
Automatic Test Generation to Improve Scrum for Safety Agile
Methodology

Mario Barbareschi∗
mario.barbareschi@unina.it

University of Naples Federico II
Naples, Italy

Salvatore Barone∗
salvatore.barone@unina.it

University of Naples Federico II
Naples, Italy

Valentina Casola∗
casolav@unina.it

University of Naples Federico II
Naples, Italy

Salvatore Della Torca∗
salvatore.dellatorca@unina.it

University of Bergamo
Dalmine, Italy

University of Naples Federico II
Naples, Italy

Daniele Lombardi∗
daniele.lombardi4@unina.it

University of Naples Federico II
Naples, Italy

ABSTRACT
Continuous compliance and living traceability, i.e., assure the tech-
nical quality of the software during the incremental flow of the agile
process and trace the requirements’ implementation at any time dur-
ing the development cycle, are two of the most challenging aspects
of adopting agile methodologies in the safety critical domain. This
is even more true when either user requirements are unstable, the
knowledge of the product to be delivered is not enough, or there is
no clear interfaces between various hardware/software subsystems,
as it may be in a research and development context. In order to
reduce the overall cost of these activities, in this manuscript, we dis-
cuss benefits resulting from adopting a semi-automatic method to
perform continuous compliance and living traceability. The method
aims to finding inconsistency between artifacts produced at the end
of each iteration by exploit automatic generation of unit tests and
coverage metrics. We validated the applicability of the proposed
methodology over a real case study from the railway domain, prov-
ing it can find inconsistency between several regulations-required
artifacts, including the requirements specification, the architectural
specification, test specifications and their implementation, and the
software implementation.

CCS CONCEPTS
• Hardware → Safety critical systems; • Software and its en-
gineering → Software testing and debugging; Agile software
development.

∗All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0772-8/23/08. . . $15.00
https://doi.org/10.1145/3600160.3605061

KEYWORDS
Non-intrusive testing, Automatic Test Generation, Abstract Syntax
Three Analysis.
ACM Reference Format:
Mario Barbareschi, Salvatore Barone, Valentina Casola, Salvatore Della
Torca, and Daniele Lombardi. 2023. Automatic Test Generation to Improve
Scrum for Safety Agile Methodology. In The 18th International Conference
on Availability, Reliability and Security (ARES 2023), August 29–September
01, 2023, Benevento, Italy. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3600160.3605061

1 INTRODUCTION
Software development in safety-critical domains remains very chal-
lenging, albeit the substantial body of work from the scientific liter-
ature pertaining to this field and experiences gained by engineers
in years. The latter has flown into several rigorous development
processes from international standards, such as those from the In-
ternational Electrotechnical Commission (IEC), International Orga-
nization for Standardization (ISO) and Comité Européen de normal-
isation en électronique et en électrotechnique (CENELEC), which
recommend safe versions of the well-known waterfall model [3, 4].
Anyway, when either user requirements are unstable, the knowl-
edge of the product to be delivered is not enough, or there is no clear
interfaces between various hardware/software subsystems, as it
may be in a research and development context, waterfall-based pro-
cesses may not suit. Even if agile methodologies helped to overcome
these limitations, they still encounter obstacles when referring to
secure and safe systems, where the adoption of automatic tools
to design, develop, test and continuously integrate components
is conflicting with the need of copying with strict standards, that
mainly refer to the traditional waterfall models [2].

Among the many, two of the most challenging aspects of adopt-
ing agile methodologies in the safety critical domain are continuous
compliance and living traceability. While the former is essential for
the agile team to monitor and assure the technical quality of the
software during the incremental flow of the agile process, the latter
is required to generate a clear trace about the user requirements im-
plementation at any time during the development cycle [2, 12, 14].

Continuous compliance and living traceability imply that the
product has to be continuously subjected to Verify & Validate (V&V)

https://orcid.org/0000-0002-1417-6328
https://orcid.org/0000-0003-2007-3744
https://orcid.org/0000-0003-0964-7014
https://orcid.org/0000-0001-5489-5370
https://orcid.org/0000-0003-4456-1793
https://doi.org/10.1145/3600160.3605061
https://doi.org/10.1145/3600160.3605061
https://doi.org/10.1145/3600160.3605061
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600160.3605061&domain=pdf&date_stamp=2023-08-29

ARES 2023, August 29–September 01, 2023, Benevento, Italy Brabreschi, Barone, Casola, Della Torca, and Lombardi.

activities, and that a new software increment can be released at the
end of each iteration only after being verified and validated against
the applicable standards. Hence, proof-of-conformance evidence is
the result of a complex research activity, which has conducted the
team to the requirements and architecture that software must have
for its intended application. Besides requiring substantial effort from
the several teams involved in the project, these activities represent
a significant share in the cost items of project management.

