
Programming B. Wegbreit
Languages Editor

Logical Analysis of
Programs
Shmuel Katz and Zohar Manna
The W'eizmann Institute of Science

Most present systems for verification of computer
programs are incomplete in that intermediate inductive
assertions must be provided manually by the user,
termination is not proven, and incorrect programs are
not treated. As a unified solution to these problems, this
paper suggests conducting a logical analysis of pro-
grams by using invariants which express what is actually
occurring in the program.

The first part of the paper is devoted to techniques
for the automatic generation of invariants. The second
part provides criteria for using the invariants to check
simultaneously for correctness (including termination)
or incorrectness. A third part examines the implications
of the approach for the automatic diagnosis and correc-
tion of logical errors.

Key Words and Phrases: logical analysis, invariants,
program verification, correctness, incorrectness, ter-
mination, automatic debugging

CR Categories: 3.66, 4.42, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Parl.s of Sections 1 and 2 are based on a paper presented at
the Third International Joint Conference on Artificial Intelligence,
Stanford, Calif., August 1973 [14], and Section 4 is based on a
paper presented at the International Conference on Reliable Soft-
ware, ~ s Angeles, Calif., April 1975 [15].

Authors' addresses: S. Katz, IBM Research Center, Technion,
Haifa, Israel; Z. Manna, Artificial Intelligence Project, Stanford
University, Stanford, CA 94305.

Introduction

In recent years considerable effort has been devoted
to the goal of proving (or "verifying") that a given
computer program is partially correct--i .e, that if the
program terminates, it satisfies some user-provided
input~output specification. Floyd [8] suggested a method
for proving partial correctness of flowchart programs
which has been shown amenable to mechanization (see
e.g. [17, 5, 27]). However, existing implementations are
incomplete in that they are not oriented toward incor-
rect programs: their declared goal is to prove that a
correct program really is correct. If a program is not
verified, it is unclear whether the program is erroneous
or whether a proper proof has simply not been
discovered.

Floyd [8] also suggested a method for proving ter-
mination based on properties of well-founded sets.
Although this traditional method is a most general and
elegant way to prove termination, it is qualitatively
different from the method for partial correctness, and
thus the two are difficult to combine. Unfortunately
the method is also not suitable for proving nontermina-
tion of a program which does not halt.

We suggest conducting logical analysis of programs
using "invariant assertions" which express the actual
relationships among the variables of the program. These
"invariant assertions" differ from Floyd's programmer-
supplied "inductive assertions" in that they are gener-
ated directly from the program text. In our conception,
the invariants are independent of the output specifica-
tion of the program and reflect what is actually happen-
ing during the computation, as opposed to what is sup-
posed to be happening. Thus our invariants can be used
either to verify tl-,~ program with respect to its specifi-
cations or to prove that the program cannot be verified
(i.e. contains an error). In addition, these invariants
enable us to integrate proofs of termination and non-
termination into our logical analysis. Invariants can
also be used to debug an incorrect program, i.e. to
diagnose the errors and to modify the program.

The existing implementations of Floyd's method for
proving partial correctness are actually not fully auto-
matic, since the user must provide the appropriate
inductive assertions. This deficiency has been recognized
and there has recently been a substantial effort to gen-
erate the inductive assertions automatically (for exam-
ple, [3, 7, 10, 14, 23, 24, and 28]). Essentially, generating
invariant assertions is a similar task. We therefore
devote a large part of this paper to presenting our tech-

188 Communications April 1976
of Volume 19
the ACM Number 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360032.360048&domain=pdf&date_stamp=1976-04-01

niques for the automatic (or semiautomatic) generation
of invariants.

We actually intend that whenever new invariants
have been produced, all invariants generated up to that
point will be used to check simultaneously for (a) par-
tial correctness, (b) termination, (e) incorrect results,
and (d) nontermination. If correctness ((a) and (b))
has been established, an attempt may be made to opti-
mize the program through a fundamental revision of
the program statements, based on the invariants. If
incorrectness ((c) or (d)) has been established, an
attempt is made to automatically debug the program,
i.e. to diagnose and correct the errors in a systematic
manner, again using the invariants. If neither correct-
ness nor incorrectness can be established, we attempt
to generate additional invariants and repeat the process.
Assertions ("comments") supplied by the programmer
may or may not be correct, and therefore are considered
to be just promising candidate invariants. As a last re-
sort, it may nevertheless be possible to take a more rad-
ical approach and use the invariants for modifying the
program so that correctness is guaranteed, taking the
calculated risk of modifying an already correct program.

In the following sections we first present the tech-
niques of automatic invariant generation, an algorith-
mic approach in Section 1 and a heuristic approach in
Section 2. Then in Section 3 we describe the applica-
tions of the invariants for proving correctness (including
termination) or incorrectness. In Section 4 we outline
the practical implications of the invariants for auto-
matie debugging. The other implications, such as for
optimization, are discussed briefly in the Conclusion.
The Conclusion also includes some bibliographical
remarks.

Preliminaries

The programs treated in this paper are written in a
simple flowchart language with standard arithmetic
operators over the domain of real or integer numbers.
We assume a flowchart program P with input variables
x, which do not change during execution, and program
variables y, which do change during execution and
whose final values constitute the output of the pro-
gram. In addition we are given an input predicate
~(x), which restricts the legal input values, and an
output predicate ~k(x, y), which indicates the desired
relationship between the input and output values.

For convenience we consider blocked programs.
That is, we assume the program is divisible into (pos-
gibly nested) "blocks" in such a way that every block
has at most one top-level loop (in addition to possible
lower-level loops which are already contained in inner
blocks). The blocks we consider have one entrance and
may have many exits. Algorithms for identifying such
blocks can be found in [1]. Every "structured program,"

e.g. program without goto statements (see [4]), can be
decomposed into such blocks.

The block structure allows us to treat the program
by first considering inner blocks (ignoring momentarily
that they are included in outer blocks) and then work-
ing outwards. Thus for each block we can consider its
top-level loop using information we have obtained
from the inner blocks.

The top-level loop of a block can contain several
branches, but all paths around the loop must have at
least one common point. For each loop we will choose
one such point as the cutpoint of the loop.

We use counters attached to each block containing
a loop as an essential tool in our techniques. Since each
loop has a unique outpoint, we associate a counter with
the outpoint of the loop. The counter is initialized
before entering the block so that its value is zero upon
first reaching the outpoint, and is incremented by l
exactly once somewhere along the loop before return-
ing to the cutpoint. There are many locations where
the initialization of the counters could be done. The
two extreme cases are of special interest: (a) the counter
is initialized only once, at the beginning of the program
(a "global" initialization, parameterizing the total
number of times the outpoint is reached), or (b) the
counter is initialized just before entering its block (a
"local" initialization, indicating the number of execu-
tions of the corresponding loop since the most recent
entrance to the block). In the continuation, we will
assume a local initialization of counters, since our
experience has been that this is generally the most
convenient choice.

The counters will play a crucial role both for gener-
ating invariants and for proving termination. They will
be used both to denote relations among the number of
times various paths have been executed and to help
express the values assumed by the program variables.
It should be noted that it is unnecessary to add the
counters physically to the body of the program. Their
location can merely be indicated, since their behavior
is already fixed.

It is sometimes convenient to add auxiliary cut-
points at the entrance and exit of a block. In addition,
we always add a special outpoint on each arc immedi-
ately preceding a HALT statement. Such outpoints will
be called haltpoints of the program.

Our first task is to attach an appropriate invariant
assertion q~(~, y) to each outpoint i. We first define our
terms.

A predicate qi(x, y) is said to be an invariant asser-
tion (or invariant for short) at cutpoint i w.r.t. ~(x) if
for every input ti such that ~(ti) is true, whenever we
reach point i with y = b, then qi(ff,/~) is true. An
invariant at i is thus some assertion about the variables
which is true for the current values of the variables
each time i is reached during execution.

For a path ~ from outpoint i to cutpointj , we define
Ra(x, y) as the condition for the path a to be traversed,

189 Communications April 1976
of Volume 19
the ACM Number 4

and ra(X, y) as the transformation in the y values which
occurs on path a. A set S of outpoints of a program P
is said to be complete if, for each outpoint i in S, all
the cutpoints on any path from START to i are also
in S.

We now state a sufficient condition (proven in
[20]) for showing that assertions ("candidate invari-
ants") are actually invariants.

LEMMA A. Let S be a complete set of cutpoints of a
program P. Assertions {qi(x, y) I i E S} will be a set of
invariants for P w.r.t. ~ if

(a) for every path a from the START statement to a
cutpoint j (which does not contain any other cutpoint) ~ :

'v'x[~(x) /~ R,(~) ~ qi(x, r~(x))], and

(b) for every path a from a cutpoint i to a cutpoint j
(which does not contain any other cutpoint) :

VxVy[q,(~, y) A R,(;g, y) ~ qi(x, r~(;g, y))].

For the initial segment of a program shown in Figure
1, assertions ql(x, y) and qz(x, ~) will be invariants at
outpoints 1 and 2 respectively if

(a) Vx[~(x) ~ q~(x, g(x))],

(b) VxVy[q~(x, y) /k ,~t(x, Y) ~ qt(x,f(x, y))],
VxVy[q~(x, y) A t(x, y) ~ q2(x, h(x, y))].

Note that the input predicate 4,(x), which depends only
on x (variables not changed during execution), is auto-
matically an invariant of any cutpoint of the program,
and does not need any further justification.

Lemma A is slightly misleading, because it implies
that a full-fledged set of assertions is provided at a
complete set of the outpoints and that these are checked
simultaneously. In fact, the invariants will be added
one after another until the needs of the logical analysis
have been met.

At every stage of the invariant generating process, a
situation as in Figure 2 will apply for each block. At
outpoints L, N, and M, invariants p(x, y), q(x, y), and
s(x, y) respectively will already have been proven. How-
ever, we also will have promising candidates for in-
variants p' (x, y), q'(x, y), and s'(x, y), which we have so
far been unable to prove to be invariants. These candi-
dates could originate as comments given by the user
or, as in the case of s'(x, y), from the output specifica-
tion, which we automatically designate a candidate at
the haltpoints. As indicated in Section 2, additional
candidates may be generated during this process.

For a block of the form given in Figure 2, we con-
centrate on developing invariants at outpoint N on the
loop. For the auxiliary cutpoint M, the invariants are
generated by "pushing forward" any invariant obtained
at N. Thus, if at any stage an invariant q(x, y) has been

Note that the .p values are not defined at the START state-
ment, and that they are initialized by constants or functions of
£" along a path from START. Thus, R, and r, for such a path are
really only functions of £, and not of y.

Fig. l. An initial segment of a program.

