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An algorithm is presented for the assignment of 
instruction addresses and formats under the following 
conditions: (I) the length of the instruction varies as a 
function of the distance of the instruction from its 
target; (2) there exists an optimality criterion which 
implies some preferential choices subject to the ad- 
dressing constraints. This may be, for example, 
achieving the smallest number of long instructions, in 
which case the total code length is minimized, or 
minimizing the assigned address of a specified point in 
the program. The algorithm is suitable for arbitrary 
program structure and a choice of optimization 
criteria. 
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1. Introduction 

In a recent paper, D.L. Richards [1] proposes a 
solution to the following problem: given two relative 
addressing modes, long and short, and given the forward 
and backward distances which are the thresholds for 
the choice of the mode, assign proper long or short 
addresses so that the total length of  the code is minimal. 

In his work, Richards introduces an algorithm 
which finds an assignment for the addressing modes. 
However, his solution is not always optimal, as can be 
seen from the failure of his algorithm to produce a 
minimal length assignment in a simple case (see Ap- 
pendix), and the algorithm may fail completely in some 
pathological cases (discussed later). Apart from these 
deficiencies, there are other drawbacks to the algo- 
rithm, among them the necessity to distinguish between 
inter- and intra-block references and the rigidity of  the 
optimization criterion. 

The present work uses, in part, the ideas introduced 
in [1]. We present an algorithm which handles code 
segment structures in a general fashion, and can use 
other optimization criteria. Our algorithm can be 
adapted for address assignment in a paged environ- 
ment where in-page and out-of-page addresses are of 
differing lengths, a common situation in minicomputers 
and microprocessors [2]. 

The actual code for the algorithm can be found in 
[2], together with data and results for three experimen- 
tal runs. We shall comment on the applicability of  the 
algorithm to practical problems in a later section. 

2. Basic Assumptions and Data Description 

We assume that the two addressing modes differ by 
length d. The short instructions (those with the short 
addresses) can be used whenever the target, i.e. the 
address of their operand, is within the distance F for- 
wards or B backwards from the instruction. In each 
program, some of the mode decisions can be made 
trivially during the first pass through the program, such 
as some backwards references. The unresolved instruc- 
tions and their targets will be denoted by the index set 
l, 2 , . . . ,  N. The structure of  the program is described 
by a binary matrix C, where C~i = 1 if and only if the 
j th  instruction is encountered when tracing a path from 
the point to which all addresses are relative to the ith 
instruction. There are, therefore, entries for every un- 
resolved instruction which directly affects the location 
of  instruction i. We do not attempt optimizations 
which reorder the code segment sequences, possibly 
introducing additional branches. Such modifications 
could be advantageous (as in optimizing compilers), 
but are inappropriate for the low-level address assign- 
ment phase we are considering. 

The targets of  the instructions are described by the 
vector G, whose ith component  is the index of the 
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target of the ith instruction. Both C and G can be 
computed directly from the given program. They serve 
as data to the algorithm, which will proceed without 
any further reference to the structure of the program. 

Note that programs tend to cluster their references 
into two distinct groups: (1) near references, reflecting 
loops, targets of conditional branches, and other local 
phenomena, and (2) long-range references, reflecting 
data accesses, intra-block references, and procedure 
calls [6]. Some parts of these references are trivially re- 
solved and will, therefore, not appear in C or G. This 
tends to hold the actual problem to a manageable size. 

3. The Algorithm 

From the data extracted from the program in 
question, i.e. from the matrix C and the vector G, we 
first compute some auxiliary variables. Let P be a 
vector whose ith component  is the value of the ith 
unresolved address or target under the assumption 
that all addresses are chosen short. Let Q be a binary 
vector such that Qi = 1 if the ith entry is an unresolved 
address reference, and L be a vector so that Li = d 
when the ith instruction is long, and zero otherwise. 
Initially all components of L are zero, and all compo- 
nents of  Q are 1. 