In this paper, we discuss how agile methodologies can benefit
from a semi-automatic method to perform continuous compliance
and living traceability, to discover any inconsistency between arti-
facts produced at the end of each iteration. The method we propose
exploit automatic generation of unit tests and coverage metrics
to find any inconsistency between several regulations-required
artifacts, including the requirements specification, the architec-
tural specification, test specifications and their implementation,
and the software implementation. We discussed how unit tests and
coverage measurement can be exploited to monitor the quality of
artifacts, providing means to monitor and verify their overall con-
sistency whether the context is research and development oriented.
Furthermore, we also discussed how unit tests can be automati-
cally generated leveraging the Abstract Syntax Tree (AST) while
targeting the Modified Condition/Decision Coverage (MC/DC) cov-
erage, and, finally, we validated the applicability of the proposed
methodology over a real case study from the railway domain.

The remaining of the paper is structured as follows: Section 2
and Section 3 provide the reader with the technical background
concerning the software development in the railway domain, fo-
cusing on agile development methodologies, while Section 4 and
Section 5 discuss our automatic test-case generation approach and
its employment, respectively. Finally, Section 6 draws the conclu-
sions.

2 SOFTWARE DEVELOPMENT IN THE
RAILWAY DOMAIN

In this Section, we briefly discuss some technical background and
regulatory aspects concerning the development of software in the
railway domain.

The standard regulating the life-cycle of software in the men-
tioned domain, i.e., the CENELEC EN 50128 [9], provides a set of
requirements with which the development, the V&V, the deploy-
ment, and even the maintenance of any safety-related software
intended to be used in the railway control and protection shall
comply. One key concept is the Safety Integrity Level (SIL), that,
as in the IEC EN 61508 [17], is defined in terms of probability of
dangerous failures per hour. Four different levels of SIL are defined
by the mentioned standard, with level 1 being the least dependable,
and level 4 the most dependable. Anyway, the EN 50128 merges SIL
levels 1 and 2, and levels 3 and 4, requiring the same techniques
and measures to be applied. In the following, we focus SIL-3 and
SIL-4 systems, since they are relevant to our case-study.

2.1 Design and implementation phases
Concerning the design of software, the EN 50128 suggests adopting
both common good design and programming practices, and addi-
tional safety-related restrictions. Adopting a modular approach,

for instance, is compulsory, in order to limit the complexity of
software and distinguish concerns of each single component, and,
furthermore, the regulation also mandates the software shall be
able to detect faults, and provide the basis for countermeasures, to
minimize the consequences of potential failures.

Pertaining to the implementations, besides adopting common
good programming techniques, the regulation suggests a suitable
coding-standard and style-guide shall be properly defined. The
purpose of the latter is twofold: on one hand, the use of a style-
guide deals with the readability of the source code, while, on the
other hand, enforcing a coding-standard avoids potential faults
which may origin from the adopted programming language.

2.2 V&V phase
An essential role within the software life cycle is fulfilled by V&V
activities: their purpose includes, but it is not limited to, finding
errors that may have been introduced during the software devel-
opment. From the V&V perspective, the EN 50128 defines an error
as a defect, mistake, or inaccuracy which could result in failure or
in a deviation from the intended performance or behavior. Hence,
detecting errors is the same as detecting different behaviors from
those specified. Furthermore, because errors are defined regarding
both requirements and code, the mentioned regulation focuses on
requirements-based testing to detect errors before they can become
faults or failures [15].

Pertaining to the V&V techniques, the suggested ones include
dynamic analysis, functional black-box-testing, traceability and
test-coverage, and one between formal proof, static analysis and
software error-effect analysis. Besides, test-case shall be defined
leveraging boundary-values, equivalence classes and input parti-
tions derived from the requirement specification, and designed (i) to
confirm that software performs the intended function, which is com-
monly verified through black-box testing campaigns, (ii) to check
how internal parts of the component interact to carry out the in-
tended functions, which is typically confirmed through black/white-
box testing, and (iii) to confirm that all part of the software are
tested, through white-box testing.

