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Abstract

By combining existing type systems with standard type-
based compilation techniques, we describe how to write
strongly typed programs that include a function that acts
as a tracing garbage collector for the program. Since the
garbage collector is an explicit function, we do not need to
provide a trusted garbage collector as a runtime service to
manage memory.

Since our language is strongly typed, the standard
type soundness guarantee “Well typed programs do not go
wrong” is extended to include the collector. Our type safety
guarantee is non-trivial since not only does it guarantee the
type safety of the garbage collector, but it guarantees that
the collector preservers the type safety of the program be-
ing garbage collected. We describe the technique in detail
and report performance measurements for a few microbench-
marks as well as sketch the proofs of type soundness for our
system.

1 Introduction

We outline an approach, based on ideas from existing type
systems, to build a type-preserving garbage collector. We
can guarantee that the collector preserves the types of the
mutator’s data-structures. Traditionally a collector is prim-
itive runtime service outside the model of the programming
language, the type safety of running programs depends on
the assumption that the collector does not violate any typ-
ing invariants. However, no realistic system provides a proof
of this assumption. Our primary contribution is to demon-
strate how to construct tracing garbage collectors so that
one can formally and mechanically verify, through static
type checking, that the collector does not violate any typing
invariants of the mutator.

Our approach is simple: make the collector a well typed
function written in the same typed intermediate language
used by the compiler of the mutator’s source language.
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Figure 1: Reduced Trusted Computing Base

Garbage collection is no longer a primitive runtime service,
uses no unsafe primitives, and is part of our model of the
programming language. Since the collector and mutator are
both well typed, we appeal to the fact that “Well typed pro-
grams do not go wrong.” Our language uses a region based
type system [27] for safe primitive memory management.
The collector is built on top of these safe region primitives.
Regions are used to implement the semi-spaces of a tradi-
tional copying collector. The region type system allows us
to verify that it is safe for the collector to deallocate a semi-
space that contains only garbage.

Comparison to region inference. Our collector dynami-
cally traces values at runtime, allowing for more fine-grain
and efficient memory management than systems that use re-
gion inference, which may take asymptotically more space
than a simple tracing garbage collector. From a different
perspective, our collector is merely a particular way of writ-
ing programs in a language that uses regions as the primary
memory management mechanism; with this perspective our
work is simply a more efficient way of utilizing existing safe
region-based memory management primitives, similar to the
“double copying” technique used to make certain region pro-
grams more efficient [26]. Our approach suggests how to
cleanly integrate compile-time memory management tech-
niques with traditional runtime techniques to gain the bene-
fits of both approaches. We consider this to be an important
secondary contribution.



Comparison to proof-carrying code. Safety architectures
such as Java byte-code verification and proof-carrying code
statically verify safety properties of code provided by an un-
trusted code producer [21, 13]. These systems rely on a
trusted garbage collector to safely handle memory deallo-
cation. Our approach allows us to verify the safety of the
mutator and collector, placing the collector outside of the
trusted computing base (TCB). Our type-preserving collec-
tor relies on a few new low-level runtime primitives, but the
total size of the TCB is smaller1 (see Figure 1). Since our
TCB is smaller we are able to provide a stronger guarantee
of safety. Although we verify programs through static type
checking, existing proof-carrying code systems can adapt our
techniques to reduce the TCB in the same way.

Even if we are willing to trust that a particular garbage
collector is correctly implemented, formalizing the invariants
needed to properly interface a mutator with the collector will
complicate the safety policy in a proof-carrying code system.
Also we must trust that the more complex safety policy
is sufficient to guarantee safety. Even conservative garbage
collectors, which have simpler interfaces by conservatively
inferring needed type information at runtime, require the
compiler to preserve subtle invariants [8].

Formal treatment of collector interfaces. Another impor-
tant contribution of our work is the ability to think about
garbage collector interfaces in a statically checkable way. We
can check that the mutator uses the interface properly, and
more importantly that the interface is sufficient for the col-
lector to preserve the type safety of the mutator. Many of
the bit-level details of garbage collector interfaces can be de-
scribed in a high-level and type-safe way, using simple and
standard typing constructs. In particular we describe one
way to implement “stack walking” [11] without an explicit
table that maps the return address of a function to a stack
frame layout. We are able to do this by encoding the table
implicitly and in a checkable way.

Statically catching these bugs makes the system more
secure, easier to debug, more flexible, and potentially more
efficient. We can catch interface bugs, such as the failure
to include a live value in the root set or providing incorrect
type information, at compile time. Since the collector is not
a fixed trusted piece of the system, individual programs can
provide a specialized collector which may improve program
performance.

A traditional copying collector. Figure 2 illustrates a sim-
ple two-space stop-and-copy collector. When the collector
is invoked it is passed three variables from, k, and roots,
which are the current allocation space, the current contin-
uation, and the set of live roots respectively. Heap values
are allocated in the current allocation space. The current
continuation represents the “rest of the program” and takes
as arguments an allocation space and the live roots which
point to all the currently reachable heap data the program
may wish to use. All the data reachable from the live roots
is allocated in the current allocation space.

The collector uses some heuristic to determine whether a
garbage collection should occur. If so, the collector creates
a fresh allocation space (to) then makes a deep copy of the
live roots into the to-space. All the data reachable from the

1The primitives in our prototype system are implemented in ap-
proximately 200 lines of C code while a realistic garbage collector is
in the range of 3000 lines of C.

new roots (roots’) should live in the to-space. The collec-
tor can now safely free the old from-space and resume the
program with the new allocation space and new live roots.
Traditionally this operation is called a “flip” because once
the from-space is deallocated its storage can immediately be
reused as the next to-space, so the roles of the from-space
and to-space are reversed.

