
AQuic(k) Security Overview: A Literature Research on
Implemented Security Recommendations

Stefan Tatschner
Fraunhofer Institute AISEC

Garching bei München, Germany
University of Limerick

Limerick, Ireland
stefan.tatschner@aisec.fraunhofer.de

Sebastian N. Peters
Fraunhofer Institute AISEC

Garching bei München, Germany
sebastian.peters@aisec.fraunhofer.de

David Emeis
Fraunhofer Institute AISEC

Garching bei München, Germany
david.emeis@aisec.fraunhofer.de

John Morris
University of Limerick

Limerick, Ireland
john.morris@ul.ie

Thomas Newe
University of Limerick

Limerick, Ireland
thomas.newe@ul.ie

ABSTRACT
Built on top of UDP, the relatively new QUIC protocol serves as
the baseline for modern web protocol stacks. Equipped with a rich
feature set, the protocol is defined by a 151 pages strong IETF stan-
dard complemented by several additional documents. Enabling fast
updates and feature iteration, most QUIC implementations are im-
plemented as user space libraries leading to a large and fragmented
ecosystem. This work addresses the research question, “if a complex
standard with a large number of different implementations leads to
an insecure ecosystem?”. The relevant RFC documents were studied
and “Security Consideration” items describing conceptional prob-
lems were extracted. During the research, 13 popular production
ready QUIC implementations were compared by evaluating 10 se-
curity considerations from RFC9000. While related studies mostly
focused on the functional part of QUIC, this study confirms that
available QUIC implementations are not yet mature enough from a
security point of view.

CCS CONCEPTS
• Security and privacy → Web protocol security; Security re-
quirements; • Networks → Web protocol security; Transport proto-
cols.

KEYWORDS
QUIC, RFC9000, security considerations, web
ACM Reference Format:
Stefan Tatschner, Sebastian N. Peters, David Emeis, John Morris,
and Thomas Newe. 2023. A Quic(k) Security Overview: A Literature Re-
search on Implemented Security Recommendations. In The 18th International
Conference on Availability, Reliability and Security (ARES 2023), August 29–
September 01, 2023, Benevento, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3600160.3605164

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0772-8/23/08.
https://doi.org/10.1145/3600160.3605164

1 INTRODUCTION
QUIC is a general purpose transport layer network protocol which
was designed by Jim Roskind at Google in 2012 and publicly an-
nounced as an experiment in 2013. While being built on top of
the connectionless but efficient User Datagram Protocol (UDP) [1],
it was submitted to the Internet Engineering Task Force (IETF)
for standardization in 2015 and finally published as RFC9000 [14],
which is supported by RFC8999 [27], RFC9001 [29], and RFC9002
[13] in 2021. As specified in RFC9001, QUIC uses the Transport
Layer Security (TLS) [21] protocol which enables authentication
of peers and provides confidentiality and integrity protection for
messages exchanged by endpoints.

Originally developed in the 1970s, the Transmission Control
Protocol (TCP) [10] nowadays suffers from some limitations, e.g.
slow connection setup times, especially when it is used with TLS.
For instance with TCP+TLS, a client must go through both the
TCP three-way and the TLS handshake. QUIC was created to ad-
dress some of these restrictions and in doing so, has earned it the
nickname “TCP/2”. The most common case for connection estab-
lishment requires four roundtrips for TCP+TLS and one roundtrip
for QUIC [8].

The reason for the increasing adoption of QUIC is its incorpora-
tion into the web protocol stack as the Hypertext Transfer Protocol
(HTTP) is used by more than five billion people for accessing the
internet [25]. Facebook announced in 2020 that more than 75%
of their Internet traffic uses QUIC and HTTP/3 [7]. The current
version HTTP/3 is designed to delegate features provided by the
HTTP/2 framing layer to native QUIC features. A good example are
HTTP/2 [28] streams which were multiplexed over a single TCP
connection in the previous HTTP version. In HTTP/3, streams are
provided by the QUIC protocol stack [4].

In order to allow rapid iteration of the protocol, the designers in-
tended the protocol stack to be located in user space. Consequently,
multiple implementations for different programming languages ex-
ist today. Being a basic building block of the current version of the
most used internet protocol, different QUIC implementations are
built into major browsers1, such as Chromium, Firefox, or Safari.

1https://caniuse.com/http3

https://orcid.org/0000-0002-2288-9010
https://orcid.org/0009-0007-6421-4023
https://orcid.org/0009-0003-4960-944X
https://orcid.org/0000-0003-2811-1055
https://orcid.org/0000-0002-3375-8200
https://doi.org/10.1145/3600160.3605164
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600160.3605164
https://caniuse.com/http3
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600160.3605164&domain=pdf&date_stamp=2023-08-29


ARES 2023, August 29–September 01, 2023, Benevento, Italy Stefan Tatschner, Sebastian N. Peters, David Emeis, John Morris, and Thomas Newe

Due to its dissemination, QUIC carries responsibility for internet
users in terms of privacy and security. For instance, there have been
multiple attempts to compromise the security of the internet. In
the past, there were reports about undersea cable tapping [3] or
attempts to weaken the security parameters of TLS [9].