2.2.1 Structural coverage analysis and metrics. Software testing can
only find failures, but it can never be used to prove that no error
exists [19]. Therefore, regulations suggest using structural coverage
analysis as a completion criterion for the testing effort, and require-
ments coverage analysis to determine which requirements have
and have not been tested. The most commonly adopted structural
coverage criterion is branch coverage and compound-condition
coverage, using either Multiple-Condition Coverage (MCC) and
MC/DC.

The former is a stronger criterion than MC/DC: it guarantees
to find every error that is caused by logical decisions, since it re-
quires every entry/exit point in the program to be invoked at least
once, and all possible combinations of the outcomes of conditions
within each decision to be taken at least once. Hence, given 𝑛 con-
ditions, the MCC criterion requires 2𝑛 test cases to be specified to
accomplish complete coverage.

The exponential trend in the number of test cases is the reason
MC/DC is preferred to MCC. Indeed, given 𝑛 conditions, the num-
ber of test cases to be defined to satisfy complete coverage grows

Automatic Test Generation to Improve Scrum for Safety Agile Methodology ARES 2023, August 29–September 01, 2023, Benevento, Italy

linearly with 𝑛. Furthermore, it has been proved that MC/DC is
as effective as the MCC criterion in finding errors caused by logi-
cal decisions [18]. The criterion requires (i) that every entry/exit
point in the program to invoked at least once, (ii) that every de-
cision in the program to take all possible outcomes at least once,
(iii) that every condition in a decision to take all possible outcomes
at least once, and (iv) that each condition in a decision has shown
to independently affect the outcome of the concerned decision.

The latter can be shown by either (a) varying just that condition
while holding fixed all other possible conditions, or (b) varying just
that condition while holding fixed all other possible conditions that
could impact the outcome.

The (b) option allows coping with strongly coupled conditions
and with short-circuit logic, i.e., software optimizations that consist
of skipping the evaluation of some Boolean expressions which do
not influence the decision outcome [5].

Concerning the definition of the minimum set of test-cases to be
generated to fulfill theMC/DC criterion, themost challenging part is
to show the independent effect of each condition in a decision [7, 8].
Indeed, to show independence, there are at least two cases for each
condition where only the condition itself and the decision outcome
are toggled. These are called independent pairs, and since there
may be multiple of the latter for each condition, multiple equally
good minimum MC/DC coverage sets can be defined. Consider, for
instance, the 𝑄 = 𝐴 ∨ (𝐵 ∧𝐶) decision, for instance, whose truth-
table is reported in Table 1. Regarding the condition𝐴, for instance,
the ⟨0, 4⟩, ⟨1, 5⟩ and ⟨2, 6⟩ independent pairs hold, while the pair
⟨1, 3⟩ and ⟨2, 3⟩ hold for condition 𝐵 and𝐶 , respectively. Hence, the
minimum sets of tests {1, 2, 3, 4}, {1, 2, 3, 4}, and {1, 2, 3, 6} can be
defined.

Table 1: Unique-Cause MC/DC with independent pairs

A B C 𝐴 ∨ (𝐵 ∧𝐶)
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

A B C
4
5 3
6 3

1 2
0
1
2

2.2.2 Non-intrusive testing. Structural coverage analysis is usu-
ally done by instrumenting the source code to observe information
about the taken paths, executed statements and evaluated condi-
tions. Instrumenting decreases the performance of the code sig-
nificantly, and may be not viable in resource limited embedded
systems, because of restrained memory and processing capabilities.
Furthermore, it leads to the probe-effect, i.e., the timing behavior
of the System Under Test (SUT) is altered, possibly hindering the
’testing capabilities.

Modern microprocessors feature Embedded Trace Unit (ETU),
that deliver runtime information to debug ports of the processor,
allowing for non-intrusive test and debug [10, 11, 23, 24]. The Intel
Processor Trace (Intel PT) [16] and the ARM CoreSight [1] are ex-
amples of this technology. Both are extensions of Intel and ARM

architectures, respectively, that collects information about software
execution, e.g., control flow, execution modes, and timings infor-
mation and formats it into highly compressed binary packets for
tracing purpose.

