
Experiences with Secure Pipelines
in Highly Regulated Environments
Jose Andre Morales, Jeffrey Hamed, Douglas Reynolds,

David Shepard, Luiz Antunes, Joseph Yankel, Hasan Yasar
Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
{jamorales,jhamed,djreynolds,djshepard,lantunesjdyankel,hyasar}@sei.cmu.edu

ABSTRACT
In this experiential paper, we present observations from our collab-
orative efforts with multiple entities operating in highly regulated
environments that enabled or disrupted the construction, use, and
sustainment of secure CI/CD pipelines as part of a larger DevSec-
Ops strategy. From these observations, we provide insights and
recommendations to support enablers and avoid or minimize dis-
ruptions. Our insights reveal that along with noted established
progress in the area of secure pipelines, there still exists a need
to amend multiple cultural and technical barriers to fully realize
secure pipelines in a highly regulated environment. Areas of im-
provement include streamlining security approvals, revising and
updating polices to relevance with current technology, increas-
ing automation in multiple pipeline relevant tasking, improving
inquiries to better understand pipeline requirements at commence-
ment, and ensuring appropriate sustained training of technical
staff. Recommendations presented here address observed gap areas
with the purpose of assisting further advancement of achieving
formal and refined pipeline incorporation in a highly regulated
environment.

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods.

KEYWORDS
secure pipelines, continuous integration, continuous delivery, De-
vSecOps, highly regulated environments

ACM Reference Format:
Jose Andre Morales, Jeffrey Hamed, Douglas Reynolds,, David Shepard,
Luiz Antunes, Joseph Yankel, Hasan Yasar. 2023. Experiences with Secure
Pipelines in Highly Regulated Environments. In The 18th International
Conference on Availability, Reliability and Security (ARES 2023), August 29–
September 01, 2023, Benevento, Italy. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3600160.3605466

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0772-8/23/08.
https://doi.org/10.1145/3600160.3605466

1 INTRODUCTION
ACI/CD pipeline [30], a foundational component of a Development,
Security, and Operations strategy (DevSecOps) [10, 19, 27], is a util-
itarian automated software system composed of an ensemble of
tools, serving the purpose of building, testing, and deploying vari-
ous software components, resulting in a completed system ready for
operational use in one ormore target environments. A secure CI/CD
pipeline (hereafter referred to as a pipeline) integrates various secu-
rity elements into the pipeline itself and the system it is preparing
for operational use. The security elements serve to ensure various
security requirements are satisfied. A highly regulated environment
(HRE) [16–18] often imposes multiple strict security requirements
that must be satisfied for software systems to function within the
HRE’s digital environments. DevSecOps was first used by HREs to
improve their secure software and system development processes,
which up to that time was implemented primarily using a waterfall
strategy [1, 12, 22]. Since that time, efforts to incorporate pipelines
have become more pervasive in HREs. In this experiential paper, we
reflect on our collaborations with several of these efforts to pinpoint
the capabilities and advancements provided by pipelines that have
enabled success along with the pitfalls and drawbacks which have
either delayed or disrupted pipeline integration and sustained usage
in an HRE. The noted observations classify in two broad categories:
cultural and technical. From a cultural perspective, we primarily ob-
served the continued practice of established traditional approaches
in multiple aspects of software development in an HRE often delays
or disallows constructing and using pipelines for these efforts. Fur-
thermore, the need for various teams in an HRE, such as developers
and security personnel, to function in isolation of each other results
in disparate pipeline creation and sustainment, resulting in time
periods of partial pipeline functionality. Other cultural hindrances
we observed were out-of-date policy requirements and sub-optimal
staff training and awareness efforts of latest technology trends.
From a technical perspective, our primary observation was on the
increased availability of tools often used in pipelines updated with
built-in security features [2]. We also observed processes to imple-
ment certain pipeline tasks re-engineered to facilitate completion
with lowered security requirements. Our observations also included
pipeline delays and disruptions due to multiple factors, such as var-
ious time-consuming manually driven required processes, vague
security guidance, limited communication capabilities, and pres-
ence of legacy software. The general positive observations show
evidence of an overall increase in community recognition of the
need to build software products with built-in security features and
HREs’ willingness to use them, while the negative observations
illustrate the continued use by HREs of traditional processes further

https://doi.org/10.1145/3600160.3605466
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600160.3605466
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600160.3605466&domain=pdf&date_stamp=2023-08-29


ARES 2023, August 29–September 01, 2023, Benevento, Italy Morales, et al.

hardens the sustainable establishment and usage of pipelines and,
in some cases, facilitates extended time periods of exposed risks
and potential compromise. The balance of this paper will detail all
of our noted observations and their impacts on pipelines along with
inferred insights and recommendations.

2 CULTURAL OBSERVATIONS
The cultural aspect to pipelines is, in general, an ability for an
organization to adapt its software development process to new
technologies. Often this organizational cultural shift can take time
to become commonplace and needs to be steered from senior lead-
ership. Based on our observations, in an HRE, a cultural shift is
hindered by multiple factors stemming from: organizational poli-
cies, security requirements, business models, traditional mindsets,
contrarian goals in hierarchical management, and isolated team
and work environments. In spite of these hindrances, we observed
that the software development community mindset has shifted pos-
itively with respect towards security, resulting in wider availability
of tools with security features. Below we detail our HRE cultural
observations.

Increased availability of tools built with security in mind.
In the past, security was seen as a standalone field of software devel-
opment applied to a pipeline as individual tools. We observed, in the
current practice of pipeline construction, that security is built in to
non-security focused tools and platforms, suggesting a community
mindset shift, embracing the importance of the built-in security
strategy [10]. Security capabilities such as vulnerability scanning,
malware scanning, static and dynamic code analysis, and deploy-
able artifact security scanning, amongst others, are now standard
features in non-security focused tool categories, such as reposito-
ries, container building, code compilers, and various platforms. The
benefit of this is pipelines can be constructed in a smaller amount
of time due to a decrease of integrating security-specific tools. The
current practice still exercises usage of standalone security tools
but often, as we observed, in situations where the specific security
need was not already integrated into an existing tool category, such
as those mentioned above. The built-in security strategy provides
security by default, which adds a base security layer without strug-
gling to do so. In the particular case of platforms [24, 25, 29], which
is typically a single system providing a set of tools fulfilling multiple
non-security pipeline capabilities, we observed that even though
some security tooling is included, as noted above, the platform is
designed to simplify the process of adding custom tools to provide
focused security when needed.

