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ABSTRACT
As neural networks increasingly make critical decisions in high-
stakes settings, monitoring and explaining their behavior in an
understandable and trustworthy manner is a necessity. One com-
monly used type of explainer is post hoc feature attribution, a
family of methods for giving each feature in an input a score corre-
sponding to its influence on a model’s output. A major limitation
of this family of explainers in practice is that they can disagree on
which features are more important than others. Our contribution
in this paper is a method of training models with this disagreement
problem in mind. We do this by introducing a Post hoc Explainer
Agreement Regularization (PEAR) loss term alongside the standard
term corresponding to accuracy, an additional term that measures
the difference in feature attribution between a pair of explainers.
We observe on three datasets that we can train a model with this
loss term to improve explanation consensus on unseen data, and
see improved consensus between explainers other than those used
in the loss term. We examine the trade-off between improved con-
sensus and model performance. And finally, we study the influence
our method has on feature attribution explanations.
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1 INTRODUCTION
As machine learning becomes inseparable from important societal
sectors like healthcare and finance, increased transparency of how
complex models arrive at their decisions is becoming critical. In this
work, we examine a common task in support of model transparency
that arises with the deployment of complex black-box models in
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production settings: explaining which features in the input are most
influential in the model’s output. This practice allows data scientists
and machine learning practitioners to rank features by importance
– the features with high impact on model output are considered
more important, and those with little impact on model output are
considered less important. These measurements inform how model
users debug and quality check their models, as well as how they
explain model behavior to stakeholders.
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Figure 1: Our loss that encourages explainer consensus boosts
the correlation between LIME and other common post hoc
explainers. This comeswith a cost of less than two percentage
points of accuracy compared with our baseline model on the
Electricity dataset. Our method improves consensus on six
agreement metrics and all pairs of explainers we evaluated.
Note that this plot measures the rank correlation agreement
metric and the specific bar heights depend on this choice of
metric.

1.1 Post Hoc Explanation
The methods of model explanation considered in this paper are post
hoc local feature attribution scores. The field of explainable artificial
intelligence (XAI) is rapidly producing different methods of this
type to make sense of model behavior [e.g., 21, 24, 30, 32, 37]. Each
of these methods has a slightly different formula and interpretation
of its raw output, but in general they all perform the same task of
attributing a model’s behavior to its input features. When tasked to
explain a model’s output with a corresponding input (and possible
access to the model weights), these methods answer the question,
“How influential is each individual feature of the input in themodel’s
computation of the output?”

Data scientists are using post hoc explainers at increasing rates –
popular methods like LIME and SHAP have had over 350 thousand
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and 6 million downloads of their Python packages in the last 30
days, respectively [23].

1.2 The Disagreement Problem
The explosion of different explanation methods leads Krishna et al.
[15] to observe that when neural networks are trained naturally, i.e.
for accuracy alone, often post hoc explainers disagree on howmuch
different features influenced a model’s outputs. They coin the term
the disagreement problem and argue that when explainers disagree
about which features of the input are important, practitioners have
little concrete evidence as to which of the explanations, if any, to
trust.

There is an important discussion around local explainers and
their true value in reaching the communal goal of model trans-
parency and interpretability [see, e.g., 7, 18, 29]; indeed, there are
ongoing discussions about the efficacy of present-day explanation
methods in specific domains [for healthcare see, e.g., 8]. Feature
importance estimates may fail at making a model more transparent
when the model being explained is too complex to allow for easily
attributing the output to the contribution of each individual feature.

In this paper, we make no normative judgments with respect to
this debate, but rather view “explanations” as signals to be used
alongside other debugging, validation, and verification approaches
in the machine learning operations (MLOps) pipeline. Specifically,
we take the following practical approach: make the amount of
explanation disagreement a controllable model parameter instead
of a point of frustration that catches stakeholders off-guard.

1.3 Encouraging Explanation Consensus
Consensus between two explainers does not require that the ex-
plainers output the same exact scores for each feature. Rather, con-
sensus between explainers means that whatever disagreement they
exhibit can be reconciled. Data scientists andmachine learning prac-
titioners say in a survey that explanations are in basic agreement
if they satisfy agreement metrics that align with human intuition,
which provides a quantitative way to evaluate the extent to which
consensus is being achieved [15]. When faced with disagreement
between explainers, a choice has to be made about what to do next –
if such an arbitrary crossroads moment is avoidable via specialized
model training, we believe it would be a valuable addition to a data
scientist’s toolkit.

We propose, as our main contribution, a training routine to help
alleviate the challenge posed by post hoc explanation disagreement.
Achieving better consensus between explanations does not provide
more interpretability to a model inherently. But, it may lend more
trust to the explanations if different approaches to attribution agree
more often on which features are important. This gives consensus
the practical benefit of acting as a sanity check – if consensus
is observed, the choice of which explainer a practitioner uses is
less consequential with respect to downstream stakeholder impact,
making their interpretation less subjective.