In RFC documentation, sections called “Security Consideration”
are used to discuss conceptional weaknesses in published network
protocols according to the attackermodel explained in RFC3552 [22].
If necessary, follow-up RFC documents are published to keep the
older documents up-to-date. Unfortunately, the current approach
of the IETF has a downside. For instance, QUIC has a documented
known vulnerability called opt-ack which is already known from
TCP and might cause a wide-spread congestion collapse [24]. Coun-
termeasures for opt-ack are well known, but for TCP, developers
decided not to implement them due to performance degradation
reasons. In the QUIC RFC, there are suggestions for a mitigation
strategy but the relevant sections are tagged with the RFC2119
keywords MAY or SHOULD [6] turning them into optional coun-
termeasures.

The research question this paper addresses is: “Does the com-
plexity of the RFC standard on the one hand and the large number
of different QUIC implementations on the other hand lead to an
insecure QUIC ecosystem?”. Initially, the conceptional weaknesses
of QUIC, documented by the designers and their mitigation strate-
gies are investigated. Subsequently, exploratory Internet research
on existing QUIC implementations is conducted. From these re-
sults, 13 libraries were chosen for a deeper analysis. As a next step,
the selected QUIC implementations are analyzed to determine if
they implemented the suggested mitigation strategies. Finally, the
results are compared and discussed. In this study the scope was in-
tentionally limited to the QUIC protocol, additionally incorporated
protocols, such as TLS, were not considered.

The presented paper aims to give an update of the available
QUIC implementations by conducting an analysis of the QUIC
environment. Further, the available analysis of vulnerabilities is
complemented by comparing QUIC implementations with the se-
curity recommendations from the RFC documents.

2 RELATEDWORK
Sherwood et al. and Adamsky et al. both show in their studies from
2005 and 2012 how misbehaving receivers could have a major im-
pact on whole network infrastructures [24, 2]. To overcome such
emerging problems in their standards, the IETF publishes docu-
ments updating already established RFCs. For instance, there is
RFC5961 [26] specifying a modification of the TCP inbound seg-
ment handling, reducing the chances of a successful, known attack.
On the downside, this modification is also formulated as an optional
item and is not specified as a mandatory TCP update, thereby in-
creasing the number of possible ways of implementing the protocol.
The reason for specifying updates as optional is often for backwards
compatibility. However, there are other approaches like flag days
known from the Domain Name System (DNS) which help to move
the ecosystem forward2.

Piraux et al. created a QUIC test suite in 2018 that interacts with
public QUIC servers to verify their conformance with key features

2https://www.isc.org/blogs/dns-flag-day-2020/

of the IETF specification [20]. The authors compared 15 different
QUIC implementations revealing that their grade of conformance
to the IETF specification differs largely. Additionally, this paper
provides an overview of the evolution of RFC2119 keywords. Ap-
proximately half of all tracked keywords in the QUIC specification –
at the time of this study – were SHOULD or SHOULD NOT, respec-
tively. In other words, the QUIC specification contains a significant
amount of optional requirements. This work demonstrates that the
complexity and optional keyword nature of the QUIC protocol leads
to many implementations behaving differently for key features.

Marx et al. in 2018 proposes a standardized logging and visualiza-
tion format for debugging and analyzing QUIC [18]. This proposal
led to a RFC draft describing a high-level schema for a standardized
logging format called qlog, which is currently at revision 5 [19]. The
goal is a standardized logging format which is implemented across
multiple different implementations that provides an opportunity
for comparing them at runtime.

In a subsequent work, Marx et al. analyzed and discussed 15 dif-
ferent QUIC implementations in 2020 [17]. They used their pre-
viously presented approach based on the qlog format to debug
and compare the QUIC stacks. The authors concluded that even
though these stacks all implemented exactly the same RFCs, their
low-level implementation choices led to large differences in behav-
ior between them. These differences may be caused by the large
number of optional items, as outlined in [20]. It might be expected
that many implementations eventually develop into a smaller set
of best practices rather than the observed approaches.

In 2023, Chatzoglou et al. presented a comprehensive overview
of 18 QUIC implementations and they analyzed the QUIC security
through the lens of relevant literature [7]. The authors revealed
several practical zero-day vulnerabilities and came to the conclusion
that the available fragmented production-level implementations
might not yet be mature enough.

3 METHODOLOGY
This research consists of multiple, consecutive working steps. The
results were collected in separate tables including additional meta-
data, e.g. keywords for search or further references. As these tables
form the database for the evaluation, they will be published as ad-
ditional data to this paper. From a conceptional point of view, the
methodology is structured as follows:

(1) Identification of relevant RFC documents: The relevant
RFC documents are presented on the QUIC working group’s
homepage3. There are a few documents which (at the time of
writing) only exist as draft documents; draft documents were
not considered. During this research it turned out that only
RFC9000 [14] contains relevant optional measures. Other
documents, such as RFC9001 [29], RFC9308 [15], or RFC9312
[16] contain Security Considerations but they are either not
applicable to the present evaluation or they just reference
RFC9000.