. 7 - - - . ~
,~nput specf f~cahon I

L t (;)____J

F-os -se r t i o n - -]
, q,(~ Y) ', t - ~ _ _ '__" _ _ _

I
asser t ion]

I q2(;3) i t- _ _ _ ~ _ _ _J

Fig. 2. A block containing a single-path loop.

invor iont P (~ ' Y) I -
condidote p, (; ,~) j - - ~ I_

;'-n-;b-7
in,a,~an, ~(; S) I___~- -~ : : j
candidate q ' (; , ~)J -~_N__ ._

candidate s'(~,~) J /4

r - - - l - - 7

L~:iz~J

established at N, we automatically can take as an in-
variant at M any s(x, 2) satisfying

Wx'Cy[q(x, Y) A t(x, y) ~ s(x, h(x, y)].

In order to establish that a candidate q'(x, y) is
actually an invariant at N, it follows from Lemma A
that we must show

(i) VxVy[p(x, y) ~ q'(x, g(x, y))],

and

(ii) VxV2[q(x, y) A q'(x, Y) /% :~t(~, y)
q'(a/(a, y))].

It must be emphasized that special care should be taken
in case of failure in an attempt to establish that a candi-
date is an invariant. For example, suppose that ql' and
q2' are candidates for invariants at the cutpoint N and
that both qt' and q2' satisfy condition (i). It is entirely
possible that neither qx nor q2' satisfies condition (ii)
individually, but that qt' /k q2' does satisfy condition
(ii), and therefore is an invariant. This phenomenon,
i.e. that it is impossible to show a weak property but it is

190 Communications April 1976
of Volume 19
the ACM Number 4

possible to show a stronger one, is typical in mathe-
matical proofs by induction. The explanation is that
although we must show a stronger property on the right
of the implication, we are also provided with a stronger
inductive hypothesis on the left of the implication.

In Sections 1 and 2 we present techniques for dis-
covering invariants. These techniques were originally
designed with an automatic implementation in mind.
However, they are in fact also useful for finding in-
variants by humans. For simplicity of presentation, we
consider the single block of Figure 2. We will distin-
guish between two general approaches to producing
invariants:

(1) the algori thmic approach in which we obtain guar-
anteed invariants q(x , y) at N directly from the assign-
ments and tests of the loop (using also the entry in-
variant p (x , y) at L), and

(2) the heurist ic approach in which we obtain a new
candidate q ' (x , y) for an invariant at N from already
established invariants and old candidates which we
have not yet been able to prove to be invariants.

1. Generation of Invariants: Algorithmic Approach

We present first the algorithmic approach for gen-
erating invariants. We distinguish between invariants
derivable from the assignment statements and those
based primarily on the test statements. The input
predicate ~(x) and the fact that a counter is always a
non-negative integer will be used as "built-in" invari-
ants whenever convenient.

1.1. Generating invariants from assignment statements.
We observe that assignment statements which are on
the same path through the loop must have been exe-
cuted an identical number of times whenever the cut-
point is reached. Thus the counter n of the cutpoint
can be used to relate the variables iterated. We denote
by y(n) the value of y the (n -k 1)-th time the outpoint
is reached since the most recent entrance to the block
(assuming a local initialization of the counters). Thus
y(0) indicates the value of y the first time the cutpoint
is reached.

We use a self-evident fact as the basis for generating
invariants: for x such that ~(x) is true and for each path
a around the loop, we have

(1) Ra(x , y(n -- 1)) ~ y(n) = r~(x, y (n -- 1))
f o r n ~ > 1.

That is, if values y (n - 1) occurred at the outpoint, and
a path a around the loop is then followed (that is,
Ra(x , y (n -- 1)) is true), then the next values of y at the
outpoint (i.e. y(n)) will be the result of applying r~
to y (n - 1).

In practice, if there is only a single path around the
loop such as in the block of Figure 2, it is usually easier
to ignore the path-condition Ra, and find invariants

which satisfy the stronger condition

(2) y(n) = r a (x , y (n -- 1)) for n /> 1.

Considering (2) for each component of y, we have a
set of recurrence equations, one for each Yi. We now
attempt 'to express as many as possible of these equa-
tions in i t e ra t i v e fo rm , e.g. as

(a) y j (n) = y~(n - 1) + gj (~ ,p(n - 1)) or

(b) y~(n) = y j (n - l).g~(.% p(n - 1)).

Such forms are desirable because they can often be
solved to obtain

(a') y j (n) = y~(O) + ~ g ~ (~ , p (i - 1)) or
i = 1

(b') y~(n) = y ~ (O) . I X g ~ (~ , . ~ (i - 1)).
i ~ l

There are two ways to obtain invariants at a outpoint
from equations of the form (a') or (b'). First, it may be
possible to express

gj (x , y (i -- 1)) or I ~ gs(x , y (i -- 1))
i = 1 i = I

as only a function of x and n, not containing any ele-
ments of y (i - 1). We then have an assertion which
relates y j (n) , yi(O), x , and n. Second, if there is a
relation between

gz(2, .~)(i -- 1)) and ~ gk(2, .~(i -- 1)),
i = l i = l

or between

r l g,(~, .~(i - 1)) and I~I gk(~, .~(i - 1)),
i = 1 i = l

then we can use this relation to connect y~(n) and yk(n) .
Once we have relations which are true for all n /> 0,
with all variables in the form y~(n), we can simplify by
replacing each y~(n) by y~, obtaining an invariant which
may still contain occurrences of y~(0).

Whenever possible, known information from the
entry invariant p(~, p) may be used to obtain p(0).
When the variables are initialized immediately before
entering the loop, p(e, p) will indicate the exact values
of p(0). However, even when this is not the case,
p(~, p) may often contain valuable information about
y(0).

It is important to note that any predicate obtained as
above, say from (a') or (b'), is not simply a candidate
for an invariant, but is ac tual ly an invariant. This is
because substituting the correct initial value in place of
p(0) ensures that the relation obtained is true the first
time the cutpoint is reached, and the use of r~(e, p)
in obtaining the recurrence equations ensures that the
relation is true subsequent times the outpoint is reached.

Recall that the transformation from the recurrence
equation (1) to (2) was made under the assumption
that there was a single path around the loop as in
Figure 2. The above discussion can easily be extended
to the case of a loop with several possible pa ths- -by
using if-then-else expressions. For example, considering

191 Communications April 1976
of Volume 19
the ACM Number 4

the loop of Figure 3, with two paths around the loop,
eq. (1) becomes

~ f l (g , p (n - 1)) A t2(g,#(n- 1))
#(n) = f l(~,p(n-- 1))

,~fl(~,#(n-- 1)) A ~ t ~ (~ ,) (n - 1))
::9 .~(n) -- J~(.~,#(n-- 1)).

These can be combined into one statement, as

-~ta(g, #(n -- 1)) ~ [if tz(~, #(n -- 1))
then p(n) = Ji(~,)) (n - 1))
e lse)(n) = J~(~, .~(n - 1))].

Since tl(g, p) controls the exit from the block, and
does not affect the choice between the two paths around
the loop, it can be ignored, as before, giving the stronger
condition

(3) if t~(~,p(n-- 1)) then .~(n) = jq(~ ,#(n- 1))
else p(n) = ~ (~ ,p (n - 1)).

Equations of this form can then be put in iterative form,
and treated just like equations of form (2).

1.2. Generating invariants from tests. So far we have
concentrated on generating invariants from assignment
statements, and the tests have merely been an obstacle
which had to be overcome. Now we will show how the
tests can be an aid to allow extracting additional in-
variants from the loop.

Suppose the block has the paths a l , a 2 , . . . , ak
(k /> 1) from the cutpoint N around the loop back to N.
Again we shall use an obvious fact: whenever N is
reached during execution, either it is the first visit at the
point for the present entrance to the block, or control
was previously at N and one of the paths al , ark
was followed, i.e. the block was not exited. Letting n be
the counter of the block, this can be written more pre-
cisely as

(4) n = 0 V [R , l (~ j (n - l)) V R~(~,p(n- - l)) V
• . . V R,,~(~,.9(n-- I))].

The above claim (4) is clearly always true at N. By
expressing p(n -- 1) in terms of.9(n)--using the recur-
rence equations given by (1)- -and adding known in-
formation about y(0), we can often simplify (4). Again,
if we obtain relations which are true for all n /> 0, and
all variables are expressed as y~(n), we can remove the
parameter n to obtain an invariant. We can also use
known invariants at N, in particular those generated
from assignment statements, in order to help simplify.

We demonstrate some of the above techniques on a
program. Note that at this point we make no claim
about whether this program is correct.

Example A. The program ~ A of Figure 4 is intended
t o divide x~ by xz within tolerance xa, where x~, x~,
and xa are real numbers satisfying 0 x< x~ < x~ and

This program is based on Wensley's division algorithm [29].
Note that we use a vector assignment notation, where, for example,
(y~, y~) ,-- (yl + y~, y~ + y~/2) means that y~ *-- y~ + y~ and
y, *-- y~ + yd2 simultaneously.

192

Fig. 3. A block containing a loop with two paths.

invoriont p (i , ~) ~ ~ L
cancliclat e ~ (; , ~ 1 ~

', n~O ' J
invori0n, q l i , y) ~ N ~ J
condiaote q ' (i , i l / . . _ J Z L _ _ /

_ ~ , ~: .-~'~F r - - - L - - ~
L n_n+t , J

,nvorian, s(x,y)!.__.~ M ~ . 1

Fig. 4. Program A. Real division within tolerance.

t input spec i f i ca t i on i i i] O~xl<x~e,O<x3 I
i -T _i

t
I '°, ' .",°' I

f ~- i--o- l

r i t 1
: output specification I ('-x,(y,,,,y~'~ T
I X l / X 2 - x 3 < y 4 ^ I

" Y4 • x,/~2 ',

L --I [(Yl 'Y4) - - tY I 'Y2 'Y4"Y3 /2)]

[(yz,~3)-(y~/2,y3/a) I

r--- J - -~
L_" :n :LJ

0 < x3. Thus the final value of y4 is supposed to satisfy
Xl/X2 -- X3 <(y4 <. Xl/X2 at the haltpoint H. For clarity
we have explicitly added the counter n to the program.
There are two paths around the loop from the cutpoint
N back to N: the right path following the T-branch from
the test x~ < y~ + y2, and the left path following the
corresponding F-branch. By using (1) we have for each
path:

right path:

[y3(n- l)>x 3 A x~<y~(n- 1) + y 2 (n - 1)]
[yl(n) = y ~ (n - 1) /k y2(n) = y 2 (n - 1)/2 A
y3(n) = y 3 (n - I) /2 A y 4 (n)=y 4 (n - 1)],

left path:

[y3(n- 1) >x3 A xt>>,y~(n- 1)-t-y2(n- 1)]
[yt(n) = y~(n - 1) + y,,(n - 1) h
y~(n) = y~(n - 1)/2 h y3(n) = y~(n - 1)/2 A
y4(n) = y4(n - 1) + y 3 (n - 1)/21

Communications April 1976
of Volume 19
the ACM Number 4

Since the assignments to yz and y3 are not affected by
which path is used, we may ignore the path conditions,
obtaining

y2(n) = y 2 (n - - 1)/2 A ys(n) =y3(n-- 1)/2.