In order to guarantee that the from-space can be safely
deallocated, we must be certain that “the rest of the pro-
gram” never accesses values allocated in the from-space. If
our program is written in continuation passing style, we can
easily enforce this invariant by assigning a static type to k
so that it cannot access values in the from-space. We can
easily formalize this intuition into a relatively simple type
system.

Technical challenges. Building a type-preserving collector
does not rely on a single key technical advance, but results
from the combination of several advances in typed compila-
tion. The key issues that need to be addressed are:

1. Copying

2. Source language abstractions

3. Deallocation

4. Pointer sharing

If the static type of every object is known at compile
time, it is easy to write a well typed function that produces
a copy of the object with the same type. However, when the
type is not known at compile time, because of polymorphism
or issues of separate compilation, this task becomes more
challenging. Fortunately work in the area of intensional type
analysis [14, 10] and other forms of ad-hoc polymorphism
that use dictionary passing [30] provide clean solutions to
this problem.

Traditional collectors violate data-abstraction guaran-
tees that are present in the source language. The “private”
fields of an object in Java or “private” environment of a
closure in ML cannot remain private to the garbage collec-
tor. We must decided if we wish to preserve these abstrac-
tion guarantees or violate data-abstraction when performing
garbage collection.

For example there are several well known techniques for
type-preserving closure conversion. [16, 20, 28] Many of the
schemes provide strong guarantees that they preserve source
level abstractions. In practice many compilers still must
provide extra type information that describes the layout of
“abstract” objects for the garbage collector, so claims of ab-
straction preservation break down at the level of the garbage
collector. Other closure conversion techniques for first-order
target languages [28] provide much weaker abstraction-
preservation guarantees and make the layout of closures ex-
plicit during translation. Intensional type analysis formal-
izes the passing of extra type information (typically pro-
vided by the compiler for the garbage collector) in a fully
type-safe way [10]. We touch on some of the tradeoffs of
these approaches in Section 2.

Collectors must use some primitive memory management
service to allocate and deallocate the from-space and the to-
space. We must verify that the service used by the collector
is safe. The work on type and effect systems done by Tofte
and Talpin and refined by others, provides type-safe explicit
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fun gc(from, k, roots) =
if(need_gc(from)) then
let to = new_space() in
let roots’ = copy(from, to, roots)
in free_space(from) ; k(to, roots’)

else k(from, roots)

from to

initial

copy

flip

Figure 2: Traditional Garbage Collector

memory management [27, 1, 9, 7]. We can use the mem-
ory management primitives provided by a region system to
guarantee that it is safe to deallocate the from-space after
the garbage collector has copied all the live data into the
to-space.

Pointer sharing is preserved by the use of forwarding
pointers which provide an efficient way to implement a map
from pointers in the from-space to pointers in the to-space.
This map is needed to copy an arbitrary graph of heap ob-
jects from one space to the other. Any map, such as a hash
table, can be used in place of forwarding pointers. Deal-
ing with forwarding pointers complicates reasoning about
safety, but we outline one approach for dealing with for-
warding pointers in a safe way. Or approach requires some
inelegant ad-hoc reasoning, but our technique is as efficient
as current unsafe techniques and can be formally proven
sound.

In Section 2 we informally describe the language we will
use to build our type-preserving collector. In Section 3 we
demonstrate our technique applied on a simple program.
In Section 4 we discuss how to provide forwarding pointers
in a type-safe way. Finally we present some preliminary
performance numbers for a few microbenchmarks in Section
5.

2 A Language for Type-Preserving Garbage Collectors

Each technical challenge can be solved with several different
techniques. To simplify our presentation we will choose the
simplest solution for each challenge, and discuss more com-
plex alternatives. We only consider a first-order language
where all types are known at compile time. There exist
whole-program compilers for ML and Scheme that trans-
late higher-order languages into a first-order language, so
this restriction does not restrict the generality of our ap-
proach [17, 23]. Under these assumptions we can generate
a copy function for each type of object. We could avoid the
need for a first-order compilation approach and also support
separate compilation better if we used the technically more
sophisticated techniques of intensional type analysis. These
assumptions allow us to focus more of our attention on the
underlying approach and some of the more problematic is-
sues such as forwarding pointers.

A Simple Region Type System. The first-order assumption
simplifies the region system by allowing us to ignore latent
effects. For our purposes the region type system need not
be particularly advanced. We do not need to separate read
and write effects, support effect polymorphism, account for
latent effects (since our language is first order), or allow for

dangling pointers. All of these features are included in the
original Tofte-Talpin region calculus [27].

However, one feature that our region calculus must sup-
port, but is not provided by the original Tofte-Taplin sys-
tem, is early deallocation. The region system of Crary,
Walker, et al [9] supports early deallocation. It is sufficient
for our purposes but is still more complex then needed be-
cause of their static approach to handling issues of region
aliasing. A simple region type system suitable for our pur-
poses that supports early deallocation and handles region
aliasing through a simple runtime check is described in [32].
We will use this system in the description of our work, be-
cause of its simplicity.

Violations of Abstraction. The first-order restriction forces
us to turn higher-order objects such as closures, which are
normally abstract, into concrete values with an explicit rep-
resentation. This has the advantage that our collector can
now check if two closures have the same “pointer address,”
and perform other operations that would typically violate
abstractions in higher-order languages.

