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A growing ecosystem of large, open-source foundation models has reduced
the labeled data and technical expertise necessary to apply machine learning
to many new problems. Yet foundation models pose a clear dual-use risk,
indiscriminately reducing the costs of building both harmful and benefi-
cial machine learning systems. Policy tools such as restricted model access
and export controls are the primary methods currently used to mitigate
such dual-use risks. In this work, we review potential safe-release strate-
gies and argue that both policymakers and AI researchers would benefit
from fundamentally new technologies enabling more precise control over
the downstream usage of open-source foundation models. We propose one
such approach: the task blocking paradigm, in which foundation models are
trained with an additional mechanism to impede adaptation to harmful tasks
without sacrificing performance on desirable tasks. We call the resulting
models self-destructing models, inspired by mechanisms that prevent adver-
saries from using tools for harmful purposes. We present an algorithm for
training self-destructing models leveraging techniques from meta-learning
and adversarial learning, which we call meta-learned adversarial censoring
(MLAC). In a small-scale experiment, we show MLAC can largely prevent a
BERT-style model from being re-purposed to perform gender identification
without harming the model’s ability to perform profession classification.
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1 INTRODUCTION
A defining capability of large pretrained models (hereafter foun-
dation models; FMs) is their ability to adapt to many downstream
tasks in a few-shot manner—potentially improving performance
and efficiency in domains with little training data [7]. Today, any-
one with an internet connection can download a foundation model
and adapt it to socially beneficial use-cases, like building better
educational tools or improving access to justice. However, a mali-
cious actor can also adapt a foundation model to nearly any harmful
use-case they desire. For example, an oppressive government can
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take a powerful pretrained language model and adapt it to identify
dissidents; a rogue actor can adapt a pretrained object recognition
system such that commercially available drones act as targeted loi-
tering munitions; or a pretrained drug discovery system can be used
for creating chemical or biological weapons, like neurotoxins [55].
Unfortunately, due to their general-purpose nature, preventing such
dual uses of foundation models is difficult. This creates a tension
between making these models widely available and ensuring that
they are used in a safe and responsible way.

Currently, there are several approaches tomitigating the dual uses
of FMs which can be divided into structural safety mechanisms and
technical safety mechanisms. Structural mechanisms use licenses or
access restrictions to prevent harmful uses; there is a broad spec-
trum of such structural release mechanisms. Some have suggested
a review board for selecting the structural release mechanism [34]
while others have argued that open source access to foundation
models is essential for safety research [6]. While structural release
approaches aim to prevent malicious users from acquiring founda-
tion models or providing legal remedies if they exceed the terms
of their access, technical strategies ensure that the model cannot
be used for harmful purposes even if a malicious user is able to
gain access to the model itself. Current technical strategies aim to
tune the model so that it is less likely to produce harmful content at
inference time [3], but do not consider the case where adversaries
have access to model parameters.

In this work, we review these strategies, noting that no strategy
on its own is able to prevent harmful dual uses of FMs. In particular
we note the disconnect between the goal of many structural safety
mechanisms and the new reality of open-source foundation models:
structural safety strategies aim to prevent a malicious actor from
gaining access to the model parameters altogether. In recent months,
however, powerful open-source models have been released to the
public, including Meta’s Llama model which was leaked online de-
spite a restricted access policy [53, 58]. Such developments demand
changes to the threat model of malicious FM usage, specifically, that
eventually model parameters will become generally accessible. Un-
like the assumptions of current safety strategies, there should then
be a last layer of defense that renders the model itself as harmless
as possible. We argue that we need more technical strategies to sup-
plement structural strategies to reduce the ability for adversaries to
use and adapt foundation models for harmful tasks: even when they
have access to model parameters. Where existing access restrictions
must navigate the tension between openness and safety, we seek to
provide a new research pathway for reducing (and in some cases
obviating) this tension.
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We suggest one such new path forward: self-destructing models.
Self-destructing models are trained via a task blocking method that
impedes the adaptation of the model to a harmful task without
impairing the model’s ability to be used for its original intended pur-
pose. By increasing the compute, data, and talent required to adapt
public models to harmful tasks, self-destructing models have the po-
tential to supplement access controls and other safety mechanisms.
We demonstrate a task-blocking mechanism using meta-learning for
training a self-destructing model. We find that meta-learning is an
essential step in reducing an adversary’s ability to tune a model for
a harmful task. Simple adversarial losses [16], often used in current
technical strategies, do not significantly reduce the costs of harmful
adaptation. We hope that the proposed mechanism forms an initial
step toward developing new safe release strategies even under the
assumption that model parameters become available to adversaries.

Below, we first review the state of current safe-release approaches
and their shortfalls, making the case for a shift in the threat model
to make model parameters as harmless as possible even with model
access. Second, we define the task blocking problem and evaluation
metrics as well as self-destructing models. Third, we describe an
initial algorithm, Meta-Learned Adversarial Censoring (MLAC), for
training self-destructing models, evaluating its ability to impede
fine-tuning a language model to perform demographic information
extraction. Fourth, we identify key directions for future research in
the development of self-destructing models.

2 REVIEWING THE RISKS AND MITIGATION
STRATEGIES FOR DUAL USES

Foundation models can be and, importantly, have been used for
harmful purposes unforeseen by their creators in recent years. They
have been fine-tuned on hate speech and deployed to 4chan [57];
hackers have released methods to bypass ChatGPT’s safety filters
so that it can be used to help generate malware and spam [23];
stable diffusion models have been fine-tuned to generate abusive
imagery [28].
Researchers, practitioners, and policymakers are increasingly

searching for new ways to prevent machine learning models from
being used for these harmful dual purposes—e.g., Solaiman [51],
Brundage et al. [9], Whittlestone and Ovadya [59], Shevlane [49],
Brundage et al. [8], and many others. Proposed tools have included
export controls, controlled or restricted release strategies, using
terms of service or licensing, and alignment and fine-tuning for
safety. In this section, we briefly examine each of these methods and
discuss potential gaps in relying on each strategy. We consider both
structural methods (e.g., export controls, use of licensing, and access
restrictions), and technical methods (e.g., alignment fine-tuning).

2.1 Structural Methods
Export Controls. Recently, researchers, such as Flynn [21], have
recommended that the United States consider export controls on
hardware related to AI, including NVIDIA A100 GPUs, to restrict
certain actors’ capacity to train powerful AI models that require
substantial computational resources. In 2022, the United States im-
posed these export controls on AI-related hardware and hardware-
manufacturing equipment, following researchers’ suggestions [56].