Legacy manual approval process of a pipeline and its com-
ponents. We observed pipeline construction requires a risk analysis
typically lead by a security adjudicator and that person’s team. The
analysis focuses on various security perspectives of the ensemble
tools that are proposed to realize the pipeline. The goal of the anal-
ysis is gaining permission for the pipeline to be constructed and
used on an entity’s digital environment. The security analysis is
an accepted, and in most cases required, practice. Our observa-
tions discovered the implementation of the analysis was, in many
cases, a traditional manual style leading to potentially undiscov-
ered vulnerabilities. The analysis was performed by using a list of

requirements recorded in a document with a checkbox for each in-
dicating acknowledgement that the requirement is satisfied. A team
of security and engineering personnel, along with the adjudicator,
posed each question and, relying on reports from the developer and
some security tools, would determine if the requirement was satis-
fied and check the box. Many of these requirements were checked
as satisfied simply by having a person, not necessarily a security
person, state affirmation of satisfaction. There were few instances
of verifying an answer given by these individuals; the rest were
accepted at face value. This approach facilitates malicious actors to
misinform and places both the pipeline and the completed system
it is producing at risk of compromise.

High-level security requirements. Several entities provided
high-level security requirements for the construction, usage, and
sustainment of pipelines in the form of documents that are too
generalized and cannot be validated in a codified manner. These
general requirements lacked metrics and other precise forms of ver-
ification such as: variable settings, folder permissions, existence of
specific files and folders, and specific user account settings amongst
others. We observed these security requirements were interpreted
in multiple ways and, as such, facilitated the manual approval pro-
cess described above. The open interpretation led to affirmation of
satisfaction for a given requirement based on beliefs and evidence
that in many cases were part of the previously mentioned manual
approval process and were not verified. In several cases, the ob-
server considered the given evidence as insufficient to warrant a
satisfaction of affirmation. This open interpretation of high-level
guidance facilitates existence of risk in both a pipeline and the
completed system it produced.

Allowed use of software with detected vulnerabilities. We
have observed several instances of continued operation of both
the pipeline and the completed system it produced when a vulner-
ability was detected in either one or both, facilitating a window
of risk for a period of time lasting from hours to days. Entities
allowed this to occur based on guidance granting priority of con-
tinuance functionality and operation over security. The guidance
was followed by providing an immediate fix that was implemented
with a workaround subverting the vulnerable piece of software
in question. In some cases, the vulnerability was not applicable in
the deployed environment or was mitigated by pipeline-external
security controls. The workaround approach re-established a sense
of security supporting continued use of a still vulnerable system
for a period of time until an official security fix was released.

Required testing of security fixes. When a security fix was
made available, its integration to a pipeline was often delayed days
or weeks due to the entity’s testing requirements of any and all
software prior to deploying into the target environment. These
testing requirements tended to be long and tedious with several
manual steps and multiple levels of approvals by different teams. In
some cases, a subset of teams would not approve for various reasons
such as: incompatibilities with existing software, a need to acquire
other approvals, and not whitelisted resulting in further extending
the time window of opportunity for malicious compromise.

Incongruities between requirements and HRE abilities.
Several instances were observed of an inability for an HRE to fulfill



Experiences with Secure Pipelines
in Highly Regulated Environments ARES 2023, August 29–September 01, 2023, Benevento, Italy

pipeline requirements due to several factors including: limited ac-
cess to tooling or infrastructure, security impositions, managerial
disagreements, and entity-imposed policies. Whitelisted software
often excluded needed or best-of-breed titles, resulting in conces-
sions producing a sub-optimal pipeline. The process of whitelisting
was lengthy and not fully automated, causing the process to extend
beyond acceptable thresholds for completion of some phase of the
pipeline. Managers of teams in an HRE were, in some cases, unwill-
ing to approve use of required software in a pipeline due to non-
conformance with their team’s security or operational standards,
infrastructure configurations, institutional policies, or previous
sub-optimal experiences. In these cases, alternate software with
reduced functionality were chosen, producing pipelines lacking
features such as full automation and modularity.

Sub-optimal cross-functional teams. Often times, various
teams in an HRE operated in an isolated manner. In this mode, com-
munication between teams ranged from limited to non-existing. A
cross-functional team (CFT) [14, 20, 27, 28] for a pipeline should
consist of members from various teams across an HRE, where each
individual contributes desired domain expertise. The siloed operat-
ing environment of an HRE hindered the creation of CFTs due to
policies disallowing sharing of knowledge and technology between
individual teams. This resulted in a pipeline effort occurring with a
waterfall strategy. The result was a pipeline lacking capabilities in
some manner. Adding or fixing the sub-optimal capabilities added
delays to the completion of pipeline construction, usage, or sustain-
ment. A further disruption was the inability to share pipeline details
such as capability needs and security requirements due to policies
disallowing sharing of information between teams either for se-
curity reasons, protection of intellectual property, or competing
interests.

Permissive contractual agreements. Often times, contracts
were articulated in such a manner to allow teams in an HRE to
deliver a pipeline that did not fulfill all stated requirements, includ-
ing security. Extensions to due dates could be re-forecast to future
dates for generalized reasons with minimal or no justification. Fur-
ther, a pipeline could be delivered in a form that is usable, but not
reproducible, by others due to the exclusion of the pipeline’s source
code. The lack of reproducibility created a long-term dependency
on the pipeline’s development team to implement modifications
such as bug fixes, version changes, and integration of new tooling.

