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ABSTRACT
Parkinson’s Disease is the second most prevalent neurodegenera-
tive disorder, currently affecting as high as 3% of the global popula-
tion. Research suggests that up to 80% of patients manifest phona-
tory symptoms as early signs of the disease. In this respect, various
systems have been developed that identify high risk patients by
analyzing their speech using recordings obtained from natural dia-
logues and reading tasks conducted in clinical settings. However,
most of them are centralized models, where training and inference
take place on a single machine, raising concerns about data privacy
and scalability. To address these issues, the current study migrates
an existing, state-of-the-art centralized approach to the concept
of federated learning, where the model is trained in multiple inde-
pendent sessions on different machines, each with its own dataset.
Therefore, the main objective is to establish a proof of concept for
federated learning in this domain, demonstrating its effectiveness
and viability. Moreover, the study aims to overcome challenges asso-
ciated with centralized machine learning models while promoting
collaborative and privacy-preserving model training.
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1 INTRODUCTION
Parkinson’s disease (PD) is the second leading neurodegenerative
disorder, currently affecting as high as 3% of the world population
above the age of 65 [16]. Typical neuropathological features of PD
include bradykinesia and resting tremors, alongside non-motor
symptoms that can detrimentally affect the patients’ Quality of
Life (QoL) [22]. In addition, phonatory symptoms are widely con-
sidered as early indications of neurological diseases. In the case
of PD, research suggests that as many as 80% of PD patients can
clinically manifest oral communication disorders during the early
stages of the disease, including dysphonia, imprecise articulation
and dysprosody. These voice alterations are associated with im-
paired muscles caused by PD, which are responsible for speech
coordination [3, 24].

The early detection of patients with PD, or with a high risk of
developing it in their lifetime, can significantly enhance patient
outcomes and QoL by enabling timely interventions to delay dis-
ease progression [16, 20]. Recent advances in machine learning
(ML) and speech recognition have exhibited promising results in
detecting PD by analyzing speech patterns, facilitating early dif-
ferential diagnosis [10, 21, 23]. However, conventional centralized
ML approaches present substantial risks regarding patient data
privacy, raising valid concerns about their security and scalability.
Specifically, centralized methods introduce inherent vulnerabilities
regarding the likelihood of potential unauthorized access or misuse
of patient data used for training the ML models. Moreover, the in-
corporation of multiple sources that generate vast volumes of data
can lead to challenges about the scalability of model training, re-
quiring considerable computational resources [6]. These challenges
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emphasize the critical need to explore alternative methodologies,
that prioritize patient data privacy, while at the same time ensuring
efficient and scalable model training and inference.

In an effort to address the aforementioned challenges, the cur-
rent work outlines the migration of an existing state-of-the-art PD
detection system [10], based on patient speech data, under a Feder-
ated Learning (FL) context. FL is a decentralized learning paradigm,
enabling collaborative and local model training on client devices,
without the need of data exchange, sharing only model parameters
with a central server for aggregation. In this way, FL addresses
issues of both data governance and privacy [6, 19], while recent
research indicates that models trained under a FL approach have
the ability to attain and possible overcome the performance levels
of centrally trained models [4, 13].

The use of FL in PD detection also presents a significant contribu-
tion to the broader application of FL in healthcare. Privacy concerns
are paramount when dealing with sensitive medical data, and FL
provides a promising solution by ensuring that patient data remain
decentralized and secure. This is achieved by training ML models
locally on client devices, with only model parameters being shared
with a central server for aggregation. By avoiding the need for raw
data exchange, FL offers enhanced privacy protection compared to
traditional centralized approaches.

The novelty of this study lies in the exploration of FL as a viable
framework for PD detection using only speech data, collected from
patients and healthy individuals. While previous studies on this
domain have solely focused on conventional ML paradigms, this
work aims to validate the feasibility of applying FL to address the
limitations of data privacy and scalability.

The remainder of this paper is organized as follows; Section 2
provides a comprehensive review of the current state-of-the-art
in ML-driven PD and FL. Section 3 introduces the methodology,
including information regarding the utilized patient data, the model
architecture, the examined FL strategies and the experimental setup.
Section 4 presents the results of the study and discusses their im-
pact, while Section 5 concludes the paper and summarizes the key
findings of this work, highlighting potential directions for future
research.