2 RELATEDWORK
Our work focuses on post hoc explanation tools. Some post hoc
explainers, like LIME [24] and SHAP [21], are proxy models trained
atop a base machine learning model with the sole intention of

“explaining” that base model. These explainers rely only on the
model’s inputs and outputs to identify salient features. Other ex-
plainers, such as Vanilla Gradients (Grad) [32], Gradient Times
Input (Grad*Input) [30], Integrated Gradients (IntGrad) [37] and
SmoothGrad [34], do not use a proxy model but instead compute
the gradients of a model with respect to input features to identify
important features.1 Each of these explainers has its quirks and
there are reasons to use, or not use, them all—based on input type,
model type, downstream task, and so on. But there is an underlying
pattern unifying all these explanation tools. Han et al. [12] provide
a framework that characterizes all the post hoc explainers used in
this paper as different types of local-function approximation. For
more details about the individual post hoc explainers used in this
paper, we refer the reader to the individual papers and to other
works about when and why to use each one [see, e.g., 5, 13].

We build directly on prior work that defines and explores the dis-
agreement problem [15]. Disagreement here refers to the difference
in feature importance scores between two feature attribution meth-
ods, but can be quantified several different ways as are described
by the metrics Krishna et al. [15] define and use. We describe these
metrics in Section 4.

The method we propose in this paper relates to previous work
that trains models with constraints on explanations via penalties
on the disagreement between feature attribution scores and hand-
crafted ground-truth scores [26, 27, 41]. Additionally, work has
been done to leverage the disagreement between different post-
hoc explanations to construct new feature attribution scores that
improve metrics like stability and pairwise rank agreement [2, 16,
25].

3 PEAR: POST HOC EXPLAINER AGREEMENT
REGULARIZER

Our contribution is the first effort to train models to be both accu-
rate and to be explicitly regularized via consensus between local
explainers. When neural networks are trained naturally (i.e. with
a single task-specific loss term like cross-entropy), disagreement
between post hoc explainers often arises. Therefore, we include an
additional loss term to measure the amount of explainer disagree-
ment during training to encourage consensus between explanations.
Since human-aligned notions of explanation consensus can be cap-
tured by more than one agreement metric (listed in A.3), we aim to
improve several agreement metrics with one loss function.2

Our consensus loss term is a convex combination of the Pearson
and Spearman correlation measurements between the vectors of
attribution scores (Spearman correlation is just the Pearson corre-
lation on the ranks of a vector).

1In many settings, there may be a strong case to consider interpretable-by-design
models—that is, models that need no proxy model or gradient computation to be
explained, and are instead interpretable in their base form. [29] provides an overview
of this space, and we specifically call out directions such as falling rule lists [40],
generalized additive models [20], and concept/prototype-based models [9, 14]. We
acknowledge this direction of research as well as subsequent push-back claiming that
performance drops from prioritizing interpretability may be prohibitively high [e.g.,
when compared to so-called foundation models, see 4]. Given industry uptake of post
hoc explanations, our paper focuses on that approach alone.
2The PEAR package will be publicly for download on the Package Installer for Python
(pip), and it is also available upon request from the authors.
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Figure 2: Our loss function measures the task loss between
the model outputs and ground truth (task loss), as well as
the disagreement between explainers (consensus loss). The
weight given to the consensus loss term is controlled by a
hyperparameter 𝜆. The consensus loss term term is a con-
vex combination of the Spearman and Pearson correlation
measurements between feature importance scores, since in-
creasing both rank correlation (Spearman) and raw-score
correlation (Pearson) are useful for improving explainer con-
sensus on our many agreement metrics.

To paint a clearer picture of the need for two terms in the loss,
consider the examples shown in Figure 3. In the upper example,
the raw feature scores are very similar and the Pearson correlation
coefficient is in fact 1 (to machine precision). However, when we
rank these scores by magnitude, there is a big difference in their
ranks as indicated by the Spearman value. Likewise, in the lower
portion of Figure 3 we show that two explanations with identical
magnitudes will show a low Pearson correlation coefficient. Since
some of the metrics we use to measure disagreement involve rank-
ing and others do not, we conclude that a mixture of these two
terms in the loss is appropriate.

While the example in Figure 3 shows two explanation vectors
with similar scale, different explanation methods do not always
align. Some explainers have the sums of their attribution scores
constrained by various rules, whereas other explainers have no
such constraints. The correlation measurements we use in our loss
provide more latitude when comparing explainers than a direct
difference measurement like mean absolute error or mean squared
error, allowing our correlation measurement.

More formally, our full loss function is defined as follows. Let 𝑓
denote a model. Let 𝐸1 and 𝐸2 be any two post-hoc explainers, each
of which take a data point 𝑥 and its predicted label 𝑦 as input and
output a vector, which is the same size as 𝑥 and has corresponding
feature attribution scores. We define 𝑅 to be the ranking function,
so it replaces each entry in a vector with the rank of its magnitude
among all entries in the vector.3

Let the functions 𝑝 (𝑎, 𝑏) and 𝑠 (𝑎, 𝑏) be Pearson and Spearman
correlation measurements, respectively. We denote the average
value of all entries in a vector with the ·̄ notation.

