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programs are incomplete in that intermediate inductive 
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termination is not proven, and incorrect programs are 
not treated. As a unified solution to these problems, this 
paper suggests conducting a logical analysis of pro- 
grams by using invariants which express what is actually 
occurring in the program. 

The first part of the paper is devoted to techniques 
for the automatic generation of invariants. The second 
part provides criteria for using the invariants to check 
simultaneously for correctness (including termination) 
or incorrectness. A third part examines the implications 
of the approach for the automatic diagnosis and correc- 
tion of logical errors. 
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Introduction 

In recent years considerable effort has been devoted 
to the goal of proving (or "verifying") that a given 
computer program is partially correct--i .e,  that if the 
program terminates, it satisfies some user-provided 
input~output specification. Floyd [8] suggested a method 
for proving partial correctness of flowchart programs 
which has been shown amenable to mechanization (see 
e.g. [17, 5, 27]). However, existing implementations are 
incomplete in that they are not oriented toward incor- 
rect programs: their declared goal is to prove that a 
correct program really is correct. If a program is not 
verified, it is unclear whether the program is erroneous 
or whether a proper proof  has simply not been 
discovered. 

Floyd [8] also suggested a method for proving ter- 
mination based on properties of well-founded sets. 
Although this traditional method is a most general and 
elegant way to prove termination, it is qualitatively 
different from the method for partial correctness, and 
thus the two are difficult to combine. Unfortunately 
the method is also not suitable for proving nontermina- 
tion of a program which does not halt. 

We suggest conducting logical analysis of programs 
using "invariant assertions" which express the actual 
relationships among the variables of the program. These 
"invariant assertions" differ from Floyd's programmer- 
supplied "inductive assertions" in that they are gener- 
ated directly from the program text. In our conception, 
the invariants are independent of the output specifica- 
tion of the program and reflect what is actually happen- 
ing during the computation, as opposed to what is sup- 
posed to be happening. Thus our invariants can be used 
either to verify tl-,~ program with respect to its specifi- 
cations or to prove that the program cannot be verified 
(i.e. contains an error). In addition, these invariants 
enable us to integrate proofs of termination and non- 
termination into our logical analysis. Invariants can 
also be used to debug an incorrect program, i.e. to 
diagnose the errors and to modify the program. 

The existing implementations of Floyd's method for 
proving partial correctness are actually not fully auto- 
matic, since the user must provide the appropriate 
inductive assertions. This deficiency has been recognized 
and there has recently been a substantial effort to gen- 
erate the inductive assertions automatically (for exam- 
ple, [3, 7, 10, 14, 23, 24, and 28]). Essentially, generating 
invariant assertions is a similar task. We therefore 
devote a large part of this paper to presenting our tech- 
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niques for the automatic (or semiautomatic) generation 
of invariants. 

We actually intend that whenever new invariants 
have been produced, all invariants generated up to that 
point will be used to check simultaneously for (a) par- 
tial correctness, (b) termination, (e) incorrect results, 
and (d) nontermination. If correctness ((a) and (b)) 
has been established, an attempt may be made to opti- 
mize the program through a fundamental revision of 
the program statements, based on the invariants. If 
incorrectness ((c) or (d)) has been established, an 
attempt is made to automatically debug the program, 
i.e. to diagnose and correct the errors in a systematic 
manner, again using the invariants. If neither correct- 
ness nor incorrectness can be established, we attempt 
to generate additional invariants and repeat the process. 
Assertions ("comments") supplied by the programmer 
may or may not be correct, and therefore are considered 
to be just promising candidate invariants. As a last re- 
sort, it may nevertheless be possible to take a more rad- 
ical approach and use the invariants for modifying the 
program so that correctness is guaranteed, taking the 
calculated risk of modifying an already correct program. 

In the following sections we first present the tech- 
niques of automatic invariant generation, an algorith- 
mic approach in Section 1 and a heuristic approach in 
Section 2. Then in Section 3 we describe the applica- 
tions of the invariants for proving correctness (including 
termination) or incorrectness. In Section 4 we outline 
the practical implications of the invariants for auto- 
matie debugging. The other implications, such as for 
optimization, are discussed briefly in the Conclusion. 
The Conclusion also includes some bibliographical 
remarks. 

Preliminaries 

The programs treated in this paper are written in a 
simple flowchart language with standard arithmetic 
operators over the domain of real or integer numbers. 
We assume a flowchart program P with input variables 
x, which do not change during execution, and program 
variables y, which do change during execution and 
whose final values constitute the output of the pro- 
gram. In addition we are given an input predicate 
~(x), which restricts the legal input values, and an 
output predicate ~k(x, y), which indicates the desired 
relationship between the input and output values. 

For convenience we consider blocked programs. 
That is, we assume the program is divisible into (pos- 
gibly nested) "blocks" in such a way that every block 
has at most one top-level loop (in addition to possible 
lower-level loops which are already contained in inner 
blocks). The blocks we consider have one entrance and 
may have many exits. Algorithms for identifying such 
blocks can be found in [1 ]. Every "structured program," 

e.g. program without goto statements (see [4]), can be 
decomposed into such blocks. 

The block structure allows us to treat the program 
by first considering inner blocks (ignoring momentarily 
that they are included in outer blocks) and then work- 
ing outwards. Thus for each block we can consider its 
top-level loop using information we have obtained 
from the inner blocks. 

The top-level loop of a block can contain several 
branches, but all paths around the loop must have at 
least one common point. For each loop we will choose 
one such point as the cutpoint of the loop. 

We use counters attached to each block containing 
a loop as an essential tool in our techniques. Since each 
loop has a unique outpoint, we associate a counter with 
the outpoint of the loop. The counter is initialized 
before entering the block so that its value is zero upon 
first reaching the outpoint, and is incremented by l 
exactly once somewhere along the loop before return- 
ing to the cutpoint. There are many locations where 
the initialization of the counters could be done. The 
two extreme cases are of special interest: (a) the counter 
is initialized only once, at the beginning of the program 
(a "global" initialization, parameterizing the total 
number of times the outpoint is reached), or (b) the 
counter is initialized just before entering its block (a 
"local" initialization, indicating the number of execu- 
tions of the corresponding loop since the most recent 
entrance to the block). In the continuation, we will 
assume a local initialization of counters, since our 
experience has been that this is generally the most 
convenient choice. 

The counters will play a crucial role both for gener- 
ating invariants and for proving termination. They will 
be used both to denote relations among the number of 
times various paths have been executed and to help 
express the values assumed by the program variables. 
It should be noted that it is unnecessary to add the 
counters physically to the body of the program. Their 
location can merely be indicated, since their behavior 
is already fixed. 

It is sometimes convenient to add auxiliary cut- 
points at the entrance and exit of a block. In addition, 
we always add a special outpoint on each arc immedi- 
ately preceding a HALT statement. Such outpoints will 
be called haltpoints of the program. 

Our first task is to attach an appropriate invariant 
assertion q~(~, y) to each outpoint i. We first define our 
terms. 

A predicate qi(x, y) is said to be an invariant asser- 
tion (or invariant for short) at cutpoint i w.r.t. ~(x) if 
for every input ti such that ~(ti) is true, whenever we 
reach point i with y = b, then qi(ff,/~) is true. An 
invariant at i is thus some assertion about the variables 
which is true for the current values of the variables 
each time i is reached during execution. 

For a path ~ from outpoint i to cutpointj ,  we define 
Ra(x, y) as the condition for the path a to be traversed, 

189 Communications April 1976 
of Volume 19 
the ACM Number 4 



and ra(X, y) as the transformation in the y values which 
occurs on path a. A set S of outpoints of a program P 
is said to be complete if, for each outpoint i in S, all 
the cutpoints on any path from START to i are also 
in S. 

We now state a sufficient condition (proven in 
[20]) for showing that assertions ("candidate invari- 
ants")  are actually invariants. 

LEMMA A. Let S be a complete set of cutpoints of a 
program P. Assertions {qi(x, y) I i E S} will be a set of 
invariants for P w.r.t. ~ if 

(a) for every path a from the START statement to a 
cutpoint j (which does not contain any other cutpoint) ~ : 

'v'x[~(x) /~ R,(~) ~ qi(x, r~(x))], and 

(b) for every path a from a cutpoint i to a cutpoint j 
(which does not contain any other cutpoint) : 

VxVy[q,(~, y) A R,(;g, y) ~ qi(x, r~(;g, y))]. 

For  the initial segment of a program shown in Figure 
1, assertions ql(x, y) and qz(x, ~) will be invariants at 
outpoints 1 and 2 respectively if 

(a) Vx[~(x) ~ q~(x, g(x))], 

(b) VxVy[q~(x, y) /k ,~t(x, Y) ~ qt(x,f(x, y))], 
VxVy[q~(x, y) A t(x, y) ~ q2(x, h(x, y))]. 

Note  that the input predicate 4,(x), which depends only 
on x (variables not changed during execution), is auto- 
matically an invariant of any cutpoint of the program, 
and does not need any further justification. 

Lemma A is slightly misleading, because it implies 
that a full-fledged set of  assertions is provided at a 
complete set of the outpoints and that these are checked 
simultaneously. In fact, the invariants will be added 
one after another until the needs of the logical analysis 
have been met. 

At every stage of the invariant generating process, a 
situation as in Figure 2 will apply for each block. At 
outpoints L, N, and M, invariants p(x, y), q(x, y), and 
s(x, y) respectively will already have been proven. How- 
ever, we also will have promising candidates for in- 
variants p' (x, y), q'(x, y), and s'(x, y), which we have so 
far been unable to prove to be invariants. These candi- 
dates could originate as comments given by the user 
or, as in the case of s'(x, y), from the output specifica- 
tion, which we automatically designate a candidate at 
the haltpoints. As indicated in Section 2, additional 
candidates may be generated during this process. 

For  a block of the form given in Figure 2, we con- 
centrate on developing invariants at outpoint N on the 
loop. For  the auxiliary cutpoint M, the invariants are 
generated by "pushing forward"  any invariant obtained 
at N. Thus, if at any stage an invariant q(x, y) has been 

Note that the .p values are not defined at the START state- 
ment, and that they are initialized by constants or functions of  
£" along a path from START. Thus, R, and r, for such a path are 
really only functions of £, and not of  y. 

Fig. l.  An initial segment of  a program. 

. . . .  . 7 - - - . ~  
,~nput specf f~cahon I 

L . . . .  t ( ; )____J 

F-os -se r t i o  n - - ]  
, q,(~ Y) ', t - ~ _ _  '__" _ _ _  

I 
asser t ion  ] 

I q2(;3) i t-  _ _ _ ~ _  _ _J 

Fig. 2. A block containing a single-path loop. 

invor iont  P ( ~ ' Y ) I  - 
condidote p, ( ; ,~) j  - - ~  I_ 

;'-n-;b-7 
in,a,~an, ~(; S ) I___~- -~ : :  j 
candidate q ' ( ; , ~ )J -~_N__ ._  

candidate s'(~,~) J /4 

r - - - l - -  7 

L~:iz~J 

established at N, we automatically can take as an in- 
variant at M any s(x, 2) satisfying 

Wx'Cy[q(x, Y) A t(x, y) ~ s(x, h(x, y)]. 

In order to establish that a candidate q'(x, y) is 
actually an invariant at N, it follows from Lemma A 
that we must show 

(i) VxVy[p(x, y) ~ q'(x, g(x, y))], 

and 

(ii) VxV2[q(x, y) A q'(x, Y) /% :~t(~, y) 
q'(a/(a, y))]. 