Both of these are in the iterative form (b) and may be
solved to yield

n

yz(n) =y2(0) . I ' I1 /2 A y a (n) = y 3 (0) ' I I 1/2.
i = l i = 1

Since it is clear that y2(0) = xz and y3(0) = 1 at N and
that 1~=1 1/2 = 1/2 ~, we have (dropping the param-
eter n) the invariants

(A1) y2 -- x 2 / 2 n at N and
(A2) y3 = 1/2 ~ at N.

These may be combined to yield the additional invariant

(A3) y2 = x2.y3 at N.

For variables yx and y4, we apply the techniques
used to obtain eq. (3)• Ignoring the exit test y~ _< x3
and expressing the effect of the branching by using
if-then-else, the resulting recurrence relations are

y l (n) = if Xl < y l (n - - 1) + y 2 (n - - 1)
then y ~ (n - - 1)
else y l (n - - 1) + y 2 (n - 1)

y4(n) = if xl < y l (n - - 1) + y2(n - - 1)
then y4(n -- 1)
else y 4 (n - 1) + y 3 (n - 1)/2.

Both of these are in iterative form and we can obtain
the summations

y~(n) = y~(0) -b ~ [ifxl < y~(i - - 1) q- y2(i - - 1)

then 0
else y 2 (i - - 1)]

y4(n) = y4(0) q- £ [if x~ < y l (i - - 1) 4- y2(i - - 1)

then 0
else y3(i - - 1)/2].

We will use the invariant (A3), that Y2 = x2.y3 at N,
in order to bring the two summations to an identical
form. Substituting x2.y3(i - 1) for y2(i - 1) in the else
part of the equation for yl(n), factoring out x2, and
dividing by 2 inside the summation and multiplying by
2 outside, we obtain

yl(n) = y~(0) -t- 2x2. ~ [if X~ < y~(i - - 1) 4- y2(i -- 1)
i f f i l

then 0
else y3(i - - 1)/2].

We have expressed y~(n) and y4(n) in terms of the same
summation, which thus can be used to connect these
two variables. Substituting yl(0) -- 0 and y4(0) = 0,
we obtain

y l (n) / (2 x 2) = ~ [if x~ < y ~ (i - 1) - t - y 2 (i - I)
i f f i l

then 0
else y3(i - - 1)/2]

= y4(n).

Thus we have the invariant

(A4) yl = 2x2 .y4 at N.

We now turn to eq. (4), using the tests of the loop
to generate additional invariants. We have the fact

n = 0
V D'3(n- l)) x 3 A x l < y l (n - - l)+y2(n-- 1)]

• . . right path
V [y3(n- 1)>x3 A x~>>,y~(n- l) + y . , (n - 1)]

• . . left path.

For each path we now use the equations for p(n) ob-
tained from (1) in order to express p(n - 1) in terms of
p (n) . For the right path we will use the fact that y l (n) =

y ~ (n - 1), y2(n) = y 2 (n - 1)/2, andy3(n) = y 3 (n - 1)/2,
while for the left path we will use the fact that y~(n) =

y~(n - 1) 4- y2(n - 1) and y3(n) = y3(n - 1)/2. These
substitutions will yield

n = 0
V [2ya(n) > x3 A
V [2y3(n) > x3 A

xl <y~(n) +2y2(n)] . . . right path
Xl >>, y~(n)] . . . left path.

Removing the parametrization in terms of 11, and sepa-
rating the term involving y3, we have the two new in-
variants at N,

[n=0 V 2y3>x3] A In=0 V x l < y l - - b 2 y 2 V xl>>,yl].

To obtain stronger invariants, we can check whether the
n = 0 case is subsumed in the other alternatives. The
left conjunct may not be so reduced and we have the
invariant

(A5) n = 0 V 2y~ > x~ at N.

The n = 0 possibility in the right conjunct can easily be
seen to be included in the other possibilities, since
y~(0) = 0 and xt /> 0 imply that x~ >/ y~(0). Thus we
have the invariant

(A6) x l < y ~ + 2 y 2 V x l>/y~ at N.

Note that invariant (A6) is a disjunction of the form
p V q. This disjunction actually reflects the effect of
taking the right path or the left path, respectively,
around the loop. []

2. Generation of lnvariants: Heuristic Approach

We now describe several heuristic techniques which
suggest promising candidates for invariants. There is
no guarantee that the candidates produced are actually
invariants, and they must be checked (using Lemma A).

It is important to notice that when we are unable to

193 Communications April 1976
of Volume 19
the ACM Number 4

establish that a candidate is an invariant, it should be
saved to retry later. The first reason for retrying the
candidate is that in the meantime we may have estab-
lished independently additional invariants such that the
extended set of invariants along with the candidate
satisfy Lemma A. A second reason is that additional
" re la ted" candidates may have been generated and
that, due to the "induction phenomenon" mentioned
after Lemma A, we now can prove the candidate in
conjunction with the additional candidates even though
we could not prove it alone.

It should be clear that before an automatic system
for generating invariants is practical, strong guidance
must be provided for the application of the following
heuristics, since, applied blindly, they could result in
too many irrelevant candidates. Here we merely state
some of the various possibilities in order to give the
flavor of this approach.

2.1. Strengthening existing invariants. Whenever we
have established an invariant at a outpoint i which is a
disjunction of the form

p l V p 2 V . . - Vpk (k >/ 2),

we try to see whether any subdisjunction (in particular,
each p~. alone) is itself an invariant at i. In the previous
section, we actually used this approach when we elimi-
nated the n = 0 alternative to obtain the invariant (A6).

2.2. Weakening existing candidates. Suppose we have
at i a candidate which is a conjunction of the form

pl A p2 A . . . A pk (k >/ 2),

and we have failed to prove that it is an invariant at i.
One natural heuristic is to try a subconjunction (in par-
ticular, possibly each Pi alone) as a " n e w " candidate.
Note that the failure to prove pl A p2 A • • • A p~ an
invariant says nothing about whether its subconjunc-
tions are invariants. Theoretically, any nonempty sub-
conjunction is a legitimate candidate and should be
checked independently.

For the next three heuristics, we refer back to
Figure 2.

2.3. Pushing candidates backwards. Let us assume that
I

p(x,y) is an established invariant at L and q (~,)) is a
candidate invariant at N. If the inductive step around
the loop has been shown to establish q'(x,y) at N, then
the only difficulty could be that p(x,y) did not imply
q'(x,g(;~,y)). We then try

I - t p (~, :) :p(~, :) ~ q (~, g(~, :))

as a new candidate at L. This will " f ix" the problem
with q'(~,)) but of course we must now prove p'(~, .~)
an invariant at L. Note that in any case p'(~, ~) must be
an invariant at L if we are to succeed in showing that
q'(~, .~) is an invariant at N and in this sense is the
"weakest" possible precondition for the base case of the
induction for q'(~, .~).

A similar technique can also be used to generate
candidates at N:

Let us assume that q(~,)) is an established invariant
at N and s'(~, .~) is a candidate invariant at M. Since
s'(& .~) is reached only from N, the reason we were not
able to prove it an invariant must be that q(~, .~) A
t(& .~) did not imply s'(& h(& .~)). Thus we would like
to find a candidate q'(~, :) at N such that

(5) [q(~, :) A q'(~, :) A t(~, :)] D s'(~, h(~, :)) .

Among the many possible choices of q'(~, .~) which
satisfy this condition are

q'(:L.~) : [q(£,.~) A t(~,.~)] ~ s'(£, h(~,.~)) or
q'(~, :) : s'(~, h(~, :)) .

This first possibility is, just as above, the "weakes t"
possible assertion which satisfies (5), while the second is
the "s t rongest" possible. As a very useful third alterna-
tive to the above suggestions, the transitivity of certain
inequality or equality relations can suggest a candidate
which takes into account the known information from
q(~, .~) and t(~, .~). For example, if we need a q' such
t h a t q ' A B < C ~ A < C where A, B, and C are any
terms, the relation A x< B is a natural candidate for q'.

Any candidate for q'(~, .~) obtained from formula
(5) must be checked. Unfortunately, there are no clear-
cut criteria for finding a q'(~, ~) which will be easy to
prove. If we fail to show some candidate q'(g, :,) an
invariant at N, clearly some "weaker" version may
nevertheless succeed. On the other hand, because of the
"induction phenomenon" it is quite possible that a
"stronger" candidate q'(~, :) actually could be more eas-
ily proven.

Note that this process could also be used for the
path around the loop, adding q"(~, :,) as a new candi-
date at N so that we are able to prove q'(~, f (~ , .f,)).
Again, this has the effect of transferring the "burden of
p ro o f " from q'(g,.~) to q"(~,.~).

2.4. Pushing invariants forward. Assuming that p(x,y)
is an established invariant at L, a straightforward

. !

heuristic is to try to find a candidate q (x,y) at N
such that

P(~, Y) ~ q'(~, g(~, Y)).

The above equation ensures that the first time N is
reached, q'(~, ~) is true. Of course, in order to complete
the proof that q'(~, .~) is an invariant, the corresponding
formula for the path around the loop must be con-
sidered. 3

Note that immediately after every assignment y~ ~--
f (~,)) wheref(~, :) does not include yl itself, we know
that y~ = f(~, .~) is an invariant. Also, after every test
t(~, .~) we can add the invariant t(~, .~) on the T-branch,
and :-~t(~, .~) on the F-branch. Such invariants can also

3 This is actually the method indicated in the preliminaries for
obtaining invariants at cutpoint M at the exit of the loop.

194 Communications April 1976
of Vohmae 19
the ACM Number 4

Fig. 5. Program B. Hardware integer division.

input spec i f i ca t i on t

x=~O ^ xz>O ^ *,
i

_ _ L , . _ _ _ _

!
[(Y, ,~z, ~ ,Y,) - - (",, '~, *,o)1
i i

F -.--[8-I

(~=, ~ , ~) - (2 . , a y ~) I - - ~ ' - - -

H T g

output specif icot ion *
X i =y4 " X2"I" y I A I I

O<..yl < x z ^ I I
Yl 'Y4 ,({integers} I

. . . . ~ _ _ _ J

L J

I

be pushed forward to generate useful candidates at the
outpoints.

2.5. Bounding variables. One often useful type of candi-
date for q'(x,y) at N involves finding upper or lower
bounds for the variables, expressed only in terms of
constant expressions with respect to the block. That is,
the bounds contain only constants, input variables, or
other program variables which are unchanged inside
the loop of the block.

Suppose that by considering f(~, p) and the in-
variant q(~, p) at N, we are able to identify a variable
Yi which is either always nondecreasing (or always non-
increasing) along the path around the loop. Now we
try to infer from p(~, p) an initial value y;(0) = E for
yj at N where E is a constant expression with respect to
the block. If yj is nondecreasing along the loop we can
conclude that Yi /> E is an invariant at N, while if yj is
nonincreasing y; x< E is an invariant.

A similar heuristic tries to establish that the variables
maintain some data type, e.g. integer or real, during
execution.