Lack of best practices and latest technologies. Several HREs
were observed to be resistant to fully adopting the latest techno-
logical advancements and best practices, such as pipelines. This
was due to traditional mindsets and established policies in engi-
neering teams justifying their current approach of software devel-
opment, often a waterfall or slight variation strategy as effective
within a team’s particular scope of work requirements. This mind-
set stemmed form an internally perceived limited ability to adopt
new technologies or a lack of willingness to provide the required
effort. Limited adoption ability was based, in some cases, on the
use of required specialized digital technologies that only accepted
software that was developed and tested in a specific manner. In
other cases, several years of development success was the source
of justification to avoid adopting new practices such as pipelines
since it was viewed as a much larger adaptation process that could

hinder more then benefit their traditional software development
process.

Hindered progress toward a commongoal. In a typical pipeline
endeavour, multiple teams were required to participate. These
teams, as previously discussed, are typically organized to work
in siloed spaces within an HRE. We further observed these same
teams were also siloed in their job functionalities. Each team is di-
rected to only perform very detailed and specific tasks or services;
this was especially prevalent in security teams. This produced an
overall security team with a large number of specialized sub-teams
with limited collaboration. The common goal of, for example, con-
structing a pipeline with full security approvals was difficult to
accomplish due to approaching multiple teams where each perform
a single function without understanding the overall design of the
pipeline. The impact of this was incompatibilities between different
teams’ contributions to the pipeline, causing delays and additional
re-engineering to complete.

Teams with focused domain expertise. We found in many
HREs teams devoted to pipeline engineering possessed domain
expertise only in that field with less understanding of security.
The opposite was true for security teams, where those members
lacked knowledge in pipeline development. This resulted in two
phenomena: first, pipelines were developed with minimal thought
to security, causing extensive delays and re-engineering to satisfy
multiple security requirements and second, security requirements
were imposed on pipelines, causing a reduction of functionality.
The reduced functionality caused, in some cases, a pipeline effort
to cease and fully restart.

Security requirements with transparency. We observed the
common HRE security requirement of providing a detailed list
of every software title and version including libraries and other
auxiliary tools. This list, viewed as a software inventory list [7, 15,
21], created in clear text, was used for security analysis to determine
if a particular software title or version was currently disallowed
in a given digital environment. Controlling this list’s distribution
was not well governed and raised security concerns of potentially
revealing all the software used in a given pipeline, which was itself
viewed as an enhanced security risk.

Personnel retention hinders pipelines. We often observed
pipeline efforts, especially in sustainment, being dependent on in-
dividual members of various teams in an HRE. When one of those
members departed, the remaining team struggled to maintain an ac-
tive pipeline and approved security, causing delays, disruptions, and
potential security risks. The reason was, in these HREs, knowledge
transfer amongst team members was not practiced often. Further-
more, standard operating procedure manuals were often not up-
dated to address new technologies like pipelines. We also observed
team members departing due to frustration from constant changes
in technology usage options for a given project. In one example, a
pipeline’s hosting environment was changed multiple times in a
short span, requiring team members to be trained in each. After a
few changes, two members left and a group of five reduced to three.
This caused pressures on the two lead engineers, and one ended
up leaving, which culminated with the team manager’s departure
due to pressure from senior leadership for an inability to keep the
team intact and meet deadlines. A different form of departures was



ARES 2023, August 29–September 01, 2023, Benevento, Italy Morales, et al.

observed in a few HREs, where a team member promoting new
technologies for pipelines was viewed as disruptive by others. The
reason was that promoting new technology was viewed as a change
to the status quo and the traditional way of performing various
pipeline tasks. The resolution was to promote the individual to a
higher position in a different team, thus preserving the status quo.

3 TECHNICAL OBSERVATIONS
The technical aspect to pipelines is, in general, establishing an in-
frastructure that primarily enables automation and modularity in
all pipeline functionalities. With automation, a pipeline can fulfill
code and system building, testing, validation, and security with min-
imized human intervention. This facilitates sustaining the velocity
of multiple deliveries of completed systems as often as required.
Modularity supports fixes, enhancements, and replacement of a
pipeline’s constituent parts with minimized disruption to ongoing
pipeline operations. Modularity is most useful primarily during
pipeline usage and sustainment. We observed the development of
tooling used in pipelines are being designed with a security focus
along with redesigned pipeline tasks implemented with lowered
security requirements. We further observed in HREs the adoption
of new technology infrastructure is hindered, primarily, by acquisi-
tion protocols requiring significant time periods to complete. Also
observed were technical implementation barriers to pipeline func-
tionalities imposed by security policies resulting in sub-optimal
implementations of various tasks. Below we detail our HRE techni-
cal observations.

Toolingwith a security focus. Several HREs have incorporated
tooling for pipelines that are designed with built-in security. When
in the past, scanning code stored in a repository for various security
concerns required a handful of tools, now it is completed using
one repository software title that brings multiple security scanning
tools by default. A further improvement has been the redesign of
pipeline tasks to require reduced privileges and access. A clear
example dealt with deployable artifacts. These artifacts typically
required a root system access to be built and executed, since then
newer tools accomplish both without the need for root access
[8]. HREs benefit from this by building pipelines faster with less
software titles and in some cases expedited security analysis.

Legacy digital assets. Often observed in HREs was the contin-
ued use of legacy hardware and software. This was most prevalent
in instances requiring specialized digital assets that are not easy to
upgrade or replace. In other instances, the continuance was imposed
by acquisition processes, which consumed significant time and in-
vestment to complete. Legacy digital assets often could not benefit
from pipelines. In cases where benefit was possible, the pipeline
was highly customized and not modular. Specifically, production
testing was hindered by the inability to automate deployment to
hardware, often resulting in a manual intervention causing delays.
Also, security risks were an ongoing issue due to the difficulty of
applying fixes or patches resulting from minimal support by the
assets original creators.