One should note that for  any choice of  L, the 
address values P are given by 

Pi = Pi + ~_, CijL~. 
J 

The relative distance between an instruction and its 
target can be written as 

Ri = .~i + ~ DI~Lj 
Y 

where/~ is the vector of minimum relative distances 

Ri = Poi - -  Pi 

and where D is a ternary matrix having elements 
--1, O, 1 so that the /th row of D has a - 1  in each 
element that influences the position of i and a + 1 in 
each element that influences the target of i. The de- 
pendency matrix is calculated by 

Dis = Colj - -  Cis. 

In the first and preparatory part of the algorithm, 
we compute /~, /~, D and two limiting vectors E 1 and 
E 2 so that 

E, 1 = -R, + d ~ ,  D ,~(D, j  = 1) 
J 

is the maximum separation, and 

El 2 = -Ri - -  d ~ D~y~(Dij = - -  1) 
3 

is the minimum separation between the instruction and 
its target. ~(s = t) has the value 1 i f s  = t and the 
value zero otherwise. 
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A graphical representation of  the various possible 
relations between an instruction and its target which 
also exemplifies the meaning of E ~ is presented in Fig- 
ures l, 2, and 3. If  the instruction in question is taken 
as the origin and the values of  E k are as described in 
Figure l, its address mode may be chosen short (cases 
a, b, c) or must be long (cases d, e). Such a situation 
will be labeled as "simple." 

Fig. 1. Simple cases: y = E ~, x = E 2. 
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There are, however, more complicated possibilities in 
which the decision on the mode cannot be made (Figure 
2): 

Fig. 2. Undec ided  cases:  y = E 1, x = E 2. 

I n s t r u c t i o n  
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or even where the direction of the branch is unknown 
(Figure 3): 

Fig. 3. Not -wel l -o rdered  cases:  y = E 1, x = E 2. 
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The latter case, which we shall call not-well-ordered, 
was not recognized in the previously referenced work 
[1]. Note also that the procedure presented here deals 
in a uniform way with both inter- and intra-block refer- 
ences. 

The next step in the algorithm is to resolve all 
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simple cases. These are detected by locating all E~ k in 
which both components, i.e. both Ei 1 and E~ 2, are 
either inside or outside the B-F range (see Figure 1). 
In these cases, the instruction modes are fixed, and 
both Q and L are properly updated. Based on these 
new values, R and E are recomputed and the search 
for further simple cases is repeated. This has to be 
done because the instructions that have just been 
resolved may change some undecided cases into simple 
ones. This process is terminated when all simple cases 
are exhausted. Note that in this process we already 
included some assumptions about the "optimali ty" 
criterion since all instructions which had to be long were 
so chosen, but we chose as short all instructions which 
couM have been such. This is not necessarily beneficial 
for arbitrary optimization criteria. We shall defer to a 
later point the discussion of such criteria. 

When all simple cases were exhausted, the algorithm 
proceeds, as suggested in [1], to compute the threshold 
vector T. This vector is defined so that T~ is the dis- 
tance of each address from being assigned as short, 
assuming that all further addresses are short. One 
should note that this calculation is not always possible, 
as cases may arise (Figure 3) in which both the mode 
and the direction of the target cannot be decided. A 
test is therefore performed to find all these pathological 
cases and they are assigned long addresses. Any new 
simple cases are then handled as described above. 

At this point we are left with all undecided cases 
(Figure 2) in which the direction is determined. The 
threshold vector is computed. If  all entries are zero or 
less, a solution exists in which all addresses can be 
chosen short. Otherwise some have to be long. The 
dependency matrix is now changed by inverting the 
signs of  all entries describing backward references. 
After this change, ~-~iDijLj expresses the contributions 
towards achieving the threshold for either backward or 
forward references for instruction i. 

We now consider possible choices of L. The choice 
procedure sequencing is governed by a criterion func- 
tion. For  example, this function can choose the mini- 
mum number of  long instructions (the case in [1]), or 
may be more complicated, such as the minimization of  
the location of  a certain reference and the minimiza- 
tion of the remaining code length (see [2], example 3). 