Such export controls may help restrict pre-training of foundation
models—a use case which requires large amounts of specialized hard-
ware, but they do not necessarily restrict inference-time computing
and small-scale adaptation once model parameters are available.
Even the largest foundation models can now be deployed or adapted
on commodity hardware using techniques such as adapters [27],
8-bit [12], and even 4-bit [13] quantization, and other optimization
strategies. A recent open-source project was able to runmulti-billion
parameter LLaMa models on a MacBook Pro with near-equal perfor-
mance to some state-of-the-art closed-source models, using these
techniques.1 As a result, hardware export controls may no longer be
sufficient to prevent the efficient adaptation of foundation models
or the large-scale deployment of pre-trained models, nor can they
prevent malicious actors located in countries not included in the
export control regime.
The U.S. government has also put in place export controls on

certain software and models with specific harmful dual uses. For ex-
ample, in a 2020 rulemaking, the Department of Commerce Bureau
of Industry and Security (BIS) restricted export of software that can
be used for automated geospatial analysis. Under this regulation
the model is controlled if it meets four criteria: (1) it provides a
graphical user interface to identify objects in geospatial imagery; (2)
it “reduces pixel variation by performing scale, color, and rotational
normalization on the positive samples”; (3) it “[t]rains a Deep Con-
volutional Neural Network to detect the object of interest from the
positive and negative samples”; (4) it “[i]dentifies objects in geospa-
tial imagery using the trained Deep Convolutional Neural Network
by matching the rotational pattern from the positive samples with
the rotational pattern of objects in the geospatial imagery.” But such
highly specific export controls do not cover general-purpose foun-
dation models (and associated training software). In fact, a recent
demonstration showed how to adapt a CLIP model [44] exactly for
analyzing satellite imagery in an easy way using all open-source
software [2]. Flynn [21] argued that applying export controls to
general-purpose foundation models would be ineffective due to the
ease of violating export controls through the same mechanisms as
software piracy, as well as the harmful impacts to innovation that
such restrictions could have.
Overall, while export controls may be effective in restricting ac-

cess to large-scale chipsets or certain software, once adversaries can
gain access to open-source (or leaked) foundation model parameters
they can be readily adapted to harmful dual-uses.

Access Control. Controlled release or restricted access strategies
are another set of structural mechanisms that can supplement export
controls and reduce malicious actors’ ability to access models [41,
49, 52].

One such approach is to make the model accessible only by agree-
ment. This involves vetting potential users and requiring them to
sign a restrictive terms of service before gaining access to the model.
For instance, Meta’s OPT-175B model and Llama both employ this
approach [53, 61, 62]. This access restriction approach is attractive
as it does not require hosting any centralized infrastructure for
serving model queries. It only requires one-time vetting of the users
requesting model access. However, as evidenced by the recent Llama

1https://github.com/ggerganov/llama.cpp
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Approach Examples Challenges

Export Controls United States Export Controls on AI hardware Imprecise, reduced hardware costs, open-source models
Controlled Release API-only access, Release by request/agreement Open-source models, leaks, monitoring difficulties

Licensing OpenRAIL Requires monitoring and enforcement action, leaks
Filtering, Alignment Reinforcement Learning from Human Feedback Can be bypassed by fine-tuning or prompt engineering

Table 1. A review of current or proposed approaches to safe foundation model release.

model leak onto BitTorrent [58] and HuggingFace,2 this approach
is susceptible to unauthorized dissemination, effectively negating
access control efforts.
Another approach is to never release the model at all, but pro-

vide access via an application programming interface (API). Many
companies, such as OpenAI, Anthropic, Cohere, and AI21 adopt
this approach to protect their trade secrets and prevent harmful
dual uses. This approach prevents direct access to model weights,
preventing uncontrolled dissemination and retaining the ability to
cut off access to malicious users at any time. However, this approach
requires monitoring of API usage to detect and revoke access when
abused, as well as considerable resources to maintain. Providing
such an API may not be possible for researchers and entities without
access to centralized model-hosting infrastructure.
Additionally, as open-source efforts continue to match the per-

formance of these closed-source models, the effectiveness of any
access control approaches may decrease. Access control approaches
require all model creators capable of training similarly capable foun-
dation models to be in agreement on the mechanism for release. If
one equally-capable foundation model is available as open-source,
malicious actors can simply turn to this alternative.

Terms of Service/Sale (ToS) and Licenses. Closely tied to access
controls are licensing agreements to prevent harmful dual-uses.
These agreements place restrictions on who can use the model, for
what purpose, and in what format. For example, OpenRAIL [18] and
similar licenses impose several usage limitations to prevent users
from using the model for defamation, spreading disinformation,
providing medical advice, or for use by law enforcement. Such terms
of service (ToS)-based approaches are also used in other settings,
such as by Boston Dynamics, which prohibits modifying its robots
for lethal capability and reserves the right to prevent any misuse.3
However, relying solely on licensing agreements assumes that

malicious actors would respect them and that legal action against
violators is possible. Unfortunately, this approach faces several chal-
lenges. Firstly, harmful actors may be located in countries that do
not enforce licensing requirements. Further, it may be challenging
to identify malicious actors and issue a cease-and-desist request.
Finally, model creators may not have the resources to monitor and
enforce compliance with licensing agreements.
Overall, licensing agreements face the same challenges as other

structural restrictions. They require the resources, and international
reach, for enforcement.

2https://twitter.com/ClementDelangue/status/1632948540245671936
3https://twitter.com/BostondDynamics2021/status/1362921918781943816

2.2 Technical Strategies
Unlike structural strategies, we classify technical strategies as those
that modify foundation models directly to make it more difficult to
use them for harmful purposes. Existing technical strategies focus on
tuning models to prevent them from outputting harmful content at
inference time or adding content filters to block potentially harmful
outputs.

Safety Filters. Some models come with safety filters that scan
model outputs for harmful content and then redact the output. Stable
Diffusion models use this approach to replace offensive content
generated by the model with a blank image by default [48]. However,
for open-source models safety filters can simply be removed by
deleting a few lines of code. This has led users on Reddit to post
tutorials like “How to remove [Stable Diffusion’s] safety filter in
5 seconds.”4 Other researchers have noted that the filter itself is
easily bypassed even without access to directly modify the code [45].
While safety filters can be effective and integral parts of a safe model
release, they are more effective when coupled with other structural
mechanisms like restricted or API-only model access.