It must be emphasized that special care should be taken 
in case of failure in an attempt to establish that a candi- 
date is an invariant. For  example, suppose that ql' and 
q2' are candidates for invariants at the cutpoint N and 
that both qt' and q2' satisfy condition (i). It is entirely 
possible that neither qx nor q2' satisfies condition (ii) 
individually, but that qt' /k q2' does satisfy condition 
(ii), and therefore is an invariant. This phenomenon, 
i.e. that it is impossible to show a weak property but it is 
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possible to show a stronger one, is typical in mathe- 
matical proofs by induction. The explanation is that 
although we must show a stronger property on the right 
of the implication, we are also provided with a stronger 
inductive hypothesis on the left of the implication. 

In Sections 1 and 2 we present techniques for dis- 
covering invariants. These techniques were originally 
designed with an automatic implementation in mind. 
However, they are in fact also useful for finding in- 
variants by humans. For  simplicity of presentation, we 
consider the single block of Figure 2. We will distin- 
guish between two general approaches to producing 
invariants: 

(1) the algori thmic  approach in which we obtain guar- 
anteed invariants q(x ,  y)  at N directly from the assign- 
ments and tests of the loop (using also the entry in- 
variant p ( x ,  y)  at L), and 

(2) the heurist ic  approach in which we obtain a new 
candidate q ' (x ,  y)  for an invariant at N from already 
established invariants and old candidates which we 
have not yet been able to prove to be invariants. 

1. Generation of Invariants: Algorithmic Approach 

We present first the algorithmic approach for gen- 
erating invariants. We distinguish between invariants 
derivable from the assignment statements and those 
based primarily on the test statements. The input 
predicate ~(x) and the fact that a counter is always a 
non-negative integer will be used as "built-in" invari- 
ants whenever convenient. 

1.1. Generating invariants from assignment statements. 
We observe that assignment statements which are on 
the same path through the loop must have been exe- 
cuted an identical number of times whenever the cut- 
point is reached. Thus the counter n of the cutpoint 
can be used to relate the variables iterated. We denote 
by y(n)  the value of y the (n -k 1)-th time the outpoint 
is reached since the most recent entrance to the block 
(assuming a local initialization of the counters). Thus 
y(0) indicates the value of y the first time the cutpoint 
is reached. 

We use a self-evident fact as the basis for generating 
invariants: for x such that ~(x) is true and for each path 
a around the loop, we have 

(1) Ra(x ,  y(n -- 1)) ~ y(n)  = r~(x,  y (n  -- 1)) 
f o r n ~ >  1. 

That  is, if values y ( n  - 1) occurred at the outpoint, and 
a path a around the loop is then followed (that is, 
Ra(x ,  y ( n  -- 1)) is true), then the next values of y at the 
outpoint (i.e. y(n) )  will be the result of applying r~ 
to y (n  - 1). 

In practice, if there is only a single path around the 
loop such as in the block of Figure 2, it is usually easier 
to ignore the path-condition Ra, and find invariants 

which satisfy the stronger condition 

(2) y(n)  = r a ( x , y ( n  -- 1)) for n /> 1. 

Considering (2) for each component of y, we have a 
set of recurrence equations, one for each Yi. We now 
attempt 'to express as many as possible of these equa- 
tions in i t e ra t i v e fo rm ,  e.g. as 

(a) y j (n )  = y~(n - 1) + gj (~ ,p(n  - 1)) or 

(b) y~(n) = y j ( n  - l).g~(.% p(n - 1)). 

Such forms are desirable because they can often be 
solved to obtain 

(a') y j (n )  = y~(O) + ~ g ~ ( ~ , p ( i  - 1)) or 
i = 1  

(b') y~(n) = y ~ ( O ) . I X g ~ ( ~ , . ~ ( i  - 1)). 
i ~ l  

There are two ways to obtain invariants at a outpoint 
from equations of the form (a') or (b'). First, it may be 
possible to express 

gj (x ,  y ( i  -- 1)) or I ~  gs(x ,  y ( i  --  1)) 
i = 1  i = I  

as only a function of x and n, not containing any ele- 
ments of  y ( i  - 1). We then have an assertion which 
relates y j (n) ,  yi(O), x ,  and n. Second, if there is a 
relation between 

gz(2, .~)(i -- 1)) and ~ gk(2,  .~(i --  1)), 
i = l  i = l  

or between 

r l  g,(~, .~(i - 1)) and I~I gk(~, .~(i - 1)), 
i = 1  i = l  

then we can use this relation to connect y~(n) and yk(n) .  
Once we have relations which are true for all n /> 0, 
with all variables in the form y~(n), we can simplify by 
replacing each y~(n) by y~, obtaining an invariant which 
may still contain occurrences of  y~(0). 

Whenever possible, known information from the 
entry invariant p(~, p) may be used to obtain p(0). 
When the variables are initialized immediately before 
entering the loop, p(e,  p) will indicate the exact values 
of p(0). However, even when this is not the case, 
p(~, p) may often contain valuable information about 
y(0). 

It is important to note that any predicate obtained as 
above, say from (a') or (b'), is not simply a candidate 
for an invariant, but  is ac tual ly  an invariant.  This is 
because substituting the correct initial value in place of 
p(0) ensures that the relation obtained is true the first 
time the cutpoint is reached, and the use of r~(e, p) 
in obtaining the recurrence equations ensures that the 
relation is true subsequent times the outpoint is reached. 

Recall that the transformation from the recurrence 
equation (1) to (2) was made under the assumption 
that there was a single path around the loop as in 
Figure 2. The above discussion can easily be extended 
to the case of a loop with several possible pa ths- -by  
using if-then-else expressions. For  example, considering 
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the loop of Figure 3, with two paths around the loop, 
eq. (1) becomes 

~ f l ( g , p ( n -  1)) A t2(g,#(n- 1)) 
#(n) = f l(~,p(n-- 1)) 

,~fl(~,#(n-- 1)) A ~ t ~ ( ~ , ) ( n -  1)) 
::9 .~(n) -- J~(.~,#(n-- 1)). 

These can be combined into one statement, as 

-~ta(g, #(n -- 1)) ~ [if tz(~, #(n -- 1)) 
then p(n) = Ji(~, ) ) (n  - 1)) 
e lse)(n)  = J~(~, .~(n - 1))]. 

Since tl(g, p) controls the exit from the block, and 
does not affect the choice between the two paths around 
the loop, it can be ignored, as before, giving the stronger 
condition 

(3) if t~(~,p(n-- 1)) then .~(n) = jq(~ ,#(n-  1)) 
else p(n) = ~ (~ ,p (n -  1)). 

Equations of this form can then be put in iterative form, 
and treated just like equations of form (2). 

1.2. Generating invariants from tests. So far we have 
concentrated on generating invariants from assignment 
statements, and the tests have merely been an obstacle 
which had to be overcome. Now we will show how the 
tests can be an aid to allow extracting additional in- 
variants from the loop. 

Suppose the block has the paths a l ,  a 2 , . . . ,  ak 
(k /> 1) from the cutpoint N around the loop back to N. 
Again we shall use an obvious fact: whenever N is 
reached during execution, either it is the first visit at the 
point for the present entrance to the block, or control 
was previously at N and one of the paths al . . . .  , ark 
was followed, i.e. the block was not exited. Letting n be 
the counter of the block, this can be written more pre- 
cisely as 

(4) n = 0 V [ R , l ( ~ j ( n - l ) )  V R~(~,p(n- - l ) )  V 
• . .  V R,,~(~,.9(n-- I))]. 

The above claim (4) is clearly always true at N. By 
expressing p(n -- 1) in terms of.9(n)--using the recur- 
rence equations given by (1)- -and adding known in- 
formation about  y(0), we can often simplify (4). Again, 
if we obtain relations which are true for all n /> 0, and 
all variables are expressed as y~(n), we can remove the 
parameter  n to obtain an invariant. We can also use 
known invariants at N, in particular those generated 
from assignment statements, in order to help simplify. 

We demonstrate some of  the above techniques on a 
program. Note that at this point we make no claim 
about whether this program is correct. 

Example A. The program ~ A of Figure 4 is intended 
t o  divide x~ by xz within tolerance xa, where x~, x~, 
and  xa are real numbers satisfying 0 x< x~ < x~ and 

This program is based on Wensley's division algorithm [29]. 
Note that we use a vector assignment notation, where, for example, 
(y~, y~) ,-- (yl + y~, y~ + y~/2) means that y~ *-- y~ + y~ and 
y, *-- y~ + yd2 simultaneously. 
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Fig. 3. A block containing a loop with two paths. 

invoriont p ( i , ~ ) ~  . . . .  ~ L  
cancliclat e ~ ( ; , ~ 1 ~  

', n~O ' . . . . . .  J 
invori0n, q l i , y )  ~ . . . . . .  N ~  J 
condiaote q ' ( i , i l /  . . _ J Z L _ _  / 

_ ~ ,  ~: .-~'~F r - - - L - - ~  
L n_n+t , . . . . .  J 

,nvorian, s(x,y)!.__.~ M ~ . 1 

Fig. 4. Program A. Real division within tolerance. 

t input spec i f i ca t i on  i i i ] O~xl<x~e,O<x3 I 
i . . . . . .  -T . . . . .  _i 

t 
I '°, ' .",°' I 

f ~- i--o- l 

r . . . . . .  i t  . . . . . .  1 
: output specification I ('-x,( y,,,,y~'~ T 
I X l / X 2 - x 3 < y  4 ^ I 

" Y4 • x,/~2 ', 

L . . . . . . . . . .  --I [ (Yl 'Y4 ) - - tY I 'Y2 'Y4"Y3 /2 )  ] 

[ (yz,~3)-(y~/2,y3/a) I 

r--- J -  -~ 
L_" :n :LJ  

0 < x3. Thus the final value of y4 is supposed to satisfy 
Xl/X2 --  X3 <( y4 <. Xl/X2 at the haltpoint H. For  clarity 
we have explicitly added the counter n to the program. 
There are two paths around the loop from the cutpoint 
N back to N: the right path following the T-branch from 
the test x~ < y~ + y2, and the left path following the 
corresponding F-branch. By using (1) we have for each 
path: 

right path: 

[y3(n- l )>x 3  A x~<y~(n-  1 ) + y 2 ( n -  1)] 
[yl(n) = y ~ ( n -  1) /k y2(n) = y 2 ( n -  1)/2 A 
y3(n) = y 3 ( n -  I ) /2  A y 4 (n )=y 4 (n -  1)], 

left path: 

[y3(n- 1) >x3 A xt>>,y~(n- 1)-t-y2(n- 1)] 
[yt(n) = y~(n - 1) + y,,(n - 1) h 
y~(n) = y~(n - 1)/2 h y3(n) = y~(n - 1)/2 A 
y4(n) = y4(n - 1) + y 3 ( n -  1)/21 
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Since the assignments to yz and y3 are not affected by 
which path is used, we may ignore the path conditions, 
obtaining 

y2(n) = y 2 ( n - -  1)/2 A ys(n)  =y3(n-- 1)/2. 

Both of these are in the iterative form (b) and may be 
solved to yield 

n 

yz(n)  =y2(0) . I ' I1 /2  A y a ( n ) = y 3 ( 0 ) ' I I  1/2. 
i = l  i = 1  

Since it is clear that y2(0) = xz and y3(0) = 1 at N and 
that 1~=1 1/2 = 1/2 ~, we have (dropping the param- 
eter n) the invariants 

(A1) y2 -- x 2 / 2  n at N and 
(A2) y3 = 1/2 ~ at N. 