𝑝 (𝑎, 𝑏) =
∑︁
𝑖

(𝑎𝑖 − 𝑎) (𝑏𝑖 − 𝑏)
∥𝑎∥∥𝑏∥ (1)

3When more than one of the entries have the same magnitude, they get a common
ranking value equal to the average rank if they were ordered arbitrarily.

Figure 3: Example feature attribution vectors where Pearson
and Spearman show starkly different scores. Recall, both
Pearson and Spearman correlation range from −1 to +1. Both
of these pairs of vectors satisfy some human-aligned notions
of consensus. But in each circumstance, one of the correla-
tion metrics gives a low similarity score. Thus, in order to
successfully encourage explainer consensus (by all of our
metrics), we use both types of correlation in our consensus
loss term.

𝑠 (𝑎, 𝑏) =
∑︁
𝑖

(𝑅(𝑎)𝑖 − 𝑅(𝑎)) (𝑅(𝑏)𝑖 − 𝑅(𝑏))
∥𝑅(𝑎)∥∥𝑅(𝑏)∥ (2)

We refer to the first term in the loss function as the task loss, or
ℓtask, and for our classification tasks we use cross-entropy loss. A
graphical depiction of the flow from data to loss value is shown
in Figure 2. Formally, our complete loss function can be expressed
as follows with two hyperparameters 𝜆, 𝜇 ∈ [0, 1]. We weight
the influence of our consensus term with 𝜆, so lower values give
more priority to task loss. We weight the influence between the two
explanation correlation terms with 𝜇, so lower values give more
weight to Pearson correlation and higher values give more weight
to Spearman correlation.

𝐿(𝑥,𝑦, 𝑓 , 𝐸1,𝐸2) =
(1 − 𝜆)ℓtask

+𝜆
(
𝜇 𝑠

(
𝐸1 (𝑥,𝑦), 𝐸2 (𝑥,𝑦)

)
+ (1 − 𝜇) 𝑝

(
𝐸1 (𝑥,𝑦), 𝐸2 (𝑥,𝑦)

) )
(3)

3.1 Choosing a Pair of Explainers
The consensus loss term is defined for any two explainers in general,
but since we train with standard backpropagation we need these
explainers to be differentiable. With this constraint in mind, and
with some intuition about the objective of improving agreement
metrics, we choose to train for consensus betweenGrad and IntGrad.
If Grad and IntGrad align, then the function should become more
locally linear in logit space. IntGrad computes the average gradient
along a path in input space toward each point being explained. So,
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if we train the model to have a local gradient at each point (Grad)
closer to the average gradient along a path to the point (IntGrad),
then perhaps an easy way for the model to accomplish that training
objective would be for the gradient along the whole path to equal
the local gradient from Grad. This may push the model to be more
similar to a linear model. This is something we investigate with
qualitative and quantitative analysis in Section 4.5.

3.2 Differentiability
On the note of differentiability, the ranking function 𝑅 is not differ-
entiable. We substitute a soft ranking function from the torchsort
package [3]. This provides a floating point approximation of the
ordering of a vector rather than an exact integer computation of
the ordering of a vector, which allows for differentiation.

4 THE EFFICACY OF CONSENSUS TRAINING
In this section we present each experiment with the hypothesis it is
designed to test. The datasets we use for our experiments are Bank
Marketing, California Housing, and Electricity, three binary classi-
fication datasets available on the OpenML database [39]. For each
dataset, we use a linear model’s performance (logistic regression)
as a lower bound of realistic performance because linear models
are considered inherently explainable.

The models we train to study the impact of our consensus loss
term are multilayer perceptrons (MLPs). While the field of tabular
deep learning is still growing, and MLPs may be an unlikely choice
for most data scientists on tabular data, deep networks provide the
flexibility to adapt training loops for multiple objectives [1, 10, 17,
28, 31, 36]. We also verify that our MLPs outperform linear models
on each dataset, because if deep models trained to reach consensus
are less accurate than a linear model, we would be better off using
the linear model.

We include XGBoost [6] as a point of comparison for our ap-
proach, as it has become a widely popular method with high per-
formance and strong consensus metrics on many tabular datasets
(figures in Appendix A.7). There are cases where we achieve more
explainer consensus than XGBoost, but this point is tangential as
we are invested in exploring a loss for training neural networks.

For further details on our datasets and model training hyperpa-
rameters, see Appendices A.1 and A.2.

4.1 Agreement Metrics
In their work on the disagreement problem, Krishna et al. [15] intro-
duce six metrics to measure the amount of agreement between post
hoc feature attributions. Let [𝐸1 (𝑥)]𝑖 , [𝐸2 (𝑥)]𝑖 be the attribution
scores from explainers for the 𝑖-th feature of an input 𝑥 . A feature’s
rank is its index when features are ordered by the absolute value of
their attribution scores. A feature is considered in the top-𝑘 most
important features if its rank is in the top-𝑘 . For example, if the
importance scores for a point 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4], output by one
explainer are 𝐸1 (𝑥) = [0.1,−0.9, 0.3,−0.2], then the most important
feature is 𝑥2 and its rank is 1 (for this explainer).