Safety Tuning and Alignment. Alternative approaches such as
reinforcement learning from human feedback tune the model it-
self to be less harmful [3]. Sometimes these approaches fall into
a larger class of methods under the moniker AI alignment. Since
these methods directly train the model to be more difficult to use
for harmful purposes at inference time, they are an essential part of
a safe release strategy—either for open-source models or for models
coupled with a structural release restriction. Though they make the
model parameters more difficult to use for harmful tasks, they can
be bypassed in two ways.
First, prompt engineering can be used to put models in a state

that nonetheless allows them to be used for harmful purposes. For
example, hackers now sell prompts andmethods to bypass alignment
processes and filters for OpenAI’s series of models [23]. This allows
would-be malicious actors to generate phishing emails and malware
with the model, despite its use restrictions.

Second, open-source models can be fine-tuned to remove these
restrictions. In one such instance, the open-source GPT-J model was
fine-tuned on 4chan data (mainly consisting of toxic content and
hate speech) and deployed to post to the forum [57].
In the remainder of this work, we describe and evaluate an ap-

proach to mitigating this second method of bypassing existing tech-
nical model protections.

4https://www.reddit.com/r/StableDiffusion/comments/wv2nw0/tutorial_how_to_
remove_the_safety_filter_in_5/
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2.3 The Need For New Technical Mitigation Strategies
The strategies discussed above are individually imperfect; however,
each contributes to increasing the costs of successfully co-opting
foundation models for harmful dual uses. As access to increasingly
capable models becomes commonplace—either through leaks or
open-source releases—it is crucial to ensure that the underlying
model parameters themselves are optimized for safety as a last line
of defense. Structural barriers, such as access restrictions and terms
of service, can become ineffective as model weights are distributed
through services like BitTorrent.
As regulators recognize the potential dangers associated with

increasingly capable systems, it is becoming evident that they will
take action to address the risks. One E.U. AI Act proposal would
see liability placed on open-source models, incentivizing restricted
access approaches. Others argue that such a move would stifle in-
novation and make it more difficult to develop safer overall mod-
els [6, 17, 25]. As Black et al. [6] write, “open access to [FMs] is
critical to advancing research in a wide range of areas—particularly
in AI safety, mechanistic interpretability, and the study of how [FM]
capabilities scale.” Yet while more widely available FMs certainly
enable greater accessibility, auditability, and understanding of these
powerful models, making FMs widely available for downstream
adaptation without restriction comes at some cost to safety.

Despite the benefits of open-source releases, if open-source mod-
els are regularly adapted for harmful purposes, the pendulum of
regulation could swing toward the more restrictive regime as regu-
lators look to available structural tools like access restrictions. To
supplement the policy options available to regulators, and to in-
crease the safety of foundation models by default, we encourage
more research to expand the toolbox of technical approaches to
ensure that model parameters are as safe as possible, even when
they are leaked or openly available. We introduce a new class of
methods for this toolbox: task blocking for self-destructing models.
These methods are not perfect, but add another layer of protection
when combined with other approaches.

3 TASK BLOCKING & SELF-DESTRUCTING MODELS
The goal of task blocking is to create models that increase the costs
of fine-tuning on harmful downstream tasks such that an adversary
would rather start from scratch than use the pretrained model, while
remaining useful for desired tasks (see Fig. 1). The resulting models
are “self-destructing models” which impede adaptation on harmful
dual-uses by increasing the costs of the harmful use. In this section,
we more precisely define our problem setting and describe an initial
algorithm for it.

3.1 The Task Blocking Problem
We assume that an adversary aims to adapt a pretrained model
𝜋𝜃 (where 𝜃 are model parameters of model 𝜋 ) to a harmful task,
searching for the best adaptation procedure 𝑓 among a set of adapta-
tion procedures F in order to find the one that maximizes harmful
task performance. Adaptation procedures in F may include simple
fine-tuning, a hyper-parameter search over fine-tuning procedures,
as well as other more advanced adaptation mechanisms that we

Fig. 1. An ideal self-destructing model would boost performance and reduce
adaptation costs relative to training from scratch only for desired tasks,
while impeding learning of harmful tasks.

leave to future work. The goal of task blocking is to produce a self-
destructing model with parameters 𝜃 , which performs similarly to
a standard pre-trained model on a set of desired tasks while being
more costly to successfully adapt to harmful tasks.5

We define two regimes to increase costs: (1) increase data costs by
decreasing sample efficiency; (2) increase compute costs by slowing
convergence of the training process.

Data Costs. In the first regime, we assume that the adversary has
little data to adapt an FM to their harmful task and that the cost of
gathering more data is high. A hallmark trait of traditional FMs is ef-
fective few-shot adaptation, learning rapidly from small, fixed-sized
datasets. A self-destructing FM, on the other hand, should provide
few-shot performance comparable to a randomly initialized model.
We define the few-shot performance improvement of an FM with
parameters 𝜃 as the performance gain over a randomly initialized
model, both with a fixed adaptation procedure search budget. This
can be represented as the following formula:

E𝑛
𝑑𝑎𝑡𝑎
(𝜃 ) = max

𝑓 ∈F
M (𝑓 (𝜃, 𝐷𝑛)) −max

𝑓 ∈F
M

(
𝑓 (𝜃𝑟 , 𝐷𝑛)

)
, (1)

whereM is the performance metric (where higher is better), 𝑛 is
the number of data points available, 𝐷𝑛 is an adaptation dataset of 𝑛
examples from the task of interest, and 𝜃𝑟 is a randomly-initialized
model. 𝑓 ∈ F is an adaptation procedure drawn from a fixed distri-
bution. The size ofF loosely corresponds to the adversary’s resource
budget for adaptation. Note that the max in Equation 1 encapsu-
lates hyperparameter optimization over the adaptation distribution.
E𝑑𝑎𝑡𝑎 = 1

𝑁

∑𝑁
𝑛 E𝑛𝑑𝑎𝑡𝑎 is the average sample-wise regret between

the FM parameters 𝜃 and a random re-initialization 𝜃𝑟 after each
follows the same adaptation procedure 𝑓 (·) on a fixed-sized dataset
𝐷𝑛 . An ideal self-destructing model has E𝑑𝑎𝑡𝑎 ≤ 0, meaning the
model is no more data efficient than a randomly-initialized model
for the (presumably harmful) task of interest.