We do not suggest exhaustive generation of all 
possible combinations of the components of L as an 
optimal means of  locating a solution, although in [2] 
we employ such a procedure. For  example, one can 
first order the still unresolved part of the dependency 
matrix into block diagonal form, which exposes inde- 
pendent subproblems, each of  which can be solved 
separately. This avoids an exponential explosion of the 
number of  possibilities to be tested in many practical 
cases, particularly in the adaptation of this algorithm 
to addressing in paged memories [2]. Observe that by 
adding suitable positive entries to the diagonal ele- 
ments of D, we produce a problem of set-covering or 

zero-one programming with linear constraints. The 
literature is so rich on the solution of  these problems 
that we reference only three recent papers [3, 4, 5] from 
which most others can be located. 

For  each choice, )"~4 DijLj is recalculated and com- 
pared to Ti for all those addresses which we want to 
keep short. Whenever there is a match, i.e. all compo- 
nents agree, one has an acceptable solution, and the 
actual addresses are computed by 

P~ = ~i + ~_, C~s Lj  
J 

Two remarks are now in order. The first one applies 
to the way that criterion functions are applied for 
simple cases. In those cases, when the criterion is dif- 
ferent from merely minimal code length, R and E cal- 
culations are changed so that only those instructions 
which have to be long will be so set and the others left 
intact. Their mode will be determined during the thresh- 
old matching part of the algorithm, so that the criterion 
function will be in effect. 

The second remark concerns the application of the 
algorithm for the paged case. In [21 the present authors 
outlined an extension of the present algorithm to the 
paged case, with the observation that there is a noted 
similarity between these two problems. We do not 
reproduce the extension here, in order to keep this 
note as short as possible. 

4. Conclusions and Closing Remarks 

In [2] we present the relative addressing algorithm 
coded in APE, complete with examples. As pointed out 
in this presentation, the algorithm generalizes and 
corrects the approach in [1]. We believe that in the 
form presented it is very easy to use. Part of the clarity 
and brevity of the algorithm is derived from the use of 
a proper mathematical notation for arrays provided by 
APE. For the benefit of those not conversant with APE, 
we have used conventional mathematical notation in 
this papei'. 

There are certain generalizations possible for the 
algorithm, as pointed out by Richards. We believe that 
the algorithm in the way presented here is suitable for 
generalizations in more complicated cases, such as 
multiple instruction lengths or page addressing. Our 
development was triggered by the need for a working 
algorithm for a high-level assembler, in which there 
were only two modes. We therefore did not try to 
develop the most general case. 

Appendix 

The algorithm that was introduced in [1] produces 
a nonoptimal solution for the following example, 
whereas our procedure produces the correct result. 
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The example consists of  three unresolved addresses, all 
of  which must be short or long simultaneously. 

The program has the following structure: 

inst. no label target 

0 K B 

7 A C 

15 B K 

22 C A 

All intervening instructions are fixed in length. 
The structure of  the program is expressed by the 

matrix C and the vector G which have the values ( 0Oo) 
C =  1 0 , a =(3 4 1 4). 

1 1 

The "all short"  address assignment, which is the 
starting point of  the calculation, is given by ff = 
(07  15 22). With the values of  B = F =  1 5 a n d d =  1, 
one can proceed with the calculation as outlined in the 
paper. The final result is given by the values of  L and 
P, which in our case are P = (0 7 15 22), with all com- 
ponents of  L being zero. This means that all addresses 
were assigned short. As pointed out before, a calcula- 
tion by the procedure outlined in [1] yields all ad- 
dresses long. 
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An edge reference into a list structure is a pair of 
pointers to adjacent nodes. Such a reference often 
requires little additional space, but its use can yield 
efficient algorithms. For instance, a circular link between 
the ends of a list is redundant if the list is always refer- 
enced by that edge, and list traversal is easier when 
that link is null. Edge references also allow threading 
of nonrecursive lists, can replace some header cells, and 
enhance the famous exclusive-or trick to double-link 
lists. 
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Introduction and Definition 

The purpose of  this paper  is to indicate some 
natural  advantages of  referring to and into lists by 
pointing to an edge (i.e. to two adjacent nodes). These 
appear  as space savings for data structures, and often 
as time savings for algorithms which depend upon 
edge references. 

In the following sections the list structures under 
consideration are defined, and the technique of referring 
to these structures by the edge between first and final 
nodes is demonstrated.  The sample algorithms, not  
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