We will first illustrate the application of the heu-
ristics in obtaining some additional invariants for the
program of Example A, and then present a new example
which will illustrate the possible interplay between the
algorithmic and heuristic techniques.

Example A (continued). Let us consider again the
program A of Figure 4. Applying heuristic 2.1 to the
invariant

(A6) x~<yxq-2y2 V xx>/yx at N,

195

we check first whether xl < yl + 2y2 is itself an in-
variant. From Lemma A, we can show that

(a) V~[0x<xl<x~/~ 0<x~ D xx<0+2x2] and
(b) Y.~Vp [x,<yad-2yz A ya>x3 A x,<y,+y2

D xx<yl+y2],
V~Vp [Xl<yl+2y~ A y3> x3A x~>>. y~+y2

D x~<yx+yz+y2].

Since all of the conditions are true, we have the in-
variant

(AT) x~ < yl + 2y2 at N.

For xx >/ y l , the second disjunct of (A6), we can show
that

(a) V~[0~<x~<x2 A 0<x3 D x~>~0],
(b) V~Vp[Xl>/yx A y3>x3 /~ x~<y~+y2 ::9 Xl>/yx]

Y~Vp[xi>/ yx /X y3> x3 /X Xl>>. ytq-y2 D xx>>. yiq-y2].

Since these conditions are all true, we have shown that
the second alternative is also an invariant, i.e.

(A8) x~ /> yl at N.

We can combine the invariant (A4), y~ = 2x2.y4,
with (A8) to obtain an upper bound on y4 in terms of
~, i.e. the invariant

(A9) y4 <~ Xl/(2x~) at N.

This invariant will be of special use later, in Sections 3
and 4, and in practice would be generated only when a
need for such a bound arises.

Now, by pushing forward to H the invariants (A1)
to (A9) at N, and adding the exit test y3 x < xa, we
obtain

(AI0) y3<<.x3/X y2=x2/2" /X y3=1/2" /X y2=x2.y3 /X
Yx = 2x2. y4 /~ (n = 0 ~/ 2ya > x~) /~ xx < yx + 2) 2

/X Xl>/y~ /X y4<<.x1/(Zx2) at H. []

Example B. The program B shown in Figure 5 is
supposed to perform integer division in a manner
similar to computer hardware. For every integer input
Xl>~0 and x2>0, we would like to have as output
Yl = rem(xi , x2) and y4 = diV(Xl , x2), i.e. x~= y4. x2q-yl
/~ 0~<yl<x2 /~ yl,y4C{integers}. This program dif-
fers from the previous example in that it contains two
loops, one after the other. The upper block, with counter
n and outpoint N, consists of a simple loop, while the
lower block, with counter m and outpoint M, consists
of a loop with two paths. For convenience, we have
added an additional outpoint L between the blocks.

Our strategy will be to gather initially as many in-
variants as possible at N. The algorithmic techniques
will be used to directly generate invariants at N, and
then some of the heuristics presented above will be used
to suggest additional invariants. We then push the in-
variants forward to outpoint L, so that we have as many
invariants as we can when the second block is first
reached. Then we will employ the algorithmic tech-

Communications April 1976
of Volume 19
the ACM Number 4

niques to generate invariants at M. Finally, we use
heuristic techniques based on the invariants at L and M
and the candidates implied by the output specification
at H to generate additional invariants at M. We will
not go into the problem of which heuristic rule to use
first, but simply indicate how some candidates, which
will indeed be useful invariants, can be found by using
various heuristics.

Applying the algorithmic techniques for finding in-
variants at N, we obtain the equations

= . I ~ I . 2 n y.,(n) y2(0) 2 = y2(0).2" = x2 at N,
i=1

n

y.~(n) = y3(0)'I-I 2 = y3(0).2" = 2" at U.
i=1

Thus we can obtain the invariants

(BI) y . ,=x . , .2" /% y~=2" at N.

These can be combined to give

(B2) y. ,=x~.y3 at N.

By pushing forward the information in ~(~) and the
initial assignments (using heuristic 2.4), we get the
additional invariants

(B3) y l = x l /% y4=0 /% y~ ,y~ ,ya ,y4~ {integers} at N.

Using heuristic 2•5, we note that y.~ and ya are always
increasing around the loop, and since y~(0)=x~ and
ya(0) = 1 at N, we obtain the invariants

(B4) y~/>x2/%y~>/l at N.

Note that (B4) could also be obtained directly from
(Bl) using the implicit invariant n >/ 0.

Using the T-branch of the test yx x< yz and pushing
forward to L the invariants at N, we have the invariants

(B5) y2= x2. 2" /% y~=2"/% y.,= x.,. y~ /% y~= x~
/% y~ = 0/% y~ ,y~ ,ya ,y~ ~ { integers } /% y., >/x~
/% y~/> 1 A Y~ x < Y,, at L.

Generating invariants directly from the statements
of the lower block, we first have the relations

y2(m) = y.,(0)/2 '~ at M, ya(m) = ya(0)/2 m at M.

Using the invariants yz = xz.2" and y~ = 2" from
(B5) to establish y2(0) and y~(0) at M, we obtain the
invariants

(B6) y z = x z . 2 " / 2 " A y a = 2 " / 2 " /~ y~=x.~.ya at M.

Using the same technique for yl and y4, we obtain
the recurrenee relations

yx(m) = yx(m -- 1) -k- [i f yx(m -- 1) /> yz(m -- 1)
t h e n - - y z (m - 1)
else 0] at M,

y4(m) = y4(m -- 1) -k- [ifyx(m -- 1) /> yz(m -- 1)
t h e n y a (m - - 1)
else 0] at M.

Writing these equations as a summation, then using
(B6) to replace the occurrence of - -y2(m -- 1) by
- x 2 . y 3 (m - 1) and factoring out - x 2 , we obtain

y l (m) = y~(O) -- x2. ~ [if yi(i -- 1) >/ y2(i -- 1)

t h e n ya(i -- l)
else 0] at M,

y4(m) = y4(0) q- ~ [if yl(i -- 1) >/ yz(i -- l)

t h e n Y3 (i -- l)
else 0] at M.

Simplifying, we get

(6) y~(m) -- y~(O) = - -x2 . (y4(m) -- y4(0)) at M.

We will again use invariants from (B5) at L, namely
y~ = xl and y4 = 0, to establish y~(0) and y4(0) at M.
There are two possible paths from L to M. If the right
branch is used, clearly y~(0)= x~ /% y4(0)= 0 at M. On
the other hand, if the left branch is taken, the addi-
tional invariants from (BS), yl x < yz and Y2 = x2.y3 at
L, together with the fact that yx >/ y2 along this path,
yield that y~ = yz and Y3 = yz /xz = y~/x2 = x ~ / x z ,
and therefore after the assignments yl ~-- yx -- yz and
y4 ~-- y4 + yz we have that y~(0) = 0 and y4(0) = x~/xz
at M. Substituting both possibilities for yl(0) and y4(0)
into the above equation (6), we obtain in both cases
y~(m) - x~ = - x 2 . y4(m). Thus we have the invariant

(B7) xx = y4.xz @ yl at M.

Turning to the tests, following eq. (4) we have

m = 0

~/ [y ~ (m - 1) # 1 /% y x (m - 1) >/y2(m- 1)/2]
• . . left path

~/ [y 3 (m - 1) ~ l /% y l (m - 1) < y z (m - 1)/2]
• . . right path.

We try to substitute using the recurrence equations for
the left path in y 3 (m - 1) # 1 /% y ~ (m - 1) >/y2(m- 1)/2,
and the recurrence equations for the right path in
y 3 (m - 1) # l /% y x (m - l) < y 2 (m - 1)/2. For the left
path, we have the recurrence relations

y~(m) = y l (m - - 1)--yz(m-- 1)/2 /
y2(m) = y2(m-- 1)/2 t
y3(m) = ya(m-- 1)/2, J

and for the right path we have

y l (m) = y l (m - - 1) 1
y2(m) = y2(m-- 1)/2
y3(m) = y~(m-- 1)/2• J
Using these equations we obtain

m = 0

k/ [2y3(m) ~ 1 /% yx(m) >>, 0]

k/ [2y3(m) ~ 1 /% yx(m) <yz(m)]

• . . left path

• . . right path•

• . . left path

• . . right path.

Equivalently, we can write

196 Communications April 1976
of Volume 19
the A C M Number 4

(7) [m=O ~/ 2ya(m)~l] /~ Ira=0 ~/yl(m)>>,O
~/ y~(m) <y2(m)].

For the first conjunct, we can eliminate the m = 0 al-
ternative because by (B5) we have y3(0)/> 1 at M, and
therefore 2)3(0) ~ 1 at M. We have therefore the
invariant

(B8) 2y3~1 at M.

For the second conjunct of (7), we can eliminate the
m = 0 alternative because y~(0) at M is either 0 or xx,
and thus y~(m) >1 0 is true when m = 0. We have the
invariant

(B9) y~>/O ~/y~<y2 at M.

So far we have used only the algorithmic techniques
on the lower block, and have directly generated invari-
ants (B6), (B7), (B8), and (B9) at M. Now we illustrate
how some of the heuristic methods could be applied in
order to obtain additional candidates.

Turning to heuristic 2.1, we consider each disjunct
of (B9) separately. It is straightforward to show that
both yl>~0 and y~<y~ are invariants at M, i.e. we may
add

(B10)),1>/0 A y~<y~ at M.

Using heuristic 2.4, we push forward to M the in-
variants in (B5), and among the candidates obtained is
yz=xz.y3. We actually already directly discovered
y2=x2.y3 in (B6). However, we also have the can-
didate y3>/1. Since, using the invariant y3=2"/2 '~
from (B6), we can prove that for both paths around the
loop

V.~[ya~/l A Ya=2~/2 m A y 3 ~ l D ya/2/. 11,

we have the new invariant

(BII) y~> l at M.

In turn this can be used, along with invariants y2 =
x~.2~/2 m and ya = 2~/2 m from (B6), to show that the
candidate y~, y2, ya, y4 C {integers} (also obtained by
pushing forward from L) is an invariant, i.e.

(Bl2) y l , Y2, Ya, y4 ~ {integers} at M.

Observe that if we had used heuristic 2.3 to push the
given output specification at H backwards to M at an
early stage, we could have obtained the important candi-
dates for invariants xl=y4.x~q-y~, O(xy~, y~,y4~ {inte-
gers}, and y~ < x~ directly by this method. As shown, the
first three candidates are indeed invariants at N, while
any attempt to establish the fourth candidate y~ < x2 will
fail.

Now, by pushing forward to H the invariants (B6)
to (BI2) at M, adding the exit test y3= 1, and simplify-
ing, we obtain the invariants

(BI3) y~= 1 /~ y~=x~ /~ n = m /~ x~=y4.x~d-yt
/~ O<~y~<x~ /~ y~,y2,ya,y4~ {integers} at H. []

3. Correctness and Incorrectness

As indicated in the Introduction, invariants may be
used to prove correctness or incorrectness of a program.
In order to place these properties into their proper
framework, we first present some basic definitions and
lemmas (which follow [20]; see also [21]).