Compute Costs. If data is cheap or plentiful, it may be difficult to
prevent an adversary from learning the task since perhaps even a
random model can learn the task with the amount of data available.
In this data regime (large amount of cheap data), the benefit of an

5While the goal of a self-destructing model is to reduce performance on harmful
tasks after fine-tuning, it should enable high quality predictions or fine-tunability for
desired tasks. Our experiments explore the prediction goal, and we leave exploration
of preserving fine-tunability for future work.
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FM is improved compute efficiency, rather than increased accuracy.
Here, we would define the FM’s compute cost improvement @𝑝 as
the amount of compute saved by using the FM over a randomly
initialized model to achieve performance 𝑝 , where 𝑝 may measure
accuracy, loss, or another metric and compute could be measured in
FLOPs, train steps, hyperparameters searched, wall clock time, etc.
While in the previous setting, we fix the dataset size and blocking
aims to reduce performance, in this setting, we fix the performance
and blocking aims to increase compute costs. The goal of task block-
ing in this case is to prevent any compute cost improvement over
a random initialization when adapting the self-destructing model
to a harmful task, while retaining compute cost improvement for
desired tasks. Formally, compute cost improvement @𝑝 is given as

E𝑝𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝜃 ) = C(F , 𝜃
𝑟 , 𝑝) − C(F , 𝜃, 𝑝) (2)

where C measures the compute cost of applying adaptation proce-
dures from family F to random parameters 𝜃𝑟 or FM parameters 𝜃
until a model with performance level 𝑝 is found.
However, for the purposes of this work, we focus on data costs,

studying methods for reducing few-shot performance improvement
for harmful tasks. We leave analysis of compute cost improvement
reduction to future work.

Defining Harmful Dual Uses. A large body of work has pointed
to inherently harmful uses that FM creators may wish to block: from
creating neurotoxins [55] to race detection [38]. In our work we
assume that a harmful dual use is known and defined. That is, the
self-destruct mechanism will have data to approximate the dual
use and actively encode a mechanism to block it. This requirement
inherently requires a normative definition of harmful dual uses. As
in other threat modeling exercises and mechanisms for removing
harmful content from models, model creators will have to identify
the set of tasks to be blocked. Creating self-destructing models
may impede their use for harmful purposes counter to the model
creator’s values, but it is up to the model creator to determine
those values. While defining harmful tasks a priori may be difficult,
this work reflects a “red teaming” approach to harm prevention,
common in security contexts. That is, model creators play the role
of an adversary to identify and prevent harms. This can function
as a complement to other access control methods, providing more
confidence that certain known harmful tasks are blocked.
Relationship to Other Technical Safety Mechanisms. Rein-
forcement learning from human feedback (RLHF), and other simi-
lar approaches, have been used to mitigate the harms that model
can have at inference time [3]. While RLHF aims at ensuring that
agents are as harmless as possible at inference time, the goal of
self-destructing models and task blocking is to make it difficult to
undo these safety mechanisms and co-opt the model even with ac-
cess to model parameters and adaptation. These are complementary
approaches and can be used concurrently to make the model param-
eters as safe as possible overall. Essentially, the aim is to maintain
the model’s harmlessness for as long as possible, even when an
adversary has direct access.

3.2 Meta-Learned Adversarial Censoring

1: Input: pretrained model 𝑚 = 𝑤𝑑 ◦ 𝜋𝜃 , desired task dataset
𝐷𝑑 , harmful task dataset 𝐷ℎ , adaptation methods F̃ , adaptation
steps 𝐾 , learning rates 𝜂, 𝜂ℎ , 𝜂𝑑

2: Initialize: Adversarial harmful task head𝑤ℎ and learning rate
𝛼ℎ , with 𝜙 = {𝑤ℎ, 𝛼ℎ}; initial blocked params 𝜃 ← 𝜃

3: for 𝑛 steps do
4: Sample adaptation procedure 𝑓𝑘 ∼ F̃
5: Sample data batches 𝑏𝑑 ∼ 𝐷𝑑 , {𝑏𝑘ℎ } ∼ 𝐷ℎ , 𝑏ℎ ∼ 𝐷ℎ
6: {𝜃𝑘 }, {𝑤𝑘ℎ } ← 𝑓𝑘 (𝑤ℎ ◦ 𝜋𝜃 , {𝑏

𝑘
ℎ
}, 𝛼ℎ) // do inner loop

7: ℓℎ
𝑘
= Lℎ (𝑤𝑘ℎ ◦ 𝜋𝜃𝑘 , 𝑏ℎ), ∀𝑘 // outer loop harmful NLLs

8: ℓ𝑑 = L𝑑 (𝑤𝑑 ◦ 𝜋𝜃 , 𝑏𝑑 ) // desired NLLs
9: 𝜃 ← 𝜃 − 𝜂∇𝜃

(
ℓ𝑑 − 1

𝐾

∑𝐾
𝑘
ℓℎ
𝑘

)
// update blocked model

10: 𝜙 ← 𝜙 − 𝜂ℎ 1
𝐾

∑𝐾
𝑘=1 ∇𝜙 ℓ

ℎ
𝑘

// update adversarial params
11: 𝑤𝑑 ← 𝑤𝑑 − 𝜂𝑑∇𝑤𝑑

ℓ𝑑 // update desired task head
12: end for

algorithm 1. MLAC Training Procedure

To prevent successful adaptation of pretrained models to harmful
tasks, we describe Meta-Learned Adversarial Censoring (MLAC), a
meta-training procedure that aims to eliminate any useful informa-
tion about the harmful task in the model’s parameters even after
fine-tuning on that task. Given a desired task dataset𝐷𝑑 and harmful
task dataset 𝐷ℎ , MLAC learns a feature extractor 𝜋

𝜃
that is effective

for the desired task but cannot be effectively used or efficiently
fine-tuned to perform the harmful task.