Feature Agreement counts the number of features 𝑥𝑖 such that
[𝐸1 (𝑥)]𝑖 and [𝐸2 (𝑥)]𝑖 are both in the top-𝑘 . Rank Agreement
counts the number of features in the top-𝑘 with the same rank

in 𝐸1 (𝑥) and 𝐸2 (𝑥). Sign Agreement counts the number of fea-
tures in the top-𝑘 such that [𝐸1 (𝑥)]𝑖 and [𝐸2 (𝑥)]𝑖 have the same
sign. Signed Rank Agreement counts the number of features
in the top-𝑘 such that [𝐸1 (𝑥)]𝑖 and [𝐸2 (𝑥)]𝑖 agree on both sign
and rank. Rank Correlation is the correlation between 𝐸1 (𝑥) and
𝐸2 (𝑥) (on all features, not just in the top-𝑘), and is often referred
to as the Spearman correlation coefficient. Lastly, Pairwise Rank
Agreement counts the number of pairs of features (𝑥𝑖 , 𝑥 𝑗 ) such
that 𝐸1 and 𝐸2 agree on whether 𝑥𝑖 or 𝑥 𝑗 is more important. All
of these metrics are formalized as fractions and thus range from 0
to 1, except Rank Correlation, which is a correlation measurement
and ranges from −1 to +1. Their formal definitions are provided in
Appendix A.3.

In the results that follow, we use all of the metrics defined above
and reference which one is used where appropriate. When we
evaluate a metric to measure the agreement between each pair of
explainers, we average the metric over the test data to measure
agreement. Both agreement and accuracy measurements are av-
eraged over several trials (see Appendices A.6 and A.5 for error
bars).

4.2 Improving Consensus Metrics
The intention of our consensus loss term is to improve agreement
metrics. While the objective function explicitly includes only two
explainers, we show generalization to unseen explainers as well
as to the unseen test data. For example, we train for agreement
between Grad and IntGrad and observe an increase in consensus
between LIME and SHAP.

To evaluate the improvement in agreement metrics when using
our consensus loss term, we compute explanations from each ex-
plainer on models trained naturally and on models trained with
our consensus loss parameter using 𝜆 = 0.5.

In Figure 4, using a visualization tool developed by Krishna et
al. [15], we show how we evaluate the change in an agreement
metric (pairwise rank agreement) between all pairs of explainers
on the California Housing data.

Hypothesis:We can increase consensus by deliberately training
for post hoc explainer agreement.

Through our experiments, we observe improved agreement met-
rics on unseen data and on unseen pairs of explainers. In Figure 4
we show a representative example where Pairwise Rank Agreement
between Grad and IntGrad improve from 87% to 96% on unseen data.
Moreover, we can look at two other explainers and see that agree-
ment between SmoothGrad and LIME improves from 56% to 79%.
This shows both generalization to unseen data and to explainers
other than those explicitly used in the loss term. In Appendix A.5,
we see more saturated disagreement matrices across all of our
datasets and all six agreement metrics.

4.3 Consistency At What Cost?
While training for consensus works to boost agreement, a question
remains: How accurate are these models?

To address this question, we first point out that there is a trade-
off here, i.e., more consensus comes at the cost of accuracy. With
this in mind we posit that there is a Pareto frontier on the accuracy-
agreement axes. While we cannot assert that our models are on
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Figure 4: When models are trained naturally, we see disagreement among post hoc explainers (left). However, when trained
with our loss function, we see a boost in agreement with only a small cost in accuracy (right). This can be observed visually by
the increase in saturation or in more detail by comparing the numbers in corresponding squares.
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Figure 5: The trade-off curves of consensus and accuracy. Increasing the consensus comes with a drop in accuracy and the
trade-off is such that we can achieve more agreement and still outperform linear baselines. Moreover, as we vary the 𝜆 value,
we move along the trade-off curve. In all three plots we measure agreement with the pairwise rank agreement metric and we
show that increased consensus comes with a drop in accuracy, but all of our models are still more accurate than the linear
baseline, indicated by the vertical dashed line (the shaded region shows ± one standard error).

the Pareto frontier, we plot trade-off curves which represent the
trajectory through accuracy-agreement space that is carved out by
changing 𝜆.

Hypothesis: We can increase consensus with an acceptable drop
in accuracy.

While this hypothesis is phrased as a subjective claim, in reality
we define acceptable performance as better than a linear model
as explained at the beginning of Section 4. We see across all three
datasets that increasing the consensus loss weight 𝜆 leads to higher
pairwise rank agreement between LIME and SHAP. Moreover, even
with high values of 𝜆, the accuracy stays well above linear models

indicating that the loss in performance is acceptable. Therefore this
experiment supports the hypothesis.

