation of this study consists in the use of a feature-level
approach to generate the adversarial examples and their mapping
back to the real network traffic, which surely requires a deep explo-
ration of the relationship between feature space and problem space
[31]. In this respect, we are aware that the case study presented
here is just a first step to a complete understanding of the robust-
ness issues of machine learning-based IDS. Our future work will be
devoted to fully explore these topics, considering further machine
learning methods under a more complete spectrum of techniques
for generating adversarial examples.

REFERENCES
[1] G. Apruzzese, L. Pajola, and M. Conti. 2022. The Cross-Evaluation of Machine

Learning-Based Network Intrusion Detection Systems. IEEE Transactions on
Network and Service Management 19, 4 (2022), 5152–5169.

[2] F. Beer and U. Buehler. 2017. Feature selection for flow-based intrusion detection
using rough set theory. In Proc. International Conference on Networking, Sensing
and Control. IEEE, 617–624.

[3] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli. 2011. Bagging Classifiers
for Fighting Poisoning Attacks in Adversarial Classification Tasks. In Multiple
Classifier Systems, C. Sansone, J. Kittler, and F. Roli (Eds.). Springer, 350–359.

[4] N. Carlini and D. Wagner. 2017. Towards Evaluating the Robustness of Neural
Networks. In Proc. Symposium on Security and Privacy. IEEE, 39–57.

[5] M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano. 2022. Transferability of
machine learning models learned from public intrusion detection datasets: the
CICIDS2017 case study. Software Quality Journal 30 (2022), 955–981.

[6] M. Catillo, A. Pecchia, and U. Villano. 2023. CPS-GUARD: Intrusion detection for
cyber-physical systems and IoT devices using outlier-aware deep autoencoders.
Computers & Security 129 (2023), 103210.

[7] M. Catillo, A. Pecchia, and U. Villano. 2023. A Deep Learning Method for Light-
weight and Cross-Device IoT Botnet Detection. Applied Sciences 13, 2 (2023),
837.

[8] M. Catillo, M. Rak, and U. Villano. 2020. Auto-scaling in the Cloud: Current
Status and Perspectives. In Advances on P2P, Parallel, Grid, Cloud and Internet
Computing, L. Barolli, P. Hellinckx, and J. Natwichai (Eds.). Springer, 616–625.

[9] V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey.
ACM Computing Surveys 41, 3 (2009), 15.

[10] I. Corona, G. Giacinto, and F. Roli. 2013. Adversarial attacks against intrusion
detection systems: Taxonomy, solutions and open issues. Information Sciences
239 (2013), 201–225.

[11] M. J De Lucia and C. Cotton. 2019. Adversarial machine learning for cyber
security. Journal of Information Systems Applied Research 12, 1 (2019), 26.

[12] A. S. Dina and D. Manivannan. 2021. Intrusion detection based on Machine
Learning techniques in computer networks. Internet of Things 16 (2021), 100462.

[13] G. Engelen, V. Rimmer, and W. Joosen. 2021. Troubleshooting an Intrusion
Detection Dataset: the CICIDS2017 Case Study. In Proc. Security and Privacy
Workshops. IEEE, 7–12.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. 2015. Explaining and Harnessing
Adversarial Examples. arXiv:1412.6572 [stat.ML]

[15] K. He, D. D. Kim, and M. R. Asghar. 2023. Adversarial Machine Learning for
Network Intrusion Detection Systems: A Comprehensive Survey. IEEE Commu-
nications Surveys & Tutorials 25, 1 (2023), 538–566.

[16] L. Hyafil and R. L. Rivest. 1976. Constructing optimal binary decision trees is
NP-complete. Inform. Process. Lett. 5, 1 (1976), 15–17.

[17] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and F.
Roli. 2018. Adversarial Malware Binaries: Evading Deep Learning for Malware
Detection in Executables. In Proc. European Signal Processing Conference. EURASIP,
533–537.

[18] M. A. Kramer. 1991. Nonlinear principal component analysis using autoassocia-
tive neural networks. AIChE Journal 37, 2 (1991), 233–243.

[19] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus, and Jasmir. 2018.
Automatic Features Extraction Using Autoencoder in Intrusion Detection System.
In Proc. International Conference on Electrical Engineering and Computer Science.
IEEE, 219–224.

[20] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. 2018. Kitsune: An Ensemble
of Autoencoders for Online Network Intrusion Detection. In Proc. International
Conference of Network and Distributed System Security Symposium.