These may be combined to yield the additional invariant 

(A3) y2 = x2.y3  at N. 

For  variables yx and y4, we apply the techniques 
used to obtain eq. (3)• Ignoring the exit test y~ _< x3 
and expressing the effect of the branching by using 
if-then-else, the resulting recurrence relations are 

y l (n )  = if Xl < y l ( n  - -  1) + y 2 ( n  - -  1) 
then y ~ ( n  - -  1) 
else y l ( n  - -  1) + y 2 ( n -  1) 

y4(n) = if xl < y l ( n  - -  1) + y2(n - -  1) 
then y4(n -- 1) 
else y 4 ( n -  1 ) +  y 3 ( n -  1)/2. 

Both of these are in iterative form and we can obtain 
the summations 

y~(n) = y~(0) -b ~ [ifxl  < y~(i - -  1) q- y2(i - -  1) 

then 0 
else y 2 (  i - -  1)] 

y4(n) = y4(0) q- £ [if x~ < y l ( i  - -  1) 4- y2(i - -  1) 

then 0 
else y3(i  - -  1)/2]. 

We will use the invariant (A3), that Y2 = x2.y3 at N, 
in order to bring the two summations to an identical 
form. Substituting x2.y3( i  - 1) for y2(i  - 1) in the else 
part of the equation for yl(n), factoring out x2, and 
dividing by 2 inside the summation and multiplying by 
2 outside, we obtain 

yl(n) = y~(0) -t- 2x2. ~ [if X~ < y~(i - -  1) 4- y2(i  --  1) 
i f f i l  

then 0 
else y3(i  - -  1)/2]. 

We have expressed y~(n) and y4(n)  in terms of the same 
summation, which thus can be used to connect these 
two variables. Substituting yl(0) -- 0 and y4(0) = 0, 
we obtain 

y l ( n ) / ( 2 x 2 )  = ~ [if x~ < y ~ ( i -  1 ) - t - y 2 ( i -  I) 
i f f i l  

then 0 
else y3(i  - -  1)/2] 

= y4(n). 

Thus we have the invariant 

(A4) yl = 2x2 .y4  at N. 

We now turn to eq. (4), using the tests of the loop 
to generate additional invariants. We have the fact 

n = 0  
V D'3(n- l ) ) x 3  A x l < y l ( n - -  l )+y2(n--  1)] 

• . .  right path 
V [y3(n- 1)>x3 A x~>>,y~(n- l ) + y . , ( n -  1)] 

• . .  left path. 

For  each path we now use the equations for p(n) ob- 
tained from (1) in order to express p(n - 1) in terms of 
p ( n ) .  For the right path we will use the fact that y l (n )  = 

y ~ ( n -  1), y2(n) = y 2 ( n -  1)/2, andy3(n) = y 3 ( n -  1)/2, 
while for the left path we will use the fact that y~(n)  = 

y~(n - 1) 4- y2(n - 1) and y3(n) = y3(n - 1)/2. These 
substitutions will yield 

n = 0  
V [2ya(n) > x3 A 
V [2y3(n) > x3 A 

xl <y~(n) +2y2(n)] . . .  right path 
Xl >>, y~(n) ] . . .  left path. 

Removing the parametrization in terms of 11, and sepa- 
rating the term involving y3, we have the two new in- 
variants at N, 

[n=0  V 2y3>x3] A In=0  V x l < y l - - b 2 y 2  V xl>>,yl]. 

To obtain stronger invariants, we can check whether the 
n = 0 case is subsumed in the other alternatives. The 
left conjunct may not be so reduced and we have the 
invariant 

(A5) n = 0 V 2y~ > x~ at N. 

The n = 0 possibility in the right conjunct can easily be 
seen to be included in the other possibilities, since 
y~(0) = 0 and xt /> 0 imply that x~ >/ y~(0). Thus we 
have the invariant 

(A6) x l < y ~ + 2 y 2  V x l>/y~ at N. 

Note that invariant (A6) is a disjunction of  the form 
p V q. This disjunction actually reflects the effect of 
taking the right path or the left path, respectively, 
around the loop. [ ]  

2. Generation of  lnvariants: Heuristic Approach 

We now describe several heuristic techniques which 
suggest promising candidates for invariants. There is 
no guarantee that the candidates produced are actually 
invariants, and they must be checked (using Lemma A). 

It is important to notice that when we are unable to 
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establish that a candidate is an invariant, it should be 
saved to retry later. The first reason for retrying the 
candidate is that in the meantime we may have estab- 
lished independently additional invariants such that the 
extended set of invariants along with the candidate 
satisfy Lemma A. A second reason is that additional 
" re la ted"  candidates may have been generated and 
that, due to the "induction phenomenon"  mentioned 
after Lemma A, we now can prove the candidate in 
conjunction with the additional candidates even though 
we could not prove it alone. 

It should be clear that before an automatic system 
for generating invariants is practical, strong guidance 
must be provided for the application of the following 
heuristics, since, applied blindly, they could result in 
too many irrelevant candidates. Here we merely state 
some of the various possibilities in order to give the 
flavor of this approach. 

2.1. Strengthening existing invariants. Whenever we 
have established an invariant at a outpoint i which is a 
disjunction of  the form 

p l V p 2 V  . . -  Vpk (k >/ 2), 

we try to see whether any subdisjunction (in particular, 
each p~. alone) is itself an invariant at i. In the previous 
section, we actually used this approach when we elimi- 
nated the n = 0 alternative to obtain the invariant (A6). 

2.2. Weakening existing candidates. Suppose we have 
at i a candidate which is a conjunction of  the form 

pl A p2 A . . . A pk (k >/ 2), 

and we have failed to prove that it is an invariant at i. 
One natural heuristic is to try a subconjunction (in par- 
ticular, possibly each Pi alone) as a " n e w "  candidate. 
Note that the failure to prove pl A p2 A • • • A p~ an 
invariant says nothing about whether its subconjunc- 
tions are invariants. Theoretically, any nonempty sub- 
conjunction is a legitimate candidate and should be 
checked independently. 

For  the next three heuristics, we refer back to 
Figure 2. 

2.3. Pushing candidates backwards. Let us assume that 
I 

p(x,y)  is an established invariant at L and q (~,)) is a 
candidate invariant at N. If  the inductive step around 
the loop has been shown to establish q'(x,y) at N, then 
the only difficulty could be that p(x,y)  did not imply 
q'(x,g(;~,y)). We then try 

I - t p (~, :) :p(~, :) ~ q (~, g(~, :)) 

as a new candidate at L. This will " f ix"  the problem 
with q'(~, ) )  but of course we must now prove p'(~, .~) 
an invariant at L. Note that in any case p'(~, ~) must be 
an invariant at L if we are to succeed in showing that 
q'(~, .~) is an invariant at N and in this sense is the 
"weakest"  possible precondition for the base case of the 
induction for q'(~, .~). 

A similar technique can also be used to generate 
candidates at N: 

Let us assume that q(~, ) )  is an established invariant 
at N and s'(~, .~) is a candidate invariant at M. Since 
s'(& .~) is reached only from N, the reason we were not  
able to prove it an invariant must be that q(~, .~) A 
t(& .~) did not imply s'(& h(& .~)). Thus we would like 
to find a candidate q'(~, : )  at N such that 

(5) [q(~, : )  A q'(~, :) A t(~, :)]  D s'(~, h(~, :)) .  

Among the many possible choices of q'(~, .~) which 
satisfy this condition are 

q'(:L.~) : [q(£,.~) A t(~,.~)] ~ s'(£, h(~,.~)) or 
q'(~, : )  : s'(~, h(~, :)) .  

This first possibility is, just as above, the "weakes t"  
possible assertion which satisfies (5), while the second is 
the "s t rongest"  possible. As a very useful third alterna- 
tive to the above suggestions, the transitivity of certain 
inequality or equality relations can suggest a candidate 
which takes into account the known information from 
q(~, .~) and t(~, .~). For  example, if we need a q' such 
t h a t q ' A B <  C ~ A < C where A, B, and C are any 
terms, the relation A x< B is a natural candidate for q'. 

Any candidate for q'(~, .~) obtained from formula 
(5) must be checked. Unfortunately, there are no clear- 
cut criteria for finding a q'(~, ~) which will be easy to 
prove. If  we fail to show some candidate q'(g, :,) an 
invariant at N, clearly some "weaker"  version may 
nevertheless succeed. On the other hand, because of the 
"induction phenomenon"  it is quite possible that a 
"stronger" candidate q'(~, : )  actually could be more eas- 
ily proven. 

Note that this process could also be used for the 
path around the loop, adding q"(~, :,) as a new candi- 
date at N so that we are able to prove q'(~, f (~ ,  .f,)). 
Again, this has the effect of transferring the "burden of 
p ro o f "  from q'(g,.~) to q"(~,.~). 

2.4. Pushing invariants forward. Assuming that p(x,y)  
is an established invariant at L, a straightforward 

. ! 

heuristic is to try to find a candidate q (x,y) at N 
such that 

P(~, Y) ~ q'(~, g(~, Y)). 

The above equation ensures that the first time N is 
reached, q'(~, ~) is true. Of course, in order to complete 
the proof  that q'(~, .~) is an invariant, the corresponding 
formula for the path around the loop must be con- 
sidered. 3 

Note that immediately after every assignment y~ ~-- 
f (~,  ) )  wheref(~,  : )  does not include yl itself, we know 
that y~ = f(~,  .~) is an invariant. Also, after every test 
t(~, .~) we can add the invariant t(~, .~) on the T-branch, 
and :-~t(~, .~) on the F-branch. Such invariants can also 

3 This is actually the method indicated in the preliminaries for 
obtaining invariants at cutpoint M at the exit of the loop. 
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Fig. 5. Program B. Hardware integer division. 

input spec i f i ca t i on  t 
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Yl 'Y4 ,({integers} I 

. . . .  ~ _ _ _ J  

L . . . . . .  J 
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be pushed forward to generate useful candidates at the 
outpoints. 

2.5. Bounding variables. One often useful type of candi- 
date for q'(x,y) at N involves finding upper or lower 
bounds for the variables, expressed only in terms of 
constant expressions with respect to the block. That  is, 
the bounds contain only constants, input variables, or 
other program variables which are unchanged inside 
the loop of the block. 

Suppose that by considering f(~,  p) and the in- 
variant q(~, p) at N, we are able to identify a variable 
Yi which is either always nondecreasing (or always non- 
increasing) along the path around the loop. Now we 
try to infer from p(~, p) an initial value y;(0) = E for 
yj at N where E is a constant expression with respect to 
the block. If yj is nondecreasing along the loop we can 
conclude that Yi /> E is an invariant at N, while if yj is 
nonincreasing y; x< E is an invariant. 

A similar heuristic tries to establish that the variables 
maintain some data type, e.g. integer or real, during 
execution. 

We will first illustrate the application of the heu- 
ristics in obtaining some additional invariants for the 
program of Example A, and then present a new example 
which will illustrate the possible interplay between the 
algorithmic and heuristic techniques. 