The results plotted in Figure 5 demonstrate that a practitioner
concerned with agreement can tune 𝜆 to meet their needs of accu-
racy and agreement. This figure serves in part to illuminate why our
hyperparameter choice is sensible—𝜆 gives us control to slide along
the trade-off curve, making post hoc explanation disagreement
more of a controllable model parameter so that practitioners have
more flexibility to make context-specific model design decisions.
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4.4 Are the Explanations Still Valuable?
Whether our proposed loss is useful in practice is not completely
answered simply by showing accuracy and agreement. A question
remains about how our loss might change the explanations in the
end. Could we see boosted agreement as a result of some breakdown
in how the explainers work? Perhaps models trained with our loss
fool explainers into producing uninformative explanations just to
appease the agreement term in the loss.

Hypothesis: We only get consensus trivially, i.e., with feature
attributions scores that are uninformative.

Since we have no ground truth for post hoc feature attribution
scores, we cannot easily evaluate their quality [37]. Instead, we
reject this hypothesis with an experiment wherein we add random
“junky” features to the input data. In this experiment we show that
when we introduce junky input features, which by definition have
no predictive power, our explainers appropriately attribute near
zero importance to them.

Our experimental design is related to other efforts to understand
explainers. Slack et al. [33] demonstrate an experimental setup
whereby a model is built with ground-truth knowledge that one
feature is the only important feature to the model, and the other
features are unused. They then adversarially attack the model-
explainer pipeline and measure the frequency with which their
explainers identify one of the truthfully unimportant features as
the most important. Our tactic works similarly, since a naturally
trained model will not rely on random features which have no
predictive power.

We measure the frequency with which our explainers place one
of the junk features in the top-𝑘 most important features, using
𝑘 = 5 throughout.

As a representative example, LIME explanations of MLPs trained
on this augmented Electricity data put random features in the top
five 11.8% of the time on average. If our loss was encouragingmodels
to permit uninformative explanations for the sake of agreement,
we might see this number rise. However, when trained with 𝜆 = 0.5,
random features are only in the top five LIME features 9.1% of the
time – and random chance would have at least one junk feature in
the top five over 98% of the time. For results on all three datasets
and all six expalainers, see Appendix A.4.

The setting where junk features are most often labelled as one of
the top five is when using SmoothGrad to explain models trained
on Bank Marketing data with 𝜆 = 0, where for 43.1% of the samples,
at least one of the top five is in fact a junk feature. Interestingly, for
the same explainer and dataset models trained with 𝜆 = 0.5 lead
to explanations that have a junk feature as one of the top five less
than 1% of the time, indicating that our loss can even improve this
behavior in some settings.

Therefore, we reject this hypothesis and conclude that the ex-
planations are not corrupted by training with our loss.

4.5 Consensus and Linearity
Since linear models are the gold standard in model explainability,
one might wonder if our loss is pushing models to be more like
linear models. We conduct a quantitative and qualitative test to see
whether our method indeed increases linearity.

𝜆 = 0.00 𝜆 = 0.75 𝜆 = 0.95 Linear

Figure 6: Logit surface contour plots on a plane spanning
three real data points from four different models. Left to
right: MLPs trained with 𝜆 = 0, 𝜆 = 0.75 and 𝜆 = 0.95 as well as
a linear model. Notice that as we increase 𝜆, and move from
left to right, we get straighter contours in the logit surface.

Hypothesis: Encouraging explanation consensus during training
encourages linearity.

Qualitative analysis. In their work on model reproducibility,
Somepalli et al. [35] describe a visualization technique wherein a
high-dimensional decision surface is plotted in two dimensions.
Rather than more complex distance preserving projection tactics,
they argue that the subspace of input space defined by a plane
spanning three real data points can be a more informative way to
visualize how a model’s outputs change in high dimensional input
space. We take the same approach to study how the logit surface of
our model changes with 𝜆. We take three random points from the
test set, and interpolate between the three of them to get a planar
slice of input space. We then compute the logit surface on this plane
(we arbitrarily choose the logit corresponding to the first class). We
visualize the contour plots of the logit surface in Figure 6 (more
visualizations in Section A.7). As we increase 𝜆, we see that the
shape of the contours often tends toward the contour pattern that
a linear model takes on that same plane slice of input space.

Quantitative analysis.We can also measure how close to linear
a model is quantitatively. The extent to which our models trained
with higher 𝜆 values are close to linear can be measured as follows.
For each of ten random planes in input space (constructed using
the three-point method described above), we fit a linear regression
model to predict the logit value at each point of the plane, and
measure the mean absolute error. The closer this error term is to
zero, the more our model’s logits on this input subspace resemble
a linear model. In Figure 7 we show the error values of the linear
fit drop as we increase the weight on the consensus loss for the
Electricity dataset. Thus, these analyses support the hypothesis
that encouraging consensus encourages linearity.

But if our consensus training pushes models to be closer to
linear, does any method that increases the linearity measurement
also lead to increased consensus? We consider the possibility that
any approach to make models closer to linear improves consensus
metrics.

Hypothesis: Linearity implies more explainer consistency.
To explore another path toward more linear models, we train a

set of MLPs without our consensus loss but with various weight
decay coefficients. In Figure 7, we show a drop in linear-best-fit
error across the random three-point planes which is similar to the
drop observed by increasing 𝜆, showing that increasing weight
decay also encourages models to be closer to linear.