In the inner loop of each meta-training step, the feature extractor
and an adversarially learned prediction head𝑤ℎ are adapted to the
harmful task with several steps of gradient-based adaptation with
an adversarially learned learning rate 𝛼ℎ . The adaptation procedure
𝑓 used at each meta-training step is sampled from F̃ , a proxy for the
true adversary’s adaptation class F . In this case, we narrow F̃ to be
different fine-tuning approaches with close-to-optimal hyperparam-
eters (e.g., Adam for 𝐾 steps and learning rate 𝛼ℎ). In the outer loop,
the adversarial parameters 𝜙 = {𝑤ℎ, 𝛼ℎ} are trained to minimize the
harmful task negative log likelihoods of the adapted models, while
the blocked parameter initialization 𝜃 are trained to maximize the
harmful task negative log likelihoods of the adapted models. We
also must counteract the self-destruct mechanism with something
that will prevent unlearning of the entire network. In this work, we
simply optimize for a given desirable task as the counter-balance by
minimizing ℓ𝑑 , which updates both the desired task head 𝑤𝑑 and
the representation parameters 𝜃 . See Algorithm 1 for the complete
training procedure. Note that in practice, we use Adam rather than
SGD in the outer loop to optimize 𝜃 , adversarial parameters 𝜙 , and
desired task output head𝑤𝑑 . We use higher [24] for implementing
the bi-level meta-learning process.

Calibration. We also add another mechanism to strengthen the
inner-loop adversary. In binary classification tasks, maximizing
the loss of the harmful task may lead to a degenerate optimum
where labels are flipped, which leaks information about the harmful
task. To prevent this outcome, we also optimally calibrate the logits
via a simple linear projection (𝑤 ) solved via differentiable convex
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Fig. 2. High-level visualization of the meta-learning process.

Fig. 3. High-level optimization perspective of the MLAC procedure. A foun-
dation model placed in point 1 would easily be tuned via gradient descent
for both the harmful task loss and the desired task loss global optimum.
On the other hand a foundation model in point 2 would easily reach the
desired task optimum, but is more likely to be stuck in a local optimum for
the harmful task.

optimization [1, 15]. Thus at step 𝑘 of the inner loop we solve the
maximum likelihood problem:

𝑤𝑘𝑐 = argmax
𝑊

|𝑏ℎ |∑︁
𝑖

[
logsoftmax

[(
𝑊 ◦𝑚𝑘

)
(𝑥𝑖 )

]⊤
𝑦𝑖

]
s.t. − 1 ≤𝑊 ≤ 1, (3)

where𝑚𝑘 = 𝑤𝑘
ℎ
◦𝜋𝑘

𝜃
is the blocked model after 𝑘 steps of adaptation

using the adversarial harmful task head and learning rate. Thus this
projection updates line 7 of Alg. 1 to ℓℎ

𝑘
= Lℎ (𝑤𝑘𝑐 ◦𝑤𝑘ℎ ◦𝜋𝜃𝑘 , 𝑏ℎ). We

also refer to calibration as head adjustment, as it essentially refines
the linear function computed by the final output head.
High-level Intuition. Figures 2 provides a visualization of this
method. At each step, the self-destructing model samples from pos-
sible adaptation methods that could be used to adapt the model
to a harmful dual use. This multi-step loss is then inverted in a
meta-learning step to prevent the model from being easily adapted
in this sampled fashion.

From an optimization perspective, the goal is to identify a param-
eter space where adaptation to desired tasks is relatively simple via
standard adaptation techniques, but the same part of the parameter
space might be a low-utility local optimum or saddle-point that is

more difficult to escape for the harmful task. This can be seen as
a simplified visualization in Figure 3. Of course, adaptation meth-
ods can be created to reset parts of the network such the global
harmful optimum can be recovered (in the extreme resetting most
of the network to escape the local optimum). However, this will de-
crease the utility of the expensive pre-training and increase the costs
to adversaries, adding another tool in the toolkit against harmful
dual-uses.

4 EXPERIMENTS
The goal of our experiments is to assess the ability of MLAC and
several simple baselines to reduce the few-shot performance im-
provement of a pre-trained FM.6

4.1 Dataset.
In a demonstrative experiment, we utilize an existing dual-use
dataset in the de-biasing literature, “Bias in Bios” [10]. The dataset
consists of professional biographies. Each biography has a label
that is the gender identity of the biography’s subject as well as the
profession being discussed. We split the data into a train, validation,
and evaluation set. We consider the “desirable task” for which we
want to maintain good performance as the profession detection task.
We wish to block the gender identification task. On the original
dataset, we find that a random model can learn gender classification
to over 90% accuracy with only 10 examples, leaving only marginal
ability for an FM to improve in data efficiency. Thus, to make the FM
more beneficial, we replace all pronouns with “they/their,” similar
to the censored dataset in the original data. While this task pair
has traditionally been used for de-biasing, and while we mainly
use this as an initial demonstration, there may be valid reasons for
preventing an adversary from detecting demographic information
from text. In countries where anti-minority action is common, auto-
mated systems that identify demographics may cause serious harm.
For example, a country may wish to identify people of a certain
religion, sexual orientation, or other identity group in automated
and ultimately harmful ways. Or the state may wish to identify
another feature that is highly correlated with identity which will
lead to the same harms.7

4.2 Protocol.
For all experiments, we run 50k steps of MLAC meta-training on
the training set. At test time, we take the resulting self-destructing
model and run it through a rigorous hyperparameter search to
maximize fine-tuning performance on the harmful task. We allow
hyperparameter searches with 50 fine-tuning trials, using the tree-
structured Parzen Estimator [4] in the hyperopt software pack-
age [5]. We search over learning rate, batch size, maximum number
of steps, and freezing of intermediate representation layers. For this
process, we subsample the validation set to simulate an adversary
with a dataset of size 𝑁 . This subsampled validation set is used as
the training set for the adversary. We then use the entire evaluation
set to evaluate the adversary’s performance on held-out data and for
hyperparameter tuning. We make the conservative assumption that

6Code is available at https://github.com/Breakend/SelfDestructingModels.
7Technology Experts Letter to DHS Opposing the Extreme Vetting Initiative, 2017.
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Fig. 4. Harmful task (gender identification) performance after fine-tuning.
MLAC shows fine-tuning performance similar to a randomly-initialized
model, while adversarial censoring (AC) [16] does not prevent effective fine-
tuning. Shading indicates 95% confidence intervals across 6 random seeds.
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Fig. 5. After fine-tuning the MLAC-blocked model on the desired task, few-
shot performance exceeds both BERT and a randomly-initialized model.
Note the MLAC objective includes training on the desired task, so this
comparison clearly advantages MLAC; nonetheless, it provides evidence
that there exists a blocked initialization that can be effectively fine-tuned
on the desired task. Discovering such an initialization without using desired
task data in pre-training is an important direction for future work.

the adversary can perform hyperparameter tuning using the popula-
tion, even if the amount of data for fine-tuning itself is limited. This
choice weighs heavily in the adversary’s favor, disadvantaging the
self-destruct method. We repeat the hyperparameter search process
6 times with different random seeds and data subsets. This yields
confidence intervals over different adversaries training on different
subsets of the data.

