
Programming G. Manacher, S.L. Graham
Techniques Editors

A Process for the
Determination of
Addresses inVariable
Length Addressing
Gideon Frieder and Harry J. Saal
IBM Israel Scientific Center, Haifa

An algorithm is presented for the assignment of
instruction addresses and formats under the following
conditions: (I) the length of the instruction varies as a
function of the distance of the instruction from its
target; (2) there exists an optimality criterion which
implies some preferential choices subject to the ad-
dressing constraints. This may be, for example,
achieving the smallest number of long instructions, in
which case the total code length is minimized, or
minimizing the assigned address of a specified point in
the program. The algorithm is suitable for arbitrary
program structure and a choice of optimization
criteria.

Key Words and Phrases: variable length ad-
dressing, assembler, paging

CR Categories: 4.11, 4.12

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' addresses: G. Frieder, Computer Science Department,
SUNY at Buffalo, 4226 Ridge Lea Road, Amherst, NY 14226;
H. J. Saal, Israel Scientific Center, IBM Israel Ltd., Computer Sci-
ence Building, Technion City, Haifa, Israel.

335

1. Introduction

In a recent paper, D.L. Richards [1] proposes a
solution to the following problem: given two relative
addressing modes, long and short, and given the forward
and backward distances which are the thresholds for
the choice of the mode, assign proper long or short
addresses so that the total length of the code is minimal.

In his work, Richards introduces an algorithm
which finds an assignment for the addressing modes.
However, his solution is not always optimal, as can be
seen from the failure of his algorithm to produce a
minimal length assignment in a simple case (see Ap-
pendix), and the algorithm may fail completely in some
pathological cases (discussed later). Apart from these
deficiencies, there are other drawbacks to the algo-
rithm, among them the necessity to distinguish between
inter- and intra-block references and the rigidity of the
optimization criterion.

The present work uses, in part, the ideas introduced
in [1]. We present an algorithm which handles code
segment structures in a general fashion, and can use
other optimization criteria. Our algorithm can be
adapted for address assignment in a paged environ-
ment where in-page and out-of-page addresses are of
differing lengths, a common situation in minicomputers
and microprocessors [2].

The actual code for the algorithm can be found in
[2], together with data and results for three experimen-
tal runs. We shall comment on the applicability of the
algorithm to practical problems in a later section.

2. Basic Assumptions and Data Description

We assume that the two addressing modes differ by
length d. The short instructions (those with the short
addresses) can be used whenever the target, i.e. the
address of their operand, is within the distance F for-
wards or B backwards from the instruction. In each
program, some of the mode decisions can be made
trivially during the first pass through the program, such
as some backwards references. The unresolved instruc-
tions and their targets will be denoted by the index set
l, 2 , . . . , N. The structure of the program is described
by a binary matrix C, where C~i = 1 if and only if the
j th instruction is encountered when tracing a path from
the point to which all addresses are relative to the ith
instruction. There are, therefore, entries for every un-
resolved instruction which directly affects the location
of instruction i. We do not attempt optimizations
which reorder the code segment sequences, possibly
introducing additional branches. Such modifications
could be advantageous (as in optimizing compilers),
but are inappropriate for the low-level address assign-
ment phase we are considering.

The targets of the instructions are described by the
vector G, whose ith component is the index of the

Communications June 1976
of Volume 19
the ACM Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360238.360241&domain=pdf&date_stamp=1976-06-01

target of the ith instruction. Both C and G can be
computed directly from the given program. They serve
as data to the algorithm, which will proceed without
any further reference to the structure of the program.

Note that programs tend to cluster their references
into two distinct groups: (1) near references, reflecting
loops, targets of conditional branches, and other local
phenomena, and (2) long-range references, reflecting
data accesses, intra-block references, and procedure
calls [6]. Some parts of these references are trivially re-
solved and will, therefore, not appear in C or G. This
tends to hold the actual problem to a manageable size.