But when evaluating these MLPs with increasing weight decay
by their consensus metrics, they show near-zero improvement. We
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Figure 8: We perform an ablation study of our loss term pa-
rameter 𝜇 to showwhy, when training to improve correlation
between feature attribution scores, using both Spearman and
Pearson correlation can be better than using just one type of
correlation.

therefore reject this hypothesis—linearity alone does not seem to
be enough to improve consensus on post hoc explanations.

4.6 Two Loss Terms
For the majority of experiments, we set 𝜇 = 0.75, which is deter-
mined by a coarse grid search. And while it may not be optimal for
every dataset on every agreement metric, we seek to show that the
extreme values 𝜇 = 0 and 𝜇 = 1, which each correspond to only one
correlation term in the loss, can be suboptimal. This ablation study
serves to justify our choice of incorporating two terms in the loss.
In Figure 8, we show the agreement-accuracy trade-off for multiple
values of 𝜇 and of 𝜆. We see that 𝜇 = 0.75 shows the more optimal
trade-off curve.

In Appendix A.7, where we show more plots like Figure 8 for
other datasets and metrics, we see that the best value of 𝜇 varies
case by case. This demonstrates the importance of having a tunable
parameter within our consensus loss term to be tweaked for better
performance.

5 DISCUSSION
The empirical results we present demonstrate that our loss term is
effective in its goal of boosting consensus among explainers. Aswith
any first attempt at introducing a new objective to neural network
training, we see modest results in some settings and evidence that
hyperparameters can likely be tuned on a case-by-case basis. It is
not our aim to leave practitioners with a how-to guide, but rather
to begin exploring how practitioners can control where a model
lies along the accuracy-agreement trade-off curve.

We introduce a loss term measuring two types of correlation
between explainers, which unfortunately adds more complexity
to the machine learning engineer’s job of tuning models. But, we
show conclusively that there are settings in which using both types
of correlation is better than using only one when encouraging
explanation consensus.

Another limitation of these experiments as a guide on how to
train for consensus is that we only trained with one pair of explain-
ers. Our loss is defined for any pair and perhaps another choice
would better suit specific applications.

In light of the contentious debate on whether deep models or
decision-tree-based methods are better for tabular data [10, 31, 38],
we argue that developing new tools for training deep models can
help promote wider adoption for tabular deep learning. Moreover,
with the results we present in this work, it is our hope that future
work improves these trends, which could possibly lead to neural
models that have more agreement (and possibly more accuracy)
than their tree-based counterparts (such as XGBoost).

5.1 Future Work
Armed with the knowledge that training for consensus with PEAR
is possible, we describe several exciting directions for future work.
First, as alluded to above, we explored training with only one pair
of explainers, but other pairs may help data scientists who have a
specific type of target agreement. Work to better understand how
a given pair of explainers in the loss affects the agreement of other
explainers at test time could lead to principled decisions about
how to use our loss in practice. Indeed, PEAR could fit into larger
learning frameworks [22] that aim to select user- and task-specific
explanation methods automatically.

It will be crucial to study the quality of explanations produced
with PEAR from a human perspective. Ultimately, both the efficacy
of a single explanation and the efficacy of agreement between
multiple explanations is tied to how the explanations are used and
interpreted. Since our work only takes a quantitative approach
to demonstrate improvement when regularizing for explanation
consensus, it remains to be seenwhether actual human practitioners
would make better judgments about models trained with PEAR vs
models trained naturally.

In terms of model architecture, we chose standard sized MLPs
for the experiments on our tabular datasets. Recent work proposes
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transformers [36] and even ResNets [10] for tabular data, so com-
pletely different architectures could also be examined in future
work as well.

Finally, research into developing better explainers could lead to
an even more powerful consensus loss term. Recall that IntGrad
integrates the gradients over a path in input space. The designers of
that algorithm point out that a straight path is the canonical choice
due to its simplicity and symmetry [37]. Other paths through input
space that include more realistic data points, instead of paths of
points constructed via linear interpolation, could lead to even better
agreement metrics on actual data.

5.2 Conclusion
In the quest for fair and accessible deep learning, balancing in-
terpretability and performance are key. It is known that common
explainers may return conflicting results on the same model and
input, to the detriment of an end user. The gains in explainer con-
sensus we achieve with our method, however modest, serve to kick
start others to improve on our work in aligning machine learning
models with the practical challenge of interpreting complex models
for real-life stakeholders.
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A APPENDIX
A.1 Datasets
In our experiments we use tabular datasets originally from OpenML and compiled into a set of benchmark datasets from the Inria-Soda team
on HuggingFace [11]. We provide some details about each dataset:

Bank Marketing This is a binary classification dataset with six input features and is approximately class balanced. We train on 7,933
training samples and test on the remaining 2,645 samples.

California Housing This is a binary classification dataset with seven input features and is approximately class balanced. We train on
15,475 training samples and test on the remaining 5,159 samples.