Disruptions to automated builds. A pipeline will often release
multiple versions of a completed system in short time periods. The

building phase of the pipeline will gather all needed software arti-
facts to ensure the system executes as expected in a target environ-
ment. Gathering the artifacts is typically performed by automated
pull requests of specific files from various repositories located on
networks external to the HRE. Often, we observed HRE security
policies greatly hindering the process of automated pull requests
from HRE external locations. An HRE external repository had to be
whitelisted in order to access and pull files from it into an HRE. The
approval process to access HRE external repositories was lengthy
and complicated, requiring significant time for completion andman-
ual approvals. We did observe several HREs approving access to
often used external repositories. In cases where a required external
repository was not whitelisted, an HRE internal mirror repository
was created as a clone of its external counterpart. Creation, testing,
approval, and sustainment of a mirror repository was in itself a
significant task. In other cases, where mirroring was not an option,
we observed files from HRE external repositories acquired sepa-
rately via a customized application and manually copied into an
HRE system for a local build process. Another observed hindrance
to automated builds occurred at the individual file level. When files
entered the HRE, they were evaluated for security and disallowed
if a violation such as not being whitelisted was detected. Sources
of violations were many and included: variation in a file’s hash
value [3, 4], differing version numbers, and an unrecognized or
unapproved file dependency [6, 13]. In some cases, an HRE would
catalog a file with its version number and hash value and use this
triplet for comparisons with incoming files. Some files were dis-
allowed due to the maintainers of that file implementing changes
without updating the version number, thus causing a mismatch
with the HRE’s record.

Using latest file versions. A commonly accepted practice in a
pipeline’s build phase is to use the latest version of a software title.
In many cases, acquiring the latest version is the default setting for
most tools used to pull these files from their respective repositories.
A typical version of a completed system consists of a multitude
of files, each with its own version. In an HRE, as we observed,
whitelisting new versions was typically a lengthy process. An older
version of a file was used while the most recent version underwent
the whitelisting approval process. During the interim, multiple
failures in the build phase would occur due to a latest version of
some file requiring more recent versions of other files that were
excluded from the build due to not yet being whitelisted. We also
observed cases where, due to a multitude of reasons, a specific
version of some file was required and could not be upgraded to a
more recent version. In these cases, the build phases were often
customized to ensure preservation of several file versions related
to the file in question. This often produced security risks, leading
to justifications allowing the build to complete. Often, versions of
completed systems containing these security risks were not released.
Production environments would continue using older build releases,
in some cases for extended time periods, which sometimes created
problems with HRE policies requiring its own custom solution.

Pipeline component interfaces. A pipeline consists, primarily,
of a set of tools interacting with each other by exchanging data
transfers in an automated manner. The data transfer is primarily
the output of one tool serving as the input of the next tool in



Experiences with Secure Pipelines
in Highly Regulated Environments ARES 2023, August 29–September 01, 2023, Benevento, Italy

the sequence. These inter-tool data transfers were facilitated with
the use of interfaces [26, 31]. The interfaces were, in some cases,
built in by default for use with software titles belonging to the
same tool development organization. In many cases, interfaces
were not available and had to be acquired or customized. HREs
lacked guidance in how to implement such an interface and, more
importantly, which security best practices should be followed in
this specific case. The result was either the use of third party tools
or custom written code. Both solutions worked well enough to
perform the transfer and received all the requisite approvals but, in
our observations, were not extensively tested for robustness and
exception case handling. This created, in our opinion, opportunities
for untested inputs to potentially cause an unhandled exception of
the interface code, resulting in random pipeline behaviors.

HRE data transfers. When a pipeline component required a
patch or update, often times the new files were not whitelisted by
the HRE. The files in question were acquired via systems outside
of the HRE. These files were then manually brought into the HRE
via an approved physical medium such as one or more CDs [23] or
DVDs [5]. This process is known as an offline data transfer, also
commonly referred to as a sneakernet [9, 11]. Critical to sneakernet
is access to the pre-approved physical mediums and devices that
can read/write onto the medium. As technology has advanced, ac-
quisition of this medium and read/write devices has become harder
and more costly. The process of pulling needed files and writing to
a medium would take from a few hours to a couple of days. Often,
the process was repeated multiple times for several reasons includ-
ing: missing files, incorrect versions, and formats that could not be
processed in the HRE. All medium received in the HRE entered a
security analysis to receive approval for its contents to be written
into the system where the pipeline resided. This was often a light-
weight process with the majority being approved. Once approved,
the contents were transferred and entered a second round of secu-
rity analysis to receive approval to merge with the existing pipeline.
The additional resources required for sneakernetting motivated
pipeline developers to build using what was accessible within the
HRE. This led to pipelines using components that were often not
the best choice for a given capability or the latest version for a
specific software title.

Usage of open source repositories. Incorporating software ti-
tles from open source repositories is a universally accepted practice
due to no monetary commitment needed for usage. We observed
that HREs are no exception to this practice. Open source reposito-
ries are mostly community based, where members can contribute
libraries, packages, and other artifacts for community use. Reposi-
tory maintainers do review and verify the code that is submitted.
However, due to the complexity of most code, not all problems can
be identified. Popular and important repositories do have security
audits, but those are community funded and do not occur as often
as they should. HREs that pull files from these repositories create
a potential security risk based on the inherent trust bestowed on
whitelisted repositories for automated pulls and all others acquired
via sneakernetting. A pipeline could incorporate files sourced from
these repositories that have malicious intent but pass all HRE im-
posed security requirements. Open source repositories typically do
not fund maintenance of the software titles posted there with the

assumption that the original contributor will fulfill this task. Only
software titles with a large user basemay be funded to providemain-
tenance from donations and private interests. In many cases when
a security vulnerability or some other issue arises, a fix is typically
implemented by a community member. This lack of a fixed entity
employed and paid to maintain software titles resulted in HREs
using software titles patched by potentially unknown individuals,
thus creating a potential security risk.

Default security settings. Some HREs were observed to use
security software titles in a pipeline with default settings. These
settings often served as a baseline that can be customized to a
user’s needs. Security engineers reviewed the baseline settings and
determined if that satisfied one or more HRE-imposed security
requirements. If yes, the software was used as is with no further
effort to determine if customizing would be an enhanced benefit
for the security of the pipeline or the system it was producing.
In cases where security requirements were not very specific, it
was often determined the baseline would suffice. This produced a
pipeline with a potentially misleading security state due to lack of
customization.