Example A (continued). Let us consider again the 
program A of Figure 4. Applying heuristic 2.1 to the 
invariant 

(A6) x~<yxq-2y2 V xx>/yx at N, 

195 

we check first whether xl < yl + 2y2 is itself an in- 
variant. From Lemma A, we can show that 

(a) V~[0x<xl<x~/~ 0<x~ D xx<0+2x2] and 
(b) Y.~Vp [x,<yad-2yz A ya>x3 A x,<y,+y2 

D xx<yl+y2], 
V~Vp [Xl<yl+2y~ A y3> x3A x~>>. y~+y2 

D x~<yx+yz+y2]. 

Since all of the conditions are true, we have the in- 
variant 

(AT) x~ < yl + 2y2 at N. 

For  xx >/ y l ,  the second disjunct of (A6), we can show 
that 

(a) V~[0~<x~<x2 A 0<x3 D x~>~0], 
(b) V~Vp[Xl>/yx A y3>x3 /~ x~<y~+y2 ::9 Xl>/yx] 

Y~Vp[xi>/ yx /X y3> x3 /X Xl>>. ytq-y2 D xx>>. yiq-y2]. 

Since these conditions are all true, we have shown that 
the second alternative is also an invariant, i.e. 

(A8) x~ /> yl at N. 

We can combine the invariant (A4), y~ = 2x2.y4, 
with (A8) to obtain an upper bound on y4 in terms of 
~, i.e. the invariant 

(A9) y4 <~ Xl/(2x~) at N. 

This invariant will be of special use later, in Sections 3 
and 4, and in practice would be generated only when a 
need for such a bound arises. 

Now, by pushing forward to H the invariants (A1) 
to (A9) at N, and adding the exit test y3 x < xa, we 
obtain 

(AI0) y3<<.x3/X y2=x2/2" /X y3=1/2"  /X y2=x2.y3 /X 
Yx = 2x2. y4 /~ (n = 0 ~/ 2ya > x~) /~ xx < yx + 2) 2 

/X Xl>/y~ /X y4<<.x1/(Zx2) at H. [ ]  

Example B. The program B shown in Figure 5 is 
supposed to perform integer division in a manner 
similar to computer hardware. For  every integer input 
Xl>~0 and x2>0, we would like to have as output 
Yl = rem(xi , x2) and y4 = diV(Xl , x2), i.e. x~= y4. x2q-yl 
/~ 0~<yl<x2 /~ yl,y4C{integers}. This program dif- 
fers from the previous example in that it contains two 
loops, one after the other. The upper block, with counter 
n and outpoint N, consists of a simple loop, while the 
lower block, with counter m and outpoint M, consists 
of a loop with two paths. For  convenience, we have 
added an additional outpoint L between the blocks. 

Our strategy will be to gather initially as many in- 
variants as possible at N. The algorithmic techniques 
will be used to directly generate invariants at N, and 
then some of the heuristics presented above will be used 
to suggest additional invariants. We then push the in- 
variants forward to outpoint L, so that we have as many 
invariants as we can when the second block is first 
reached. Then we will employ the algorithmic tech- 

Communications April 1976 
of Volume 19 
the ACM Number 4 



niques to generate invariants at M. Finally, we use 
heuristic techniques based on the invariants at L and M 
and the candidates implied by the output specification 
at H to generate additional invariants at M. We will 
not go into the problem of which heuristic rule to use 
first, but simply indicate how some candidates, which 
will indeed be useful invariants, can be found by using 
various heuristics. 

Applying the algorithmic techniques for finding in- 
variants at N, we obtain the equations 

= . I ~ I  . 2  n y.,(n) y2(0) 2 = y2(0).2" = x2 at N, 
i=1 

n 

y.~(n) = y3(0)'I-I 2 = y3(0).2" = 2" at U. 
i=1 

Thus we can obtain the invariants 

(BI) y . ,=x . , .2" /% y~=2" at N. 

These can be combined to give 

(B2) y. ,=x~.y3 at N. 

By pushing forward the information in ~(~) and the 
initial assignments (using heuristic 2.4), we get the 
additional invariants 

(B3) y l = x l  /% y4=0 /% y~ ,y~ ,ya ,y4~ {integers} at N. 

Using heuristic 2•5, we note that y.~ and ya are always 
increasing around the loop, and since y~(0)=x~ and 
ya(0) = 1 at N, we obtain the invariants 

(B4) y~/>x2/%y~>/l at N. 

Note that (B4) could also be obtained directly from 
(Bl) using the implicit invariant n >/ 0. 

Using the T-branch of the test yx x< yz and pushing 
forward to L the invariants at N, we have the invariants 

(B5) y2= x2. 2" /% y~=2"/% y.,= x.,. y~ /% y~= x~ 
/% y~ = 0/% y~ ,y~ ,ya ,y~ ~ { integers } /% y., >/x~ 
/% y~/> 1 A Y~ x < Y,, at L. 

Generating invariants directly from the statements 
of the lower block, we first have the relations 

y2(m) = y.,(0)/2 '~ at M, ya(m) = ya(0)/2 m at M. 

Using the invariants yz = xz.2" and y~ = 2" from 
(B5) to establish y2(0) and y~(0) at M, we obtain the 
invariants 

(B6) y z = x z . 2 " / 2  " A y a = 2 " / 2 "  /~ y~=x.~.ya at M. 

Using the same technique for yl and y4, we obtain 
the recurrenee relations 

yx(m) = yx(m -- 1) -k- [ i f  yx(m -- 1) /> yz(m -- 1) 
t h e n - - y z ( m -  1) 
else 0] at M, 

y4(m) = y4(m -- 1) -k- [ifyx(m -- 1) /> yz(m -- 1) 
t h e n  y a ( m  - -  1) 
else 0] at M. 

Writing these equations as a summation, then using 
(B6) to replace the occurrence of - -y2(m -- 1) by 
- x 2 . y 3 ( m  - 1) and factoring out - x 2 ,  we obtain 

y l (m)  = y~(O) --  x2. ~ [ if  yi( i  -- 1) >/ y2(i -- 1) 

t h e n  ya( i -- l) 
else 0] at M, 

y4(m) = y4(0) q- ~ [if yl(i -- 1) >/ yz(i  -- l) 

t h e n  Y3 (i -- l) 
else 0] at M. 

Simplifying, we get 

(6) y~(m) -- y~(O) = - -x2 . (y4(m)  -- y4(0)) at M. 

We will again use invariants from (B5) at L, namely 
y~ = xl and y4 = 0, to establish y~(0) and y4(0) at M. 
There are two possible paths from L to M. If the right 
branch is used, clearly y~(0)= x~ /% y4(0)= 0 at M. On 
the other hand, if the left branch is taken, the addi- 
tional invariants from (BS), yl x < yz and Y2 = x2.y3 at 
L, together with the fact that yx >/ y2 along this path, 
yield that y~ = yz and Y3 = yz /xz  = y~/x2 = x ~ / x z ,  
and therefore after the assignments yl ~-- yx -- yz and 
y4 ~-- y4 + yz we have that y~(0) = 0 and y4(0) = x~/xz  
at M. Substituting both possibilities for yl(0) and y4(0) 
into the above equation (6), we obtain in both cases 
y~(m) - x~ = - x 2 .  y4(m).  Thus we have the invariant 

(B7) xx = y4.xz  @ yl at M. 

Turning to the tests, following eq. (4) we have 

m = 0  

~/ [ y ~ ( m -  1) # 1 /% y x ( m -  1) >/y2(m- 1)/2] 
• . .  left path 

~/ [ y 3 ( m -  1) ~ l /% y l ( m -  1) < y z ( m -  1)/2] 
• . .  right path. 

We try to substitute using the recurrence equations for 
the left path in y 3 ( m -  1) # 1 /% y ~ ( m -  1) >/y2(m- 1)/2, 
and the recurrence equations for the right path in 
y 3 ( m -  1) # l /% y x ( m -  l) < y 2 ( m -  1)/2. For  the left 
path, we have the recurrence relations 

y~(m) = y l ( m - -  1)--yz(m-- 1)/2 / 
y2(m) = y2(m--  1)/2 t 
y3(m) = ya(m--  1)/2, J 

and for the right path we have 

y l (m)  = y l ( m - -  1) 1 
y2(m) = y2(m--  1)/2 
y3(m) = y~(m--  1)/2• J 
Using these equations we obtain 

m = 0  

k/ [2y3(m) ~ 1 /% yx(m) >>, 0] 

k/ [2y3(m) ~ 1 /% yx(m) <yz(m)] 

• . .  left path 

• . .  right path• 

• . .  left path 

• . .  right path. 

Equivalently, we can write 
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(7) [m=O ~/ 2ya(m)~l]  /~ Ira=0 ~/yl(m)>>,O 
~/ y~(m) <y2(m)]. 

For the first conjunct, we can eliminate the m = 0  al- 
ternative because by (B5) we have y3(0)/> 1 at M, and 
therefore 2)3(0) ~ 1 at M. We have therefore the 
invariant 

(B8) 2y3~1 at M. 

For the second conjunct of (7), we can eliminate the 
m = 0 alternative because y~(0) at M is either 0 or xx, 
and thus y~(m) >1 0 is true when m = 0. We have the 
invariant 

(B9) y~>/O ~/y~<y2 at M. 

So far we have used only the algorithmic techniques 
on the lower block, and have directly generated invari- 
ants (B6), (B7), (B8), and (B9) at M. Now we illustrate 
how some of the heuristic methods could be applied in 
order to obtain additional candidates. 

Turning to heuristic 2.1, we consider each disjunct 
of (B9) separately. It is straightforward to show that 
both yl>~0 and y~<y~ are invariants at M, i.e. we may 
add 

(B10)),1>/0 A y~<y~ at M. 

Using heuristic 2.4, we push forward to M the in- 
variants in (B5), and among the candidates obtained is 
yz=xz.y3.  We actually already directly discovered 
y2=x2.y3 in (B6). However, we also have the can- 
didate y3>/1. Since, using the invariant y3=2"/2 '~ 
from (B6), we can prove that for both paths around the 
loop 

V.~[ya~/l A Ya=2~/2 m A y 3 ~ l  D ya/2/.  11, 

we have the new invariant 

(BII) y~> l at M. 

In turn this can be used, along with invariants y2 = 
x~.2~/2 m and ya = 2~/2 m from (B6), to show that the 
candidate y~, y2, ya, y4 C {integers} (also obtained by 
pushing forward from L) is an invariant, i.e. 

(Bl2) y l ,  Y2, Ya, y4 ~ {integers} at M. 

Observe that if we had used heuristic 2.3 to push the 
given output specification at H backwards to M at an 
early stage, we could have obtained the important candi- 
dates for invariants xl=y4.x~q-y~, O(xy~, y~,y4~ {inte- 
gers}, and y~ < x~ directly by this method. As shown, the 
first three candidates are indeed invariants at N, while 
any attempt to establish the fourth candidate y~ < x2 will 
fail. 

Now, by pushing forward to H the invariants (B6) 
to (BI2) at M, adding the exit test y3= 1, and simplify- 
ing, we obtain the invariants 

(BI3) y~= 1 /~ y~=x~ /~ n = m  /~ x~=y4.x~d-yt 
/~ O<~y~<x~ /~ y~,y2,ya,y4~ {integers} at H. [ ]  

3. Correctness and Incorrectness 

As indicated in the Introduction, invariants may be 
used to prove correctness or incorrectness of a program. 
In order to place these properties into their proper 
framework, we first present some basic definitions and 
lemmas (which follow [20]; see also [21]). 