4.3 Comparisons.
We compare MLAC to the adversarial censoring (AC in Fig. 4)
method from Edwards and Storkey [16] as well as a model sim-
ply fine-tuned on the desired task (BERT (fine-tuned) in Fig. 4). For
AC, an adversarial layer is learned on top of representation layers to
predict the undesirable task. The gradient is then flipped to destroy

undesirable information in the representation layer. Notably, MLAC
with 𝐾 = 0 and with no calibration is equivalent to adversarial
censoring. We use a BERT-tiny model as our FM to save on compute
costs [14, 54] and use a linear classifier head for the tasks. Note that,
as mentioned in Sec. 3.2, we focus on making sure that the profes-
sions task is unimpeded, so we directly train on cross-entropy loss
as L𝑔 during MLAC pre-training. For all models, the final achieved
performance is retained for the desired professions task (see below
and Figure 5).

4.4 Results.
Fig. 4 shows that MLAC returns nearly identical-to-random harm-
ful task performance at all data regimes. Conversely, adversarial
censoring (the equivalent of MLAC without calibration and 𝐾 = 0)
does not appear to have any effect on post-fine-tuning harmful
task performance. Fig. 6 shows the vital role played by the depth of
the inner training loop of MLAC, suggesting that a meta-learning
process is genuinely necessary to impede harmful task performance.
To ensure that desired task performance is retained, we evaluate
the blocked model on the desired task of profession classification,
comparing with fine-tuning a pretrained BERT-tiny model and a
random model. Fig. 5 shows the result; MLAC is clearly able to
solve the task effectively, surpassing the few-shot performance of
BERT-tiny.8 Finally, we find that head re-calibration may mildly
improve blocking on average when pooled across all inner-loop step
configurations (Fig. 7).

5 ETHICAL CONSIDERATIONS AND LIMITATIONS
Before we conclude, we point out several other considerations and
limitations.

First, while the goal of our approach is to make models safer over-
all, we recognize that value judgements will be made in deciding
which tasks to block. Sometimes these judgement decisions can
themselves encode biases and it requires an approach that takes
into account a range of perspectives. Nonetheless, we argue that
considering potential harmful dual-uses is an essential part of any
modern model release process. Current standard licenses for foun-
dation models already contain a list of restricted tasks [18, 53], but
self-destructing models encode this directly into their optimization
objective as well.
Second, it is necessary to collect data for harmful tasks to effec-

tively block them. While this draws a direct parallel to security
research, red-teaming, and white-hat hacking, there may be risks
in aggregating this data. And there may be impacts on the well-
being of potential annotators and security research members [35].
Sufficient precautions should be taken to mitigate these harms.

Third, theremay be a risk of over-confidence in the self-destructing
mechanism. While this paradigm adds a new tool to the safety
toolkit, it does not completely prevent manipulation for every harm-
ful task. And just like any other safety tool there will likely be

8Recall again that we use the desired task loss to counter-balance the task blocking
mechanism, so this is expected. We do however use separate held-out subsets of data
for final desired-task tuning and evaluation. As mentioned previously, our goal for the
purposes of this initial exploration is to determinewhether desired task performance can
be retained while blocking a harmful task. Future work should examine generalization
for retaining desired task adaptation performance across many desired tasks.
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Fig. 6. Evaluation of various inner loop depths during MLAC training. Just
16 steps enables near-random performance, even though the adversary
performs up to 1000 steps during fine-tuning.
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Fig. 7. Ablating optimal adversary prediction calibration (or head adjust-
ment) during MLAC training. Using optimally calibrated adversary predic-
tions (modifying line 7 of Alg. 1) modestly improves blocking. Aggregated
over 0, 4, and 16 steps.

a back-and-forth where adversaries learn to overcome some tech-
niques. As such, self-destructing models can be combined with other
safety mechanisms—structural or technical—to increase the costs of
harmful dual-uses.
Fourth, our experiments demonstrate the functionality of self-

destructing models in a constrained setting, but further work is
needed to scale these approaches to more tasks, larger models, and
more complicated settings. We believe this is an exciting new re-
search direction, but requires more work to deploy at scale.

6 RELATED WORK
A number of researchers have sought to address dual use risks by
restricting points of control [7, 8, 21, 49, 52, 65], despite there also
being substantial benefits to open access [6, 62]. We aim to provide
an alternative that allows for open access while still hindering bad
actors.

Somework on AI safety has sought mechanisms to prevent agents
from learning degenerate behaviors. Orseau and Armstrong [39],

for example, seek to prevent a particular scenario where an agent
learns to disable its off-switch so that it continues to collect reward.
We on the other hand focus on preventing a different, broader, set
of harmful behaviors: adaptation of pretrained models to harmful
tasks.
Closely related to our work are methods for de-biasing, editing,

or removing harmful content from models. Like domain invari-
ance approaches [22, 31, 60, 63], Edwards and Storkey [16] use an
adversarial approach to remove information from representations.
Ravfogel et al. [46] and Ravfogel et al. [47] take a similar approach
and find a projection on the final output layer of a pretrained model
that removes gender-based biases from the model (and prevent re-
covery of those biases after that projection layer). Pryzant et al. [43]
similarly use adversarial methods to remove confounds from repre-
sentations. Others have created model editing techniques to remove
outdated or harmful content from pretrained models [11, 36, 37, 50].
While these other methods generally optimize for the information
to be removed from the original model, we optimize for poor per-
formance even after adaptation of the original model to a harmful
task. This can be accomplished via a meta-learning approach.
In the context of meta-learning, MAML [19] and related algo-

rithms [20, 30, 33, 42, 64] have shown that the desired post-fine
tuning behavior of a neural network can be effectively encoded in
its pre-fine tuning network initialization. While existing works have
leveraged this ability in order to enable more rapid learning of new
tasks, our work encodes a blocking mechanism into a network’s
initialization that prevents effective adaptation on harmful tasks.
Finally, some scholars have tuned models to be safer by using

reinforcement learning from human feedback and other approaches
for incorporating human preferences, including Bai et al. [3], Korbak
et al. [29], Ouyang et al. [40], and others.