Lack of uniformity in pipelines. HREs often created pipelines
customized to the end user’s needs. In some cases, this was appro-
priate due to specialized requirements. In most cases, we observed
end user needs could be satisfied by a standard pipeline architec-
ture with a standard security and testing harness. In general, HREs
would customize almost every pipeline to an end user’s needs, in-
cluding cases when pipeline reuse was, in our opinion, an option.
This resulted in increased customization of sustainment tools need-
ing to address particularities in individual pipelines. This further
increased time resources to ensure security requirements were
constantly satisfied due to the need to analyze almost each active
pipeline instead of one standard pipeline in use by many end users.

Domain-specific production environment requirements.
An observed source of many disruptions and delays in pipelines
across several HREs dealt with production environments. These
environments are where a completed system will operate and thus
was required for a pipeline to access for testing and delivery. A
common problem was a need for the HRE to receive environment
access approval. This was a long and complex process, which in-
cluded required manual approvals from multiple entities. Setting up
the connection to the production environment to support pipeline
automation was often difficult and complex, requiring special con-
nectivity and configurations. The most disruptive scenario was
when a production environment could only be accessed by spe-
cific authorized personnel external to the HRE. In these cases, the
pipeline would deliver a completed system to a local storage that
was passed on to the authorized official via a separate process that,
in some cases, was done via sneakernet. The authorized official was
also given a test suite to run in production. The authorized official
would process and validate security requirements and then load
the completed system and test suite in production, run the tests,
and deliver the results to the HRE. This process often took days to
complete.



ARES 2023, August 29–September 01, 2023, Benevento, Italy Morales, et al.

4 INSIGHTS
Further consideration of the cultural and technical observations
detailed above revealed insights of the current state of HRE’s treat-
ment of pipelines affecting construction, usage, and sustainment.
The insights revealed both enablers and disruptors in the build, test,
validate, and delivery phases of a pipeline. The insights imply that
although progress has been made in the treatment of pipelines in
an HRE, improvements continue to be needed. Detailed insights
are listed below.

Built-in security given higher importance. The concept
of built-in security has become prevalent in the development of
pipeline tools. In the past, these security tools were standalone
software titles included in pipelines, resulting in the need for a
much larger set of tools to complete a pipeline construction. With
built-in security, the number of tools needed to create a pipeline has
noticeably reduced. The level of security in these pipelines has also
greatly increased. Currently, pipelines can be built faster and with
less tools and achieve a higher level of security than in past. This
further simplifies sustainment and maintenance of active pipelines.
HREs have become receptive to this concept and several have or are
starting to approve, test, and include this new generation of tools
in their pipelines. In addition to built-in security, several common
pipeline tasks have been fundamentally redesigned to accomplish
the same tasks with a lowered security requirement. In the past,
these tasks often required a level of security that was viewed as
potential risks for HREs. Requirements such as root or admin
privileges, full read/write permissions to files and folders, and ac-
cess to credentials were common in pipelines and often required a
lengthy security review, including written justifications, manual
assessments and analysis, and approvals by multiple individuals.
This often required days to weeks before being completed. The
result was to re-engineer and implement an alternate approach
removing the risk but requiring customized solutions that triggered
further security reviews. More recently, we observed releases of
software implementing these common tasks in a re-designed form
that has removed several of the potential risks by greatly reducing
security requirements. This has eliminated the need for lengthy
security reviews and customized solutions. We observed the HRE
community’s senior leadership is promoting continuation down
the path of adopting improved security tools and processes for
pipelines.

HRE policies hinder pipeline functionalities. HREs are gov-
erned by a multitude of policies, primarily in the areas of oper-
ational procedures and security. Most of these policies are time
intensive, include many manual components involving multiple
personnel, are not regularly updated, and, in some cases, prescribe
vague high-level guidance facilitating adherence interpretation.
Pipeline construction often required technology compromises due
to conflicts between policy adherence and functionality require-
ments. This often resulted in a pipeline with reduced capabilities
than desired. End user needs, in some cases, took precedence over a
policy, allowing a pipeline to function with potential security risks.
The amount of effort and personnel involved in assuring security
policy adherence caused constant pipeline delays, typically months
at a time. Guidance vagueness in some policies, including security,
allowed a diverse set of implementations verified as satisfactory.

The guidance only required adherence to a high-level generalized
requirement such as: "Modularity will be used throughout," "All
code must be stored securely," "Identified vulnerabilities will be
resolved in X days." These exemplar generalized policies could be
satisfied in a multitude of ways, and each could be very different
in implementation. Using customized implementations to satisfy a
policy occurred in multiple pipelines and caused increased effort
and resources in long-term pipeline sustainment. Some policies
were difficult to adhere to and required interpretation and approval
by individual security adjudicators. This was due to the policy hav-
ing been created at a time when different technology was in use
and its relevance and applicability to current pipeline state of the
art was not easily evident.

Partial initial planning facilitates avoidable problems. The
preparation for initial pipeline endeavors was often planned by
a team missing key domains, such as operators and security per-
sonnel. This was due to HRE policies directing teams to function
in isolation. The planning often excluded considerations such as
security needs, access to operational environments, required tool-
ing, and access to files in HRE external locations, amongst others.
As tasking advanced, the unconsidered topics became evident and
required a solution in real time. This, of course, impacted the overall
effort and caused a ripple effect of re-engineering other aspects of
the pipeline, resulting in delays and new required rounds of reviews
and approvals. Initial planning often focused on pipeline construc-
tion with less consideration in its usage and sustainment. Often
these latter phases were given operational guidance when needed
and in an ad-hoc nature. The result was an acceptably constructed
pipeline requiring real-time customization to mend usage problems
and further capability enhancements to achieve long-term sustain-
ment along with the additional resources needed for analysis and
approvals.