(a) A program P terminates over ~k(x) if for every
input ti such that 4,(~i) is true, the execution reaches a
HALT statement.

(b) A program P is partially correct w.r.t. O(x)
and i (x , y) if for every input ti such that O(ti) is true,
whenever the program terminates with some 6 as the
final value of y, i(a,6) is true.

(c) A program P is totally correct w.r.t. O(x) and
if(x, y) if for every input ti such that ¢,(~) is true, the
program terminates with some 6 as the final value of
y and i(ti, b) is true.

We are interested in proving that a program is
either totally correct (correct) or not totally correct
(incorrect). We introduce termination and partial
correctness because together they are equivalent to
total correctness, and, as we shall see, for a proof tech-
nique based on invariants it is easier to prove these two
properties separately rather than to prove total cor-
rectness directly.

The Lemmas B-D and B ' -D' (Table I) use the
invariants {qh(X, y)} at the haltpoints to provide cri-
teria for proving termination, partial correctness, total
correctness, and their negations. For clarity we have
used an informal abbreviated notation. Lemma B, for
example, should be stated as:

LEMMA B. A program P terminates over ¢J if and only
if for every set of invariants {qh(x, y)} and every input
x such that tb(x) is true, there exists a haltpoint h such
that "4 y[qh (£,y)] is true.

PROOF. If the program terminates, then for every
input x satisfying ¢~(x) some haltpoint h must be reached
and y will naturally have some value 6 at h. Then, by
the definition of an invariant, for every set of invariants,
qh(X, 60) must be true, i.e. "4y[qh(x, y)] is true.

In order to prove the Lemma B in the other direc-
tion, we introduce the notion of a minimal invariant
at cutpoint i, denoted by m~(x, y). A minimal invariant
m~(d, 6) is true for some input ~ satisfying 0(~) and
for some 6 if and only if during execution with input
the cutpoint i is reached with y = 6. Thus m~(x, y)
denotes the exact domain of the y values which occur
at i during execution of the program with input x. 4

Now we assume that for every set of invariants and
every x such that ~(x) is true, there exists a haltpoint
h such that "4y[qh(x, y)] is true. This is also true for
the set of minimal invariants. By the definition of
minimal invariant, since there exists a y such that

Note that from its definition m~(~, J,) always exists as a predi-
cate; for our purposes it is irrelevant how this predicate is ex-
pressed.

197 Communications April 1976
of Volume 19
the ACM Number 4

mh(x, y) is true, that y value actually occurs during
execution at the haltpoint h, i.e. h must be reached,
and the program must therefore terminate. []

The other lemmas may be proved by using similar
arguments.

The six lemmas of Table I can be divided into two
groups. The first group, Lemmas B', C, and D', are
expressed in terms of the existence of a single set of
invariants {qh(x, y)} (an ,,~lq formula"). They there-
fore may be used to prove nontermination, partial
correctness, and incorrectness, respectively, by demon-
strating a set of invariants which satisfies the appro-
priate formula. The techniques of Sections 1 and 2
can be used to produce such a set of invariants. Lemmas
B, C', and D, on the other hand, are expressed in
terms of every possible set of invariants {qh(x, y)}
(a "V# formula"), and may not be used directly with
our techniques.

Since total correctness is expressed by a Vq for-
mula, we try to prove this property by showing partial
correctness and termination separately. Lemma C
uses an ":lq formula, and therefore can be used to prove
partial correctness. This lemma in fact represents
"Floyd's method" [18] for proving partial correctness.
The problem of termination, however, remains since it is
expressed in terms of a Vq formula. Termination must
therefore be treated by other means, which will be dis-
cussed at the end of this section.

Incorrectness, on the other hand, is expressed by an
":lq formula, and therefore can be proven directly by
our techniques, using Lemma D'. Note that the formula
of this lemma can be expressed alternatively as

-4q3xVhVy[~,~qh(x, y) V ~ (x , y)],

i.e. for some input x either the program does not termi-
nate, or the final result is incorrect.

We first illustrate the use of Lemma C for proving
partial correctness.

Example B (continued). We would like to show that
program B of Figure 5 is partially correct w.r.t.

4~(x) :xl>_0 /k x2>0 /x, Xl,X2E {integers}, and
~k(x, y) : xl= y4.x2+ y~ /k O<_y~<x2 /k yl,y4C {integers}.

Using invariants (B1) to (B4) at N, (B5) at L, and
(B6) to (B12) at M, we have established the invariants
(B13) at H (the only haltpoint of the program). Since
(B13) contains the invariants

xl=y4.x2+yl /k O<yl<x2 /k yl ,y4~ {integers},

we clearly have that

VxVy[qH(x, y) D ~(x, y)].

Thus, by Lemma C, program B is partially correct
w.r.t. 4, and ~k.

Note that (BI3) actually contains additional infor-
mation about the final values of the variables, namely
that

y~--1 A y2=x2 A n=m

at the haltpoint H. []
Thus to prove partial correctness, we merely ex-

hibit the invariants at the haltpoints which fulfill
Lemma C. On the other hand, in order to prove incor-
rectness we must provide, in addition to appropriate
invariants, an input value x0 satisfying ~(x0) such that
the formula in Lemma D' is true. We would like to
develop candidates for x0 in a systematic manner,
similar to the way invariants were generated in Sec-
tions 1 and 2. For this reason, it is desirable to find a
predicate ~'(x) which specifies a nonempty subset of
the legal inputs for which the program is incorrect,
rather than merely demonstrating the incorrectness for
a single x. That is, to establish incorrectness we prove
that for some ~'(x),

vx[~'(x) ~ ~(x)] A
3xC~'(x) A 3#VxVhVy[¢'(x) A qh(x, y) D ~ (x , y)].

In general, a proof which establishes incorrectness
for a large set of input values is also more useful for
the diagnosis and correction of the logical errors than
an incorrectness proof for a single input value (see
Section 4).

We will develop candidates for ¢'(x) by starting
with ¢(x) and adding conjuncts (restrictions) to @(x)
one after another as the need arises. Thus @'(x)
@(x) will be guaranteed true. In case there are several
alternative restrictions at some stage of the process,
we prefer adding the weakest possible, so that ¢'(x)
will allow maximal freedom in choosing additional
restrictions later. At each stage, it is, of course, neces-
sary to demonstrate that ¢'(x) is satisfiable.

Note that all invariants which have been proven for
~(x) will remain true for any ~'(x) specifying a subset
of ~(x). Moreover, at each stage of the process we now
may discover additional invariants which are true
for every x satisfying ~'(x) but are not necessarily true
for every x satisfying ~(x).

Example A (continued). An attempt to prove the
partial correctness of program A (Figure 4) will not
succeed. Although the invariants (A10) at H can be
used to establish y4 _< xl/x2 since

VxVy[y4 <_Xl/(2x2) D y4 <_Xl/X2],

we are unable to establish x~/x~ - xa < y4. Thus we
turn to incorrectness, trying to show that for some
~'(x) which specifies a nonempty subset of the legal
inputs, and for some invariants qn(x, y) at H, we have

VxVP[t~'(X) A qg(X, .P) ~ X1/X2--x3~y4].

We first could try to show that the program is incor-
rect for every legal input x, i.e. to let ¢'(x) be ¢(x) it-
self. Such an attempt will fail. To find a candidate @'(x),
we notice that the "desired" conjunct is y4<_x~/x2-x3,
and that the invariant y4<xl/(2x2) at H of (AIO) also

198 Communications April 1976
of Volume 19
the ACM Number 4

Table I. Applications of the Invariants {qh(£, Y) }.

LEMMA B. P t erminates over 4, if and only if
V~V~3 h3£[q~(~, y)].

LEMMA C. P is partially correc t w.r . t . 4' and ¢~ if and only if
3~V£VhVJ~[qn(£, p) ~ ~b(£, .P)].

LEMMA D. P is (totally) correct w.r.t. 4' and ¢~ if and only if
VVlV£3h3P[qh(£,, ~) A ~(~, ~)].

where
v~ means "for every set of invariants {qh(£, JP)}."
3~ means "there exists a set of invariants {qh($, P)1."
V~, means "for every input • such that 4'(~) is true."
3£ means "there exists an input • such that 4'(~) is true."
Vh means "for every haltpoint h."
3h means "there exists a haltpoint h."

LEMMA B'. P does not t erminate over 4, if and only if
"4 ~l'4 £VhVy [~qh (£, P)].

LEMMA C t. P is not partially correc t w.r.t . 4, and ff if and only
if V(13£3h3.P[qh(£, ~) A ,~b(£., .p)].

LEMMA D'. P is incorrect w.r.t. 4' and ¢~ if and only if
":l~]£VhV.pIqh(£, y) D ~'¢,(£, y)1.

provides an upper bound on y4 in terms of x. This sug-
gests using the transitivity of' inequalities to find an
r(x) such that

[y4<_xl/(2x2) /~ r(x)] D y4<_xl/x2-x~.

The "mos t general" candidate for r(x) is clearly
xd (2x2) _< Xl/X2 - x3, or equivalently,

r(X) : x3 <_ xl/(2x2).

The trial 4/(x) will therefore be ~,(x) /~ r(x), i.e.

¢'(x) :O<Xl<X2 A 0<x3 A x3<xd(2x2).

From the development of 4/(x), it is obvious that
y4 <_~ X I / X 2 - - X3 is an invariant at H for every x satis-
fying 4/(x). Thus to establish incorrectness it only
remains to show that 4/(x) is satisfiable. Since we may
first choose any x~ and x2 such that 0 < x~ < x2, and
then choose any x3 such that 0 < x.~ < x~/(2x~), the
satisfiability of ¢/(x) is obvious. []

Recall that we have not yet provided a practical
method for proving termination. The difficulty arose
from the fact that Lemma B of Table I requires proving
a "V# formula." Therefore we clearly need a special
method for proving termination.

The traditional method suggested by Floyd in [8]
involved choosing a well-founded set (W, >-), where >
is a partial ordering having the property that there is
no infinitely descending chain of elements from W,
wl > w2 >- For every cutpoint i, one must find a
partial function u~(x, y) which maps the elements
of the variables' domain into W, and an invariant
q~(x, y) which serves to restrict the domain of u~. A
proof of termination requires showing that each time
control moves from cutpoint i to outpoint j (along a
path which includes no other outpoints and which is a
part of some loop), u~(x, y) > us(x, y). Intuitively,
since by definition there is no infinitely decreasing
chain of elements in any well-founded set, the proof
implies that no execution path of the program can be
infinitely long.

The use of Floyd 's method entails choosing the

199

appropriate well-founded set (W, >) , the functions
{us(x, y)}, and the invariants {qj(x, y)}. We will sug-
gest an alternative method for proving termination
which will be strongly oriented toward the use of
invariants, so that we may take advantage of the tech-
niques of Sections 1 and 2. We present the method
briefly.