7 CONCLUSION
This work is only a first step in raising the cost for harmful dual uses
of pretrained models through task blocking. Future work might ex-
pand this study in at least four directions: scaling the self-destructing
model framework to larger FMs; studying generalization of the
learned blocking behavior to new (but related) datasets other than
the one used during MLAC meta-training; training/evaluating with
stronger adversaries that incorporate adaptation methods such as
prefix tuning [32], adapter layers [26], or others; and evaluating the
preservation of desired task fine-tunability for out-of-distribution
tasks. Future work might also introduce concealed architectural
changes that hide self-destruct triggers in the network but are more
robust to adversarial mechanisms. We hope self-destructing mod-
els can become one tool enabling model developers to share their
artifacts while minimizing dual use risks.

ACKNOWLEDGMENTS
We thank Rishi Bommasani, Siddharth Karamcheti, and Jieru Hu
for helpful discussion and feedback. PH is supported by an Open
Philanthropy AI Fellowship. EM is supported by a Knight-Hennessy
Graduate Fellowship. CF and CM are CIFAR Fellows.

8



Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of Foundation Models AIES ’23, August 8–10, 2023, Montréal, QC, Canada

REFERENCES
[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. 2019. Differen-

tiable Convex Optimization Layers. In Advances in Neural Information Processing
Systems.

[2] Artashes Arutiunian, Dev Vidhani, Goutham Venkatesh, Mayank Bhaskar, Rito-
brata Ghosh, and Sujit Pal. 2021. Fine tuning CLIP with Remote Sensing (Satellite)
images and captions. HuggingFace Blog (2021). https://huggingface.co/blog/fine-
tune-clip-rsicd

[3] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova
DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. 2022.
Training a helpful and harmless assistant with reinforcement learning from human
feedback. arXiv preprint arXiv:2204.05862 (2022).

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems 24 (2011).

[5] James Bergstra, Dan Yamins, David D Cox, et al. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms. In
Proceedings of the 12th Python in science conference, Vol. 13. Citeseer, 20.

[6] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. 2022.
GPT-NeoX-20B: An Open-Source Autoregressive Language Model. arXiv preprint
arXiv:2204.06745 (2022).

[7] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[8] Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben
Garfinkel, Allan Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, et al. 2018.
The malicious use of artificial intelligence: Forecasting, prevention, and mitigation.
arXiv preprint arXiv:1802.07228 (2018).

[9] Miles Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger,
Gillian Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, et al.
2020. Toward trustworthy AI development: mechanisms for supporting verifiable
claims. arXiv preprint arXiv:2004.07213 (2020).

[10] Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Chris-
tian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and
Adam Tauman Kalai. 2019. Bias in bios: A case study of semantic representa-
tion bias in a high-stakes setting. In proceedings of the Conference on Fairness,
Accountability, and Transparency. 120–128.

[11] Nicola De Cao, W. Aziz, and Ivan Titov. 2021. Editing Factual Knowledge in
Language Models. ArXiv abs/2104.08164 (2021).

[12] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022.
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. arXiv preprint
arXiv:2208.07339 (2022).

[13] Tim Dettmers and Luke Zettlemoyer. 2022. The case for 4-bit precision: k-bit
Inference Scaling Laws. arXiv preprint arXiv:2212.09720 (2022).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[15] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. The Journal of Machine Learning Research 17, 1
(2016), 2909–2913.

[16] Harrison Edwards and Amos Storkey. 2015. Censoring representations with an
adversary. arXiv preprint arXiv:1511.05897 (2015).

[17] Alex Engler. 2022. The EU’s attempt to regulate open-source AI is counterproduc-
tive. Brookings TechTank (2022).

[18] Carlos Muñoz Ferrandis. 2022. OpenRAIL: Towards open and responsible AI
licensing frameworks. https://huggingface.co/blog/open_rail.

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1126–1135.
https://proceedings.mlr.press/v70/finn17a.html

[20] Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Francesco Visin, Hujun
Yin, and Raia Hadsell. 2020. Meta-Learning with Warped Gradient Descent. In
International Conference on Learning Representations. https://openreview.net/
forum?id=rkeiQlBFPB

[21] Carrick Flynn. 2020. Recommendations on export controls for artificial intelli-
gence. Centre for Security and Emerging Technology (2020).

[22] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning. PMLR, 1180–
1189.

[23] DanGoodin. 2023. Hackers are selling a service that bypasses ChatGPT restrictions
on malware. arstechnica (2023).

[24] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem
Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chin-
tala. 2019. Generalized Inner Loop Meta-Learning. arXiv preprint arXiv:1910.01727
(2019).

[25] Philipp Hacker, Andreas Engel, and Marco Mauer. 2023. Regulating ChatGPT and
other Large Generative AI Models. arXiv preprint arXiv:2302.02337 (2023).

[26] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-Efficient Transfer Learning for NLP. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 2790–2799.
https://proceedings.mlr.press/v97/houlsby19a.html

[27] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language Models.
arXiv:2106.09685 [cs.CL]

[28] Tatum Hunter. 2023. AI porn is easy to make now. For women, that’s a nightmare.
The Washington Post (2023).

[29] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buck-
ley, Jason Phang, Samuel R Bowman, and Ethan Perez. 2023. Pretraining Language
Models with Human Preferences. arXiv preprint arXiv:2302.08582 (2023).

[30] Yoonho Lee and Seungjin Choi. 2018. Gradient-based meta-learning with learned
layerwise metric and subspace. In International Conference on Machine Learning.
2933–2942.

[31] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. 2018. Domain general-
ization with adversarial feature learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5400–5409.

[32] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. arXiv:2101.00190 [cs.CL]

[33] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-SGD: Learn-
ing to Learn Quickly for Few Shot Learning. CoRR abs/1707.09835 (2017).
arXiv:1707.09835 http://arxiv.org/abs/1707.09835

[34] Percy Liang, Rishi Bommasani, Kathleen A. Creel, and Rob Reich. 2022. The Time
Is Now to Develop Community Norms for the Release of Foundation Models.
https://crfm.stanford.edu/2022/05/17/community-norms.html

[35] Mantas Mazeika, Eric Tang, Andy Zou, Steven Basart, Jun Shern Chan, Dawn
Song, David Forsyth, Jacob Steinhardt, and Dan Hendrycks. 2022. How Would
The Viewer Feel? Estimating Wellbeing From Video Scenarios. arXiv preprint
arXiv:2210.10039 (2022).