3. The Algorithm

From the data extracted from the program in
question, i.e. from the matrix C and the vector G, we
first compute some auxiliary variables. Let P be a
vector whose ith component is the value of the ith
unresolved address or target under the assumption
that all addresses are chosen short. Let Q be a binary
vector such that Qi = 1 if the ith entry is an unresolved
address reference, and L be a vector so that Li = d
when the ith instruction is long, and zero otherwise.
Initially all components of L are zero, and all compo-
nents of Q are 1.

One should note that for any choice of L, the
address values P are given by

Pi = Pi + ~_, CijL~.
J

The relative distance between an instruction and its
target can be written as

Ri = .~i + ~ DI~Lj
Y

where/~ is the vector of minimum relative distances

Ri = Poi - - Pi

and where D is a ternary matrix having elements
--1, O, 1 so that the /th row of D has a - 1 in each
element that influences the position of i and a + 1 in
each element that influences the target of i. The de-
pendency matrix is calculated by

Dis = Colj - - Cis.

In the first and preparatory part of the algorithm,
we compute /~, /~, D and two limiting vectors E 1 and
E 2 so that

E, 1 = -R, + d ~ , D ,~(D, j = 1)
J

is the maximum separation, and

El 2 = -Ri - - d ~ D~y~(Dij = - - 1)
3

is the minimum separation between the instruction and
its target. ~(s = t) has the value 1 i f s = t and the
value zero otherwise.

336

A graphical representation of the various possible
relations between an instruction and its target which
also exemplifies the meaning of E ~ is presented in Fig-
ures l, 2, and 3. If the instruction in question is taken
as the origin and the values of E k are as described in
Figure l, its address mode may be chosen short (cases
a, b, c) or must be long (cases d, e). Such a situation
will be labeled as "simple."

Fig. 1. Simple cases: y = E ~, x = E 2.

(a)

(b)

(c)

(d)

(e) Y x

I n s t r u c t i o n

I I
I ~ - - ~ B ~ " F ~

i i
y x

i ;
y x

i i
y x

I
i y
I
I
I

I
I

Short

Short

Short

Long

L o n g

There are, however, more complicated possibilities in
which the decision on the mode cannot be made (Figure
2):

Fig. 2. Undec ided cases: y = E 1, x = E 2.

I n s t r u c t i o n

i i
~ - - B F

y x

or even where the direction of the branch is unknown
(Figure 3):

Fig. 3. Not -wel l -o rdered cases: y = E 1, x = E 2.

Instruction

~ B F

I I I
y I i x

I I
I I

The latter case, which we shall call not-well-ordered,
was not recognized in the previously referenced work
[1]. Note also that the procedure presented here deals
in a uniform way with both inter- and intra-block refer-
ences.

The next step in the algorithm is to resolve all

C o m m u n i c a t i o n s June 1976
o f V o l u m e 19
t h e A C M N u m b e r 6

simple cases. These are detected by locating all E~ k in
which both components, i.e. both Ei 1 and E~ 2, are
either inside or outside the B-F range (see Figure 1).
In these cases, the instruction modes are fixed, and
both Q and L are properly updated. Based on these
new values, R and E are recomputed and the search
for further simple cases is repeated. This has to be
done because the instructions that have just been
resolved may change some undecided cases into simple
ones. This process is terminated when all simple cases
are exhausted. Note that in this process we already
included some assumptions about the "optimali ty"
criterion since all instructions which had to be long were
so chosen, but we chose as short all instructions which
couM have been such. This is not necessarily beneficial
for arbitrary optimization criteria. We shall defer to a
later point the discussion of such criteria.

When all simple cases were exhausted, the algorithm
proceeds, as suggested in [1], to compute the threshold
vector T. This vector is defined so that T~ is the dis-
tance of each address from being assigned as short,
assuming that all further addresses are short. One
should note that this calculation is not always possible,
as cases may arise (Figure 3) in which both the mode
and the direction of the target cannot be decided. A
test is therefore performed to find all these pathological
cases and they are assigned long addresses. Any new
simple cases are then handled as described above.

At this point we are left with all undecided cases
(Figure 2) in which the direction is determined. The
threshold vector is computed. If all entries are zero or
less, a solution exists in which all addresses can be
chosen short. Otherwise some have to be long. The
dependency matrix is now changed by inverting the
signs of all entries describing backward references.
After this change, ~-~iDijLj expresses the contributions
towards achieving the threshold for either backward or
forward references for instruction i.