As explained in the Preliminaries section, it is as-
sumed that we can divide the given program into blocks
in such a way that every block has only one top-level
loop (in addition to possible "lower-level" loops al-
ready contained in inner blocks). We treat the inner-
most blocks first, and work outwards. Thus for each
block we can consider only its top-level loop (with a
unique outpoint), assuming its inner blocks are known
to terminate.

We suggest proving termination of a block with
cutpoint i and counter n (assuming that the inner
blocks terminate) by finding invariants which will imply
that n is absolutely bounded from above at i. That is,
n < c~ at i for some constant c~. Therefore the cut-
point cannot be reached infinitely many times during
computat ion. Note that it is actually sufficient to show
a~(X, n) <_ b~(x) where a~(x, n) is an integer-valued
function monotonic in n (i.e. if n increases in value, so
does ai(x, n)). We therefore state

LEMMA E (termination). A program P terminates
if and only if there exists a set of invariants {qA and

functions {aA and {b A such that for every block B
with cutpoint i and counter n,

(8) VxVyVn[qi(x, y, n) ~ ai(x,n)<_bi(x)],

where a~(x, n) is an integer-valued function monotonic
in n.

The practical importance of the above Lemma E is
that we may use invariants which link n to the program
variables to derive directly the appropriate functions
a~ and b~. Recall that in such programs, we have the
"buil t- in" invariant that n is a strictly increasing non-
negative integer. We shall use these properties in our

Communications April 1976
of Volume 19
the ACM Number 4

examples without explicit indication. Although n and
ai(x, n) are integers, b~(x) and the program variables y
need not be integers, and this technique is perfectly
applicable to programs with real numbers, strings, etc.
Lemma E can be proven formally by reduction to
Floyd's method.

One can weaken the termination condition (8) of
Lemma E in several different ways. For example, we can
often generate R(x, y), the union of the conditions for
following a path from i to i in B. We may then use it
in proving that the counter is bounded, since if R(x, y)
is false, the loop will terminate anyway. Another pos-
sibility is to use in a~ and b~ all those variables of y
(and counters), denoted by y', which are not changed
in B. Thus it actually suffices to prove the weaker
condition

(9) VxVyVn[qi(x, y, n) A g(x, y)
D a~(x,y',n)<bi(x,y')].

Example A (continued). Consider again Program A
of Figure 4. F rom 4~(x) and invariant (A2) we note
that 0 < x ~ / ~ ys= 1/2" is an invariant at N. Thus, since

VxVyVn[O<x3/~ y3= 1/2" /~ y3>x3 ~ 2"<1/x3]

is true, it follows by Lemma E that the program ter-
minates over q~(x). []

Example B (continued). Consider Program B of
Figure 5. Using the known invariant (B1), y.., = x..,.2"
at N, and ~(x) we obtain

VxVyVn[x.2>O /~ y2=x2.2" /~ y2<yt ~ 2"<yl/x2].

Since yl is unchanged in the upper block, it follows by
(9) that the upper block terminates.

For the lower block we use the invariants (B6) and
(BI 1), y3=2"/2 m/~ y3>_ 1 at M, and obtain

VxVyVnVm[y~=2"/2"/~ ya>_ 1 ~ 2m<2"].

Since n is unchanged in the lower block, the termination
of this block also follows by (9). []

The reader should not be misled into assuming that
proving termination is always as trivial as it seems
here. The method of Lemma E is examined in greater
detail (and presented with some nontrivial examples)
in [16].

Note that the method of Lemma E, as well as Floyd's
original method, is useful only for showing termina-
tion. If we want to prove nontermination, both are
impractical (again, all possible qi's must be checked).
Thus Lemma B' should be used.

4. Automatic Debugging

In this section we suggest a method for debugging
based on the invariants generated from the program.
The technique we describe uses the invariants and

information about how they were generated in order
to modify the program systematically (and, at least
potentially, automatically). For a more complete pre-
sentation of this particular aspect of logical analysis,
along with an assessment of the remaining difficulties,
see [15].

As explained in the Introduction, failure to prove
correctness still leaves us unable to decide whether
the program is actually correct (but, despite all our
efforts, we are unable to prove it so), or the program
is really incorrect (and we should not waste more time
trying to prove it correct). Two differing philosophical
approaches to automatic debugging can be applied as
soon as we are unable to prove (total) correctness of a
program.

Following what may be termed the conservative
approach, we would insist on a proof of incorrectness
before proceeding to modify the program. This is a
reasonable view, and, as will be indicated below, a proof
of incorrectness can aid in debugging. The method
presented for proving incorrectness of programs was
motivated by this approach.

However, proofs of incorrectness are often difficult
to obtain, in particular for subtle errors, since the
needed ~'(x) (of inputs leading to incorrectness) must
be demonstrated. Thus an alternative to the conserva-
tive approach, a radical approach, can also be justified.
In this approach, we will "fix" the program so that a
proof of correctness is guaranteed to succeed, even
without having proven that the original program is
incorrect. In effect, under this approach we modify a
program we merely suspect of being incorrect, taking
the risk of modifying an already correct program.

The basic debugging technique using invariants is
common to both approaches. We shall first describe
the technique as it is used under the radical approach.
The slight differences which arise if the conservative
approach has been used (i.e. if a proof of incorrectness
is available) are pointed out later in this section. At
the end of the section we briefly compare the two ap-
proaches.

For simplicity we will again deal with a simplified
model: a single block having no inner blocks, with a
cutpoint L at the entrance, N inside the loop, and M
at the exit, as in Figures 2 or 3. In addition to the can-
didates produced and invariants proven for each cut-
point during the process of invariant generation, we
assume candidates s"(x, y) at M which would guarantee
partial correctness of the program were they actually
invariants. For the case in which M is a haltpoint,
s"(x, y) would naturally be the output specification
itself.

In order to effectively use the invariants for debug-
ging, it is necessary to record in an invariant table all
the information required to establish each invariant, e.g.
the rule applied, and precisely how the program state-
ments and /or other invariants were used in its deriva-
tion. In general there will be an entire invariant table

200 Communications April 1976
of Volume 19
the ACM Number 4

associated with each cutpoint. However, there is usu-
ally an essential difference in the complexity of the
table for cutpoints on a loop, like N, and for those not
on a loop, like M. All of the invariants at M, for ex-
ample, will be obtained simply by "pushing forward"
either invariants at N, or the exit condition of the block.
Thus below we concentrate on the more interesting
case of the invariant table at N.

For clarity, we will use a more pictorial representa-
tion for the invariant table at N and arrange the in-
variants generated in the form of a directed acyclic
graph (dag). We use terminology similar to that of trees,
talking about the "ancestors" or "descendants" of an
invariant, and of moving "up" or "down" the graph.
For this reason we refer to the graph as an invariant
tree. We will have invariants from previous blocks
given in p(x, y), the initial assignment statements of
the block, and the statements of the loop at the top of
the tree. Each invariant q(x, y) at N is the descendant
of the loop statements, initial assignments, and other
invariants used to establish q(x, y).

By examining such an invariant tree, we can see
both how a desired change in any given statement will
affect the various invariants, and (conversely) how a
desired change in an invariant can be achieved by chang-
ing statements.

The basic steps in correcting the program are as
follows (again referring to Figures 2 or 3):

1. Using the heuristic methods of Section 2, such as
2.3, generate candidates for invariants q"(x, y) at N
which would allow proving the candidates s"(x, y) at
M to be invariants, and thus would allow proving
partial correctness. 5 It is also possible to generate candi-
date exit tests t'(x, y) or candidate exit functions
h'(x, y) which would guarantee partial correctness
along with the existing invariants at N. In the continua-
tion, we discuss changing only the invariants at N, al-
though similar considerations apply to changing the
exit test or exit function.

2. Find actual invariants q(x, y) in the invariant
tree which are "similar" to those candidates q"(x, y)
which guarantee correctness. The precise definition
given to "similarity" will have a direct influence on the
kinds of errors which may be corrected, and there are
obviously many possibilities. We here define two
predicates to be similar if they differ only in constant
(nonzero) coefficients of variables, a constant term, or
other minor perturbations in the relation involved, such
as < in place of _<. When we have succeeded in find-
ing invariants q(x, y) in the tree similar to candidates
q" (x, y), the candidates will be called the goal candidates
at N, and denoted q*(x, y).

3. Attempt to replace q(x, y) by the similar goal
candidates q*(x, y), moving up the tree and modifying

The possibility that the program is partially correct but non-
terminating will not be treated in our discussion; actually it would
lead to a correcting process similar to that described here.

the ancestors of q(x, y) so that the new q* (x, y) will be
derived rather than the former q(x, y).

4. When a statement has been modified in order to
allow deriving a goal candidate, inspect (by moving
down the tree) the effect of the modification on all
other invariants derived from it. This is necessary in
order to ensure that no other part of the proof of partial
correctness or the proof of termination are disturbed.
The inspection could require making additional "com-
pensatory" changes in other statements, or abandon-
ing a possible change.

Example A (continued). Consider once again pro-
gram A of Figure 4. The invariant tree for the program
is shown in Figure 6. For simplicity, we have merely
listed the number of the rule which was applied to
obtain each invariant, rather than including more
information. A brief review of the generation of invari-
ants for this example (in Sections l and 2) should
make the tree clear (except for (A1 l), which should be
momentarily ignored). We have added the "termina-
t ion" and "partial correctness" boxes at the bottom of
the tree to emphasize which statements and invariants
were used to prove termination (with bound 2" < l/x3)
and partial correctness (w.r.t. y4 <_ Xl/X2). Recall that
we were unable to prove partial correctness for
x l / x 2 - x 3 < Y 4 , the first conjunct of the output specifi-
cation. In order to demonstrate the radical approach,
we momentarily ignore the fact that in Section 3 we
actually have proven this program incorrect.

The problematic part of the output specification,
x j x 2 - x3 < y4, is automatically a candidate for an
invariant at H. Using heuristic 2.3, we can generate
candidates for invariants at N based on the candidate
at H (assuming temporarily that the exit test y3 _< x3 is
correct). The strongest candidate at N is x~/x2 -- x3 < Y4
itself. We may also use the transitivity of inequalities
with x~/x2 - x8 < y4 and the exit condition y3 _< x3 to
suggest another natural candidate. We need a q(x, y)
such that

q(x, y) A y3<_x3 ~ x~ / x2 -y4<x3 ,

and see easily that the most general q(x, y) which will
do this is xt/x2 - y4 < y3, or xt/x2 < ya + y4 •

Naturally, if either of these candidates could be
proven to be an invariant at N, the program already
would have been proven correct. Now we turn to the
invariant tree in order to modify the program so that a
correctness proof is possible. We look for invariants
already in the tree which are similar to the above candi-
dates, and also try to combine existing invariants into
new ones similar to the candidates.