(a) A program P terminates over ~k(x) if for every 
input ti such that 4,(~i) is true, the execution reaches a 
HALT statement. 

(b) A program P is partially correct w.r.t. O(x) 
and i (x ,  y) if for every input ti such that O(ti) is true, 
whenever the program terminates with some 6 as the 
final value of y, i(a,6) is true. 

(c) A program P is totally correct w.r.t. O(x) and 
if(x, y) if for every input ti such that ¢,(~) is true, the 
program terminates with some 6 as the final value of 
y and i(ti, b) is true. 

We are interested in proving that a program is 
either totally correct (correct) or not totally correct 
(incorrect). We introduce termination and partial 
correctness because together they are equivalent to 
total correctness, and, as we shall see, for a proof  tech- 
nique based on invariants it is easier to prove these two 
properties separately rather than to prove total cor- 
rectness directly. 

The Lemmas B-D and B ' -D'  (Table I) use the 
invariants {qh(X, y)} at the haltpoints to provide cri- 
teria for proving termination, partial correctness, total 
correctness, and their negations. For clarity we have 
used an informal abbreviated notation. Lemma B, for 
example, should be stated as: 

LEMMA B. A program P terminates over ¢J if  and only 
if  for  every set of  invariants {qh(x, y)} and every input 
x such that tb(x) is true, there exists a haltpoint h such 
that "4 y[ qh ( £,y ) ] is true. 

PROOF. If  the program terminates, then for every 
input x satisfying ¢~(x) some haltpoint h must be reached 
and y will naturally have some value 6 at h. Then, by 
the definition of an invariant, for every set of invariants, 
qh(X, 60) must be true, i.e. "4y[qh(x, y)] is true. 

In order to prove the Lemma B in the other direc- 
tion, we introduce the notion of a minimal invariant 
at cutpoint i, denoted by m~(x, y). A minimal invariant 
m~(d, 6) is true for some input ~ satisfying 0(~) and 
for some 6 if  and only if  during execution with input 
the cutpoint i is reached with y = 6. Thus m~(x, y) 
denotes the exact domain of the y values which occur 
at i during execution of the program with input x. 4 

Now we assume that for every set of invariants and 
every x such that ~(x) is true, there exists a haltpoint 
h such that "4y[qh(x, y)] is true. This is also true for 
the set of minimal invariants. By the definition of 
minimal invariant, since there exists a y such that 

Note that from its definition m~(~, J,) always exists as a predi- 
cate; for our purposes it is irrelevant how this predicate is ex- 
pressed. 
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mh(x, y) is true, that y value actually occurs during 
execution at the haltpoint h, i.e. h must be reached, 
and the program must therefore terminate. [ ]  

The other lemmas may be proved by using similar 
arguments. 

The six lemmas of Table I can be divided into two 
groups. The first group, Lemmas B', C, and D', are 
expressed in terms of  the existence of  a single set of 
invariants {qh(x, y)} (an ,,~lq formula").  They there- 
fore may be used to prove nontermination, partial 
correctness, and incorrectness, respectively, by demon- 
strating a set of invariants which satisfies the appro- 
priate formula. The techniques of Sections 1 and 2 
can be used to produce such a set of invariants. Lemmas 
B, C', and D, on the other hand, are expressed in 
terms of every possible set of invariants {qh(x, y)} 
(a "V# formula"),  and may not be used directly with 
our techniques. 

Since total correctness is expressed by a Vq for- 
mula, we try to prove this property by showing partial 
correctness and termination separately. Lemma C 
uses an ":lq formula, and therefore can be used to prove 
partial correctness. This lemma in fact represents 
"Floyd's  method" [18] for proving partial correctness. 
The problem of  termination, however, remains since it is 
expressed in terms of a Vq formula. Termination must 
therefore be treated by other means, which will be dis- 
cussed at the end of this section. 

Incorrectness, on the other hand, is expressed by an 
":lq formula, and therefore can be proven directly by 
our techniques, using Lemma D'. Note that the formula 
of this lemma can be expressed alternatively as 

-4q3xVhVy[~,~qh(x, y) V ~ ( x ,  y)], 

i.e. for some input x either the program does not termi- 
nate, or the final result is incorrect. 

We first illustrate the use of  Lemma C for proving 
partial correctness. 

Example B (continued). We would like to show that 
program B of Figure 5 is partially correct w.r.t. 

4~(x) :xl>_0 /k x2>0 /x, Xl,X2E {integers}, and 
~k(x, y) : xl= y4.x2+ y~ /k O<_y~<x2 /k yl,y4C {integers}. 

Using invariants (B1) to (B4) at N, (B5) at L, and 
(B6) to (B12) at M, we have established the invariants 
(B13) at H (the only haltpoint of the program). Since 
(B13) contains the invariants 

xl=y4.x2+yl /k O<yl<x2 /k yl ,y4~ {integers}, 

we clearly have that 

VxVy[qH(x, y) D ~(x, y)]. 

Thus, by Lemma C, program B is partially correct 
w.r.t. 4, and ~k. 

Note that (BI3) actually contains additional infor- 
mation about the final values of the variables, namely 
that 

y~--1 A y2=x2 A n=m 

at the haltpoint H. [ ]  
Thus to prove partial correctness, we merely ex- 

hibit the invariants at the haltpoints which fulfill 
Lemma C. On the other hand, in order to prove incor- 
rectness we must provide, in addition to appropriate 
invariants, an input value x0 satisfying ~(x0) such that 
the formula in Lemma D'  is true. We would like to 
develop candidates for x0 in a systematic manner, 
similar to the way invariants were generated in Sec- 
tions 1 and 2. For  this reason, it is desirable to find a 
predicate ~'(x) which specifies a nonempty subset of 
the legal inputs for which the program is incorrect, 
rather than merely demonstrating the incorrectness for 
a single x. That  is, to establish incorrectness we prove 
that for some ~'(x), 

vx[~'(x) ~ ~(x)] A 
3xC~'(x) A 3#VxVhVy[¢'(x) A qh(x, y) D ~ ( x ,  y)]. 

In general, a proof  which establishes incorrectness 
for a large set of input values is also more useful for 
the diagnosis and correction of the logical errors than 
an incorrectness proof  for a single input value (see 
Section 4). 

We will develop candidates for ¢'(x) by starting 
with ¢(x) and adding conjuncts (restrictions) to @(x) 
one after another as the need arises. Thus @'(x) 
@(x) will be guaranteed true. In case there are several 
alternative restrictions at some stage of the process, 
we prefer adding the weakest possible, so that ¢'(x) 
will allow maximal freedom in choosing additional 
restrictions later. At each stage, it is, of  course, neces- 
sary to demonstrate that ¢'(x) is satisfiable. 

Note that all invariants which have been proven for 
~(x) will remain true for any ~'(x) specifying a subset 
of ~(x). Moreover,  at each stage of the process we now 
may discover additional invariants which are true 
for every x satisfying ~'(x) but are not necessarily true 
for every x satisfying ~(x). 

Example A (continued). An attempt to prove the 
partial correctness of program A (Figure 4) will not  
succeed. Although the invariants (A10) at H can be 
used to establish y4 _< xl/x2 since 

VxVy[y4 <_Xl/(2x2) D y4 <_Xl/X2], 

we are unable to establish x~/x~ - xa < y4. Thus we 
turn to incorrectness, trying to show that for some 
~'(x) which specifies a nonempty subset of the legal 
inputs, and for some invariants qn(x, y) at H, we have 

VxVP[t~'(X) A qg(X, .P) ~ X1/X2--x3~y4]. 

We first could try to show that the program is incor- 
rect for every legal input x, i.e. to let ¢'(x) be ¢(x) it- 
self. Such an attempt will fail. To  find a candidate @'(x), 
we notice that the "desired" conjunct is y4<_x~/x2-x3, 
and that the invariant y4<xl/(2x2) at H of (AIO) also 
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Table I. Applications of the Invariants {qh(£, Y) }. 

LEMMA B. P t erminates  over  4, if and only if 
V~V~3 h3£[q~(~, y) ]. 

LEMMA C. P is partially correc t  w.r . t .  4' and ¢~ if and only if 
3~V£VhVJ~[qn(£, p) ~ ~b(£, .P)]. 

LEMMA D. P is (totally) correct w.r.t. 4' and ¢~ if and only if 
VVlV£3h3P[qh(£,, ~) A ~(~, ~)]. 

where 
v~ means "for every  set  of invariants {qh(£, JP)}." 
3~ means "there exists a set of invariants {qh($, P)1." 
V~, means "for every input • such that 4'(~) is true." 
3£ means "there exists an input • such that 4'(~) is true." 
Vh means "for every haltpoint h." 
3h means "there exists a haltpoint h." 

LEMMA B'. P does not t erminate  over  4, if and only if 
"4 ~l'4 £VhVy [~qh (£, P) ]. 

LEMMA C t. P is not partially correc t  w.r.t .  4, and  ff if and only 
if V(13£3h3.P[qh(£, ~) A ,~b(£., .p)]. 

LEMMA D'. P is incorrect w.r.t. 4' and ¢~ if and only if 
":l~]£VhV.pIqh(£, y) D ~'¢,(£, y)1. 

provides an upper bound on y4 in terms of x. This sug- 
gests using the transitivity of' inequalities to find an 
r(x) such that  

[y4<_xl/(2x2) /~ r(x)] D y4<_xl/x2-x~. 

The "mos t  general" candidate for r(x) is clearly 
xd  (2x2) _< Xl/X2 - x3, or equivalently, 

r(X) : x3 <_ xl/(2x2). 

The trial 4/(x) will therefore be ~,(x) /~ r(x), i.e. 

¢'(x) :O<Xl<X2 A 0<x3 A x3<xd(2x2). 

From the development of  4/(x), it is obvious that  
y4 <_~ X I / X 2  - -  X3 is an invariant at H for every x satis- 
fying 4/(x). Thus to establish incorrectness it only 
remains to show that 4/(x) is satisfiable. Since we may 
first choose any x~ and x2 such that  0 < x~ < x2, and 
then choose any x3 such that  0 < x.~ < x~/(2x~), the 
satisfiability of  ¢/(x) is obvious. [ ]  

Recall that  we have not yet provided a practical 
method for proving termination. The difficulty arose 
from the fact that  Lemma B of  Table I requires proving 
a "V# formula."  Therefore we clearly need a special 
method for proving termination. 

The traditional method suggested by Floyd in [8] 
involved choosing a well-founded set (W, >-), where > 
is a partial ordering having the property that  there is 
no infinitely descending chain of  elements from W, 
wl > w2 >- . . . .  For  every cutpoint i, one must find a 
partial function u~(x, y) which maps the elements 
of  the variables'  domain into W, and an invariant 
q~(x, y) which serves to restrict the domain of u~. A 
proof  of  termination requires showing that each time 
control moves from cutpoint i to outpoint j (along a 
path which includes no other outpoints and which is a 
part  of some loop), u~(x, y) > us(x, y). Intuitively, 
since by definition there is no infinitely decreasing 
chain of  elements in any well-founded set, the proof  
implies that  no execution path of  the program can be 
infinitely long. 

The use of  Floyd 's  method entails choosing the 

199 

appropriate  well-founded set (W, >) ,  the functions 
{us(x, y)}, and the invariants {qj(x, y)}. We will sug- 
gest an alternative method for proving termination 
which will be strongly oriented toward the use of  
invariants, so that we may take advantage of the tech- 
niques of  Sections 1 and 2. We present the method 
briefly. 