(2) Analysis of “Security Considerations”: The “Security
Considerations” sections were analyzed in order to find
concrete, documented problems with proposed solutions.
The relevant RFC2119 keywords were extracted to outline

3https://quicwg.org/

https://www.isc.org/blogs/dns-flag-day-2020/
https://quicwg.org/


AQuic(k) Security Overview ARES 2023, August 29–September 01, 2023, Benevento, Italy

Project ★ Backed by Language TLS Stack References

quic-go 8.0k Google Go modified Go stdlib Syncthing, caddy, cloudflared, traefik
cloudflare/
quiche 7.4k Cloudflare Rust Boring SSL Android (DNS), curl, nginx
MsQuic 3.3k Microsoft C SChannel HTTP/3 and SMB Stack on Windows
Quinn 2.7k Instant Domains, Inc Rust multiple (default: rustls) hyper/reqwest
Neqo 1.6k Mozilla C, C++ NSS Firefox
XQUIC 1.4k Alibaba C BoringSSL or BabaSSL tengine
mvfst 1.3k Facebook C++ Fizz internally at Facebook
aioquic 1.2k Jeremy Lainé Python custom hypercorn, httpx
LSQUIC 1.2k LiteSpeed Technologies Inc C BoringSSL internally at LiteSpeed
ngtcp2 0.9k Tatsuhiro Tsujikawa C++ multiple curl
s2n-quic 0.9k Amazon Web Services Rust s2n-tls or rustls Amazon Web Services
quicly 0.6k Fastly, DeNA Co. Ltd. C BoringSSL H2O webserver
google/
quiche 0.4k Google C, C++ BoringSSL Chromium

Table 1: Overview of identified production ready QUIC implementations, sorted by Github stars. The full version of this table is
available in the supplementary material.

whether the proposed solution is considered mandatory or
optional. For the result of this work step, see Section 4.

(3) Online search for QUIC implementations: The number
of libraries for this analysis was limited by the following
constraints: Only implementations that consider themselves
as production-ready or implementations that are already
used by popular applications, such as curl4. Only Free and
open-source software (FOSS) projects, because an important
point are publicly available discussions on development deci-
sions. Support for QUIC v1. The selection should cover major
programming languages, including C, C++, Go, Python, and
Rust. For the result of this work step, see Table 1. For further
reference, an extended version of this table, also including
all omitted implementations, is available online5.

(4) Evaluation of implemented measures: The identified
implementations were reviewed, if the referenced ‘Security
Considerations’ were implemented. For this purpose, a man-
ual approach was chosen: for Github-based projects, the
source code, issue tracker, and pull requests were searched
for relevant keywords. For non Github-based projects, at
least the source code was searched; additional related re-
sources were considered if available. For the result of this
work step, see Table 2. Additional information, such as the
used search keywords, are published online5.

4 SECURITY CONSIDERATIONS
In their documents, the IETF highlights possible conceptual weak-
nesses in standardized sections, called “Security Considerations”.
The RFC documents outlined by the QUIC working group were in-
vestigated and relevant sections were extracted. Some text passages
define optional (security related) components of the QUIC protocol
that are not required by the standard to be implemented. Indicators

4https://curl.se
5https://rumpelsepp.org/projects/quic-overview

for optional sections are the RFC 2119 [6] keywords SHOULD (NOT)
and MAY (NOT); SHOULD indicates an item is recommended, or in
other words, there are valid reasons to consider a particular item.
MAY indicates that an item is truly optional. Furthermore, there are
mandatory items marked with the keyword MUST (NOT). The fol-
lowing conceptional weaknesses were identified by analyzing the
Security Considerations sections in the relevant RFC documents.

Table 2 represents the results of this evaluation. Each following
section cites the relevant part in the RFC and gives an explanation
about what the authors searched for in each implementation to
add a ✓ mark in the table. For a few results, the authors needed to
simplify the criteria, otherwise the analysis would go beyond the
scope of this paper.

4.1 Amplification
This attack is described in [14, Sec. 21.3]. A peer can be tricked into
sending packets to a victim by abusing address validation tokens.
The proposed mitigation strategy is limiting the lifetime of the
mentioned tokens. The RFC 2119 keyword SHOULD is used in the
referenced section. The ✓ mark was applied if the project showed
indications that at least basic anti-amplification mechanisms are
implemented.

4.2 Optimistic ACK
This attack is described in [14, Sec. 21.4]: “An endpoint that ac-
knowledges packets it has not received might cause a congestion
controller to permit sending at rates beyond what the network sup-
ports.” The proposed strategy to detect this attack is skipping packet
numbers. The RFC 2119 keyword MAY is used in the referenced
section. The ✓ mark was applied if the project has implemented a
mechanism to skip packet numbers.

https://curl.se
https://rumpelsepp.org/projects/quic-overview


ARES 2023, August 29–September 01, 2023, Benevento, Italy Stefan Tatschner, Sebastian N. Peters, David Emeis, John Morris, and Thomas Newe

4.3 Slowloris
This attack is described in [14, Sec. 21.6]: The attacks commonly
known as Slowloris tries to keep many connections to the target
endpoint open and hold them open for as long as possible. The pro-
posed strategy is choosing appropriate limits for a QUIC connection,
for instance limiting the maximum number of clients, or a mini-
mum transfer speed. The RFC 2119 keyword SHOULD is used in the
referenced section. The ✓ mark was applied if the project showed
indications that Slowloris is explicitly addressed or a fine-grained
limiting system is available.