3 SCRUM FOR SAFETY: AN AGILE
METHODOLOGY FOR SAFETY-CRITICAL
SOFTWARE SYSTEMS

Recently, a novel agile methodology for the development and
innovation of safety-critical systems in the railway domain was
introduced in [2, 6]: authors developed an extension of the Scrum
methodology, namely Scrum for Safety (S4S). The main concept of
the S4S workflow is the Safe-Sprint. A Safe-Sprint is a time-boxed
iteration that produce a new software increment verified and vali-
dated against the standards [2]. The workflow of a Safe-Sprint is
described in Fig. 1. Through Safe-Sprints, S4S addresses four main
conflicting aspects that exist between agile methodologies and the
safety-critical context: (i) documentation, since is amandatory activ-
ity in the safety-critical context but optional in agile methodologies;
(ii) requirements, since traditional safety-critical development pro-
cesses discourage requirement changes, while in an innovation
process they have to be progressively refined; (iii) project life-cycle,
since safety-critical projects are developed neither iteratively nor
incrementally; (iv) testing, since in agile methodologies it is done it-
eratively during the development, while in the safety-critical system
it is done at final stages of development [21]. The latter is addressed
by doing several testing phases, in which test developers check
whether all the requirements – Scrum user-stories – are correctly
implemented and software behaviors as expected. Furthermore, all
the new requirements, if any, could adversely impact the already
available features; thus a Regression Testing step is mandatory in
order to preserve the already achieved technical quality. Finally,
with the Integration Test as shown in Fig. 1, integration developers
check the software behavior on the target hardware. A fundamental
aspect of S4S is the independence of between the design and testing
activities, i.e, those who are responsible for testing and integra-
tion cannot participate in the software design process; otherwise,
verification could fail its objective [2].

One of the core principle of S4S is the continuous V&V, since
each developed subsystem must be verified and validated in order
to prove that the developed product satisfies its specification. S4S
also extends the set of Scrum role with the figures of the Quality
Assurance Team, i.e, Verifiers, Validators and Assessors, which are
strictly related to critical software development, and adapts their
activities in an agile perspective [2]. The purpose is the continuous
compliance in order to monitor and assure the technical quality of
the software during the agile process, since the Quality Assurance
Team has to check the produced Scrum-increment against the soft-
ware requirements specification, and the applicable standards. S4S
allows exploiting automatic Quality Assurance tools and external
experts, if any.

It is worth to mention that in the S4S-context, the documen-
tation is only an output. Such documents, i.e., the description of
both the development life-cycle and the implemented product used
by an assessor, are updated whenever there is a change in any of

ARES 2023, August 29–September 01, 2023, Benevento, Italy Brabreschi, Barone, Casola, Della Torca, and Lombardi.

the stages of the development process, e.g., a change in require-
ments. Meaning that proof-of-conformance evidence requested by
an assessor is, in that case, the result of a complex research activity,
which has conducted the team to the requirements and architecture
that software must have for its intended application [2].

4 IMPROVING SCRUM FOR SAFETY
THROUGH AUTOMATIC TEST
GENERATION FOR MC/DC COVERAGE

The methodology proposed in this paper is applicable under such
conditions, that is, in safety-critical systems developed with agile
methodologies, i.e., S4S, in a research and development context. In
such context, requirements are not stable and are subject due to
changes over time. Hence, it is mandatory to ensure that all the
artifact produced during the development process are continuously
refined and aligned to each other. Specifically, the Software Re-
quirements Specification (SwRS), the Software Architecture Spec-
ification (SAS), tests specification and implementation, and the
produced software have to be perfectly aligned.

However, in complex systems which evolve quickly over time,
managing the continuous alignment between all those artifacts
manually would require more time of the system-development
itself. Therefore, new methodologies are needed in order to manage
and monitor the alignment-state between those artifacts.

Themethodology proposed in this paper addresses the alignment
management between software requirements specification and test
specification and implementation.

4.1 Automatic generation of unit tests
As we mentioned, in order to automatically generate test-cases,
we resort to the AST representation of software. The latter is the
result of the syntax analysis step of the compilation phase, and it
often serves as an intermediate representation of the program onto
which compilers work through the compilation and linking steps.
Therefore, it represents only structural and content-related details
of the program, yet it preserves variable types and their declaration
within the source code, the order of statements, the identifiers
within the code and their assignment statements, and even the left
and the right-hand side operands of binary operators. As depicted
in Figure 2, each node of the AST denotes a language construct of
the analyzed code, and information pertaining to branches, loops,
function-calls, and so forth can be gathered by simply traversing it.