[21] T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. 2016. Distributional
Smoothing with Virtual Adversarial Training. arXiv:1507.00677 [stat.ML]

[22] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. 2016. DeepFool: A Simple and
Accurate Method to Fool Deep Neural Networks. In Proc. Conference on Computer
Vision and Pattern Recognition. IEEE, 2574–2582.

[23] N. Moustafa and J. Slay. 2015. UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In Proc. Military
Communications and Information Systems Conference. IEEE, 1–6.

[24] B. Nelson, M. Barreno, F. Jack Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini,
C. Sutton, J. D. Tygar, and K. Xia. 2009. Misleading Learners: Co-opting Your
Spam Filter. In Machine Learning in Cyber Trust: Security, Privacy, and Reliability.
Springer, 17–51.

[25] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C. Chan. 2019. GEE:
A Gradient-based Explainable Variational Autoencoder for Network Anomaly
Detection. In Proc. Conference on Communications and Network Security. IEEE,
91–99.

[26] M. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi,
N. Baracaldo, B. Chen, H. Ludwig, I. M. Molloy, and B. Edwards. 2019. Adversarial
Robustness Toolbox v1.0.0. arXiv:1807.01069 [cs.LG]

[27] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. 2021. Deep Learning for Anomaly
Detection: A Review. ACM Computing Surveys 54, 2 (2021), 38.

[28] N. Papernot, P. McDaniel, and I. Goodfellow. 2016. Transferability in Machine
Learning: from Phenomena to Black-Box Attacks using Adversarial Samples.
arXiv:1605.07277 [cs.CR]

[29] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. 2017.
Practical Black-Box Attacks against Machine Learning. In Proc. Asia Conference
on Computer and Communications Security. ACM, 506–519.

[30] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. 2016.
The Limitations of Deep Learning in Adversarial Settings. In Proc. European
Symposium on Security and Privacy. IEEE, 372–387.

[31] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. 2020. Intriguing Prop-
erties of Adversarial ML Attacks in the Problem Space. In Proc. Symposium on
Security and Privacy. IEEE, 1332–1349.

[32] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho. 2019. A survey
of network-based intrusion detection data sets. Computers & Security 86 (2019),
147–167.

[33] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach. 2021. Adversarial Machine
Learning Attacks and Defense Methods in the Cyber Security Domain. ACM
Computing Surveys 54, 5 (2021), 108.

[34] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. 2018. Toward Generating a
New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proc.
International Conference on Information Systems Security and Privacy. SciTePress,
108–116.

[35] R. S. Siva Kumar, M. Nystrom, J. Lambert, A. Marshall, M. Goertzel, A. Comis-
soneru, M. Swann, and S. Xia. 2020. Adversarial Machine Learning-Industry
Perspectives. In Proc. Security and Privacy Workshops. IEEE, 69–75.

[36] Y. Song, S. Hyun, and Y. Cheong. 2021. Analysis of Autoencoders for Network
Intrusion Detection. Sensors 21, 13 (2021).

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus. 2014. Intriguing properties of neural networks. In Proc. International
Conference on Learning Representations. 1–10.

[38] C. Tsai, Y. Hsu, C. Lin, and W. Lin. 2009. Intrusion detection by machine learning:
A review. Expert Systems with Applications 36, 10 (2009), 11994–12000.

[39] M. Verkerken, L. D’Hooge, T. Wauters, B. Volckaert, and F. De Turck. 2021.
Towards Model Generalization for Intrusion Detection: Unsupervised Machine
Learning Techniques. Journal of Network and Systems Management 30 (2021), 12.

[40] J. Wu, Y. Wu, N. Niu, and M. Zhou. 2021. MHCPDP: multi-source heterogeneous
cross-project defect prediction viamulti-source transfer learning and autoencoder.
Software Quality Journal 29, 2 (2021), 405–430.

[41] L. XuKui, C. Wei, Z. Qianru, and W. Lifa. 2020. Building Auto-Encoder Intrusion
Detection System based on random forest feature selection. Computers & Security
95 (2020), 101851.

[42] Z. Yang, X. Liu, T. Li, D. Wu, J. Wang, Y. Zhao, and H. Han. 2022. A systematic
literature review of methods and datasets for anomaly-based network intrusion
detection. Computers & Security 116 (2022), 102675.

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1507.00677
https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1605.07277

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset and Techniques
	3.1 Dataset: CICIDS2017 (2021 update)
	3.2 IDS Techniques
	3.3 VAM
	3.4 Evaluation Metrics

	4 IDS Models
	4.1 Parameterization and Training
	4.2 Evaluation

	5 Robustness Assessment
	5.1 Adversarial Examples Generation
	5.2 Results

	6 Conclusion
	References