2 RELATEDWORK
The application of ML algorithms for PD detection has gained sig-
nificant attention in recent years. Several studies have explored
the use of different data modalities (e.g. handwritten text, speech,
motor and imaging data) to uncover relevant features that may
further aid in the clinical diagnosis of PD and its atypical represen-
tations. Recently, there has been a growing interest on the use of
speech analysis, showcasing promising results, while also providing
valuable insight into the progression of the disease [7].

In this respect, Celik and Omurca [2] employed several ML al-
gorithms such as logistic regression, support vector machines, gra-
dient boosting and random forests alongside with principal com-
ponent analysis to classify PD using a set of 26 speech features.
The outcome of this study demonstrated that logistic regression
attained the highest accuracy score when using the full feature set,
while SVM performed best with a linear kernel. In a separate study,
Quan et al. [17] introduced a bidirectional long short-term memory

(Bi-LSTM) model for PD detection, focusing on capturing dynamic
articulation features rather than relying solely on static ones. Their
results showcased that the Bi-LSTMmodel outperformed traditional
ML approaches, achieving significantly higher accuracy scores. Jan-
bakhshi & Kodrasi [10] recently introduced a deep learning (DL)
approach that achieves state-of-the-art results in PD detection from
speech data. More specifically, their methodology aims at mitigat-
ing the effects of speaker variabilities (which are not related to
PD) by obtaining (speaker) identity-invariant representations. The
learning objective is achieved through the adversarial training of
an auto-encoder and a speaker identification task. In conclusion,
all of the aforementioned studies highlight the potential of ML and
DL in assisting healthcare professionals in clinical environments,
by enabling early PD diagnosis.

The increasing demand for privacy-preserving ML solutions
in clinical settings has spurred the exploration of alternative ap-
proaches like FL, which offers a collaborative training method for
ML models, while ensuring decentralized and secure storage of
sensitive data. Recent studies have demonstrated the feasibility of
FL in various healthcare applications. For example, Jorge et al. [11]
employed FL to detect motor symptoms related to Freezing of Gait
(FoG). The authors evaluated the FL model compared to a central-
ized approach and observed similar accuracy rates, demonstrating
that FL can effectively detect FoG while preserving patient privacy.
Likewise, Dipro et al. [5] assessed the performance of the VGG16,
VGG19 and InceptionV3 DL models in FL, trained on single-photon
emission computed tomography data, with VGG19 achieving the
highest accuracy rate. Recently, Arasteh et al. [1] proposed the
use of a pre-trained Wav2Vec model in FL context. The conducted
experiments utilized speech data from three different languages, in-
volving the rapid repetition of three specific syllables. Their findings
demonstrated that the FL model outperformed all the individual
conventional models.

Judging from the above analysis and to the best of our knowledge,
there seems to be limited prior work on the application of FL for
PD detection using speech data. While FL has been introduced
and explored in healthcare, its specific application for PD detection
remains relatively unexplored. In this respect, the current work aims
to bridge this gap by investigating the feasibility and effectiveness
of FL in the context of early PD diagnosis, utilizing speech data that
consist of recordings from both random dialogues and reading text
aloud. By leveraging the FL scenario, the objective is to to address
the challenges and open questions associated with centralized ML
models, enabling a collaborative and privacy-preserving model
training.

3 METHODOLOGY
This section illustrates the experimental methodology for PD de-
tection based on speech data provided by the Mobile Device Voice
Recordings at King’s College London (MDVR-KCL) dataset [9],
which contains voice recordings from 37 individuals with early and
advanced PD, as well as healthy controls. The recordings were con-
ducted in a realistic setting resembling a phone call, where partici-
pants were asked to read a lengthy article and have a spontaneous
dialogue. The recordings are stored in uncompressed waveform
audio file format, with a sampling rating of 44.1𝑘𝐻𝑧. According to
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Figure 1: A high-level view of the federated learning environment

the dataset creators, labeling has been performed in compliance
with Hoehn & Yahr (H&Y) scores, as well as on the UPDRS II part
5 and the UPDRS III part 18 scales [9].

Since the objective of the current work is to assess PD from
voice recordings in a FL context, we didn’t develop a new model
from scratch, but instead chose to adapt an existing, centralized
ML model in a FL setting. Out of the many models available, we
chose the one of Janbakhshi et al. [10] (presented in Section 2), both
because of the state-of-the-art results achieved and the availability
of the source code on a public repository, which permits direct
experimentation. In the FL scenario considered in our experiments,
2 clients participate in the multi-step training process, with each of
them accessing a distinct part of the overall dataset.