4.4 Stream Fragmentation and Reassembly
This attack is described in [14, Sec. 21.7]. This attack can become
arbitrary complex; to summarize, an attacker tries to force a peer to
allocate lots of memory by modifying packet numbers, for example.
The proposedmitigations could consist of avoiding over committing
memory, limiting the size of tracking data structures, delaying
reassembly of STREAM frames, implementing heuristics based on
the age and duration of reassembly holes, or some combination of
these. The RFC 2119 keyword SHOULD is used in the referenced
section. The ✓ mark was applied if the project showed indications
that one of the proposed mitigations is present or that the issue is
explicitly addressed.

4.5 Stream Commitment
This attack is described in [14, Sec. 21.8]: “An adversarial endpoint
can open a large number of streams, exhausting state on an end-
point”. The proposed mitigation is to set appropriate limits. There
is an own section which explains how these limits are determined
[14, Sec. 4.6]. The RFC 2119 keyword MUST is used in the refer-
enced section. The ✓ mark was applied if the project implemented
a system to limit stream resources.

4.6 Peer Denial of Service
This attack is described in [14, Sec. 21.9]: “QUIC and TLS both
contain frames or messages that have legitimate uses in some con-
texts, but these frames or messages can be abused to cause a peer
to expend processing resources without having any observable
impact on the state of the connection.” The proposed technique
for detecting this attack is “track cost of processing relative to
progress”. Implementations should then react with an appropriate
error, for instance with terminating the connection. The RFC 2119
keywords SHOULD and MAY are used in the referenced section.
The ✓ mark was applied if the project has implemented a system
to track connection-specific statistics.

4.7 Explicit Congestion Notification
This attack is described in [14, Sec. 21.10]: “An on-path attacker
could manipulate the value of ECN fields in the IP header to influ-
ence the sender’s rate. RFC3168 [11] discusses manipulations and
their effects in more detail.” The proposed mitigation is ignoring
the Explicit Congestion Notification (ECN) field in the IP header
unless the packet passes a validation step which is described in [14,
Sec. 13.4.2]. There are no RFC2119 keywords used in this section
and ECN is an optional IP feature [11]. The ✓ mark was applied if

the project has support for the ECN field and showed indications
that a validation step is implemented.

4.8 Stateless Reset Oracle
A Stateless Reset is a response to a packet that cannot be associated
with an active connection and is a possibility to stop peers contin-
uing to send packets. This attack is described in [14, Sec. 21.11]:
“Stateless resets create a possible denial-of-service attack analogous
to a TCP reset injection.” This attack depends on a special condition
of connection IDs and reset tokens. Implementations must avoid
this special condition. The RFC 2119 keywords MUST and MUST
NOT are used in the referenced section. The ✓ mark was applied if
the project explicitly addressed the stateless reset vulnerability.

4.9 Version Downgrade
This attack is described in [14, Sec. 21.12]: “Future versions of QUIC
that use Version Negotiation packets MUST define a mechanism
that is robust against version downgrade attacks.“ At the time of
writing, a mechanism for QUIC version negotiation exists as a IETF
draft [23]. A few QUIC libraries still implement draft revisions of
QUIC and may be vulnerable to downgrade attacks. The RFC 2119
keyword MUST is used in the referenced section. The ✓ mark was
applied if the project explicitly addressed the version downgrade
problem - not necessarily by implementing the brand new QUIC
draft already.

4.10 Traffic Analysis
This attack is described in [14, Sec. 21.14]: “The length of QUIC
packets can reveal information about the length of the content of
those packets.” Implementations can use PADDING frames to ob-
fuscate the length of packets. There are no RFC2119 keywords used
in this section. The authors are aware that hiding all information in
network traffic is a complex task on its own, cf. [5]. Therefore, the ✓

mark was applied if PADDING can be controlled via an Application
Programming Interface (API) from a particular application.

5 EVALUATION
The results of the conducted evaluation can be obtained from Ta-
ble 2. For the table, different symbols were chosen:

✓ The mitigation according to the defined criteria in Section 4
is addressed.

[✓] A special case of the security consideration is implemented,
therefor the defined criteria in Section 4 are only partially
addressed.

✗ The mitigation according to the defined criteria in Section 4
is not addressed.

n/a The mitigation is out of scope and not available for the
project, since a required underlying feature is not imple-
mented.

* The project is not developed in public but behind closed
doors. Such projects have very little public information avail-
able, such as code reviews or discussions about the design
decisions. The results of these projects need to be taken with
a grain of salt.



AQuic(k) Security Overview ARES 2023, August 29–September 01, 2023, Benevento, Italy

Security Consideration qu
ic
-g
o

c/
qu

ic
he

M
sQ

ui
c

Q
ui
nn

N
eq
o

XQ
UI
C*

m
vf
st
*

ai
oq
ui
c

LS
Q
UI
C

ng
tc
p2

s2
n-
qu

ic

qu
ic
ly

g/
qu

ic
he
*

Amplification (cf. Sec. 4.1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Optimistic ACK (cf. Sec. 4.2) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

Slowloris (cf. Sec. 4.3) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

Stream Fragmentation and Reassembly (cf. Sec. 4.4) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Stream Commitment (cf. Sec. 4.5) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Peer Denial of Service (cf. Sec. 4.6) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ [✓] ✗ ✗

Explicit Congestion Notification (cf. Sec. 4.7) n/a n/a ✓ ✓ n/a n/a n/a n/a n/a ✓ ✓ n/a ✓

Stateless Reset Oracle (cf. Sec. 4.8) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Version Downgrade (cf. Sec. 4.9) ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Traffic Analysis (cf. Sec. 4.10) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 2: Evaluation Results. ✓ means the mitigation is available as defined in Section 4. [✓] means that a special case of this
mitigation is implemented. ✗ means the mitigation is not available. The abbreviation n/a indicates that a required underlying
feature is not available. Projects with a star * seem to be developed behind closed doors and the results need to be taken with a
grain of salt. The full version of this table is available in the supplementary material.