[36] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D
Manning. 2022. Fast Model Editing at Scale. In International Conference on Learning
Representations. https://openreview.net/forum?id=0DcZxeWfOPt

[37] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher DManning, and Chelsea
Finn. 2022. Memory-Based Model Editing at Scale. arXiv preprint arXiv:2206.06520
(2022).

[38] Parmy Olson. 2022. The Quiet Growth of Race-Detection Software Sparks Con-
cerns over Bias. In Ethics of Data and Analytics. Auerbach Publications, 201–205.

[39] Laurent Orseau and MS Armstrong. 2016. Safely interruptible agents. (2016).
[40] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155 (2022).

[41] Aviv Ovadya and Jess Whittlestone. 2019. Reducing malicious use of synthetic me-
dia research: Considerations and potential release practices for machine learning.
arXiv preprint arXiv:1907.11274 (2019).

[42] Eunbyung Park and Junier B Oliva. 2019. Meta-Curvature. In Advances in Neu-
ral Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

[43] Reid Pryzant, Kelly Shen, Dan Jurafsky, and Stefan Wagner. 2018. Deconfounded
lexicon induction for interpretable social science. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). 1615–1625.

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

[45] Javier Rando, Daniel Paleka, David Lindner, Lennard Heim, and Florian
Tramèr. 2022. Red-Teaming the Stable Diffusion Safety Filter. arXiv preprint
arXiv:2210.04610 (2022).

[46] Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan Cotterell. 2022. Linear
Adversarial Concept Erasure. arXiv preprint arXiv:2201.12091 (2022).

[47] Shauli Ravfogel, Francisco Vargas, Yoav Goldberg, and Ryan Cotterell. 2022. Ad-
versarial Concept Erasure in Kernel Space. arXiv preprint arXiv:2201.12191 (2022).

[48] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2021. High-Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 [cs.CV]

9

https://huggingface.co/blog/fine-tune-clip-rsicd
https://huggingface.co/blog/fine-tune-clip-rsicd
https://huggingface.co/blog/open_rail
https://proceedings.mlr.press/v70/finn17a.html
https://openreview.net/forum?id=rkeiQlBFPB
https://openreview.net/forum?id=rkeiQlBFPB
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1707.09835
https://crfm.stanford.edu/2022/05/17/community-norms.html
https://openreview.net/forum?id=0DcZxeWfOPt
https://arxiv.org/abs/2112.10752


AIES ’23, August 8–10, 2023, Montréal, QC, Canada Henderson and Mitchell, et al.

[49] Toby Shevlane. 2022. Structured access to AI capabilities: an emerging paradigm
for safe AI deployment. arXiv preprint arXiv:2201.05159 (2022).

[50] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, Sergei Popov, and Artem
Babenko. 2020. Editable Neural Networks. In International Conference on Learning
Representations. https://openreview.net/forum?id=HJedXaEtvS

[51] Irene Solaiman. 2023. The Gradient of Generative AI Release: Methods and
Considerations. arXiv preprint arXiv:2302.04844 (2023).

[52] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss,
Jeff Wu, Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al.
2019. Release strategies and the social impacts of language models. arXiv preprint
arXiv:1908.09203 (2019).

[53] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv preprint arXiv:2302.13971 (2023).

[54] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2020. Well-
Read Students Learn Better: On the Importance of Pre-training Compact Models.
https://openreview.net/forum?id=BJg7x1HFvB

[55] Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, and Sean Ekins. 2022. Dual use
of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4, 3
(2022), 189–191.

[56] U.S. Department of Commerce. 2022. Implementation of Additional Export Con-
trols: Certain Advanced Computing and Semiconductor Manufacturing Items; Su-
percomputer and Semiconductor End Use; Entity List Modification. Federal Regis-
ter 87 (2022), 62186. https://www.federalregister.gov/documents/2022/10/13/2022-
21658/implementation-of-additional-export-controls-certain-advanced-

computing-and-semiconductor
[57] James Vincent. 2022. YouTuber trains AI bot on 4chan’s pile o’bile with entirely

predictable results. The Verge (2022).
[58] James Vincent. 2023. Meta’s powerful AI language model has leaked online —

what happens now? The Verge (2023).
[59] Jess Whittlestone and Aviv Ovadya. 2019. The tension between openness and

prudence in AI research. arXiv preprint arXiv:1910.01170 (2019).
[60] Huaxiu Yao, YuWang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea

Finn. 2022. Improving out-of-distribution robustness via selective augmentation.
arXiv preprint arXiv:2201.00299 (2022).

[61] Susan Zhang, Mona Diab, and Luke Zettlemoyer. 2022. Democratizing access to
large-scale language models with OPT-175B. Meta AI (2022).

[62] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. OPT:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

[63] Fan Zhou, Zhuqing Jiang, Changjian Shui, Boyu Wang, and Brahim Chaib-draa.
2020. Domain generalization with optimal transport and metric learning. arXiv
preprint arXiv:2007.10573 (2020).

[64] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon
Whiteson. 2019. Fast Context Adaptation via Meta-Learning. Thirty-sixth Interna-
tional Conference on Machine Learning (ICML 2019) (2019).

[65] Remco Zwetsloot, James Dunham, Zachary Arnold, and Tina Huang. 2019. Keep-
ing Top AI Talent in the United States. Center for Security and Emerging Technology
(December 2019).

10

https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=BJg7x1HFvB
https://www.federalregister.gov/documents/2022/10/13/2022-21658/implementation-of-additional-export-controls-certain-advanced-computing-and-semiconductor
https://www.federalregister.gov/documents/2022/10/13/2022-21658/implementation-of-additional-export-controls-certain-advanced-computing-and-semiconductor
https://www.federalregister.gov/documents/2022/10/13/2022-21658/implementation-of-additional-export-controls-certain-advanced-computing-and-semiconductor

	Abstract
	1 Introduction
	2 Reviewing the Risks and Mitigation Strategies for Dual Uses
	2.1 Structural Methods
	2.2 Technical Strategies
	2.3 The Need For New Technical Mitigation Strategies

	3 Task Blocking & Self-Destructing Models
	3.1 The Task Blocking Problem
	3.2 Meta-Learned Adversarial Censoring

	4 Experiments
	4.1 Dataset.
	4.2 Protocol.
	4.3 Comparisons.
	4.4 Results.

	5 Ethical Considerations and Limitations
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