Electricity This is a binary classification dataset with seven input features and is approximately class balanced. We train on 28,855
training samples and test on the remaining 9,619 samples.

A.2 Hyperparamters
Many of our hyperparameters are constant across all of our experiments. For example, all MLPs are trained with a batch size of 64, and initial
learning rate of 0.0005. Also, all the MLPs we study are 3 hidden layers of 100 neurons each. We always use the AdamW optimizer [19].
The number of epochs varies from case to case. For all three datasets, we train for 30 epochs when 𝜆 ∈ {0.0, 0.25} and 50 epochs otherwise.
When training linear models, we use 10 epochs and an initial learning rate of 0.1.

A.3 Disagreement Metrics
We define each of the six agreement metrics used in our work here.

The first four metrics depend on the top-𝑘 most important features in each explanation. Let 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸, 𝑘) represent the top-𝑘 most
important features in an explanation 𝐸, let 𝑟𝑎𝑛𝑘 (𝐸, 𝑠) be the importance rank of the feature 𝑠 within explanation 𝐸, and let 𝑠𝑖𝑔𝑛(𝐸, 𝑠) be the
sign (positive, negative, or zero) of the importance score of feature 𝑠 in explanation 𝐸.

Feature Agreement
|𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸1, 𝑘) ∩ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸2, 𝑘) |

𝑘
(4)

Rank Agreement

|⋃𝑠∈𝑆 {𝑠 ∈ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸1, 𝑘) ∧ 𝑠 ∈ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸2, 𝑘) ∧ 𝑟𝑎𝑛𝑘 (𝐸1, 𝑠) = 𝑟𝑎𝑛𝑘 (𝐸2, 𝑠)}|
𝑘

(5)

Sign Agreement

|⋃𝑠∈𝑆 {𝑠 ∈ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸1, 𝑘) ∧ 𝑠 ∈ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸2, 𝑘) ∧ 𝑠𝑖𝑔𝑛(𝐸1, 𝑠) = 𝑠𝑖𝑔𝑛𝑟𝑎𝑛𝑘 (𝐸2, 𝑠)}|
𝑘

(6)

Signed Rank Agreement

|⋃𝑠∈𝑆 {𝑠 ∈ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸1, 𝑘) ∧ 𝑠 ∈ 𝑡𝑜𝑝_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐸2, 𝑘) ∧ 𝑟𝑎𝑛𝑘 (𝐸1, 𝑠) = 𝑟𝑎𝑛𝑘 (𝐸2, 𝑠) ∧ 𝑠𝑖𝑔𝑛(𝐸1, 𝑠) = 𝑠𝑖𝑔𝑛(𝐸2, 𝑠)}|
𝑘

(7)

The next two agreement metrics depend on all features within each explanation, not just the top-𝑘 . Let 𝑅 be a function that computes the
ranking of features within an explanation by importance.

Rank Correlation ∑︁
𝑖

(𝑅(𝑎)𝑖 − 𝑅(𝑎)) (𝑅(𝑏)𝑖 − 𝑅(𝑏))
∥𝑅(𝑎)∥∥𝑅(𝑏)∥ (8)

Lastly, let 𝑅𝑒𝑙𝑅(𝐸, 𝑓𝑖 , 𝑓𝑗 ) be a relative ranking function that returns 1 when feature 𝑓𝑖 has higher importance than feature 𝑓𝑗 in explanation
𝐸, and let 𝐹 be any set of features.

Pairwise Rank Agreement ∑
𝑖< 𝑗 1[𝑅𝑒𝑙𝑅(𝐸1, 𝑓𝑖 , 𝑓𝑗 ) = 𝑅𝑒𝑙𝑅(𝐸2, 𝑓𝑖 , 𝑓𝑗 )]( |𝐹 |

2
) (9)

(Note: Krishna et al. [15] specify in their paper that 𝐹 is to be a set of features specified by an end user, but in our experiments we use all
features with this metric).

A.4 Junk Feature Experiment Results
When we add random features for the experiment in Section 4.4, we double the number of features. We do this to check whether our
consensus loss damages explanation quality by placing irrelevant features in the top-𝐾 more often than models trained naturally. In Table 1,
we report the percentage of the time that each explainer included one of the random features in the top-5 most important features. We
observe that across the board, we do not see a systematic increase of these percentages between 𝜆 = 0.0 (a baseline MLP without our
consensus loss) and 𝜆 = 0.5 (an MLP trained with our consensus loss).
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Table 1: Frequency of junk features getting top-5 ranks, measured in percent.