As explained in the Preliminaries section, it is as- 
sumed that we can divide the given program into blocks 
in such a way that every block has only one top-level 
loop (in addition to possible "lower-level" loops al- 
ready contained in inner blocks). We treat the inner- 
most  blocks first, and work outwards. Thus for each 
block we can consider only its top-level loop (with a 
unique outpoint), assuming its inner blocks are known 
to terminate. 

We suggest proving termination of a block with 
cutpoint i and counter n (assuming that the inner 
blocks terminate) by finding invariants which will imply 
that n is absolutely bounded from above at i. That  is, 
n < c~ at i for some constant c~. Therefore the cut- 
point cannot  be reached infinitely many  times during 
computat ion.  Note  that it is actually sufficient to show 
a~(X, n) <_ b~(x) where a~(x, n) is an integer-valued 
function monotonic in n (i.e. if n increases in value, so 
does ai(x, n)). We therefore state 

LEMMA E (termination). A program P terminates 
if  and only if  there exists a set of invariants {qA and 

functions {aA and {b A such that for  every block B 
with cutpoint i and counter n, 

(8) VxVyVn[qi(x,  y, n) ~ ai(x,n)<_bi(x)], 

where a~(x, n) is an integer-valued function monotonic 
in n. 

The practical importance of the above Lemma E is 
that we may use invariants which link n to the program 
variables to derive directly the appropriate  functions 
a~ and b~. Recall that  in such programs,  we have the 
"buil t- in" invariant that  n is a strictly increasing non- 
negative integer. We shall use these properties in our 
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examples without explicit indication. Although n and 
ai(x, n) are integers, b~(x) and the program variables y 
need not be integers, and this technique is perfectly 
applicable to programs with real numbers, strings, etc. 
Lemma E can be proven formally by reduction to 
Floyd's method. 

One can weaken the termination condition (8) of 
Lemma E in several different ways. For  example, we can 
often generate R(x, y), the union of the conditions for 
following a path from i to i in B. We may then use it 
in proving that the counter is bounded, since if R(x, y) 
is false, the loop will terminate anyway. Another pos- 
sibility is to use in a~ and b~ all those variables of y 
(and counters), denoted by y', which are not changed 
in B. Thus it actually suffices to prove the weaker 
condition 

(9) VxVyVn[qi(x, y, n) A g(x, y) 
D a~(x,y',n)<bi(x,y')]. 

Example A (continued). Consider again Program A 
of Figure 4. F rom 4~(x) and invariant (A2) we note 
that 0 < x ~ / ~  ys= 1/2" is an invariant at N. Thus, since 

VxVyVn[O<x3/~ y3= 1/2" /~ y3>x3 ~ 2"<1/x3] 

is true, it follows by Lemma E that the program ter- 
minates over q~(x). [ ]  

Example B (continued). Consider Program B of 
Figure 5. Using the known invariant (B1), y.., = x..,.2" 
at N, and ~(x) we obtain 

VxVyVn[x.2>O /~ y2=x2.2" /~ y2<yt ~ 2"<yl/x2]. 

Since yl is unchanged in the upper block, it follows by 
(9) that the upper block terminates. 

For  the lower block we use the invariants (B6) and 
(BI 1), y3=2"/2  m/~ y3>_ 1 at M, and obtain 

VxVyVnVm[y~=2"/2"/~ ya>_ 1 ~ 2m<2"]. 

Since n is unchanged in the lower block, the termination 
of this block also follows by (9). [ ]  

The reader should not be misled into assuming that 
proving termination is always as trivial as it seems 
here. The method of Lemma E is examined in greater 
detail (and presented with some nontrivial examples) 
in [16]. 

Note that the method of Lemma E, as well as Floyd's 
original method, is useful only for showing termina- 
tion. If we want to prove nontermination, both are 
impractical (again, all possible qi's must be checked). 
Thus Lemma B' should be used. 

4. Automatic  Debugging 

In this section we suggest a method for debugging 
based on the invariants generated from the program. 
The technique we describe uses the invariants and 

information about how they were generated in order 
to modify the program systematically (and, at least 
potentially, automatically). For  a more complete pre- 
sentation of this particular aspect of logical analysis, 
along with an assessment of  the remaining difficulties, 
see [15]. 

As explained in the Introduction, failure to prove 
correctness still leaves us unable to decide whether 
the program is actually correct (but, despite all our 
efforts, we are unable to prove it so), or the program 
is really incorrect (and we should not waste more time 
trying to prove it correct). Two differing philosophical 
approaches to automatic debugging can be applied as 
soon as we are unable to prove (total) correctness of a 
program. 

Following what may be termed the conservative 
approach, we would insist on a proof  of incorrectness 
before proceeding to modify the program. This is a 
reasonable view, and, as will be indicated below, a proof  
of incorrectness can aid in debugging. The method 
presented for proving incorrectness of programs was 
motivated by this approach. 

However, proofs of incorrectness are often difficult 
to obtain, in particular for subtle errors, since the 
needed ~'(x) (of inputs leading to incorrectness) must 
be demonstrated. Thus an alternative to the conserva- 
tive approach, a radical approach, can also be justified. 
In this approach, we will "fix" the program so that a 
proof  of correctness is guaranteed to succeed, even 
without having proven that the original program is 
incorrect. In effect, under this approach we modify a 
program we merely suspect of  being incorrect, taking 
the risk of modifying an already correct program. 

The basic debugging technique using invariants is 
common to both approaches. We shall first describe 
the technique as it is used under the radical approach. 
The slight differences which arise if the conservative 
approach has been used (i.e. if a proof  of  incorrectness 
is available) are pointed out later in this section. At 
the end of the section we briefly compare the two ap- 
proaches. 

For  simplicity we will again deal with a simplified 
model: a single block having no inner blocks, with a 
cutpoint L at the entrance, N inside the loop, and M 
at the exit, as in Figures 2 or 3. In addition to the can- 
didates produced and invariants proven for each cut- 
point during the process of  invariant generation, we 
assume candidates s"(x, y) at M which would guarantee 
partial correctness of the program were they actually 
invariants. For  the case in which M is a haltpoint, 
s"(x, y) would naturally be the output specification 
itself. 

In order to effectively use the invariants for debug- 
ging, it is necessary to record in an invariant table all 
the information required to establish each invariant, e.g. 
the rule applied, and precisely how the program state- 
ments and /or  other invariants were used in its deriva- 
tion. In general there will be an entire invariant table 
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associated with each cutpoint. However, there is usu- 
ally an essential difference in the complexity of  the 
table for cutpoints on a loop, like N, and for those not 
on a loop, like M. All of the invariants at M, for ex- 
ample, will be obtained simply by "pushing forward" 
either invariants at N, or the exit condition of the block. 
Thus below we concentrate on the more interesting 
case of the invariant table at N. 

For  clarity, we will use a more pictorial representa- 
tion for the invariant table at N and arrange the in- 
variants generated in the form of a directed acyclic 
graph (dag). We use terminology similar to that of  trees, 
talking about the "ancestors" or "descendants" of an 
invariant, and of moving "up"  or "down"  the graph. 
For  this reason we refer to the graph as an invariant 
tree. We will have invariants from previous blocks 
given in p(x, y), the initial assignment statements of 
the block, and the statements of the loop at the top of 
the tree. Each invariant q(x, y) at N is the descendant 
of  the loop statements, initial assignments, and other 
invariants used to establish q(x, y). 

By examining such an invariant tree, we can see 
both how a desired change in any given statement will 
affect the various invariants, and (conversely) how a 
desired change in an invariant can be achieved by chang- 
ing statements. 

The basic steps in correcting the program are as 
follows (again referring to Figures 2 or 3): 

1. Using the heuristic methods of Section 2, such as 
2.3, generate candidates for invariants q"(x, y) at N 
which would allow proving the candidates s"(x, y) at 
M to be invariants, and thus would allow proving 
partial correctness. 5 It is also possible to generate candi- 
date exit tests t'(x, y) or candidate exit functions 
h'(x, y) which would guarantee partial correctness 
along with the existing invariants at N. In the continua- 
tion, we discuss changing only the invariants at N, al- 
though similar considerations apply to changing the 
exit test or exit function. 

2. Find actual invariants q(x, y) in the invariant 
tree which are "similar" to those candidates q"(x, y) 
which guarantee correctness. The precise definition 
given to "similarity" will have a direct influence on the 
kinds of  errors which may be corrected, and there are 
obviously many possibilities. We here define two 
predicates to be similar if they differ only in constant 
(nonzero) coefficients of  variables, a constant term, or 
other minor perturbations in the relation involved, such 
as < in place of  _<. When we have succeeded in find- 
ing invariants q(x, y) in the tree similar to candidates 
q" (x, y), the candidates will be called the goal candidates 
at N, and denoted q*(x, y). 

3. Attempt to replace q(x, y) by the similar goal 
candidates q*(x, y), moving up the tree and modifying 

The possibility that the program is partially correct but non- 
terminating will not be treated in our discussion; actually it would 
lead to a correcting process similar to that described here. 

the ancestors of  q(x, y) so that the new q* (x, y) will be 
derived rather than the former q(x, y). 

4. When a statement has been modified in order to 
allow deriving a goal candidate, inspect (by moving 
down the tree) the effect of  the modification on all 
other invariants derived from it. This is necessary in 
order to ensure that no other part of  the proof  of  partial 
correctness or the proof  of termination are disturbed. 
The inspection could require making additional "com- 
pensatory" changes in other statements, or abandon- 
ing a possible change. 

Example A (continued). Consider once again pro- 
gram A of Figure 4. The invariant tree for the program 
is shown in Figure 6. For  simplicity, we have merely 
listed the number of the rule which was applied to 
obtain each invariant, rather than including more 
information. A brief review of the generation of invari- 
ants for this example (in Sections l and 2) should 
make the tree clear (except for (A1 l), which should be 
momentarily ignored). We have added the "termina- 
t ion" and "partial  correctness" boxes at the bottom of 
the tree to emphasize which statements and invariants 
were used to prove termination (with bound 2" < l/x3) 
and partial correctness (w.r.t. y4 <_ Xl/X2). Recall that 
we were unable to prove partial correctness for 
x l / x 2 - x 3 < Y 4 ,  the first conjunct of the output specifi- 
cation. In order to demonstrate the radical approach, 
we momentarily ignore the fact that in Section 3 we 
actually have proven this program incorrect. 

The problematic part of the output specification, 
x j x 2  - x3 < y4, is automatically a candidate for an 
invariant at H. Using heuristic 2.3, we can generate 
candidates for invariants at N based on the candidate 
at H (assuming temporarily that the exit test y3 _< x3 is 
correct). The strongest candidate at N is x~/x2 -- x3 < Y4 
itself. We may also use the transitivity of inequalities 
with x~/x2 - x8 < y4 and the exit condition y3 _< x3 to 
suggest another natural candidate. We need a q(x, y) 
such that 

q(x, y) A y3<_x3 ~ x~ / x2 -y4<x3 ,  

and see easily that the most general q(x, y) which will 
do this is xt/x2 - y4 < y3, or xt/x2 < ya + y4 • 

Naturally, if either of these candidates could be 
proven to be an invariant at N, the program already 
would have been proven correct. Now we turn to the 
invariant tree in order to modify the program so that a 
correctness proof  is possible. We look for invariants 
already in the tree which are similar to the above candi- 
dates, and also try to combine existing invariants into 
new ones similar to the candidates. 