Status quo mindset delays technology improvements. A
traditional mindset persists in many teams within several HREs.
This mindset enforces a continuation of the current software devel-
opment process and is hesitant to consider incorporating new tech-
nologies. A key contributor to this is a lack of understanding how
a new pipeline technology works and its potential benefits to the
team. Another contributor is a lack of motivation by teams due to
HREs not providing incentives and rewards when newly integrated
pipeline technology is considered a success and instead enforce
reprimands when due dates are not kept. Some teams actively boast
the benefits of their current software development procedure and
focus on the perceived downside of any new pipeline technology.
Many cases occurred where team members requested transfers
or left the HRE due to their lack of desire in adapting to a new
pipeline development process that incorporated new technology
products and processes. Few HREs offered training to facilitate the
adaptation, thus leaving personnel to learn on their own or in small
groups. This created frustrations and walkouts, causing delays in
various pipeline endeavors. Some teams expressed their members
were dealing with "technology burnout," referring to the constant
churning of pipeline tools and process in short time periods. With
each churn, team members had to adapt to new technology right
after reaching a comfortable level of competence with the last tech-
nology adoption. After multiple churns and rounds of repeated



Experiences with Secure Pipelines
in Highly Regulated Environments ARES 2023, August 29–September 01, 2023, Benevento, Italy

technology adaptation within a span of a couple of years, teams
seemingly lost their ability to identify a standard software pipeline
development process and were criticized by upper management for
lack of job fulfillment. This led to increased transfer requests and
resignations.

Lacking a standardized pipeline baseline increases un-
needed resource usage. In HREs, almost every new pipeline en-
deavor started with a blank slate. In several cases, the pipeline
requirements could be satisfied by cloning a previously existing
pipeline implementation.ManyHREs lack a standard initial pipeline
design and the result was, in most cases, a customized pipeline for
each need of each end user. Having so many custom pipelines re-
quired specialized treatment in their usage and sustainment. This
specialized treatment required increased resources to complete.
Using different software titles in customized pipelines required
continued access and security approvals for a much larger catalog
of whitelisted titles. This, in turn, required increased number of
security reviews when new versions or patches were released and
caused almost constant pauses in pipelines due to time requirements
to attain security approvals. Due to the large number of software
titles in a catalog required for all the customized pipelines, HREs
received multiple daily vulnerability discoveries across several ti-
tles, with each requiring hours to weeks to amend. In several HREs,
vulnerability amendments lasted days due to teams being unable
to streamline processing, with some cases being overwhelmed by
the sheer volume of pending vulnerability resolutions.

Manual oversight of security requirements. HREs are gov-
erned by a large corpus of security requirements. A subset of these
requirements is written in a very generalized fashion. This gen-
eralization disallowed automation of evidence gathering to ver-
ify requirement satisfaction. The majority of these requirements
involved analysis, evidence gathering, and approval by multiple
individuals requiring an extended time period to complete and,
in many cases, re-engineer a pipeline. This generalization also fa-
cilitated an interpretation of the requirement to determine what
specifically needs to be satisfied. Often, the identified specification
differed in various teams and the implementation used to justify
satisfaction also varied. This resulted with security in general being
implemented in different forms across multiple pipelines in an HRE.
Some of the security requirements were originally developed with
different technologies in mind and, in spite of this, are still cur-
rently enforced. The relevance of these requirements to a pipeline
endeavour was not well understood and both development and
security teams would subjectively interpret and implement a best
effort to justify satisfaction. This resulted in requirements satisfied
on paper but lacked assurance if the implementation truly satisfied
the requirement or not. Some security requirements necessitated
extra pipeline engineering that did not advance the operational
goals of the pipeline. This resulted in a pipeline consisting of certain
capabilities for the sole purpose of satisfying a security requirement
and did not contribute to needed functionality.

Pipeline is not DevSecOps. Several HREs have claimed success
in adopting a DSO strategy when, in reality, only pipelines have
been realized. Using pipelines as a standalone solution results in an
integration with traditional development approaches, most often
a waterfall strategy. Further, when asked, a good number of team

members across HREs understood DevSecOps to be just running
pipelines. These same team members were also never provided for-
mal training in DevSecOps to realize the difference. Using pipelines
as part of some other software development strategy leads to un-
addressed and needed changes in culture and process, the other
main components of DSO. This results in an overall sub-optimal
implementation failing to take full advantage of pipelines in broader
software development strategies.

5 RECOMMENDATIONS
In general, a committed increase in adherence to the principles
and guidance of DevSecOps, supported by senior leadership, would
further enhance and improve the current state of pipelines in HREs.
Within this continued commitment, there are several areas that
could improve with consideration of the recommendations that
follow.

Cross-functional teams. The policies enforcing siloed work-
ing environment of teams in HREs should be amended to allow
cross-functional teams to be assembled with appropriate represen-
tation of all required expertise domains. This would provide full
awareness of a pipeline from all relevant perspectives facilitating
every phase in its lifecycle and assist in avoiding unforeseen issues
as well as reducing unnecessary efforts. Further, once a team is
assembled, it should persist, at a minimum, for the duration of a
pipeline’s construction and initial usage and sustainment. In order
to accomplish this, a baseline of metrics and validation tests should
be established that, when fully satisfied, indicates a pipeline is func-
tioning at a point of stability. The point of stability implies that
routine tasks such as upgrades and enhancements can be achieved
with the expected amount of resource consumption. Other capabili-
ties such as pipeline scalability and robustness are also functioning
as expected. Once pipeline stability is established for usage and
sustainment, the CFT could be queued for release.

Scheduling accounts for reviews and approvals. Calendar
scheduling of pipeline endeavours must take into account required
time periods for security reviews and approvals along with other
time-intensive tasks, such as acquisition needs in order to establish
a realistic forecast of completion. To accomplish this, planners need
to fully understand, at a minimum, the software and hardware that
is required to realize the requested pipeline functionalities, and for
each, determine what is already available for use within the HRE
andwhat needs to be acquired fromHRE-external sources. Informed
decisions from experience will be useful in this exercise, such as
time needed to whitelist a software title and approve access or
mirror an HRE-external repository. Further assistance here would
be the existence of well-defined actionable guidelines detailing the
prescribed process one must follow for each of the identified tasks.