For the candidate Xl/X~ - x3 < y4, we find no
similar invariant. For the second candidate, xl /x2<
ya+y4, we may combine (A3), (A4), and (A7), giving

(10) [y2=x2.y3 /~ y~=2x2.y4 Ix xl<yt+2y2]
Xl/X2<2y3+ 2y4 ,

201 Communications April 1976
of Volume 19
the ACM Number 4

i.e. we have the new invariant

(Al l) Xx/X2 < 2y3 d- 2y4 at N.

This is similar to the candidate, which we now will refer
to as the goal candidate

(Al l)* x~/x2 < y3 d- y4 at N.

We have thus found a place to "hang" the candidate
on the tree, and now must adjust the ancestors of (A11)
(i.e. (A3), (A4), or (A7)) so that (Al l)* will be de-
rived instead. By examining eq. (10), it is not difficult
to see that two of the most direct modifications among
the many possibilities are

(a) leave (A3) and(A4) unchanged, but change
(A7) xl < yl + 2y2 to (A7)' 2Xl < y~ A- 2y2; or

(b) leave (A7) unchanged, but change
(A3) y2 = x2.y3 to (A3)' 2y,.= x2.y3 and
(A4) y~ = 2x~..y4 to (A4)' y~ = x,..y4.

Possibility (a) will be considered first. The invariant
tree shows that (A7) was derived from the invariant

(A6) xl < yl A- 2y~. k/Xl >_ yl at N,

by using heuristic 2.1 to strengthen the invariant. To
obtain (A7)', we will first modify (A6) to

(A6)' 2x~ < yt + 2y2 k /h(x , y)

where h(x, y) is the part of (A6)' not of interest to us
at the moment. By tracing back through the derivation
of (A6) (which used the algorithmic rule 1.2), the left
alternative of (A6) can be seen to originate as

(i) Xx < y t (n - - l) + y2(n -1) . . . from the test Xl <
yl + y2, using the
right path

(ii) yt(n) = y l (n - 1) . . . from the fact that
yx is unchanged
along the right path

(iii) y2(n) = y2(n- 1)/2 . . . from the assignment
y2 ~-- y2/2.

These clearly were combined to yield the alternative
Xl < y~ -b 2y2. To obtain 2xl < yl -4- 2y2 instead,
we replace (i) by 2xt < y~(n - 1) + y2(n - 1), i.e.
change the test statement x~ < yl + y2 to 2x~ < yi + y2.
This suggested change was built to yield an acceptable
left alternative of (A6)'. Checking 2Xl < yl + 2y2 alone,
we may conclude that with this suggested change (A7)'
is indeed an invariant, and thus, so is the goal (A11)*.

We must now check whether any other vital in-
variants are affected. F rom the tree it is clear that the
only effect could be on the right alternative of (A6) and
its descendants. Using the new test statement, it is easy
to see that the left path leads to

2x~>_y l (n - - 1) + y 2 (n - - 1) . . . f r o m t h e t e s t 2Xl <
y~ -b y~, using the left
path

yl(n) = y x (n - 1) + y 2 (n - 1) . . . f romthe assignment
yl ~-- yl -4- y2 on the
left path.

These clearly combine to yield 2xl > y~(n), so that
h(x, y) is 2xa > y l , and we have the invariant

(A6)' 2xl < Yl d- 2y2 ~/ 2xl _> yl at N.

Examining the descendants of (A6)', we can see that
(A8) must be replaced by

(A8)' 2xl >_ yl at N,

which is an invariant of the modified program. In turn,
this combined with (A4) will yield the invariant

(AP)' y4 _< Xl/X2 at N.

Thus we also have the invariant y4 _< x~/x2 instead of
y4 <_ x~/(2x2) at H.

However, this invariant serves just as well as the
original Y4 <_ Xl/(2x2) to guarantee partial correctness
for the output specification y4 <_ Xl/X2. Thus the sug-
gested correction leads to the goal (A11)* and does not
disturb any other aspect of the proof of correctness, i.e.
the modified program is guaranteed correct. In Figure 7
we show the invariant tree at N of the modified pro-
gram, which is totally correct. Thus, to summarize:

Replace the test xl < yl -b y2 by 2xl < yx -b yp..

Possibility (b) for achieving the goal (Al l)* will
now be considered, i.e. we would like to replace (A3)
and (A4) by (A3)' and (A4)', respectively (again re-
ferring to the original invariant tree of Figure 6). We
immediately note that since (A3) is an ancestor of (A4),
any change in (A3) will influence (A4). The invariant
(A4) was obtained by bringing two summations in-
volving if-then-else to an identical form, so that y~ and
Y4 could be connected. If during the manipulations of
the relations, 2y2 = x2.y3 is used for substitution instead
of y2 = x~.y3, the new (A4) becomes exactly y~ = x2.y4 ,

i.e. the (A4)' we require. Thus if we can change (A3) to
(A3)', we "automatically" have changed (A4) to (A4)'.

Examining the invariant tree, it is clear that we may
achieve (A3)' by changing either (A1) or (A2), i.e.
either

(A1) y2 = x2/2" to (A1)' y2 = x~/2 "+1 or

(A2) y~ -- 1/2" to (A2)' y8 = 2/2".

Since y2 = y2(0)/2" and y2(0) = x2, the first possi-
bility can be achieved by letting y2(0) = x J 2 , i.e. by
changing the initialization y~ ~ x~ to y2 ~-- x2/2. Now
we check the possible effect of this change on other
invariants. This initialization was used to establish
(A6) and (A7) the first time N is reached, but the new
initialization also does the same job. Tracing other paths
down from this suggested change, we see that (A4) was
used to establish y4 _< xl/(2x2) at H. However, the new
(A4)', yl = x2.y4, may still be combined with (A8),

202 Communications April 1976
of Volume 19
the ACM Number 4

Fig. 6. The invariant tree for eutpoint N of program A.

[(A - I I) X l / X 2 < 2 Y 3 + ~ ' Y 4 I I

f - -- _ _~. -
I T e r r n i n a f i o n l I Part ia l correctness:

I y 4 ~ < x a / x 2 i I 2n< I / x 3 I l- J
m . -

yl _< x~, to show that ya _< x~/x2 at N and thus at H.
Therefore this change is also safe, and we have

Replace the initialization y2 ~ x2 by y2 ~ x2/2.

The change in (A2), from ya = 1/2 n to ya = 2/2% is
also easy to achieve, since y3 = y3(0)/2 ~. Thus we set
y3(0) = 2 instead of y3(0) = 1, i.e. change the initializa-
tion ya ~ 1 to y3 ~ 2. This change will slightly affect the
termination, but the counter n can now be bounded by
2" < 2/xa. Again (A4)' can be shown not to disturb
the correctness for y4 _< x~/x2. Thus a third safe
change is

Replace the initialization y3 ~-" 1 by Y3 ~-- 2. []

So far in this section, we have ignored the possibility
that we have already proven the program incorrect.
Now we briefly consider how a proof of incorrectness
can aid in the automatic debugging process described
above.

We assume that when unable to prove correctness,
the conservative approach was followed and a proof of
incorrectness was produced. Although the existence of
this proof has surprisingly little effect on the basic
debugging technique, it can be of some aid. Clearly, any
change in the program, which is intended to correct the
error, must change at least one of the invariants used in
the incorrectness proof. Thus the paths up the tree from
the goal candidate can be restricted to those which will
influence invariants from the proof of incorrectness.
This is valuable because one of the difficulties with the
use of the tree is the need for further guidance in the
selection of likely paths.

Moreover, it is often possible to discover the smallest

203

change in an invariant which will invalidate the proof of
incorrectness. This then becomes a new source of can-
didates; such a candidate would not guarantee correct-
ness, but at least would ensure that the existing in-
correctness proof could no longer be applied.

Example A (continued). Let us review the proof of
incorrectness of program A of Figure 4. We used the
invariant y4 < xl/(2x2) at H (one of the invariants of
(AI0)) to find an r(x) such that

[y4<_Xl/(2x2) /~ r(x)] ~ y4<_Xl/X2--x3.

This suggested taking r(x) : Xl/(2x2) <_ x~/x2 - x3,
since

(11) [y4 ~< xl/(Ex2) /~ xl/(2x~) <x x l / x 2 - xs]
D y4 <~ Xl/X2- x3.

This r(x) then led to

~'(X) :0_<xl<x2 A 0<xa A xl/(2x2)<_x{x2--x3

which was then simplified and shown to be satisfiable.
Since y4 <_ xl/(2x~) at H was the only invariant used

in the proof of incorrectness and was obtained directly
from the invariant (A9), ya < xl/(2x2) at N, it follows
that any correction of the program must change in-
variant (A9).

If we analyze the above incorrectness proof more
closely, we can obtain some additional information
about how invariant (A9) must be changed. We will try
to find a new invariant in place of (A9) so that following
the framework of the proof given, an unsatisfiable
4d(x) would result, thereby invalidating the proof of
incorrectness. Since the terms y4 and x~/x2 - x3 are

Communications April 1976
of Volume 19
the ACM Number 4

fixed by the desired output specification, the only term of
eq. (10) which can naturally be replaced is xl/(2x~). We
thus lo0k for a term P such that y4 _< P and

~'(x) : 0 < x l < x 2 A 0<x3 A P<x~/x~-x3

is unsatisfiable. Simplifying the desired 4,'(x), we see that
we need 0<Xl<X2/~ 0<x3 D -,~(P<xl/x2-x3), i.e.

O<_xl<x2 /~ 0<x3 ~ Xl/X2- P<x3 .

If we let P be (axe)Ix2, for any a >_ 1, the above im-
plication is clearly true, so the ~'(x) is unsatisfiable.
Thus if we change the relevant invariant at H from
Y4 <_ xl/(2x2) to any Y4 _~ (ax~)/x2, where a > 1, the
existing proof of incorrectness will not work. Since the
invariant y4 _< xt/(2x2) at H was obtained directly from
invariant (A9) at N, we have a class of candidate in-
variants

(A9)' y4 _< (ax~)/x~ for any a > 1 at N.

In general, such additional knowledge is valuable in
restricting the possible alternatives which must be ex-
plored in the invariant tree. Note that all of the alterna-
tive changes previously found for the program "coinci-
dentally" change (A9) to y4 _< Xl/X2 by changing other
invariants. []

Let us briefly compare the two approaches.
Because we guarantee correctness, the "radical"

approach of modifying without first proving incorrect-
ness is not as dangerous as it might seem. In fact, the
only objection would seem to be that in the case of a
program which actually was originally correct, the
efficiency of execution may be reduced in a modified
(also correct) version. From our experience with hand
simulations, we believe t h a t / f we are able to find goal
candidates similar to the invariants, the program is very
likely incorrect, and it is worthwhile to follow the radical
approach without first proving incorrectness.

However, for programs with a large number of
errors (or a small number of very gross errors), it is
unlikely that the required similarity will be found.
"Gross" errors could actually be defined as those which
lead to invariants completely irrelevant to a proof of the
specification. In such a case, the radical approach will
fail, but the conservative approach has a good chance of
at least partial success. For a grossly incorrect program,
a proof of incorrectness will generally be very easy to
find, and the technique of invalidating the proof may
even lead to a correction.