While these abstraction violations are troubling, they
merely reflect the fact that existing garbage collection tech-
niques tend to violate abstraction. However, we believe this
violation of abstraction is not fundamental and that one can
easily develop techniques that are not only type-preserving
but also-abstraction preserving. However, it is not clear if
these abstraction preserving techniques are as efficient as
the current known techniques that violate abstraction, and
efficiency is an important concern when developing garbage
collectors.

In the next section, to make these issues concrete, we
describe how to apply our technique to a simple program, it-
erative list reverse, written in our calculus using a explicitly
typed first-order ML-like language with regions and early
deallocation. The type system is not particularly novel so
we will discuss it only informally.

3 Example: itrev

Source program. Figure 3 contains a program that reverses
a list of integers. The function itrev takes two arguments
l and acc both of type lst and returns a value of type lst.
The argument l holds the list to be reversed while acc holds
the intermediate results. The recursive call to itrev is a tail
call, so we do not need to allocate a new stack frame for this
call. Note when the program first calls itrev the call is not
a tail call, so we must allocate a trivial stack frame for this
call. As the function recursively descends l the previous list
cells, contained in the dotted box in the figure, are garbage
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type lst = Nil | Cons (int, lst)

fun itrev(l:lst, acc:lst):lst =
case l of Nil ⇒ acc
| Cons(hd,tl) ⇒

let acc’ = Cons(hd, acc)
in itrev(tl, Cons(hd, acc’)

let l = Cons(1, Cons(2, ... )) in
let rl = itrev(l, Nil) (* non-tail call *)
in rl

1 2 3 4

1 2 3 4

1

1 2 3 4

2 1

l

acc

l

l
acc

acc

Figure 3: Iterative List Reverse

and can be reclaimed. The function therefore, need only
retain a constant amount of live data in addition to the list
itself. This simple reasoning cannot be applied in systems
that use region inference to manage memory.

Region inference would not allow us to immediately free
each list cell in l after we have traversed it. A region system
would force us to hold onto all the cells of l until the function
returns acc. Type systems based on linear logic may give us
more fine-grain control over allocation and deallocation and
allow us to capture our reasoning for this particular instance,
but they are fragile in the presence of aliasing [4, 6, 24, 31].

We will convert the program in Figure 3 into an equiv-
alent program that includes a function to garbage-collect
dead values and is still well typed. We will need to per-
form CPS and closure conversion to the program, to make
our informal reasoning about the stack and live values ex-
plicit. Afterwards, we perform a simple region annotation
to the resulting program to make precise what values live
on the heap and when they are allocated. Finally, with this
CPS-converted, closure-converted, region-explicit program
we can synthesize a function that acts as a garbage collector
for the program.

CPS and closure conversion. If we CPS convert our source
program, reasoning about the control flow of the program
becomes easier. However, since our language is first-order
we cannot use a standard CPS conversion algorithm, which
requires higher-order functions. Instead we adapt a first-
order closure conversion technique outlined by Tolmach with
a standard CPS conversion. Figure 4 illustrates Tolmach’s
closure conversion technique. Notice that the types of any
free variables are captured in the type of the closure [28].

Figure 5 is the result of applying these both the CPS and
closure conversion transformations on our example. Notice
the new type cont which is the type of return continuations
for the function itrev. All functions have a return type of
Ans, which means they do not return. This type contains
one data constructor Ret rl which is needed for our one
non-tail call in the original program. In general each call
site of itrev will require one new data constructor to rep-
resent each distinct return continuation. Also note that we
implicitly assume we have access to the whole program at
this point.

Tagless garbage collection algorithms examine the return
address of a function stored in the stack frame in order to
determine the layout of the stack frames [11]. The trans-

formation we have performed allows us to perform a similar
operation. The tag of each data-constructor acts as the re-
turn address, the type of the data-constructor describes the
stack layout, which is empty in this case. So we can replace
a low-level table of bitmaps with a set of high-level type
declarations.

The chief disadvantage of first-order closure conversion is
that it makes separate compilation more difficult.2 However,
providing true separate compilation using standard higher-
order techniques that preserve abstraction and have better
separate compilations properties is not as simple as it may
seem. Even these techniques must have a method of merg-
ing type information at link time or force all objects to be
uniformly tagged, which is often undesirable.

Region annotated. We have been informally arguing about
where and when objects are allocated. Figure 6 shows our
program with explicit region annotations. Notice that the
type lst in figure 5 becomes a type constructor lst[ρ] pa-
rameterized by a region in which the list lives. Since we
can represent both the empty list and return continuation
as single machine words we do not need to allocate space
for them. We need to allocate space only when constructing
list cells with the Cons data-constructor; this is reflected in
the type Cons(int, lst[ρ]) at ρ.

Both the itrev and apply functions each take a single
region parameter (ρalloc), which corresponds to the alloca-
tion pointer in a normal untyped system. When we allocate
a new list cell we use the notation lst[ρheap].Cons(1,...)
which instantiate the region parameter (ρ) of the type con-
structor lst to ρheap and indicates that the new list cell will
be allocated in the region ρheap. We have assigned regions to
types so that values are allocated in one global region, which
acts like a traditional heap. When we call itrev we instan-
tiate its region parameter ρalloc to ρheap. We could apply a
more refined region local analysis to avoid heap-allocating
an object when the lifetime of the object is locally obvious.