Three projects, mvfst, google/quiche, and XQUIC, have public
available source code but the development process itself is not
visible. The XQUIC project was very difficult to analyze with the
chosen approach. The project contains over 60k lines of C code but
the code history is structured into only 78 commits. Since there is
no further documentation or metadata in the form of discussions
or issues available, it was required to analyze the source code of
XQUIC and rely on comments or function names.

All projects implement measures against Amplification attacks.
The security considerations Optimistic ACK (implemented by
three), Slowloris (implemented by three), and Version Downgrade
(implemented by six) were addressed by a few projects. These spe-
cial weaknesses were relatively easy to spot, because they were
often documented in the source code or in the issue tracker. Stream
Fragmentation is addressed by LSQUIC. The project even offers
documentation about buffer handling which is claimed to be not
vulnerable to stream fragmentation attacks by its authors. Stream
Commitment was addressed by all projects. Stream Commitment
was found to be similar to the Peer Denial of Service considera-
tion that no project has addressed. The difference between those
two is that mitigating Peer Denial of Service requires a more fine
grained tracking of connection resources and limits. Quinn and
quicly were the only projects that implement a fine-grained connec-
tion statistics system. However, this statistics system is only used
for meta information and not for triggering certain actions, such
as terminating a connection. There is one exception, though: s2n-
quic implements a measure against reflection attacks6, which falls
into the category of Peer Denial of Service but it is a special case.
Explicit Congestion Notification requires an underlying feature
to be present. Only four projects have implemented this feature.
If the underlying feature was implemented, the relevant security
consideration was addressed as well. Traffic Analysis is the only
item, which is not addressed by any of the QUIC implementations.

6https://github.com/aws/s2n-quic/issues/1259

The authors of the s2n-quic chose a commendable and transpar-
ent approach. They extracted RFC2199 keywords from all involved
RFCs and created a machine readable compliance overview. Each
RFC2199 item was assigned a status (e.g. completed, missing tests,
. . . ) and if available a tracking issue on Github. Unfortunately, most
items relevant for this study (cf. Section 4) had status set to “un-
known”. The weblink to the compliance report is very large due to
the usage of hash values in the URL. Therefore, it is not appropriate
for this paper’s layout. However, the weblink is included in the
supplementary material.

During the evaluation, a reference7 to a later standard, DNS
over Dedicated QUIC Connections [12] was noticed. This standard
includes a section that references RFC9000 according to traffic
analysis. This section is specified with the keyword MUST: “Im-
plementations MUST protect against the traffic analysis attacks
described in Section 7.5 by the judicious injection of padding. This
could be done either by padding individual DNS messages using
the EDNS(0) Padding Option (. . . ) or by padding QUIC packets (. . . ).”
[12, Sec. 5.4].

During the evaluation, it was further noticed that an IETF draft
Compatible Version Negotiation for QUIC [23] is intended to be
published as RFC9368 but has not yet been approved by one of
its authors8. Interestingly enough, LSQUIC seems to be the first
project claiming RFC9368 support. This (potential) RFC9368 re-
quires downgrade protection with the keyword MUST.

6 DISCUSSION
According to Section 3, this study used a manual approach for eval-
uating the implemented measures. In contrast to presented related
studies in Section 2, there is no test suite or automated tooling avail-
able. A manual approach is more sensitive to human error than
a machine-aided approach; especially because the relevant data
needs to be collected by hand from different sources, such as code

7https://github.com/ngtcp2/ngtcp2/issues/626
8https://www.rfc-editor.org/auth48/rfc9368

https://github.com/aws/s2n-quic/issues/1259
https://github.com/ngtcp2/ngtcp2/issues/626
https://www.rfc-editor.org/auth48/rfc9368


ARES 2023, August 29–September 01, 2023, Benevento, Italy Stefan Tatschner, Sebastian N. Peters, David Emeis, John Morris, and Thomas Newe

comments, Github issues and documentation. This approach does
not endorse the correctness of an implemented countermeasure,
it only shows that the developers are aware of certain problems
that need to be addressed. The authors are aware that some prob-
lems, for instance Slowloris, Stream Commitment, or Peer Denial
of Service, are expected to be addressed by similar looking counter-
measures. However, a manual approach enables accidental findings
like RFC9250 where certain optional security considerations from
RFC9000 are required with the keyword MUST. Because the basic
standard lacks keywords for Traffic Analysis, cf. Section 4.10, no
project has implemented suitable APIs up to now. Consequently,
this study confirms the results presented in related work [7, 18, 20]:
The QUIC ecosystem suffers from being fragmented with many
implementations that have unique differences.