In any case, the proof of incorrectness would be a
valuable aid to the user, even if an automatic correction
could not be made. It provides what could be called
logical diagnostics about the program. From the con-
juncts of the output specification which were contra-
dicted, the general effect of the error is obtained. From
~'(x), the user obtains a class of inputs for which the
program is incorrect. Most importantly, from the
invariants directly used in the proof of incorrectness,

204

the user can identify the problematic relations in the
program.

Conclusion

In this paper we have presented an overview of how
invariants can be produced and used. The basic concept
of an invariant is, of course, not new (e.g. [8, 12]). The
term invariant has also been used previously, for exam-
ple in [13]. We have, however, tried to present a new
perspective which shifts emphasis from the limited task
of verifying a correct program to the more general
framework of logical analysis. From our perspective,
invariants are "independent entities" which can be used
for more than one purpose, only one of which is proving
partial correctness when possible.

Numerous improvements and refinements are clearly
possible to the invariant-generating techniques pre-
sented. In particular, it is necessary to further guide the
heuristics in Section 2, so that they will not be applied
indiscriminately. For example, only when the need for
an invariant involving certain variables has become
evident, should candidates involving those variables be
generated.

The general problem of finding an algorithm to
generate invariants for any program is unsolvable.
Programs clearly exist with relations among the vari-
ables based implicitly on deep mathematical theorems
which could not conceivably be rediscovered by any
general invariant-generating algorithm.

In a practical implementation, the user would be
encouraged to provide his own ideas about what the
intermediate invariants should be ("comments"), and
these will automatically be considered as candidates for
invariants. The system could also ask the user to provide
suggestions as the need arises for invariants involving
specific problematic variables with unclear relationships
at a certain cutpoint. We expect that a reasonably
sophisticated system based on the techniques presented
here, with some aid from the user whenever necessary,
could produce sufficient invariants to conduct the logical
analysis of some nontrivial programs.

Several other efforts have been made to attack the
problem of finding inductive assertions which prove
partial correctness. The earliest work is by Floyd (pri-
vate communication, 1967), and Cooper [2]. Elspas [7]
was the first to consider using recurrence relations.
Wegbreit [28] has developed independently some rules
similar to our heuristic approach, and a method using a
"weak interpretation" of the program. These have been
implemented by German [10]. In [14] the authors sug-
gested additional heuristics to treat arrays. Grief and
Waldinger [11] also described a method for generating
assertions which moves backwards from the output
specification. There is much current activity in finding
new techniques for generating inductive assertions; for
example, [3, 23, and 24].

Communications April 1976
of Volume 19
the ACM Number 4

Fig. 7. The invariant tree for cutpoint N of the modified program A (correction #1).
I P

Y2: x2 ' Y3 J I_. _ _ _ J

I II) j I
I
I

I i L - - - 7

r---l---7 r -~---I 7 r---k 7
I T e r m i n o t i o n I i P a r t i o l c o r r e c t n e s s l I P o r t i o l c o r r e c t n e s s

I I I

The idea of adding variables, such as counters, to the
program in order to facilitate proofs of partial correct-
ness or termination is not new. Knuth [19] uses a "time
clock" incremented at every statement in order to prove
termination. Elspas et al. [6] also discuss how such
counters can be used to prove termination. Other re-
lated works on termination are those of Cooper [2],
Maurer [22], and Sites [26].

The possibility of using a program verifier to debug
programs is first discussed informally by King [18].
Sussman [25] stresses the importance of systematically
eliminating bugs in the context of program synthesis. An
attempt to establish incorrectness by finding counter-
examples was outlined by Floyd [9] as part of his pro-
posed system for interactive program writing. In our
presentation we have basically considered the debugging
of a program with a single loop. For more complicated
programs, with multiple loops, additional research
problems present themselves. What we have intro-
duced here is clearly just a first step toward the use of
invariants in debugging.

For the sake of completeness, a few additional
application areas of logical analysis using invariants are
mentioned below.

The area of program optimization is one natural
application. Once a program has been proven correct
and the "vital" invariants used in the proof identified,
those invariants can be used to optimize the program.
The basic idea is to maintain the vital invariants and exit
conditions, or their equivalents, thereby guaranteeing
the continued correctness of the program. However, the
way in which the invariants and exit conditions are tom-

205

puted would be changed in order to increase the effi-
ciency of the code produced. Using invariants can
systematize the optimization process because "over-
zealous" optimizations which introduce errors are
prevented. Flexibility is also increased because we do not
restrict ourselves in advance to specific transformations
and because it is easy to identify extraneous computa-
tion.

The problem of modification, where an existing
(presumably correct) program is given a new input or
output specification, differing only slightly from the
original, can be reduced to error correction. The old
program must be "corrected" to meet the new specifica-
tion. Knowledge of the invariants allows this to be done
without falling into the familiar pitfall of making some
unchanged part of the specification untrue in the course
of changing the original program (see [25]).

Finally, it should be noted that the techniques pre-
sented provide information on the (time) complexity
and behavior of the given program. For example, in
proving termination by showing counters bounded, we
actually obtain upper bounds on the number of times
the loops may be executed. It would be natural to also
consider lower bounds on the counters immediately after
exit from the block and to obtain automatically more
sophisticated estimates of the total time required for
each loop.

Acknowledgment. We are indebted to Ed Ashcroft,
Nachum Dershowitz, Bernard Elspas, Stephen Ness,
Tim Standish, and Richard Waldinger for their critical
reading of the manuscript.

Communications April 1976
o f Volume 19
the ACM Number 4

Received July 1974; revised January 1975.

References
1. Allen, F.E. A basis for program optimization. Proc. IFIP
Cong. 71, Vol. 1, North-Holland Pub. Co., Amsterdam, 1971,
pp. 385-390.
2. Cooper, D.C. Programs for mechanical program verification.
Machine Intelligence 6, American Elsevier, New York, 1971, pp.
43-59.
3. Caplain, M. Finding invariant assertion for proving programs.
Proc. Int. Conf. on Reliable Software, Los Angeles, Calif., April
1975.
4. Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R. Structured
Programming. Academic Press, New York, 1972.
5. Deutsch, L.P. An interactive program verifier. Ph.D. Th., Dept.
of Computer Sci., U. of California, Berkeley, June 1973.
6. Elspas, B., Levitt, K.N., and Waldinger, R.J. An interactive
system for the verification of computer programs. Research Rep.,
SRI, Menlo Park, Calif., Sept. 1973.
7. Elspas, B. The semiautomatic generation of inductive asser-
tions for proving program correctness. Research Rep., SRI, Menlo
Park, Calif., July 1974.
8. Floyd, R.W. Assig.ning meaning to programs. Proc. Symp. in
Appl. Math., Vol. 19, J.T. Schwartz (Ed.), Amer. Math. Soc.,
Providence, R.I., 1967, pp. 19-32.
9. Floyd, R.W. Towards interactive design of correct programs.
Proc. IFIP Cong., Vol. 1, North-Holland Pub. Co., Amsterdam,
1971, pp. 7-10.
10. German, S. M. A program verifier that generates inductwe
assertions. B.A. Th., Harvard U., May 1974.
11. Greff, I., and Waldmger, R. A more mechanical heuristic
approach to program verification. Proc. Int. Symp. on Program-
ming, Paris, April 1974, pp. 83-90.
12. Hoare, C.A.R. An axiomatic basis of computer programming.
Comm. ACM 12, 10 (Oct. 1969), 576-580, 583.
13. Hoare, C.A.R. Proof of a program: FIND. Comm. ACM 14,
1 (Jan. 1971), 39-45.
14. Katz, S.M., and Manna, Z. A heuristic approach to program
verification. Proc. 3rd Int. Conf. on Artificial Intelligence, Stanford
U., Aug. 1973, pp. 500-512.
15. Katz, S.M., and Manna, Z. Towards automatic debugging
of programs. Proc. Int. Conf. on Reliable Software, Los Angeles,
Calif., April 1975, pp. 143-155.
16. Katz, S.M., and Manna, Z. A closer look at termination.
Acta InJormatica, to appear.
17. King, J. A program verifier. Ph.D. Th., Dep. of Computer
Sci., Carnegie-Mellon U., Pittsburgh, Pa., 1969.
18. King, J. A verifying compiler. In Debugging Techniques in
Large Systems, Randall Rustin (Ed.), Prentice-Hall, Englewood
Cliffs, N.J. 1970, pp. 17-39.
19. Knuth, D.E. The Art of Computer Programming, Vol. I,
Fundamental Algorithms. Addison-Wesley, Reading, Mass. 1968.
20. Manna, Z. The correctness of programs. J. Computer and
System Sci., 3, 2 (May 1969), 119-127.
21. Manna, Z. Mathematical Theory of Computation. McGraw-
Hill, New York, 1974.
22. Maurer, W.D. The theory and practice of algorithm verification.
ERL-M315, U. of California, Berkeley, Aug. 1973.
23. Misra, J. Relations uniformly conserved by a loop. Proc.
Int. Symp. on Proving and Improving Programs, Arc et Senans,
France, July 1975, pp. 71-80.
24. Moriconi, M.S. Towards the interactive synthesis of assertions.
Research Rep., U. of Texas at Austin, Oct. 1974.
25. Sussman, G.J. A computational model of skill acquisition.
Ph.D. Th., MIT, Cambridge, Mass., Aug. 1973.
26. Sites, R.L. Proving that computer programs terminate cleanly.
Ph.D. Th., Dep. of Computer Science, Stanford U., STAN-CS-74-
418, May 1974.
27. Waldinger, R. and Levitt, K.N. Reasoning about programs.
,4rtificial Intelligence 5 (1974), 235-316.
28. Wegbreit, B. The synthesis of loop predicates. Comm. ,4CM 17,
2 (Feb. 1974), 102-112.
29. Wensley, J.H. A class of non-analytical interactive processes.
Computer J., 1 (1958), 163-167.

206

NEW from ACM

1976 Administrative
Directory of
College and University
Computer Sciences

A directory of names and addresses of approximately
1200 chairmen of Computer Science Departments and
Directors of Computer Centers at Universities and
Colleges in the United States, including degree programs
offered and on-site computing equipment.

Compiled and printed by Dr. John W. Hamblen and
computer science students at the University of Missouri-
Rolla, this 100-page directory is available from:

ACM Order Department
P.O. Box 12105, Church Street Station
New York, N.Y. 10249

Prices, prepaid, are $5.00 to ACM Members and persons
l isted in the directory, and $7.50 to others.

~ ~

To: ACM Order Department
P.O. Box 12105
Church Street Station
New York, NY 10249

Please send the following publication. A check is
enclosed for payment in full, payable to ACM, Inc.

1976 Administrative Directory of
College and University Computer
Sciences

copies @ $5.00 per copy Amount $

copies @ $7.50 per copy Amount $

Total enclosed $

Member No

Name_

Address

City.

State 7ip