If the return continuation captured some live variables we
would heap-allocate the continuation. This approach sim-
plifies the compilation of advanced control features such as
exceptions and first class continuations as well as simplify-
ing the reasoning of safety. However, heap-allocating return
continuations could impact performance in an undesirable
way. A system extended with linear types, along with a

2Tolmach outlines a separate compilation technique that requires
special support from the linker.
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Higher-Order First-Order

let y = 1 in
let f = if e then (λx:int.x)

else (λx:int.x + y)
in f 1

type clos = C1 | C2(int)
fun apply (f, x) =
case f of C1 ⇒ x
| C2(y) ⇒ x + y

let y = 1 in
let f = if e then C1

else C2(y)
in apply (f, 1)

Figure 4: First-order Closure Conversion

type lst = Nil | Cons(int, lst)
type cont = Ret_rl

fun itrev(k:cont, l:lst, acc:lst):Ans = (* B *)
case l of Nil ⇒ apply(k, acc) (* B1 *)
| Cons(hd, tl) ⇒ (* B2 *)

let acc’ = Cons(hd, acc)
in itrev(k, tl, acc’)

and apply(k:cont, v:lst):Ans = (* C *)
case k of Ret_rl ⇒ (* C1 *)
let rl = v (* bind return value rl *)
in rl ; halt() (* exit program *)

let l = Cons(1, ...) in (* A *)
let k = Ret_rl
in itrev(k, l, Nil)

B

B1 B2

A

C

C1

Figure 5: CPS-Converted and Closure-Converted Program

type lst[ρ] = Nil (* unboxed *)
| Cons(int, lst[ρ]) at ρ (* boxed *)

type cont[ρ] = Ret_rl (* unboxed *)

fun itrev[ρalloc](k:cont[ρalloc], l:lst[ρalloc], acc:lst[ρalloc]):Ans =
case l of Nil ⇒ apply(k, acc)
| Cons(hd, tl) ⇒

let acc’ = lst[ρalloc].Cons(hd, acc)
in itrev(k, tl, acc’)

and apply[ρalloc](k:cont[ρalloc], v:lst[ρalloc]):Ans = ...

letr ρheap in (* initial program heap *)
let l = lst[ρheap].Cons(1, ...) in (* heap allocate list *)
let k = cont[ρheap].Ret_rl (* create return continuation *)
in itrev[ρheap](k, l, lst[ρheap].Nil)

Figure 6: Program itrev after Region Annotation
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set of simple syntactic restriction would allow us to stack
allocate return continuations.

GC safe points. Part of the interface between a garbage
collector and the compiler is a description of “safe points”.
These are locations during the execution of the mutator
where it is safe to invoke the garbage collector. At these
safe points the compiler usually emits type information de-
scribing which values are live at the safe point. Compilers
that do optimizations must also be careful not to perform
certain optimizations across safe points. It is complicated to
characterize precisely which optimizations are and are not
allowed [11]. It requires that the compiler understand the
special semantics of what happens at a garbage-collection
safe point.

In our framework all these issues are handled straightfor-
wardly: since the garbage collector is just a normal function,
the compiler does not need to be modified to be aware of any
special semantics. A garbage collector is just a function that
takes some data value. Figure 7 shows such a “safe point”
in our program. Depending on some heuristic the code ei-
ther continues executing or packages the set of current live
roots into a return continuation for the garbage collector,
described by the type gc cont.

With region types we are able to statically verify that
the data value is actually the set of live roots for the entire
program. If a buggy compiler or optimizer did not include
all possible roots we would catch this error at compile time,
since not including a root would result in a scoping error or
a violation of the region type system. More importantly, we
would be able to easily where the error was by examining the
code statically, which makes debugging significantly easier.
Debugging these sorts of problems in a traditional unsafe
system is considerably more difficult, because being able to
isolate a bug of this sort in a large program is a serious
challenge.

Early deallocation and the only term. Figure 8 contains
the code for the garbage collector. It copies the roots into a
new region (ρto) then it implicitly deallocates the old region
(ρfrom) and resumes the program with the new roots and
new region. The term only ρto in ... is a static assertion
that the body of the expression does not return, i.e. has
type Ans, and can be safely evaluated using only the region
dynamically bound to ρto.

In general the only expression takes an arbitrary set of
region variables. At runtime we simply note what regions are
dynamically bound to the region variables passed to the only
expression and safely deallocate any other regions, since they
are not needed to evaluate the rest of the program. The cost
of this deallocation operation is at worst linearly related to
the number of live regions. Our safe garbage collector needs
at most two live regions at any time, so in practice the cost of
this dynamic approach is negligible. This dynamic approach
to early deallocation of regions is a novel approach which is
simpler than current static approaches to early deallocation
and more expressive.

Consider the program

fun f[ρa, ρb](x:int at ρb):Ans =
free region ρa in (get[ρb](x) ; halt())

letr ρ1, ρ2 in

if e then f[ρ1, ρ2](put[ρ1](1))
else f[ρ1, ρ1](put[ρ1](1))

The expression put[ρ](1) stores the integer into the region ρ1

and returns a reference to the integer. The term get[ρb](x)
reads an integer from the region ρb. Notice that if the pro-
gram executes the first branch of the conditional then f
behaves as expected. However, if we execute the second
branch then at runtime the region variables ρa and ρb are
both bound to the same region and the program will attempt
to access a region which we have erroneously deallocated. To
handle this situation correctly we can simply prevent pro-
grams from aliasing region variables through various typing
disciplines [9]. The static approaches do not incur any run-
time overhead, but are relatively complex systems and would
disallow us from writing the program above.