Policy revisions. Continual reviews and revisions of policies in
an HRE should occur to sustain relevancy with the current state
of technology in use and pipeline development trends. Each policy
should be evaluated to determine if it is relevant, actionable, specific,
and automatable. A relevant policy applies to current technology
and development trends within an HRE. If relevancy is not estab-
lished, the policy should be considered for removal or replacement.
An actionable policy describes a set of detailed atomic steps that
can be carried out by human or machine. A specified policy is a set



ARES 2023, August 29–September 01, 2023, Benevento, Italy Morales, et al.

of very precise articulated requirements and steps to validate satis-
faction of that requirement. A specified policy is not generalized
and does not facilitate assumptions or interpretations by the reader.
An automatable policy is written with technology in mind facili-
tating the codification of implementation and evidence gathering
to justify its satisfaction. An automatable policy can be expressed
as a well-articulated set of directives to carry out in a digital asset.
Examples of policy guidance adhering to the above are: "Microsoft
Defender activation set to true," "all outgoing email traffic passes
through SMTPS port 587," "folder ‘absolute folder path’ should be
set to hidden." Note, this form of guidance can be very technical in
nature and should reference a single artifact like a variable, file, or
folder that can be queried via automated methods.

Standardized pipeline configuration. HREs should establish
a standard baseline pipeline that adheres to all current security
requirements. An instance of this pipeline should serve as a start-
ing point for all initial pipeline endeavours. HRE personnel should
leverage experience to determine the best design for this baseline;
ideally it represents a configuration repeatedly used in a majority
of completed pipeline efforts. HREs could consider going a step
further and require end users to adhere to the baseline and not vice
versa. Adherence would assist in reducing customization and their
additional sustainment resource needs. Any identified customiza-
tion work should be viewed as modifications upon the baseline.
Maximally preserving the baseline configuration should be a stated
goal as this will ease the resources needed for all pipeline phases.

Reoccurring state-of-the-art pipeline technology training.
To sustain awareness of trends and team skill sets, HREs should
sustain a regular continuing training of their staff with the latest
pipeline technologies, tools, trends, and processes. Further, HREs
should have regularly invited speakers presenting the aforemen-
tioned technologies. This would assist in setting a comfort level
and willingness by teams to incorporate new technology into their
pipeline development process since those topics will not be com-
pletely unfamiliar to individual members. This would further assist
in setting a ground truth for these topics, which helps avoid mis-
placed assumptions. Justification for negating the introduction of a
new pipeline technology could occur by leveraging misplaced as-
sumptions. It is important in both training and invited talks that the
advantages of incorporating a new technology or process within
an HRE be clearly detailed.

Centralized knowledge transfer process. Given the seem-
ingly regular trend of team members departing, a policy of docu-
menting all pipeline-relative knowledge in a centralized location
should be established. Even though this is a principle in DevSecOps,
we observed it is not often practiced. Further, entire teams and not
individuals or pairs should conduct regular source code reviews and
testing of all aspects of a pipeline. The goal is full team awareness of
any technical intricacies employed as part of a pipeline endeavour.
In this manner, a pipeline avoids being dependent on an individual
team member but instead is able to be advanced by all members of
the team. When a team member does choose to depart, a review of
all pipelines that individual contributed to should occur to ensure
all details have been properly recorded for team benefit. Intricacies
include: specialized commands and configurations, execution steps,

environment settings, and other similar digital atomic actions that
are not commonly performed in pipeline endeavours.

6 CONCLUSIONS AND FUTUREWORK
Pipelines are a fundamental component of a DevSecOps strategy
and are widely used in all sectors, including HREs. The evolution-
ary path of integrating pipelines into an HRE’s software devel-
opment process has advanced at a moderate pace with several
lessons learned. In this experiential paper, we put forth insights
and recommendations based on our observations across multiple
collaborations with diverse HREs advancing along this path. Our
insights revealed an increase in the availability and integration of
pipeline-relative tools with built-in security in HREs. Also noted is
the adoption of lowered security requirement processes for common
pipeline tasks. A culture of traditional mindsets hinders changes to
current pipeline development in HREs but can be partially resolved
through ongoing training and awareness of latest trends and their
HRE-relevant benefits. Increased, and potentially avoidable, use of
time and resources has occurred in all aspects of a pipeline endeav-
our. This can be amended through policy revisions, standardized
pipeline designs, and full awareness of all needed tasks and their
resource requirements at the start of any pipeline endeavour. In
general, HREs are advancing through a learning curve and are
establishing the best ways to incorporate and leverage pipelines
into their technical tasking. Continued improvements as discussed
in this experiential paper, with a focus on increased automation,
policy revisions, streamlined requirement satisfaction processes
and sustained senior leadership support will further formalize and
refine the use of pipelines in HREs. Future work will delve into
specific applications of pipelines to achieve capabilities often only
relevant in HREs and the current obstacles needing amendment and
advances being achieved. Further, the current body of work will
be enhanced with available data driven analysis of pipeline impact
to an HRE based on rendered business logic analytics and project
relevant statistics using established metrics in these domains.

ACKNOWLEDGMENTS
Copyright 2023 ACM. This material is based upon work funded
and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the op-
eration of the Software Engineering Institute, a federally funded
research and development center. [DISTRIBUTION STATEMENT
A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government
use and distribution. DM23-0468

REFERENCES
[1] Adetokunbo AA Adenowo and Basirat A Adenowo. 2013. Software engineering

methodologies: a review of the waterfall model and object-oriented approach.
International Journal of Scientific & Engineering Research 4, 7 (2013), 427–434.

[2] Shanai Ardi, David Byers, and Nahid Shahmehri. 2006. Towards a structured
unified process for software security. In Proceedings of the 2006 international
workshop on Software engineering for secure systems. 3–10.

[3] Lianhua Chi and Xingquan Zhu. 2017. Hashing techniques: A survey and taxon-
omy. ACM Computing Surveys (CSUR) 50, 1 (2017), 1–36.

[4] Edward GCoffman Jr and James Eve. 1970. File structures using hashing functions.
Commun. ACM 13, 7 (1970), 427–432.

[5] Paul B De Laat. 1999. Systemic innovation and the virtues of going virtual: The
case of the digital video disc. Technology Analysis & Strategic Management 11, 2
(1999), 159–180.