Since the aim is unit testing, we first search for specific nodes
within the AST corresponding to function definition. The latter
nodes constitute the starting point of the test-generation proce-
dure. Then, since the aim is covering statements involved, for in-
stance, in defense programming, assertive programming, and so
forth, we search for if-then statements. Furthermore, we also search
for parameter-declaration, variable-declaration, constant-declaration,
and literal nodes, to collect parameters and variables involved in
conditions and decisions of the mentioned if-then statements.

Decisions and conditions that potentially compose them are
identified by searching for binary-operator nodes within the AST.
Decisions are decomposed in conditions, and based on the data-
type of parameters/variables/constants being involved and on the
binary operator defining the condition, a proper input assignment

is generated to make the concerned condition either true or false.
Consider the variable ≠ value, for instance. To make it or true or
false, the input assignment variable := value and variable ≠ value’
are generated, with value’ being plausible for the executed code yet
such that the condition will be evaluated as false. The latter value
can be by either obtained through profiling of the application, or
user specified.

After suitable input assignments for conditions have been deter-
mined, the independent pairs are defined, and a minimum set of test
cases for MC/DC is selected for each of the decision within the con-
cerned function. These are implemented, and hence executed, using
non-intrusive debugger/traces, as discussed in Section 2.2.2. The
latter enables introducing very precise modifications to the value of
variables during the execution, allowing to recreate preconditions
and conditions for each of the test case.

Last, concerning oracles, i.e., the expected result to be compared
with the result obtained during the execution, unfortunately they
can be inferred only in a few, simple, cases. Oracle for assert ex-
pressions, for instance, can be derived almost straightforwardly,
since failure of an assertion causes the system to crash. As for the
other test cases, checking for invariant properties – which can
be learned by the program execution itself – can be adopted to
define oracles in a semi-automatic way. Nevertheless, the scien-
tific literature suggests that inferring perfect invariants is nearly
impossible, especially when dealing with very complex software
systems [13, 22, 25–27].

4.2 Exploiting unit tests in quality assurance
Auto-generated unit tests are executed before the Quality Assurance
stage and the results are exploited in the latter phase by the related
team together with requirements coverage tests results. It is worth
noticing that the concerned results are the code coverage data –
which are, as well, a safety metric in S4S – since they show how
much the system requirements and the implemented software are
aligned. Specifically, the Quality Assurance team has to investigate
the not covered code, since it could be caused by: (i) tests not
specified and/or implemented; (ii) one or more new requirements,
whose code it’s been implemented, however tests to cover that
requirements are not been specified and/or implemented; (iii) one
or more no longer existing requirements, whose code has not been
deleted, and therefore it implements a no longer required behavior;
(iv) changes in one or more requirements, which has been specified
by new code that has not tested yet; (v) dead or redundant code;
(vi) unreachable code.

Therefore, through such information, it is possible to investigate
the overall quality of the system and the alignment between its
artifacts.

5 CASE STUDY
We applied the approach discussed in the previous Section to a
real-world safety-critical application from the railway domain. The
considered software implements part of the functionalities of the
European Rail Traffic Management System/European Train Control
System (ERTMS/ETCS) standard, and it consists of many periodic
real-time tasks, whose execution flow, albeit quite complex, can be
summarized as tasks either behaving as producers, or as consumers.

Automatic Test Generation to Improve Scrum for Safety Agile Methodology ARES 2023, August 29–September 01, 2023, Benevento, Italy

Sprint Planning Sprint Backlog Implementation

Sprint
Backlog

Design
Models

Code
Design

Documents

Acceptance Testing and Software

Verification

Test suites Test report

PO Dev. Team Scrum Master Dev. Team: Implementers Dev. Team: Testers

Hardware Integration

Dev. Team: Integrators

Integration
report

Traceability

SwRS

SAS

SCDS

Test
specification

Quality Assurance

Dev. Team Q.A. Team: Verifiers, Validators and Assessors

Sprint
Goal

Regression testing

Dev. Team: Testers

Test suites Test report

Sprint Review and final Retrospective

Scrum
Team

Customer

The Scrum Team

Integration
Test suites

Testing
Tools

Testing
Tools

Testing
Tools

Product Backlog

User
Stories

Safety
Stories

Key

Sprint Activity Flow

Traceability Flow

Sprint Activity

Software Artefacts

Stories, Tasks and
Goals

Supporting Tools

Sprint Actors

Figure 1: S4S Safe-Sprint Structure [2]

FUNC_DECL

a_function

PARAM_DECL

a

PARAM_DECL

b

COMPOUNT_STMT

IF_STMT
BINARY_OPERATOR

COMPOUNT_STMT

COMPOUNT_STMT

DECL_REF_EXPR

a

DECL_REF_EXPR

b

Figure 2: Example of AST

The considered software monitors the location of the train on the
rail route. It consists of different processing units: Pos is the one
assigned to calculate the precise position, based on the odometric
information and that from the eurobalises, respectively, obtained
by interfacing with the Odo and Btm units. The latter perform
decoding and pre-processing operations of the information coming
from the Driver_Odo and Driver_Btm tasks, which implement the
device driver functions.