It was observed that only one project implements a mitigation
strategy for Stream Fragmentation (cf. Section 4.4) and no project
implements Peer Denial of Service mitigation. One possible expla-
nation for this is that our search technique used is not suitable
for this kind of mitigation. Since Stream Fragmentation and Peer
Denial of Service are complex topics, the text in the RFC docu-
ment for the former only suggests using generic techniques, such
as avoiding over-committing memory or limiting the size of data
structures, rather than specifying a particular mitigation technique.
For the latter, tracking the cost for each connection is suggested
and then appropriate actions should be triggered in case certain
limits are reached. Due to the generic nature of these mitigations,
it is assumed that perhaps they were not recognized by the manual
approach. No project seems to address Traffic Analysis (cf. Sec-
tion 4.10). The authors have formed the impression that Traffic
Analysis was not on the radar of most developers. There are Github
issues9 10 asking for APIs to specify PADDING, but no one has writ-
ten the required code yet. It is expected that this will change and
suitable APIs will start to appear, because the recently published
RFC9250 explicitly requires the implementation of Traffic Analysis.

While related studies mostly focused on the functional part
of QUIC, this study found that the hypothesis of a fragmented
ecosystem is also true for the security related parts. The RFC au-
thors’ decision to locate the QUIC protocol stack into user space,
led to separate implementations from each of the big players,
such as Cloudflare, Facebook, Google, and Microsoft. For instance,
Google maintains two distinct QUIC implementations: quic-go and
google/quiche which is shipped with Google Chrome.

During the analysis, it was also noticed that the governance of
the analyzed projects differs strongly. There are projects like quic-
go, quiche, or s2n-quic which are developed in public with a large
community and a lot of searchable information on Github. On the
contrary, there are projects like mvfst, XQUIC, or google/quiche
where the code is publicly available but development seems to hap-
pen behind closed doors. This is demonstrated by the fact that there
is little public information or discussion about design decisions
available online. The mvfst and google/quiche projects use commit
messages that carry extra information for internal use by Face-
book or Google respectively. In the XQUIC project, there are very
few commits in the repository (currently 78), but major features

9https://github.com/ngtcp2/ngtcp2/issues/626
10https://github.com/mozilla/neqo/issues/784

with plus 12k lines of code changes were merged without public
review11. Additionally, there are unanswered issues about testing12
and concerns about easy to guess address tokens13. Since the source
code is used primarily for collecting information, such projects are
very difficult to analyze using the chosen approach. Nevertheless,
multiple implementations help testing the robustness, standards
compliance, and interoperability.

In order to improve the security, sustainability and maintainabil-
ity of the QUIC ecosystem as a whole, the authors suggest creating
a test suite (or extend an existing one, cf. [20]) which covers security
consideration tests at runtime. At best, passing these tests should
become a requirement to identify as a compliant QUIC implemen-
tation. Good examples for existing test suites in different working
areas are xfstests14 for filesystems and litmus15 for WebDAV. For
tracking the standards compliance, the approach of Amazon is a
good example and is worth including into the proposed test suite.
Furthermore, the authors suggest proposing QUIC for inclusion
in standard libraries or even operating system kernels. Being part
of a larger software project ensures long term maintenance and
simplifies usage and research. Both approaches seem to be a good
and sustainable solution that is already being worked on16 [30].

Despite the fact that the ecosystem is fragmented by the exis-
tence of many different but inter-operable QUIC implementations,
an open question remains: “Does the lack of implemented secu-
rity considerations have an impact on the operational security of
QUIC?” A future study examining QUIC projects at runtime for
actual vulnerabilities caused by the lack of particular security con-
siderations and possible obstacles in the development might be
worthwhile.

7 CONCLUSION
This research paper confirmed the results of previous studies as-
sociated with the QUIC ecosystem. From a security point of view,
the QUIC ecosystem is fragmented and no mature general purpose
implementation is available. However, there are well maintained
implementations available that are used in production software,
for instance quic-go is used in the Caddy web server17. Big players
tend to create their own implementations and ship them with their
software rather than using and contributing to already available
implementations. For inexplicable reasons these software stacks are
available as Open Source software, but the development happens
behind closed doors.

Answering the formulated research question: “Does the com-
plexity of the RFC standard on the one hand and the large number
of different QUIC implementations on the other hand lead to an
insecure QUIC ecosystem?”, the authors would answer this ques-
tion with an emphatic yes. The complex RFC standard with a lot
of optional items and the lack of QUIC being available in major
software stacks led to a large number of different implementations
that addressed the same problems differently. The study confirmed

11https://github.com/alibaba/XQUIC/pull/287
12https://github.com/alibaba/XQUIC/issues/265
13https://github.com/alibaba/XQUIC/issues/266
14https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
15http://webdav.org/neon/litmus/
16https://github.com/golang/go/issues/44886
17https://caddyserver.com

https://github.com/ngtcp2/ngtcp2/issues/626
https://github.com/mozilla/neqo/issues/784
https://github.com/alibaba/XQUIC/pull/287
https://github.com/alibaba/XQUIC/issues/265
https://github.com/alibaba/XQUIC/issues/266
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
http://webdav.org/neon/litmus/
https://github.com/golang/go/issues/44886
https://caddyserver.com


AQuic(k) Security Overview ARES 2023, August 29–September 01, 2023, Benevento, Italy

that a lot of known and documented security considerations are not
addressed by most QUIC implementations. Reducing the number
of available QUIC implementations and including those into major
software stacks like standard libraries or operating system kernels
might help to improve the ecosystem.