Experiences with Secure Pipelines
in Highly Regulated Environments ARES 2023, August 29–September 01, 2023, Benevento, Italy

[6] Alexandre Decan, Tom Mens, Maëlick Claes, and Philippe Grosjean. 2016. When
GitHub meets CRAN: An analysis of inter-repository package dependency prob-
lems. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 493–504.

[7] William Enck and Laurie Williams. 2022. Top five challenges in software supply
chain security: Observations from 30 industry and government organizations.
IEEE Security & Privacy 20, 2 (2022), 96–100.

[8] Marcel Gagné. 2001. Linux system administration: a user’s guide. Linux Journal
2001, 92 (2001), 1.

[9] JB Hiller. 1992. SneakerNet: Getting a grip on the world’s largest network.
Computer Security Journal 8 (1992), 43–43.

[10] Tony Hsiang-Chih Hsu. 2018. Hands-On Security in DevOps: Ensure continuous
security, deployment, and delivery with DevSecOps. Packt Publishing Ltd.

[11] Andika Candra Jaya, Cutifa Safitri, and Rila Mandala. 2020. Sneakernet: A
Technological Overview and Improvement. In 2020 IEEE International Conference
on Sustainable Engineering and Creative Computing (ICSECC). 287–291. https:
//doi.org/10.1109/ICSECC51444.2020.9557509

[12] Mitch Kramer. 2018. Best practices in systems development lifecycle: An analyses
based on the waterfall model. Review of Business & Finance Studies 9, 1 (2018),
77–84.

[13] Nathan LaBelle and Eugene Wallingford. 2004. Inter-package dependency net-
works in open-source software. arXiv preprint cs/0411096 (2004).

[14] Edward F McDonough III. 2000. Investigation of factors contributing to the
success of cross-functional teams. Journal of Product Innovation Management: An
International Publication of the Product Development & Management Association
17, 3 (2000), 221–235.

[15] Gary McGraw. 2018. The new killer app for security: Software inventory. Com-
puter 51, 02 (2018), 60–62.

[16] Jose Andre Morales, Thomas P Scanlon, Aaron Volkmann, Joseph Yankel, and
Hasan Yasar. 2020. Security impacts of sub-optimal devsecops implementations in
a highly regulated environment. In Proceedings of the 15th International Conference
on Availability, Reliability and Security. 1–8.

[17] Jose Andre Morales, Hasan Yasar, and Aaron Volkman. 2018. Implementing
DevOps practices in highly regulated environments. In Proceedings of the 19th
International Conference on Agile Software Development: Companion. 1–9.

[18] Jose Andre Morales, Hasan Yasar, and Aaron Volkmann. 2018. Weaving security
into DevOps practices in highly regulated environments. International Journal of
Systems and Software Security and Protection (IJSSSP) 9, 1 (2018), 18–46.

[19] Håvard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: a multivocal
literature review. In Software Process Improvement and Capability Determination:
17th International Conference, SPICE 2017, Palma de Mallorca, Spain, October 4–5,
2017, Proceedings. Springer, 17–29.

[20] Rennie Naidoo and Nicolaas Möller. 2022. Building Software Applications Se-
curely With DevSecOps: A Socio-Technical Perspective. In ECCWS 2022 21st
European Conference on Cyber Warfare and Security. Academic Conferences and
publishing limited.

[21] Kai A Olsen, Per Sætre, and Anders Thorstenson. 1997. A procedure-oriented
generic bill of materials. Computers & industrial engineering 32, 1 (1997), 29–45.

[22] Kai Petersen, Claes Wohlin, and Dejan Baca. 2009. The waterfall model in
large-scale development. In Product-Focused Software Process Improvement: 10th
International Conference, PROFES 2009, Oulu, Finland, June 15-17, 2009. Proceedings
10. Springer, 386–400.

[23] Ken C Pohlmann. 1992. The compact disc handbook. Vol. 5. AR Editions, Inc.
[24] Roshan Namal Rajapakse, Mansooreh Zahedi, and Muhammad Ali Babar. 2022.

Collaborative Application Security Testing for DevSecOps: An Empirical Analysis
of Challenges, Best Practices and Tool Support. arXiv preprint arXiv:2211.06953
(2022).

[25] Xiaohan Sun, Yunchang Cheng, Xiaojie Qu, and Hang Li. 2021. Design and
Implementation of Security Test Pipeline Based on DevSecOps. In 2021 IEEE 4th
Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), Vol. 4. IEEE, 532–535.

[26] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2019. Continuous architecting
with microservices and devops: A systematic mapping study. In Cloud Computing
and Services Science: 8th International Conference, CLOSER 2018, Funchal, Madeira,
Portugal, March 19-21, 2018, Revised Selected Papers 8. Springer, 126–151.

[27] Nora Tomas, Jingyue Li, and Huang Huang. 2019. An empirical study on culture,
automation, measurement, and sharing of devsecops. In 2019 International Con-
ference on Cyber Security and Protection of Digital Services (Cyber Security). IEEE,
1–8.

[28] Sheila Simsarian Webber. 2002. Leadership and trust facilitating cross-functional
team success. Journal of management development (2002).

[29] Yu Wu, Jessica Kropczynski, Patrick C Shih, and John M Carroll. 2014. Exploring
the ecosystem of software developers on GitHub and other platforms. In Pro-
ceedings of the companion publication of the 17th ACM conference on Computer
supported cooperative work & social computing. 265–268.

[30] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, andMassimiliano Di Penta.
2021. Ci/cd pipelines evolution and restructuring: A qualitative and quantitative
study. In 2021 IEEE International Conference on SoftwareMaintenance and Evolution

(ICSME). IEEE, 471–482.
[31] Uwe Zdun, Erik Wittern, and Philipp Leitner. 2019. Emerging trends, challenges,

and experiences in devops and microservice Apis. IEEE Software 37, 1 (2019),
87–91.

https://doi.org/10.1109/ICSECC51444.2020.9557509
https://doi.org/10.1109/ICSECC51444.2020.9557509

	Abstract
	1 Introduction
	2 Cultural Observations
	3 Technical Observations
	4 Insights
	5 Recommendations
	6 Conclusions and Future Work
	Acknowledgments
	References