Figure 1 illustrates a high-level view of the FL environment
considered in this work. The lower part of the diagram depicts two
distinct clients, which could as well be two different institutions
(clinics, hospitals etc). Each client has exclusive access to its own
patient data, which are not shared in-between them or with any
other repository. For PD detection, the client requests from a specific
ML model repository (upper part of Figure 1) a particular model,
which is subsequently downloaded on its premises. The model
is then trained on the local data and once training is complete,
the updated model parameters are uploaded back into the server,
which aggregates them into the existing model, following a specific
strategy (FL strategies are going to be discussed later in this section).
All data communications are performed using secure channels (e.g.
SSL). In this way, data privacy is assessed on two levels; (i) on the

application level, as only model parameters are communicated back
to the server and not patient data and (ii) on the communication
level, as data exchange is encrypted. Furthermore, this architecture
is also scalable, in the sense that more clients may be easily added.
As it is going to be discussed next, FL strategies can operate for
an arbitrary number of clients and can also perform parameter
aggregation asynchronously, meaning that it is not necessary for
all clients to train their local models at the same time.

In FL-based training of the selected model [10], each client inde-
pendently trains an auto-encoder, consisting of an encoder and a
decoder whose parameters are denoted as \𝑒 and \𝑑 , respectively.
The objective of the auto-encoder is to reconstruct the original
voice input, minimizing the reconstruction loss 𝐿𝑎𝑒 . To achieve
this, a convolutional neural network architecture is used, aiming
at computing low-dimensional representations of voice data. More
specifically, the auto-encoder consists of four convolutional layers
with progressively increasing numbers of feature maps. Each layer
is followed by max-pooling, batch normalization, and leaky ReLU
activation functions. The final layer of the encoder is a fully con-
nected layer that generates a final representation vector of size 128.
The decoder part consists of transposed convolutional and inter-
polation layers, which are stacked in reverse order of the encoder.
These layers aim to reconstruct the input from the final bottleneck
representation.

Following, each client 𝑖 trains a speaker identity (ID) module with
parameters \𝑖

𝑖𝑑
, utilizing the bottleneck representation obtained

from their respective local auto-encoder. Adversarial training is
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employed to simultaneously minimize the auto-encoder reconstruc-
tion loss 𝐿𝑎𝑒 and maximize the speaker ID loss 𝐿𝑖𝑑 , ensuring that
the learned representations capture both the speaker-specific infor-
mation and the reconstructed input. The optimization objective for
each client is expressed according to Equation 1 that follows,

arg min
\𝑖𝑒 ,\

𝑖
𝑑

argmax
\𝑖
𝑖𝑑

[
(1 − _)𝐿𝑖𝑎𝑒 (\𝑖𝑒 , \𝑖𝑑 ) − _𝐿

𝑖
𝑖𝑑
(\𝑖𝑒 , \𝑖𝑖𝑑 )

]
(1)

where _ controls the trade-off between the two losses.
Simultaneously, each client employs the bottleneck represen-

tation from their auto-encoder to train the PD classifier, whose
parameters are denoted as \𝑖𝑝𝑐 . The PD classifier is optimized based
on a task-specific loss 𝐿𝑝𝑐 , which enables it to identify pathological
speech patterns accurately. Equation 2 summarizes the optimization
objective for each client

arg min
\𝑖𝑒 ,\

𝑖
𝑑
,\𝑖𝑝𝑐

[
(1 − 𝛼)𝐿𝑖𝑎𝑒 (\𝑖𝑒 , \𝑖𝑑 ) + 𝛼𝐿

𝑖
𝑝𝑐 (\𝑖𝑒 , \𝑖𝑝𝑐 )

]
(2)

where 𝛼 determines the relative importance of the reconstruction
loss and the PD classifier loss.

Once the clients have completed training on their individual
parts of the dataset, a FL strategy is utilized, in order to combine
their learned parameters. Many relevant strategies exist in the lit-
erature, so in this work, which serves as a proof-of-concept, we
examine three of the most prevalent of them, namely; (i) federated
averaging (FedAvg) [14], (ii) federated averaging with server mo-
mentum (FedAvgM) [8] and (iii) adaptive federated optimization
using Adam (FedAdam) [18].