8 DATA AVAILABILITY
We provide supplementary material under the CC0 (“No Rights Re-
served”) license at https://rumpelsepp.org/projects/quic-overview.
Among others, the material provides more detailed versions, also
including timestamps and weblinks, of Table 1 and Table 2.

ACKNOWLEDGMENTS
Many thanks to Daniel and Florian from the segfault.fm podcast
(https://segfault.fm) for inspiring this paper in episode 0x1a. The
authors also would like to thank Michael Heinl for providing his
Overleaf account for writing this paper. This work was partially
supported by the German Federal Ministry of Education and Re-
search (BMBF) under Grant No. 16KIS1847 and partially by the
German Federal Ministry for Economic Affairs and Climate Ac-
tion (BMWK) under Grant No. 13I40V010A.

REFERENCES
[1] 1980. User Datagram Protocol. RFC 768. https://doi.org/10.

17487/RFC0768
[2] Florian Adamsky, Syed Ali Khayam, Rudolf Jäger, and Mut-

tukrishnan Rajarajan. 2012. Security Analysis of the Micro
Transport Protocol with a Misbehaving Receiver. In 2012 Inter-
national Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery. 143–150. https://doi.org/10.1109/
CyberC.2012.31

[3] Richard J Aldrich and Athina Karatzogianni. 2020. Postdigital
war beneath the sea? The Stack’s underwater cable insecurity.
Digital War 1, 1 (2020), 29–35. https://doi.org/10.1057/s42984-
020-00014-x

[4] Mike Bishop. 2022. HTTP/3. RFC 9114. https://doi.org/10.
17487/RFC9114

[5] Konstantin Böttinger, Dieter Schuster, and Claudia Eckert.
2015. Detecting Fingerprinted Data in TLS Traffic. In Proceed-
ings of the 10th ACM Symposium on Information, Computer
and Communications Security (Singapore, Republic of Singa-
pore) (ASIA CCS ’15). Association for Computing Machinery,
New York, NY, USA, 633–638. https://doi.org/10.1145/2714576.
2714595

[6] Scott O. Bradner. 1997. Key words for use in RFCs to Indicate
Requirement Levels. RFC 2119. https://doi.org/10.17487/
RFC2119

[7] Efstratios Chatzoglou, Vasileios Kouliaridis, Georgios
Karopoulos, and Georgios Kambourakis. 2023. Revis-
iting QUIC attacks: a comprehensive review on QUIC
security and a hands-on study", journal="International
Journal of Information Security. 22, 2 (01 4 2023), 347–365.
https://doi.org/10.1007/s10207-022-00630-6

[8] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra
Boldyreva, and Cristina Nita-Rotaru. 2021. Secure Communi-
cation Channel Establishment: TLS 1.3 (over TCP Fast Open)

versus QUIC. Journal of Cryptology 34, 3 (24 May 2021), 26.
https://doi.org/10.1007/s00145-021-09389-w

[9] Xavier de Carné de Carnavalet and Paul C. van Oorschot. 2023.
A Survey and Analysis of TLS Interception Mechanisms and
Motivations. ACM Comput. Surv. (1 2023). https://doi.org/10.
1145/3580522

[10] Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC
9293. https://doi.org/10.17487/RFC9293

[11] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. 2001.
The Addition of Explicit Congestion Notification (ECN) to IP.
RFC 3168. https://doi.org/10.17487/RFC3168

[12] Christian Huitema, Sara Dickinson, and Allison Mankin. 2022.
DNS over Dedicated QUIC Connections. RFC 9250. https:
//doi.org/10.17487/RFC9250

[13] Jana Iyengar and Ian Swett. 2021. QUIC Loss Detection and
Congestion Control. RFC 9002. https://doi.org/10.17487/
RFC9002

[14] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based
Multiplexed and Secure Transport. RFC 9000. https://doi.org/
10.17487/RFC9000

[15] Mirja Kühlewind and Brian Trammell. 2022. Applicability of
the QUIC Transport Protocol. RFC 9308. https://doi.org/10.
17487/RFC9308

[16] Mirja Kühlewind and Brian Trammell. 2022. Manageability of
the QUIC Transport Protocol. RFC 9312. https://doi.org/10.
17487/RFC9312

[17] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax.
2020. Same Standards, Different Decisions: A Study of QUIC
and HTTP/3 Implementation Diversity. In Proceedings of the
Workshop on the Evolution, Performance, and Interoperabil-
ity of QUIC (Virtual Event, USA) (EPIQ ’20). Association for
Computing Machinery, New York, NY, USA, 14–20. https:
//doi.org/10.1145/3405796.3405828

[18] Robin Marx, Wim Lamotte, Jonas Reynders, Kevin Pittevils,
and Peter Quax. 2018. Towards QUIC Debuggability. In Pro-
ceedings of the Workshop on the Evolution, Performance, and
Interoperability of QUIC (Heraklion, Greece) (EPIQ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 1–7.
https://doi.org/10.1145/3284850.3284851

[19] Robin Marx, Luca Niccolini, Marten Seemann, and Lucas Par-
due. 2023. Main logging schema for qlog. Internet-Draft draft-
ietf-quic-qlog-main-schema-05. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-
main-schema/05/ Work in Progress.