Using our dynamic approach we write f as

fun f[ρa, ρb](x:int at ρb):Ans =
only ρb in (get[ρb](x) ; halt())

At runtime we can determine what regions are actually
bound to ρa and ρb. If ρa and ρb are bound to the same
region we will deallocate nothing. If ρa and ρb are bound
to distinct regions then we know that it is safe to deallo-
cate the region associated with ρa since we do not need it to
evaluate the rest of the computation. It is not hard to im-
plement such a system in practice. In our prototype system
all of the region primitives are less than 200 lines of C. We
also believe that we can integrate the explicit deallocation
techniques that use static typing to prevent region aliasing
with our implicit approach to give us the benefits of both ap-
proaches, so that we resort to this dynamic approach when
we are unable statically determine aliasing relationships.

This dynamic approach to region deallocation is similar
to the work of Aiken and Gay [12]. However, they use a
relatively weak region type system and a more expensive
reference counting approach that requires updating a ref-
erence count for each interregion store. Because our type
system provides more guarantees we can safely deallocate
regions without needing to maintain any reference counts.

GC copy function. Figure 9 sketches the code for a naive
copy function. The type of the copy function guarantees
that the function performs a deep copy. The copy function
is not written in continuation-passing style so it uses a stack
while traversing the list. We could write the copy function in
continuation-passing style and heap-allocate all its tempo-
rary space in a third region which we could reclaim after we
are done. Alternatively if we extend our type system with
enough technical machinery so that we can recycle the space
used by the continuations we could implement what would
amount to the Deutsch-Schorr-Waite pointer reversal algo-
rithm [22, 29, 25, 31]. Note that the function copy cont per-
forms an operation equivalent to “walking the stack”. Since
we have CPS converted our program the continuation, k,
represents the current stack frame. It may be the case that
we can adapt the higher-order techniques to provide true
abstraction and separate compilation in the presence of a
garbage collector by requiring each abstract object to pro-
vide a method3 to copy or trace the object. It is not clear
what the software engineering and performance issues are

3A closure can be thought of a an object with a single “apply”
method.
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type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl
type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](k:cont[ρalloc], l:lst[ρalloc], acc:lst[ρalloc]):Ans =
if need_gc[ρalloc]() then (*** safe point ***)
let roots = gc_cont[ρalloc].Ret_itrev(k, l, acc)
in gc[ρalloc](roots)

else ... (* body of original itrev *)
and apply[ρalloc](k:cont[ρalloc], v:lst[ρalloc]):Ans = ...
and gc[ρfrom](roots:gc_cont[ρfrom]):Ans = ...
...

Figure 7: Program itrev with Safe Point Inserted

type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl
type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ... and apply[ρalloc](...):Ans = ...
and gc[ρfrom](roots:gc_cont[ρfrom]):Ans =
letr ρto in
let roots’ = copy_gc_cont[ρfrom][ρto](roots) in
only ρto in (* deallocate ρfrom *)
case roots’ of
Ret_itrev(k, l, acc) ⇒ itrev[ρto](k, l, acc)

and copy_gc_cont[ρfrom, ρto](x:gc_cont[ρfrom]):gc_cont[ρto] = ...
...

Figure 8: “Flipping” from and to space

type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl
type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ... and apply[ρalloc](...):Ans = ...
and gc[ρfrom](...):Ans = ...
and copy_gc_cont[ρfrom, ρto](x:gc_cont[ρfrom]):gc_cont[ρto] =
case x of Ret_itrev(k, l, acc) ⇒
let k’ = copy_cont[ρfrom, ρto](k) in (* walk the "stack" *)
let l’ = copy_lst[ρfrom, ρto](l) in
let acc’ = copy_lst[ρfrom, ρto](acc)
in gc_cont[ρto].Ret_itrev(k’, l’, acc’)

and copy_lst[ρfrom, ρto](x:lst[ρfrom):lst[ρto] = ...
and copy_cont[ρfrom, ρto](x:cont[ρfrom]):cont[ρto] = ...
...

Figure 9: Copying roots
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Shared Unshared

Figure 10: Shared vs. Unshared values

for this technique so we consider it to be future work. A
more serious problem with our copy function is that it does
not preserve pointer sharing.

Preserving Sharing. Consider the datastructure in the first
half of Figure 10. If we were to apply our garbage collection
technique with a naive copy function it would convert the
originally shared list of lists into an unshared version which
uses more space. In the presence of cyclic data structures
our naive copy function would not terminate. Traditional
garbage collectors use forwarding pointers to preserve shar-
ing. However, forwarding pointers are not the only mecha-
nism by which to do this.

Figure 11 outlines a copy function that uses an aux-
iliary hash table augmented with one primitive to return
the unique pointer address of an object. This approach,
while inefficient, demonstrates that the underlying algo-
rithm needed to preserve sharing is not inherently difficult
to type. In the next section we will outline how to encode
forwarding pointers in a safe way.

4 Forwarding Pointers

The easiest way to understand how to encode forwarding
pointers is to start by encoding as many of the garbage col-
lector invariants as possible within the type system. We will
discover that the type system outlined so far can capture
many important invariants, but is not sufficiently expres-
sive to capture them all precisely. However, if we examine
our partial solution we will gain enough insight to come up
with a full solution by extending our system with a single
primitive.