For  the candidate Xl/X~ - x3 < y4, we find no 
similar invariant. For  the second candidate, xl /x2< 
ya+y4, we may combine (A3), (A4), and (A7), giving 

(10) [y2=x2.y3 /~ y~=2x2.y4 Ix xl<yt+2y2] 
Xl/X2<2y3+ 2y4 , 
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i.e. we have the new invariant 

(Al l )  Xx/X2 < 2y3 d- 2y4 at N. 

This is similar to the candidate, which we now will refer 
to as the goal candidate 

(Al l )*  x~/x2 < y3 d- y4 at N. 

We have thus found a place to "hang"  the candidate 
on the tree, and now must adjust the ancestors of (A11) 
(i.e. (A3), (A4), or (A7)) so that (Al l )*  will be de- 
rived instead. By examining eq. (10), it is not difficult 
to see that two of the most direct modifications among 
the many possibilities are 

(a) leave (A3) and(A4) unchanged, but change 
(A7) xl < yl + 2y2 to (A7)' 2Xl < y~ A- 2y2; or 

(b) leave (A7) unchanged, but change 
(A3) y2 = x2.y3 to (A3)' 2y,.= x2.y3 and 
(A4) y~ = 2x~..y4 to (A4)' y~ = x,..y4. 

Possibility (a) will be considered first. The invariant 
tree shows that (A7) was derived from the invariant 

(A6) xl < yl A- 2y~. k/Xl  >_ yl at N, 

by using heuristic 2.1 to strengthen the invariant. To 
obtain (A7)', we will first modify (A6) to 

(A6)' 2x~ < yt + 2y2 k /h(x ,  y) 

where h(x, y) is the part of (A6)' not of interest to us 
at the moment. By tracing back through the derivation 
of (A6) (which used the algorithmic rule 1.2), the left 
alternative of (A6) can be seen to originate as 

(i) Xx < y t (n - - l )  + y2(n -1 )  . . .  from the test Xl < 
yl + y2, using the 
right path 

(ii) yt(n) = y l ( n - 1 )  . . .  from the fact that 
yx is unchanged 
along the right path 

(iii) y2(n) = y2(n-  1)/2 . . .  from the assignment 
y2 ~-- y2/2. 

These clearly were combined to yield the alternative 
Xl < y~ -b 2y2. To obtain 2xl < yl -4- 2y2 instead, 
we replace (i) by 2xt < y~(n - 1) + y2(n - 1), i.e. 
change the test statement x~ < yl + y2 to 2x~ < yi + y2. 
This suggested change was built to yield an acceptable 
left alternative of (A6)'. Checking 2Xl < yl + 2y2 alone, 
we may conclude that with this suggested change (A7)' 
is indeed an invariant, and thus, so is the goal (A11)*. 

We must now check whether any other vital in- 
variants are affected. F rom the tree it is clear that the 
only effect could be on the right alternative of (A6) and 
its descendants. Using the new test statement, it is easy 
to see that the left path leads to 

2x~>_y l (n - -  1) + y 2 ( n - -  1) . . . f r o m t h e t e s t  2Xl < 
y~ -b y~, using the left 
path 

yl(n) = y x ( n -  1) + y 2 ( n -  1) . . .  f romthe  assignment 
yl ~-- yl -4- y2 on the 
left path. 

These clearly combine to yield 2xl > y~(n), so that 
h(x, y) is 2xa > y l ,  and we have the invariant 

(A6)' 2xl < Yl d- 2y2 ~/ 2xl _> yl at N. 

Examining the descendants of (A6)', we can see that 
(A8) must be replaced by 

(A8)' 2xl >_ yl at N, 

which is an invariant of the modified program. In turn, 
this combined with (A4) will yield the invariant 

(AP)' y4 _< Xl/X2 at N. 

Thus we also have the invariant y4 _< x~/x2 instead of 
y4 <_ x~/(2x2) at H. 

However, this invariant serves just as well as the 
original Y4 <_ Xl/(2x2) to guarantee partial correctness 
for the output specification y4 <_ Xl/X2. Thus the sug- 
gested correction leads to the goal (A11)* and does not 
disturb any other aspect of  the proof  of  correctness, i.e. 
the modified program is guaranteed correct. In Figure 7 
we show the invariant tree at N of the modified pro- 
gram, which is totally correct. Thus, to summarize: 

Replace the test xl < yl -b y2 by 2xl < yx -b yp.. 

Possibility (b) for achieving the goal (Al l )*  will 
now be considered, i.e. we would like to replace (A3) 
and (A4) by (A3)' and (A4)', respectively (again re- 
ferring to the original invariant tree of  Figure 6). We 
immediately note that since (A3) is an ancestor of (A4), 
any change in (A3) will influence (A4). The invariant 
(A4) was obtained by bringing two summations in- 
volving if-then-else to an identical form, so that y~ and 
Y4 could be connected. If  during the manipulations of  
the relations, 2y2 = x2.y3 is used for substitution instead 
of y2 = x~.y3, the new (A4) becomes exactly y~ = x2.y4 , 

i.e. the (A4)' we require. Thus if we can change (A3) to 
(A3)', we "automatically" have changed (A4) to (A4)'. 

Examining the invariant tree, it is clear that we may 
achieve (A3)' by changing either (A1) or (A2), i.e. 
either 

(A1) y2 = x2/2" to (A1)' y2 = x~/2 "+1 or 

(A2) y~ -- 1/2" to (A2)' y8 = 2/2". 

Since y2 = y2(0)/2" and y2(0) = x2, the first possi- 
bility can be achieved by letting y2(0) = x J 2 ,  i.e. by 
changing the initialization y~ ~ x~ to y2 ~-- x2/2. Now 
we check the possible effect of  this change on other 
invariants. This initialization was used to establish 
(A6) and (A7) the first time N is reached, but  the new 
initialization also does the same job. Tracing other paths 
down from this suggested change, we see that (A4) was 
used to establish y4 _< xl/(2x2) at H. However, the new 
(A4)', yl = x2.y4, may still be combined with (A8), 
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Fig. 6. The invariant tree for eutpoint N of program A. 

[ ( A - I I )  X l / X 2 <  2 Y 3 + ~ ' Y 4  I I 

f -  -- _ _~. -  . . . . . .  
I T e r r n i n a f i o n l  I Part ia l  correctness: 

I y 4 ~ < x a / x 2  i I 2n< I / x  3 I l- J 
m . - . . . . . . . . . .  

yl _< x~, to show that ya _< x~/x2 at N and thus at H. 
Therefore this change is also safe, and we have 

Replace the initialization y2 ~ x2 by y2 ~ x2/2. 

The change in (A2), from ya = 1/2 n to ya = 2/2% is 
also easy to achieve, since y3 = y3(0)/2 ~. Thus we set 
y3(0) = 2 instead of y3(0) = 1, i.e. change the initializa- 
tion ya ~ 1 to y3 ~ 2. This change will slightly affect the 
termination, but the counter n can now be bounded by 
2" < 2/xa. Again (A4)' can be shown not to disturb 
the correctness for y4 _< x~/x2. Thus a third safe 
change is 

Replace the initialization y3 ~-" 1 by Y3 ~-- 2. [] 

So far in this section, we have ignored the possibility 
that we have already proven the program incorrect. 
Now we briefly consider how a proof  of incorrectness 
can aid in the automatic debugging process described 
above. 

We assume that when unable to prove correctness, 
the conservative approach was followed and a proof  of 
incorrectness was produced. Although the existence of 
this proof  has surprisingly little effect on the basic 
debugging technique, it can be of  some aid. Clearly, any 
change in the program, which is intended to correct the 
error, must change at least one of the invariants used in 
the incorrectness proof. Thus the paths up the tree from 
the goal candidate can be restricted to those which will 
influence invariants from the proof  of incorrectness. 
This is valuable because one of the difficulties with the 
use of  the tree is the need for further guidance in the 
selection of likely paths. 

Moreover, it is often possible to discover the smallest 
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change in an invariant which will invalidate the proof  of 
incorrectness. This then becomes a new source of can- 
didates; such a candidate would not guarantee correct- 
ness, but at least would ensure that the existing in- 
correctness proof  could no longer be applied. 

Example A (continued). Let us review the proof  of  
incorrectness of program A of Figure 4. We used the 
invariant y4 < xl/(2x2) at H (one of the invariants of 
(AI0)) to find an r(x) such that 

[y4<_Xl/(2x2) /~ r(x)] ~ y4<_Xl/X2--x3. 

This suggested taking r(x) : Xl/(2x2) <_ x~/x2 - x3, 
since 

(11) [y4 ~< xl/(Ex2) /~ xl/(2x~) <x x l / x 2 -  xs] 
D y4 <~ Xl/X2- x3. 

This r(x) then led to 

~'(X) :0_<xl<x2 A 0<xa  A xl/(2x2)<_x{x2--x3 

which was then simplified and shown to be satisfiable. 
Since y4 <_ xl/(2x~) at H was the only invariant used 

in the proof  of incorrectness and was obtained directly 
from the invariant (A9), ya < xl/(2x2) at N, it follows 
that any correction of the program must change in- 
variant (A9). 

If  we analyze the above incorrectness proof  more 
closely, we can obtain some additional information 
about how invariant (A9) must be changed. We will try 
to find a new invariant in place of (A9) so that following 
the framework of the proof  given, an unsatisfiable 
4d(x) would result, thereby invalidating the proof  of  
incorrectness. Since the terms y4 and x~/x2 - x3 are 
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fixed by the desired output specification, the only term of 
eq. (10) which can naturally be replaced is xl/(2x~). We 
thus lo0k for a term P such that y4 _< P and 

~'(x) : 0 < x l < x 2  A 0<x3 A P<x~/x~-x3 

is unsatisfiable. Simplifying the desired 4,'(x), we see that 
we need 0<Xl<X2/~ 0<x3 D -,~(P<xl/x2-x3), i.e. 

O<_xl<x2 /~ 0<x3 ~ Xl/X2- P<x3 . 

If  we let P be (axe)Ix2, for any a >_ 1, the above im- 
plication is clearly true, so the ~'(x) is unsatisfiable. 
Thus if we change the relevant invariant at H from 
Y4 <_ xl/(2x2) to any Y4 _~ (ax~)/x2, where a > 1, the 
existing proof of incorrectness will not work. Since the 
invariant y4 _< xt/(2x2) at H was obtained directly from 
invariant (A9) at N, we have a class of candidate in- 
variants 

(A9)' y4 _< (ax~)/x~ for any a > 1 at N. 

In general, such additional knowledge is valuable in 
restricting the possible alternatives which must be ex- 
plored in the invariant tree. Note that all of the alterna- 
tive changes previously found for the program "coinci- 
dentally" change (A9) to y4 _< Xl/X2 by changing other 
invariants. [ ]  

Let us briefly compare the two approaches. 
Because we guarantee correctness, the "radical" 

approach of modifying without first proving incorrect- 
ness is not as dangerous as it might seem. In fact, the 
only objection would seem to be that in the case of a 
program which actually was originally correct, the 
efficiency of execution may be reduced in a modified 
(also correct) version. From our experience with hand 
simulations, we believe t h a t / f  we are able to find goal 
candidates similar to the invariants, the program is very 
likely incorrect, and it is worthwhile to follow the radical 
approach without first proving incorrectness. 