[20] Maxime Piraux, Quentin De Coninck, and Olivier Bonaventure.
2018. Observing the Evolution of QUIC Implementations. In
Proceedings of the Workshop on the Evolution, Performance,
and Interoperability of QUIC (Heraklion, Greece) (EPIQ’18).
Association for Computing Machinery, New York, NY, USA,
8–14. https://doi.org/10.1145/3284850.3284852

[21] Eric Rescorla. 2018. The Transport Layer Security (TLS) Proto-
col Version 1.3. RFC 8446. https://doi.org/10.17487/RFC8446

[22] Eric Rescorla and Brian Korver. 2003. Guidelines for Writing
RFC Text on Security Considerations. RFC 3552. https://doi.
org/10.17487/RFC3552

https://rumpelsepp.org/projects/quic-overview
https://segfault.fm
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768
https://doi.org/10.1109/CyberC.2012.31
https://doi.org/10.1109/CyberC.2012.31
https://doi.org/10.1057/s42984-020-00014-x
https://doi.org/10.1057/s42984-020-00014-x
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9114
https://doi.org/10.1145/2714576.2714595
https://doi.org/10.1145/2714576.2714595
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC2119
https://doi.org/10.1007/s10207-022-00630-6
https://doi.org/10.1007/s00145-021-09389-w
https://doi.org/10.1145/3580522
https://doi.org/10.1145/3580522
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC3168
https://doi.org/10.17487/RFC9250
https://doi.org/10.17487/RFC9250
https://doi.org/10.17487/RFC9002
https://doi.org/10.17487/RFC9002
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9308
https://doi.org/10.17487/RFC9308
https://doi.org/10.17487/RFC9312
https://doi.org/10.17487/RFC9312
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3284850.3284851
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/05/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/05/
https://doi.org/10.1145/3284850.3284852
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC3552
https://doi.org/10.17487/RFC3552


ARES 2023, August 29–September 01, 2023, Benevento, Italy Stefan Tatschner, Sebastian N. Peters, David Emeis, John Morris, and Thomas Newe

[23] David Schinazi and Eric Rescorla. 2022. Compati-
ble Version Negotiation for QUIC. Internet-Draft draft-
ietf-quic-version-negotiation-14. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/draft-ietf-quic-version-
negotiation/14/ Work in Progress.

[24] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud. 2005.
Misbehaving TCP Receivers Can Cause Internet-Wide Con-
gestion Collapse. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (Alexandria, VA, USA)
(CCS ’05). Association for Computing Machinery, New York,
NY, USA, 383–392. https://doi.org/10.1145/1102120.1102170

[25] Statista. 2023. Number of internet users worldwide from 2005
to 2022. https://www.statista.com/statistics/273018/number-
of-internet-users-worldwide/

[26] Randall R. Stewart, Mitesh Dalal, and Anantha Ramaiah. 2010.
Improving TCP’s Robustness to Blind In-Window Attacks.

RFC 5961. https://doi.org/10.17487/RFC5961
[27] Martin Thomson. 2021. Version-Independent Properties of

QUIC. RFC 8999. https://doi.org/10.17487/RFC8999
[28] Martin Thomson and Cory Benfield. 2022. HTTP/2. RFC 9113.

https://doi.org/10.17487/RFC9113
[29] Martin Thomson and Sean Turner. 2021. Using TLS to Secure

QUIC. RFC 9001. https://doi.org/10.17487/RFC9001
[30] Peng Wang, Carmine Bianco, Janne Riihijärvi, and Marina

Petrova. 2018. Implementation and Performance Evaluation of
the QUIC Protocol in Linux Kernel. In Proceedings of the 21st
ACM International Conference on Modeling, Analysis and Simu-
lation of Wireless and Mobile Systems (Montreal, QC, Canada)
(MSWIM ’18). Association for Computing Machinery, New
York, NY, USA, 227–234. https://doi.org/10.1145/3242102.
3242106

https://datatracker.ietf.org/doc/draft-ietf-quic-version-negotiation/14/
https://datatracker.ietf.org/doc/draft-ietf-quic-version-negotiation/14/
https://doi.org/10.1145/1102120.1102170
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://doi.org/10.17487/RFC5961
https://doi.org/10.17487/RFC8999
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9001
https://doi.org/10.1145/3242102.3242106
https://doi.org/10.1145/3242102.3242106

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Security Considerations
	4.1 Amplification
	4.2 Optimistic ACK
	4.3 Slowloris
	4.4 Stream Fragmentation and Reassembly
	4.5 Stream Commitment
	4.6 Peer Denial of Service
	4.7 Explicit Congestion Notification
	4.8 Stateless Reset Oracle
	4.9 Version Downgrade
	4.10 Traffic Analysis

	5 Evaluation
	6 Discussion
	7 Conclusion
	8 Data Availability
	Acknowledgments