Figure 12 sketches one approach to forwarding pointers.
Some garbage collectors may overwrite a field of the ob-
ject, but to simplify our presentation we assume every heap
allocated object contains an extra word to hold a forward-
ing pointer which is either NULL or a pointer to an object
of the appropriate type in the to-space. Notice that we
have two different list types. The gc lst type describes the
garbage collector’s view of lists. From the garbage collec-
tor’s standpoint, lists are allocated in a from-space contain-
ing forwarding pointers into objects in a to-space. It must
be the case that that lists allocated in the to-space have for-
warding pointers which are always set to NULL. The lst type
describes lists that the mutator operates on, and maintains
the invariant that the forwarding pointer is set to NULL. The
fact that the forwarding pointer is a mutable field which the

garbage collector will mutate is captured by the use of the
ref constructor.

The function share copy lst takes objects of type
gc lst and makes a copy of type lst which preserves the
underlying pointer sharing in the original gc lst. This code
handles only acyclic lists but can be extended to handle the
cyclic case. At first glance this would seem to be a complete
solution; unfortunately there is one thorny problem. If the
mutator operates on objects of type lst how did we get an
object of type gc lst in the first place?

Ideally, we would like to argue that there is a natural
subtyping relationship that allows us to coerce objects of
type lst into objects of type gc lst. For this to work we
need the ref constructor to be covariant. However, it is well
known that covariant references are unsound. However, Java
adopts this rule for arrays4 and achieves safety by requiring
an extra runtime check for every array update. We cannot
adopt the approach used by Java. This runtime check would
prevent our garbage collector from setting any forwarding
pointer to a non-null value.

However, rather than disallowing unsafe updates to an
object we can disallow unsafe dereferences, more impor-
tantly we can disallow unsafe dereferences in a way that
does not require a runtime check for every access. Given a
value of type lst, if after casting it to a value of type gc lst
our program never accesses any value of type lst this cast
is safe.

If our program is written in continuation-passing style,
we can enforce this guarantee by making sure that after
casting the value of type lst to a value of type gc lst we
pass the newly cast value immediately to a continuation that
never accesses any value of type lst. One way to guarantee
this condition statically is to type the continuation that re-
ceives the cast value in a typing context where the type lst
is not bound.

Denying access to values of type lst after the program
has performed a cast, is too restrictive to be useful. How-
ever, since both the lst and gc lst are region annotated
types, we can achieve a similar sort of guarantee and still
write useful programs by revoking the right to the access
the region where the type lst is allocated, using a similar
scoping trick. We can do this because after our garbage
collector casts a lst value to a gc lst value it never needs
to examine the original value as a value of type lst. After
our garbage collector runs, the original lst value is garbage,
so the mutator never needs to access the region where the
lst value was allocated. However, if we deny access to the
type lst by denying access to the region it lives in, where is
the value of type gc lst allocated? We solve this problem
by introducing a new “fake” region which is equivalent for
the purposes of subtyping to the region we denied access to
but for all practical purposes appears to be a distinct fresh
region.

To do this we must introduce a nonstandard and ad-hoc
form of subtyping on references. This allows for safe covari-
ant references by using region variables to control access to
potentially unsafe pointer aliases. Given two types A and
B where A is a subtype of B and a region ρ the type ref[ρ,
A] is a subtype of ref[ρ′, B] (where ρ′ is a new “fake” re-
gion variable) provided that the rest of the program does
not access any values in region ρ. This rule is admittedly
ad-hoc, but it is the only ad-hoc rule in our entire system.
Our approach is based on the observation of Crary, Walker,

4A ref cell can be thought of as a one element array.
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prim objId : [α] α → int
tycon tbl :: Rgn → Typ → Typ → Typ = ...
fun newTbl[ρtbl, α, β](sz:int):tbl[ρtbl, α, β] = ...
fun inTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α):bool = ...
fun getTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α):β = ...
fun addTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α, val:β):unit = ...

type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl
type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ...
...
and share_copy_lst[ρtbl, ρfrom, ρto]
(t:tbl[ρtbl, lst[ρfrom], lst[ρto]],x:lst[ρfrom]):lst[ρto] =

case x of Nil ⇒ lst[ρto].Nil
| Cons(hd, tl) ⇒

if inTbl[ρtbl, lst[ρfrom], lst[ρto]](x) then (* is forwarded? *)
getTbl[ρtbl, lst[ρfrom], lst[ρto]](x)
else let hd’ = hd in
let tl’ = share_copy_lst[ρtbl, ρfrom, ρto](t,tl) in
let x’ = lst[ρto].Cons(hd’,tl’)
in addTbl[ρtbl, lst[ρfrom], lst[ρto]](x,x’) ; (* set forwaded *)

x’
...

Figure 11: Preserving Sharing with a Hash-Table

tycon ref :: Rgn → Typ → Typ
type gc_lst[ρfrom, ρto] = Nil
| Cons(ref[ρfrom,fwd_ptr[ρto]], int, gc_lst[ρfrom, ρto]) at ρfrom

and fwd_ptr[ρto] = NULL | PTR(lst[ρto])
and lst[ρto] = Nil
| Cons(ref[ρto, fwd_null], int, lst[ρto]) at ρto

and fwd_null = NULL
fun itrev[ρalloc](...):Ans = ...
...
and share_copy_lst[ρfrom, ρto](x:gc_lst[ρfrom, ρto]):lst[ρto] =
case x of Nil ⇒ lst[ρto].Nil
| Cons(f, hd, tl) ⇒

(case deref[ρfrom](f) of NULL ⇒
let hd’ = hd in
let tl’ = share_copy_lst[ρfrom, ρto] in
let l = lst[ρto].Cons(mkref[ρto](fwd_null.NULL), hd’ , tl’)
in f := l; l

PTR(l) ⇒ l)

Figure 12: Encoding Forwading Pointers
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et al [9] that region variables act like “capabilities”. We use
this observation to revoke all old references to the object and
allow access to the object only through references of the ob-
ject’s supertype. See [32] which sketches the soundness of
the approach for a simpler core calculus. It is important
to note that we still must at run time check that ρ is not
aliased by any other region variable, so that the new region
variable ρ′ refers to a unique region. This extra alias check
is need for this approach to be completely sound, but all our
alias checks would be unnecessary in the system of Crary,
Walker, et al.