The whole system operates under memory segregation con-
straints, and any communication between software units is arbi-
trated by the Real-Time Operating System (RTOS) throughmessage-
passing inter-process comunications (IPCs). The RTOS also orches-
trate communications between tasks and the underlying hardware.

The mentioned software runs on four ARM® Cortex-A53, and it
is two-out-of-two (2oo2) redundant, meaning that the software is
executed by two replicas, which receive the same inputs and are
expected to provide the same output. The deployment to specific
cores is statically defined by the vendor, to guarantee a higher
system predictability.

Given the complexity, we consider only a subset of the men-
tioned software, as shown in Figure 3, to make the discussion plain.
Specifically, we focus on the communication between Task Btm and
Task Pos, by considering several software components being part
of the latter tasks.

Task
Driver_

btm

Task
Odo

Process
Pos

Task Btm

Process

Stm

Task Btm
 Process
Pos

Channel
send() receive()

Task
Driver_

pos

Figure 3: An application from the ERTMS/ETCS standard.

In order to capture the system behavior, we relied on the ARM
ETMv4 [1] embedded into the Zynq Ultrascale+ architecture. Fur-
thermore, we exploited the Lauterbach Trace32 debugger/tracer [20]
to end to process execution traces to obtain coverage statistics.

Table 2: Initial structural coverage

Component Statement (%) Conditions (%) Decisions (%)
A 92.105% 92.105% 94.736%
B 90.0% 90.0% 90.0%
C 85.294% 85.294% 90.625%
D 92.875% 92.875% 94.736%
E 81.294% 83.2% 88.6%

The concerned components underwent a previous unit test cam-
paign, the definition of which was derived directly from the SwRS,
and the achieved coverage is reported in Table 2.

Let us consider the component A first: by applying the approach
described in the previous Section, thirteen test cases are generated,
i.e., five more than those manually specified starting from the SwRS,

ARES 2023, August 29–September 01, 2023, Benevento, Italy Brabreschi, Barone, Casola, Della Torca, and Lombardi.

whose coverage data are shown in the Table 2. By analyzing the
coverage results of the remaining five test cases, it was found that:
(i) a test case cover the code related to a suppressed requirement;
therefore, there was a misalignment between the SwRS and the
implemented software; (ii) two test cases cover dead code; and
(iii) the last two test cases cover an existing requirement, whose
software was implemented, but the related test specification was
missing in the SwRS.

Further, similar conclusions emerged when analyzing the cover-
age data of the components B, C and E.

Component D, on the other hand, deserves a separate discussion,
since only two more test cases were auto-generated. Nevertheless,
from the subsequent analysis, we found that the portions they
covered were, in fact, redundant code. Moreover, despite the au-
tomatic generation procedure, the code was still found to be not
fully covered, requiring a thorough inspection, the result of which
was the discovery of unreachable code, probably caused by a poor
implementation of the specification.

6 CONCLUSION
In this paper, we discussed how agile methodologies can benefit
from the automatic generation of unit tests. In particular, we dis-
cussed how unit tests and coverage measurement can be exploited
to monitor the quality of artifacts, providing means to monitor and
verify their overall consistency whether the context is research
and development oriented. Furthermore, we also discussed how
unit tests can be automatically generated leveraging the AST while
targeting the MC/DC coverage, how the latter tests can be exploited
to verify the consistency of several regulations-required artifacts,
including the requirements specification, the architectural specifica-
tion, test specifications and their implementation, and the software
implementation. Finally, ve validated the applicability of the pro-
posed methodology over a real case study from the railway domain.