However, for programs with a large number of 
errors (or a small number of very gross errors), it is 
unlikely that the required similarity will be found. 
"Gross"  errors could actually be defined as those which 
lead to invariants completely irrelevant to a proof of the 
specification. In such a case, the radical approach will 
fail, but the conservative approach has a good chance of 
at least partial success. For a grossly incorrect program, 
a proof of incorrectness will generally be very easy to 
find, and the technique of invalidating the proof may 
even lead to a correction. 

In any case, the proof of incorrectness would be a 
valuable aid to the user, even if an automatic correction 
could not be made. It provides what could be called 
logical diagnostics about the program. From the con- 
juncts of the output specification which were contra- 
dicted, the general effect of the error is obtained. From 
~'(x), the user obtains a class of inputs for which the 
program is incorrect. Most importantly, from the 
invariants directly used in the proof of incorrectness, 
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the user can identify the problematic relations in the 
program. 

Conclusion 

In this paper we have presented an overview of how 
invariants can be produced and used. The basic concept 
of an invariant is, of course, not new (e.g. [8, 12]). The 
term invariant has also been used previously, for exam- 
ple in [13]. We have, however, tried to present a new 
perspective which shifts emphasis from the limited task 
of verifying a correct program to the more general 
framework of logical analysis. From our perspective, 
invariants are "independent entities" which can be used 
for more than one purpose, only one of which is proving 
partial correctness when possible. 

Numerous improvements and refinements are clearly 
possible to the invariant-generating techniques pre- 
sented. In particular, it is necessary to further guide the 
heuristics in Section 2, so that they will not be applied 
indiscriminately. For  example, only when the need for 
an invariant involving certain variables has become 
evident, should candidates involving those variables be 
generated. 

The general problem of finding an algorithm to 
generate invariants for any program is unsolvable. 
Programs clearly exist with relations among the vari- 
ables based implicitly on deep mathematical theorems 
which could not conceivably be rediscovered by any 
general invariant-generating algorithm. 

In a practical implementation, the user would be 
encouraged to provide his own ideas about what the 
intermediate invariants should be ("comments"),  and 
these will automatically be considered as candidates for 
invariants. The system could also ask the user to provide 
suggestions as the need arises for invariants involving 
specific problematic variables with unclear relationships 
at a certain cutpoint. We expect that a reasonably 
sophisticated system based on the techniques presented 
here, with some aid from the user whenever necessary, 
could produce sufficient invariants to conduct the logical 
analysis of some nontrivial programs. 

Several other efforts have been made to attack the 
problem of finding inductive assertions which prove 
partial correctness. The earliest work is by Floyd (pri- 
vate communication, 1967), and Cooper [2]. Elspas [7] 
was the first to consider using recurrence relations. 
Wegbreit [28] has developed independently some rules 
similar to our heuristic approach, and a method using a 
"weak interpretation" of the program. These have been 
implemented by German [10]. In [14] the authors sug- 
gested additional heuristics to treat arrays. Grief and 
Waldinger [11] also described a method for generating 
assertions which moves backwards from the output 
specification. There is much current activity in finding 
new techniques for generating inductive assertions; for 
example, [3, 23, and 24]. 
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Fig. 7. The invariant tree  for  cutpoint N of the modified program A (correction #1). 
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The idea of adding variables, such as counters, to the 
program in order to facilitate proofs of partial correct- 
ness or termination is not new. Knuth [19] uses a "time 
clock" incremented at every statement in order to prove 
termination. Elspas et al. [6] also discuss how such 
counters can be used to prove termination. Other re- 
lated works on termination are those of Cooper [2], 
Maurer [22], and Sites [26]. 

The possibility of using a program verifier to debug 
programs is first discussed informally by King [18]. 
Sussman [25] stresses the importance of systematically 
eliminating bugs in the context of program synthesis. An 
attempt to establish incorrectness by finding counter- 
examples was outlined by Floyd [9] as part of his pro- 
posed system for interactive program writing. In our 
presentation we have basically considered the debugging 
of a program with a single loop. For more complicated 
programs, with multiple loops, additional research 
problems present themselves. What we have intro- 
duced here is clearly just a first step toward the use of 
invariants in debugging. 

For  the sake of completeness, a few additional 
application areas of logical analysis using invariants are 
mentioned below. 

The area of program optimization is one natural 
application. Once a program has been proven correct 
and the "vital" invariants used in the proof identified, 
those invariants can be used to optimize the program. 
The basic idea is to maintain the vital invariants and exit 
conditions, or their equivalents, thereby guaranteeing 
the continued correctness of the program. However, the 
way in which the invariants and exit conditions are tom- 
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puted would be changed in order to increase the effi- 
ciency of the code produced. Using invariants can 
systematize the optimization process because "over- 
zealous" optimizations which introduce errors are 
prevented. Flexibility is also increased because we do not 
restrict ourselves in advance to specific transformations 
and because it is easy to identify extraneous computa- 
tion. 

The problem of modification, where an existing 
(presumably correct) program is given a new input or 
output specification, differing only slightly from the 
original, can be reduced to error correction. The old 
program must be "corrected" to meet the new specifica- 
tion. Knowledge of the invariants allows this to be done 
without falling into the familiar pitfall of making some 
unchanged part of the specification untrue in the course 
of changing the original program (see [25]). 

Finally, it should be noted that the techniques pre- 
sented provide information on the (time) complexity 
and behavior of the given program. For example, in 
proving termination by showing counters bounded, we 
actually obtain upper bounds on the number of times 
the loops may be executed. It would be natural to also 
consider lower bounds on the counters immediately after 
exit from the block and to obtain automatically more 
sophisticated estimates of the total time required for 
each loop. 

Acknowledgment. We are indebted to Ed Ashcroft, 
Nachum Dershowitz, Bernard Elspas, Stephen Ness, 
Tim Standish, and Richard Waldinger for their critical 
reading of the manuscript. 

Communications April 1976 
o f  Volume 19 
the  ACM Number 4 



Received July 1974; revised January 1975. 

References 
1. Allen, F.E. A basis for program optimization. Proc. IFIP 
Cong. 71, Vol. 1, North-Holland Pub. Co., Amsterdam, 1971, 
pp. 385-390. 
2. Cooper, D.C. Programs for mechanical program verification. 
Machine Intelligence 6, American Elsevier, New York, 1971, pp. 
43-59. 
3. Caplain, M. Finding invariant assertion for proving programs. 
Proc. Int. Conf. on Reliable Software, Los Angeles, Calif., April 
1975. 
4. Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R. Structured 
Programming. Academic Press, New York, 1972. 
5. Deutsch, L.P. An interactive program verifier. Ph.D. Th., Dept. 
of Computer Sci., U. of California, Berkeley, June 1973. 
6. Elspas, B., Levitt, K.N., and Waldinger, R.J. An interactive 
system for the verification of computer programs. Research Rep., 
SRI, Menlo Park, Calif., Sept. 1973. 
7. Elspas, B. The semiautomatic generation of inductive asser- 
tions for proving program correctness. Research Rep., SRI, Menlo 
Park, Calif., July 1974. 
8. Floyd, R.W. Assig.ning meaning to programs. Proc. Symp. in 
Appl. Math., Vol. 19, J.T. Schwartz (Ed.), Amer. Math. Soc., 
Providence, R.I., 1967, pp. 19-32. 
9. Floyd, R.W. Towards interactive design of correct programs. 
Proc. IFIP Cong., Vol. 1, North-Holland Pub. Co., Amsterdam, 
1971, pp. 7-10. 
10. German, S. M. A program verifier that generates inductwe 
assertions. B.A. Th., Harvard U., May 1974. 
11. Greff, I., and Waldmger, R. A more mechanical heuristic 
approach to program verification. Proc. Int. Symp. on Program- 
ming, Paris, April 1974, pp. 83-90. 
12. Hoare, C.A.R. An axiomatic basis of computer programming. 
Comm. ACM 12, 10 (Oct. 1969), 576-580, 583. 
13. Hoare, C.A.R. Proof of a program: FIND. Comm. ACM 14, 
1 (Jan. 1971), 39-45. 
14. Katz, S.M., and Manna, Z. A heuristic approach to program 
verification. Proc. 3rd Int. Conf. on Artificial Intelligence, Stanford 
U., Aug. 1973, pp. 500-512. 
15. Katz, S.M., and Manna, Z. Towards automatic debugging 
of programs. Proc. Int. Conf. on Reliable Software, Los Angeles, 
Calif., April 1975, pp. 143-155. 
16. Katz, S.M., and Manna, Z. A closer look at termination. 
Acta InJormatica, to appear. 
17. King, J. A program verifier. Ph.D. Th., Dep. of Computer 
Sci., Carnegie-Mellon U., Pittsburgh, Pa., 1969. 
18. King, J. A verifying compiler. In Debugging Techniques in 
Large Systems, Randall Rustin (Ed.), Prentice-Hall, Englewood 
Cliffs, N.J. 1970, pp. 17-39. 
19. Knuth, D.E. The Art of Computer Programming, Vol. I, 
Fundamental Algorithms. Addison-Wesley, Reading, Mass. 1968. 
20. Manna, Z. The correctness of programs. J. Computer and 
System Sci., 3, 2 (May 1969), 119-127. 
21. Manna, Z. Mathematical Theory of Computation. McGraw- 
Hill, New York, 1974. 
22. Maurer, W.D. The theory and practice of algorithm verification. 
ERL-M315, U. of California, Berkeley, Aug. 1973. 
23. Misra, J. Relations uniformly conserved by a loop. Proc. 
Int. Symp. on Proving and Improving Programs, Arc et Senans, 
France, July 1975, pp. 71-80. 
24. Moriconi, M.S. Towards the interactive synthesis of assertions. 
Research Rep., U. of Texas at Austin, Oct. 1974. 
25. Sussman, G.J. A computational model of skill acquisition. 
Ph.D. Th., MIT, Cambridge, Mass., Aug. 1973. 
26. Sites, R.L. Proving that computer programs terminate cleanly. 
Ph.D. Th., Dep. of Computer Science, Stanford U., STAN-CS-74- 
418, May 1974. 
27. Waldinger, R. and Levitt, K.N. Reasoning about programs. 
,4rtificial Intelligence 5 ( 1974), 235-316. 
28. Wegbreit, B. The synthesis of loop predicates. Comm. ,4CM 17, 
2 (Feb. 1974), 102-112. 
29. Wensley, J.H. A class of non-analytical interactive processes. 
Computer J., 1 (1958), 163-167. 

206 

NEW from ACM 

1976 Administrative 
Directory of 
College and University 
Computer Sciences 

A directory of names and addresses of approximately 
1200 chairmen of Computer Science Departments and 
Directors of Computer Centers at Universities and 
Colleges in the United States, including degree programs 
offered and on-site computing equipment. 

Compiled and printed by Dr. John W. Hamblen and 
computer science students at the University of Missouri- 
Rolla, this 100-page directory is available from: 

ACM Order Department 
P.O. Box 12105, Church Street Station 
New York, N.Y. 10249 

Prices, prepaid, are $5.00 to ACM Members and persons 
l isted in the directory, and $7.50 to others. 

~ ~ 

To: ACM Order Department 
P.O. Box 12105 
Church Street Station 
New York, NY 10249 

Please send the following publication. A check is 
enclosed for payment in full, payable to ACM, Inc. 

1976 Administrative Directory of 
College and University Computer 
Sciences 

copies @ $5.00 per copy Amount $ 

copies @ $7.50 per copy Amount $ 

Total enclosed $ 

Member No 

Name_ 

Address 

City. 

State 7ip 