LIME SHAP GRAD Input*Grad IntGrad SmoothGrad Random Chance

Bank Marketing 𝜆 = 0.0 30.4 17.1 1.1 43.2 0.0 43.1 98.9
𝜆 = 0.5 25.1 12.0 0.1 34.9 0.0 0.1

California Housing 𝜆 = 0.0 22.6 8.7 0.0 24.8 0.0 0.3 98.5
𝜆 = 0.5 21.2 20.4 1.4 25.9 1.4 0.9

Eelectricity 𝜆 = 0.0 11.8 16.0 4.0 15.8 0.9 6.8 98.5
𝜆 = 0.5 9.1 9.5 1.7 8.6 0.8 3.1

A.5 More Disagreement Matrices

LIME SHAP Grad Grad*
Input

IntGrad Smooth
Grad

LIME

SHAP

Grad

Grad*
Input

IntGrad

Smooth
Grad

1 0.66 0.67 0.9 0.65 0.7

0.66 1 0.79 0.66 0.78 0.75

0.67 0.79 1 0.66 0.87 0.76

0.9 0.66 0.66 1 0.63 0.69

0.65 0.78 0.87 0.63 1 0.76

0.7 0.75 0.76 0.69 0.76 1

Bank Marketing Data
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Figure 9: Disagreement matrices for all metrics considered in this paper on Bank Marketing data.
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Figure 10: Disagreement matrices for all metrics considered in this paper on California Housing data.
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Figure 11: Disagreement matrices for all metrics considered in this paper on Electricity data.
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A.6 Extended Results

Table 2: Average test accuracy for models we trained. This table is organized by dataset, model, the hyperparameters in the loss,
and the weight decay coefficient (WD). Averages are over several trials and we report the means ± one standard error.

Dataset Model 𝜆 𝜇 WD Accuracy

Bank Marketing Linear 0.00 0.00 0.0002 74.3516 ± 0.1313
MLP 0.00 0.00 0.0002 79.0653 ± 0.2133
MLP 0.00 0.00 0.0020 78.9666 ± 0.4625
MLP 0.00 0.00 0.0200 79.1430 ± 0.4260
MLP 0.00 0.00 0.2000 79.1934 ± 0.1383
MLP 0.25 0.00 0.0002 79.2565 ± 0.1241
MLP 0.25 0.75 0.0002 79.3321 ± 0.1265
MLP 0.25 1.00 0.0002 79.2691 ± 0.5393
MLP 0.50 0.00 0.0002 79.4707 ± 0.1363
MLP 0.50 0.75 0.0002 79.0086 ± 0.0882
MLP 0.50 1.00 0.0002 79.1934 ± 0.1241
MLP 0.75 0.00 0.0002 78.7902 ± 0.1865
MLP 0.75 0.75 0.0002 77.8618 ± 0.4173
MLP 0.75 1.00 0.0002 77.5299 ± 0.6848

California Housing Linear 0.00 0.00 0.0002 81.5352 ± 0.1819
MLP 0.00 0.00 0.0002 84.8580 ± 0.1768
MLP 0.00 0.00 0.0020 84.6159 ± 0.1275
MLP 0.00 0.00 0.0200 84.5448 ± 0.2128
MLP 0.00 0.00 0.2000 84.3639 ± 0.3306
MLP 0.25 0.00 0.0002 81.7471 ± 0.8670
MLP 0.25 0.75 0.0002 83.5821 ± 0.1443
MLP 0.25 1.00 0.0002 84.1442 ± 0.3780
MLP 0.50 0.00 0.0002 80.2546 ± 0.4983
MLP 0.50 0.75 0.0002 83.1595 ± 0.2225
MLP 0.50 1.00 0.0002 83.7178 ± 0.1902
MLP 0.75 0.00 0.0002 82.7874 ± 0.7604
MLP 0.75 0.75 0.0002 82.4578 ± 0.3826
MLP 0.75 1.00 0.0002 81.7859 ± 0.6012

Electricity Linear 0.00 0.00 0.0002 73.3382 ± 0.1500
MLP 0.00 0.00 0.0002 81.2974 ± 0.1576
MLP 0.00 0.00 0.0020 81.1727 ± 0.2092
MLP 0.00 0.00 0.0200 81.5573 ± 0.1169
MLP 0.00 0.00 0.2000 76.9311 ± 0.5849
MLP 0.25 0.00 0.0002 81.5781 ± 0.1690
MLP 0.25 0.75 0.0002 80.5454 ± 0.1380
MLP 0.25 1.00 0.0002 80.9162 ± 0.5275
MLP 0.50 0.00 0.0002 81.4880 ± 0.1428
MLP 0.50 0.75 0.0002 80.0742 ± 0.1131
MLP 0.50 1.00 0.0002 79.6479 ± 0.4371
MLP 0.75 0.00 0.0002 80.6252 ± 0.1940
MLP 0.75 0.75 0.0002 79.0118 ± 0.4375
MLP 0.75 1.00 0.0002 78.6811 ± 0.6160
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A.7 Additional Plots

Figure 12: The logit surfaces for MLPs, each trained with a different lambda value, on 10 randomly construcuted three-point
planes from the Bank Marketing dataset.
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Figure 13: The logit surfaces for MLPs, each trained with a different lambda value, on 10 randomly construcuted three-point
planes from the California Housing dataset.
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Figure 14: The logit surfaces for MLPs, each trained with a different lambda value, on 10 randomly construcuted three-point
planes from the Electricity dataset.
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Figure 15: Additional trade-off curve plots for all datasets and metrics.
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