REFERENCES
[1] ARM Limited. 2013. CoreSight Architecture Specification v2.0, issue D. Tech-

nical Report. ARM Limited. https://documentation-service.arm.com/static/
5f9009d5f86e16515cdc0417?token=

[2] Mario Barbareschi, Salvatore Barone, Riccardo Carbone, and Valentina Casola.
2022. Scrum for safety: an agile methodology for safety-critical software systems.
Software Quality Journal (July 2022). https://doi.org/10.1007/s11219-022-09593-2

[3] Mario Barbareschi, Salvatore Barone, Valentina Casola, Pasquale Montone, and
Alberto Moriconi. 2022. A Memory Protection Strategy for Resource Constrained
Devices in Safety Critical Applications. In 2022 6th International Conference on
System Reliability and Safety (ICSRS). IEEE, 533–538.

[4] Mario Barbareschi, Salvatore Barone, Alfonso Fezza, and Erasmo La Montagna.
2021. Enforcing Mutual Authentication and Confidentiality in Wireless Sensor
Networks Using Physically Unclonable Functions: A Case Study. In Quality
of Information and Communications Technology: 14th International Conference,
QUATIC 2021, Algarve, Portugal, September 8–11, 2021, Proceedings 14. Springer,
297–310.

[5] Jan A. Bergstra, A. Ponse, and D. J. C. Staudt. 2013. Short-circuit logic.
arXiv:1010.3674 [cs, math] (March 2013). http://arxiv.org/abs/1010.3674 arXiv:
1010.3674.

[6] Riccardo Carbone, Salvatore Barone, Mario Barbareschi, and Valentina Casola.
2021. Scrum for Safety: Agile Development in Safety-Critical Software Systems.
In Quality of Information and Communications Technology (Communications in
Computer and Information Science), Ana C. R. Paiva, Ana Rosa Cavalli, Paula Ven-
tura Martins, and Ricardo Pérez-Castillo (Eds.). Springer International Publishing,
Cham, 127–140. https://doi.org/10.1007/978-3-030-85347-1_10

[7] John Joseph Chilenski. 2001. Investigation of Three Forms of the Modified Condition
Decision Coverage (MCDC) Criterion. Technical Report. United States. Federal
Aviation Administration. Office of Aviation Research.

[8] Cyrille Comar, Jerome Guitton, Olivier Hainque, and Thomas Quinot. 2012. For-
malization and comparison of MCDC and object branch coverage criteria. In
Embedded Real Time Software and Systems (ERTS2012).

[9] Comité européen de normalisation en électronique et en électrotechnique. 2011.
Railway applications - Communication, signalling and processing systems Software
for railway control and protection systems. Technical Report. Comité européen de
normalisation en électronique et en électrotechnique.

[10] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz, Daniel
Thoma, and Alexander Weiss. 2018. Hardware-Based Runtime Verification with
Embedded Tracing Units and Stream Processing. In Runtime Verification, Chris-
tian Colombo and Martin Leucker (Eds.). Vol. 11237. Springer International
Publishing, Cham, 43–63. https://doi.org/10.1007/978-3-030-03769-7_5 Series
Title: Lecture Notes in Computer Science.

[11] Normann Decker, Boris Dreyer, Philip Gottschling, Christian Hochberger, Alexan-
der Lange, Martin Leucker, Torben Scheffel, Simon Wegener, and Alexander
Weiss. 2018. Online analysis of debug trace data for embedded systems. In
2018 Design, Automation Test in Europe Conference Exhibition (DATE). 851–856.
https://doi.org/10.23919/DATE.2018.8342124 ISSN: 1558-1101.

[12] Brian Fitzgerald, Klaas-Jan Stol, Ryan O’Sullivan, and Donal O’Brien. 2013.
Scaling agile methods to regulated environments: An industry case study. In
2013 35th International Conference on Software Engineering (ICSE). 863–872.
https://doi.org/10.1109/ICSE.2013.6606635 ISSN: 1558-1225.

[13] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2015. Does Automated Unit Test Generation Really Help Software Testers? A
Controlled Empirical Study. ACM Transactions on Software Engineering and
Methodology 24, 4 (Sept. 2015), 1–49. https://doi.org/10.1145/2699688

[14] Geir Kjetil Hanssen, Tor Stålhane, and Thor Myklebust. 2018. SafeScrum® – Agile
Development of Safety-Critical Software. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-99334-8

[15] Kelly J Hayhurst. 2001. A Practical Tutorial on Modified Condition/Decision Cover-
age. DIANE Publishing. Google-Books-ID: aqMz3xtU6HsC.

[16] Intel. 2021. Intel® 64 and IA-32 Architectures Software Developer’s Manuals. Tech-
nical Report. Intel. https://cdrdv2.intel.com/v1/dl/getContent/671200

[17] International Electrotechnical Commission. 2010. Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. Technical Report.
International Electrotechnical Commission.