5 Preliminary Performance Evaluation

The approach we have outlined is asymptotically competi-
tive with existing garbage collection algorithms. However we
cannot neglect constant factors and other important prag-
matic issues, if we wish to build a practical system. One is-
sue is code size. Since we are generating a new copy function
for every unique type, code explosion is a serious concern.
We can adapt the δ − main encoding technique [11] and
other approaches to encourage sharing in our copy function
to mitigate the code explosion problem. In order to address
this issue we intend to do a detailed study of the number
of unique copy functions needed for real programs. If these
techniques are not sufficient we can adopt the techniques
such as intensional type analysis [14] to avoid having a dis-
tinct copy function for every unique type. For our prelim-
inary evaluation we will ignore the issues of code size and
just examine efficiency of the currently described system.

Input programs. For comparison we have chosen several
programs seen in the previous literature on region based
memory management. They are as follows:

itrev Iterative list reverse (n = 10,000)

appel1 Program designed to demonstrate issues of space
complexity (n = 1000) [27]

inline Inline variant of appel1 (n = 1000) [27]

appel2 Program designed to demonstrate issues of space
complexity (n = 1000) [27]

ackermann Ackermann’s function evaluated (n = 3, m =
6) [27]

fib Recursive Fibonacci (n = 33)

hsum Sum the value in a heap allocated list (n = 1000) [27]

quicksort Quicksort randomly generated list (n =
1000) [27]

share-copy Reverse shared list of list (n = 10,000)

sum Recursive sum of the first n integers (n = 1000) [27]

These programs are not a representative workload. How-
ever, they are sufficient for a preliminary evaluation. It
is important to note that our safe collector for appel1,
appel2, and inline uses asymptotically less space than a
region-based approach. Our safe collector is also more ro-
bust in that both appel1 and inline have similar space
characteristics which is not the case in the original Tofte-
Talpin system.
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Figure 13: Relative Runtime Performance

Compiler. We have modified the back end of the MLton [17]
to accept source programs that include a safe garbage collec-
tor. The MLton compiler emits C code that is then processed
by the system C compiler to produce a runnable program.
MLton has a straightforward unsafe depth-first-search two-
space precise copying collector. The compiler also stack-
allocates activation records.

For each source programs we collect data for the follow-
ing variants:

orig Original program passed directly to MLton

cps Program run through CPS transform and first-order
closure conversion, run with MLton’s unsafe collector

gc-fwd Same as cps using safe collector and forwarding
pointers which require an extra word of space for each
object

gc-tbl Same as cps using safe collector with hash table to
preserve sharing

To better understand the impact of CPS conversion, we
measure the runtime of programs using the unsafe collector
before (orig) and after CPS conversion (cps). We finally
measure the performance of two different safe collectors,
which differ only in their approach to sharing preservation;
one uses forwarding pointers (gc-fwd), the other a hash-
table (gc-tbl).

In a production system we would synthesize a safe collec-
tor after high-level optimizations, but because of the struc-
ture of MLton it was more convenient to synthesize a collector
before many high-level optimizations. However, this exper-
imental artifact demonstrates that compiler backends can
safely optimize our program after a garbage collector has
been synthesized without understanding any special seman-
tics. In this case there are two different optimizing com-
pilers: MLton, which is performing high-level optimizations
such as inlining, record flattening, and unboxing; and the
system C compiler (gcc).

Effect of CPS Conversion. Figure 13 shows the total wall-
clock run time for each program and variant normalized
by the performance of the unoptimized CPS-converted pro-
gram. Immediately, one can see that the CPS conversion
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Figure 15: Relative Number of Words Garbage Collected

can cause more than a factor of two performance degra-
dation when compared to the original program, which is
stack allocating activation records. We are using a sim-
ple flat-closure representation; more advanced closure rep-
resentation techniques can significantly reduce the amount
of allocation.[2, 3] Figure 14 shows that our CPS converted
programs are allocating significantly more heap data5, which
accounts for the performance difference. Also note that pro-
grams using a safe collector with a hash table are allocating
less data than programs using a safe collector with forward-
ing pointers. This is because although our safe collectors are
tagless, we are reserving an extra word to store a forwarding
pointer for each object. The unsafe collectors are paying a
similar overhead for an extra tag word. The collector using
a hash table is not incurring this extra space overhead for
tagging or forwarding, but uses more auxiliary space during
garbage collection.6

5Notice that some programs did not allocate any heap data origi-
nally.

6The extra auxiliary space need for garbage collection is not ac-
counted for in the figure.
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Figure 16: Per-word and per-object cycle costs

Unfortunately, synthesizing a garbage collector before
optimizing prevents certain space-saving optimizations, but
this is simply an artifact of our current experimental setup.
After we region-annotate our program, we make our alloca-
tion semantics explicit. MLton will not unbox objects which
we have decided to box. This artifact most notably shows
up in the increased allocation of share-copy.