In the FedAvg case, and when stochastic gradient descend is used
for optimization with a fixed learning rate [, each client 𝑖 computes
the average gradient on its local data (Equation 3) ,

𝑔𝑖 = ∇
1
𝑛𝑖

∑︁
𝑘∈P𝑖

𝐿(𝑘 ;\𝑡 ) (3)

where \𝑡 are the model parameters at iteration 𝑡 , 𝑛𝑖 are the total
samples in the data partition P𝑖 available at client 𝑖 and 𝐿 is the
loss function. Then those gradients are communicated to the server
via a secure channel, which in turn, aggregates them according to
Equation 4, thereby ensuring that the fused parameters capture the
collective information from all clients

\𝑡+1 ← \𝑡 − [
𝑁∑︁
𝑖=1

𝑛𝑖

𝑛
𝑔𝑖 (4)

where 𝑁 is the total number of participating clients (𝑁 = 2 in the
case we examine) and𝑛 is the total number of samples in the dataset.
The benefits of the clients’ sharing of gradient values 𝑔𝑖 with the
server, instead of the whole dataset, are threefold; (i) utilization of
network resources, as it is only necessary to share value instead
of the whole dataset, (ii) privacy preservation, because potentially
sensitive data are not shared and (iii) reduced computational burden
on the clients’ side, since they need to perform computations on
their share of data only.

FedAvgM [8] extends the previous strategy by considering a
momentum term 𝛽 when calculating model parameters, adding the
relevant term to Equation 4 and producing Equation 5 below

\𝑡+1 ← \𝑡 − [
𝑁∑︁
𝑖=1

𝑛𝑖

𝑛
𝑔𝑖 + 𝛽Δ\ (5)

As in the case of centralized SGD, its federated counterpart can
also get stuck in areas of the parameter space that have no gradient.
Therefore, the momentum term allows FedAvgM to build inertia
in the parameter search, overcoming the oscillations of the noisy
gradients. Naturally, 𝛽 is a hyper-parameter of this strategy. Finally,
FedAdam [18] is the FL-based implementation of the widely used
Adam optimization algorithm [12].

Once the aggregated parameters \ have been determined, a PD
speech classifier \𝑝𝑐𝑙 is trained to minimize the task-specific loss
𝐿𝑝𝑐𝑙 , which is then used for inference (classify pathological speech
in unseen data). The optimization objectives for each client are
adapted to consider their local data and the model parameters
are updated based on the employed federated learning strategy
(Equation 6)

argmin
\

𝐿𝑝𝑐𝑙 (\, \𝑝𝑐𝑙 ) (6)

Model training and evaluation are based on the same proto-
col used in [10]. The difference is that while the upstream task
(speaker identity-invariant representation with adversarial train-
ing) is trained centrally (as in the original paper), the downstream
task (PD classification, using the pre-trained representations of
the upstream task) is trained in a FL context. Data are split into
distinct training-validation-test sets according to a 60%− 20%− 20%
ratio, following a 10 fold cross-validation protocol. Other training
hyper-parameters include the batch size which has ben set to 128,
the learning rating ([ = 0, 02) and the number of epochs (20). Lastly,
performance is assessed at the chunk level (patient recordings are
split into non-overlapping parts) using the accuracy metric.

4 RESULTS
Prior to examining the various FL strategies discussed in the pre-
vious Section, we performed a centralized training of the model
on our dataset and computed the chunk level accuracy at 65.19%.
This result is considerably lower when compared to the respective
value ( 75.4%) reported in [10] and the difference is attributed to
the peculiarities of the dataset used in our experiments (Section
3). The Spanish recordings extracted from the PC-GITA database
[15] considered in [10] contain speech segments of PD patients
and healthy controls reading text excerpts. On the other hand, the
MDVR-KCL dataset contains longer talks between patients/healthy
controls and doctors, resembling a more realistic examination sce-
nario. However, from the model’s perspective, the data in our case
contain “artifacts” not present in [10] and hence the difference in
performance.

Table 1 summarizes the results of model evaluation on the down-
stream task, for the FL strategies outlined in Section 3. Results
are reported on a per-client basis (on the part of the test dataset
available at each client) and aggregated. A first observation is that
the centralized model clearly outperforms the FL strategies; only
FedAdam on the part of the dataset available at the first client
seems to achieve a similar accuracy. Nevertheless, it is our belief
that this situation does not necessarily designate a weakness of
the FL strategies over centralized training, as the latter approaches
are dependant on an number of hyper-parameters (some of which
have been discussed in Section 2) that have not been extensively
searched for their optimal values (we have resorted to some widely
used common values). Additionally, the small number of clients
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Table 1: Accuracy results for the various FL strategies

FedAvg FedAvgM FedAvgM FedAdam FedAdam
(𝛽 = 0.3) (𝛽 = 0.7) ([ = 0.1, [𝑙 = 0.1) ([ = 0.1, [𝑙 = 0.7)

1st Client 58.67% 60.58% 59.69% 63.08% 60.02%
2nd Client 58.84% 57.42% 53.78% 59.48% 63.03%

Aggregate 58.74% 59.19% 57.07% 61.49% 61.35%

involved (the minimum 2 for FL) along with size of the dataset had
their impact on the outcome; FL strategies would have performed
better had the dataset size and number of clients been bigger.