[18] Susanne Kandl and Sandeep Chandrashekar. 2015. Reasonability of MC/DC for
safety-relevant software implemented in programming languages with short-
circuit evaluation. Computing 97, 3 (March 2015), 261–279. https://doi.org/10.
1007/s00607-014-0418-5

[19] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. 1999. Testing Computer Software.
John Wiley & Sons.

[20] Lauterbach Development Tools. 2021. ARM Debugger. Technical Report. Lauter-
bach GmbH. https://www2.lauterbach.com/pdf/debugger_arm.pdf

[21] Fergal McCaffery, Kitija Trektere, and Ozden Ozcan-Top. 2016. Agile – Is it Suit-
able for Medical Device Software Development?. In Software Process Improvement
and Capability Determination (Communications in Computer and Information
Science), Paul M. Clarke, Rory V. O’Connor, Terry Rout, and Alec Dorling (Eds.).
Springer International Publishing, Cham, 417–422. https://doi.org/10.1007/978-
3-319-38980-6_30

[22] ThanhVu Nguyen, Matthew B. Dwyer, and Willem Visser. 2017. Symlnfer:
Inferring program invariants using symbolic states. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 804–814.
https://doi.org/10.1109/ASE.2017.8115691

[23] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla, and
P. Martín-Holgado. 2019. Online Error Detection Through Trace Infrastructure
in ARM Microprocessors. IEEE Transactions on Nuclear Science 66, 7 (July 2019),
1457–1464. https://doi.org/10.1109/TNS.2019.2921767 Conference Name: IEEE
Transactions on Nuclear Science.

[24] José Rufino, António Casimiro, Felix Dino Lange, Martin Leucker, Torben Scheffel,
Malte Schmitz, and Daniel Thoma. 2018. Non-intrusive Runtime Verification
within a System-on-Chip. Ada User Journal 39, 4 (2018), 4.

[25] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. 2012. Under-
standing user understanding: determining correctness of generated program
invariants. In Proceedings of the 2012 International Symposium on Software Testing
and Analysis (ISSTA 2012). Association for Computing Machinery, New York, NY,
USA, 188–198. https://doi.org/10.1145/2338965.2336776

[26] Chunhui Wang, Fabrizio Pastore, and Lionel Briand. 2018. Automated Generation
of Constraints from Use Case Specifications to Support System Testing. In 2018
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST). 23–33. https://doi.org/10.1109/ICST.2018.00013

[27] Anand Yeolekar, Divyesh Unadkat, Vivek Agarwal, Shrawan Kumar, and R.
Venkatesh. 2013. Scaling Model Checking for Test Generation Using Dynamic In-
ference. In Verification and Validation 2013 IEEE Sixth International Conference on
Software Testing. 184–191. https://doi.org/10.1109/ICST.2013.29 ISSN: 2159-4848.

https://documentation-service.arm.com/static/5f9009d5f86e16515cdc0417?token=
https://documentation-service.arm.com/static/5f9009d5f86e16515cdc0417?token=
https://doi.org/10.1007/s11219-022-09593-2
http://arxiv.org/abs/1010.3674
https://doi.org/10.1007/978-3-030-85347-1_10
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.23919/DATE.2018.8342124
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1145/2699688
https://doi.org/10.1007/978-3-319-99334-8
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.1007/s00607-014-0418-5
https://doi.org/10.1007/s00607-014-0418-5
https://www2.lauterbach.com/pdf/debugger_arm.pdf
https://doi.org/10.1007/978-3-319-38980-6_30
https://doi.org/10.1007/978-3-319-38980-6_30
https://doi.org/10.1109/ASE.2017.8115691
https://doi.org/10.1109/TNS.2019.2921767
https://doi.org/10.1145/2338965.2336776
https://doi.org/10.1109/ICST.2018.00013
https://doi.org/10.1109/ICST.2013.29

	Abstract
	1 Introduction
	2 Software development in the railway domain
	2.1 Design and implementation phases
	2.2 V&V phase

	3 Scrum for Safety: an Agile Methodology for Safety-Critical software systems
	4 Improving Scrum for Safety through automatic test generation for MC/DC coverage
	4.1 Automatic generation of unit tests
	4.2 Exploiting unit tests in quality assurance

	5 Case study
	6 Conclusion
	References