If we compare the performance of programs using our
safe collector with the those using the standard unsafe col-
lector, we see that in some instances programs using our
safe collector seem to outperform the same programs us-
ing an unsafe collector even when the unsafe version of the
program is stack-allocating activation records. This naive
comparison is misleading, because the various programs al-
locate different amounts of data at different times. Because
each program’s allocation behavior is different, the number
of words actually garbage-collected varies. Figure 15 shows
the relative amount of data actually garbage-collected for
each program.

This explains why in the case of itrev our safe collector,
which uses a more costly hash table to preserve sharing,
seems to outperform both the safe collector using forwarding
pointers and the unsafe collector. Since each heap object is
smaller when we are using a hash table to preserve sharing,
our collector will be invoked less frequently.7 In this case
the program using the safe collector with a hash table seems
faster because it is just doing less work. We could perform an
experiment where we control for this and force collections to
occur at precisely the same time for identical programs, but
this would obscure the fact that a garbage collection scheme
which may be less efficient when comparing performance in
terms of strict copying costs may in practice be more efficient
because of secondary effects, such as reducing the object size
overheads for the mutator.

Quantitative Measurements. With the caveat that raw
copying performance is not an accurate measure of the per-
formance impact of a garbage collection scheme, we report
the raw copying performance of our collector, by assuming

7In the case of share-copy, which is allocating more data, because
of our dynamic heap resizing policy it is being invoked at different
times when there is less live data to be collected.
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the following:

gc time = c1 · objects collected + c2 · words collected

This assumes that total garbage collection time is simply the
sum of time spent collecting each object and that the time
spent collecting each object is simply some constant factor
plus the cost collecting each word of the object. We have
estimated the per-word and per-object costs by artificially
varying both the object size and number of objects collected
for our set of programs and then performing a least squares
fit over the data. Figure 16 summarizes our results in terms
of absolute machine cycles. We omit numbers for the orig
case since it is using exactly the same unsafe collector as
cps. Since the unsafe collector is interpreting type tags at
runtime it has a significantly higher per-object cost. How-
ever, it is using a system-optimized memcpy which allows it
to have a much smaller per-word cost. Our tagless scheme
allows us to avoid any tag-interpretation overhead. Our safe
collector is copying objects with a series of naive loads and
stores. For small objects, however, our safe collector us-
ing forwarding pointers is significantly more efficient than
the unsafe collector. We must add a caveat that with such
small programs we are ignoring important caching effects in
our analysis.

Our experiments suggest that if we modify our frame-
work so that we can stack allocate return continuations, and
if caching-related effects can be addressed our safe collector
should be competitive with traditional unsafe techniques.

6 Conclusions and Future Work

Although our approach as presented is not practical for
general-purpose systems, we believe practical systems can
be built by extending our current work. The most impor-
tant insights are that a general-purpose collector can be built
on top of a set of much simpler primitives, and that when
standard type systems are too weak, we can rely on run-
time checking or simply add “the right lemma” and encode
what amounts to a small proof sublanguage to establish im-
portant preconditions needed for any ad-hoc reasoning that
does not fit into a standard framework.

At a high-level, garbage collection algorithms move ob-
jects from one abstract set to another. Particular garbage
collection algorithms differ in how these abstract sets of ob-
jects are implemented. In our type-preserving collector each
abstract set of objects corresponds to a region. Our tech-
nique is not dependent on any particular implementation of
the region primitives.

In the past region have been implemented as contiguous
allocation arenas. If we implement regions as doubly-linked
list of objects rather than contiguous allocation arenas, we
can build a “fake copying” collector [33]. The “fake copying”
scheme forms the basis for incremental techniques such as
Bakers’s Treadmill [5]. We maybe be able to use this obser-
vation as the basis for building safe incremental collectors.
The mark bits used in mark-sweep and mark-compact col-
lectors can also be seen as a simple set membership bit. We
believe that with an appropriate implementation of the un-
derlying region primitives, mark-sweep and mark-compact
collection schemes could be implemented.

We would like to investigate how to integrate purely
static memory management techniques [24, 31] with our sys-
tem. [18] takes our basic approach and extends it to use

the more sophisticated techniques of intensional type anal-
ysis, and outlines an approach for encoding a generational
collector as well as presenting an alternative approach to
forwading pointers.

Garbage collectors are typically written in low-level un-
safe languages such as C. Most garbage collector algorithms
discuss details in terms of low-level bit and pointer manip-
ulation operations. Morrisett, Felleisen et al [19] present
a high-level semantics for garbage collection algorithms,
and prove the correctness of various well known algorithms.
However, in their semantics garbage collection is still viewed
as an abstract operation that lies outside of the underly-
ing language being garbage collected. This approach allows
them to discuss the purely algorithmic issues without reveal-
ing the underlying implementation details. Our semantics is
sufficiently detailed that one can use it as guide to directly
implement a reasonably efficient garbage collector on realis-
tic hardware. It also has the property that we establish the
safety of our garbage collection algorithm by simply relying
on type soundness.

Ideally we would like to have a spectrum of static and
dynamic memory management techniques so one can mix
techniques in a clean, efficient, and safe way. We would like
to investigate in more detail the abstraction related issues we
have mentioned. Although our technique is type-preserving
it is still not abstraction-preserving. We believe research in
this direction may lead to more modular memory manage-
ment techniques.
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