Apart from the general remarks of the previous paragraph, Table
1 allows us to inspect the performance of the different strategies
in more detail. For example, the simple FedAvg strategy achieves
comparable performance on the dataset parts of both clients and the
aggregate model performance is in close vicinity to their average.
The addition of a small momentum term (𝛽 = 0.3) to the federated
SGD boosts the model’s throughput, resulting in a 2% accuracy
gain. Further increasing the momentum term (𝛽 = 0.7) does not
seem to yield better results, as performance slightly deteriorates.
The FL adaptation of Adam, the second optimization algorithm to
be considered in the current work, achieves even better results,
which are very close to the ones reported by the centralized model
(65.19%).

Overall, the findings above suggest that FL strategies, if prop-
erly adjusted, exhibit a potential for effective model training and
aggregation, by leveraging distributed data. The aggregate model
accuracy indicates the collaborative learning capability of FL, as
each client’s local model contributes to the overall performance
enhancement. It should be noted, that even though the centralized
model outperformed all FL strategies in terms of accuracy, it is im-
portant to consider the trade-offs associated with this approach. FL
addresses concerns related to data privacy and scalability by keep-
ing the raw data decentralized and aggregating parameters updates
instead. Consequently, FL strategies provide viable alternatives in
cases where data privacy is crucial or computational constraints
are of paramount importance.

5 CONCLUSIONS
In this work, the training and inference of a state-of-the-art PD
detection model under different FL strategies on patient speech
data has been outlined. Even though the objective was to address
challenges associated with the feasibility of the approach, certain
FL strategies achieved comparable results to a centrally trained
model, thereby demonstrating the potential of collaborative and
privacy-preserving model training for PD detection.

Despite slightly affecting performance, it is evident that the FL
strategies provide a decentralized and secure framework for train-
ing ML models, ensuring the privacy of patient data. These results
are a clear indication for the potential of FL for further applica-
tion in the healthcare domain. The ability of some FL strategies to
attain comparable performance levels to centralized models high-
lights their effectiveness in leveraging distributed speech data while
addressing data privacy concerns.

Moving forward, there are several areas for improvement and
exploration in the application of FL for PD detection using speech
data. One direction for future work is to increase the number of
clients participating in the FL process. By involving a larger number
of clients, it would be possible to incorporate more diverse and
representative speech data into the training process. This can help
improve the generalizability of the trained model and enhance its
performance on a wider range of patients.

Additionally, further investigation into the impact of different FL
strategies on the performance of the models could also be sought
after. Exploring a broader range of strategies and evaluating their
effects on model accuracy, convergence speed, and communication
overhead can provide valuable insights into optimizing the aggre-
gation process. This optimization is crucial for achieving efficient
and effective model training in FL scenarios.

Furthermore, the integration of additional modalities, such as
motor and imaging data, along with speech data, holds great po-
tential for enhancing the overall accuracy and robustness of PD
detection systems. By incorporating multiple modalities, it becomes
possible to capture a more comprehensive view of the disease and
its manifestations. However, integrating multimodal data within
the FL framework requires the development of novel aggregation
techniques to effectively combine the information from different
modalities. Exploring and designing such aggregation methods that
can leverage the strengths of each modality can further enhance
the performance of FL-based PD detection systems.

In summary, future work in this area can focus on increasing the
number of clients, exploring more FL strategies, and incorporating
additional modalities to improve the accuracy, generalizability, and
robustness of PD detection systems. These advancements have the
potential to pave the way for more personalized and effective early
diagnosis of PD, ultimately improving patient care and outcomes.

In conclusion, this work demonstrated the feasibility and effec-
tiveness of FL in PD detection using speech data, showcasing its
potential as a viable framework for privacy-preserving and scalable
ML training in the healthcare domain. While the FL strategies’ accu-
racy was slightly lower than of the centralized model, the benefits
of data privacy and scalability offered by FL make it a promising
approach for future research and application in healthcare.
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