We now consider possible choices of L. The choice
procedure sequencing is governed by a criterion func-
tion. For example, this function can choose the mini-
mum number of long instructions (the case in [1]), or
may be more complicated, such as the minimization of
the location of a certain reference and the minimiza-
tion of the remaining code length (see [2], example 3).

We do not suggest exhaustive generation of all
possible combinations of the components of L as an
optimal means of locating a solution, although in [2]
we employ such a procedure. For example, one can
first order the still unresolved part of the dependency
matrix into block diagonal form, which exposes inde-
pendent subproblems, each of which can be solved
separately. This avoids an exponential explosion of the
number of possibilities to be tested in many practical
cases, particularly in the adaptation of this algorithm
to addressing in paged memories [2]. Observe that by
adding suitable positive entries to the diagonal ele-
ments of D, we produce a problem of set-covering or

zero-one programming with linear constraints. The
literature is so rich on the solution of these problems
that we reference only three recent papers [3, 4, 5] from
which most others can be located.

For each choice,)"~4 DijLj is recalculated and com-
pared to Ti for all those addresses which we want to
keep short. Whenever there is a match, i.e. all compo-
nents agree, one has an acceptable solution, and the
actual addresses are computed by

P~ = ~i + ~_, C~s Lj
J

Two remarks are now in order. The first one applies
to the way that criterion functions are applied for
simple cases. In those cases, when the criterion is dif-
ferent from merely minimal code length, R and E cal-
culations are changed so that only those instructions
which have to be long will be so set and the others left
intact. Their mode will be determined during the thresh-
old matching part of the algorithm, so that the criterion
function will be in effect.

The second remark concerns the application of the
algorithm for the paged case. In [21 the present authors
outlined an extension of the present algorithm to the
paged case, with the observation that there is a noted
similarity between these two problems. We do not
reproduce the extension here, in order to keep this
note as short as possible.

4. Conclusions and Closing Remarks

In [2] we present the relative addressing algorithm
coded in APE, complete with examples. As pointed out
in this presentation, the algorithm generalizes and
corrects the approach in [1]. We believe that in the
form presented it is very easy to use. Part of the clarity
and brevity of the algorithm is derived from the use of
a proper mathematical notation for arrays provided by
APE. For the benefit of those not conversant with APE,
we have used conventional mathematical notation in
this papei'.

There are certain generalizations possible for the
algorithm, as pointed out by Richards. We believe that
the algorithm in the way presented here is suitable for
generalizations in more complicated cases, such as
multiple instruction lengths or page addressing. Our
development was triggered by the need for a working
algorithm for a high-level assembler, in which there
were only two modes. We therefore did not try to
develop the most general case.

Appendix

The algorithm that was introduced in [1] produces
a nonoptimal solution for the following example,
whereas our procedure produces the correct result.

337 Communications June 1976
of Volume 19
the ACM Number 6

The example consists of three unresolved addresses, all
of which must be short or long simultaneously.

The program has the following structure:

inst. no label target

0 K B

7 A C

15 B K

22 C A

All intervening instructions are fixed in length.
The structure of the program is expressed by the

matrix C and the vector G which have the values (0Oo)
C = 1 0 , a =(3 4 1 4).

1 1

The "all short" address assignment, which is the
starting point of the calculation, is given by ff =
(07 15 22). With the values of B = F = 1 5 a n d d = 1,
one can proceed with the calculation as outlined in the
paper. The final result is given by the values of L and
P, which in our case are P = (0 7 15 22), with all com-
ponents of L being zero. This means that all addresses
were assigned short. As pointed out before, a calcula-
tion by the procedure outlined in [1] yields all ad-
dresses long.

Received January 1974; revised May 1975

References
1. Richards, D.L. How to keep the addresses short. Comm.
ACM 14, 5 (May 1971), 346-349.
2. Frieder, G., and Saal, H.J. On the determination of addresses
in variable length addressing. Report 9, IBM Israel Scientific
Center, Haifa, Israel, 1974.
3. Balas, E., and Padberg, M. On the set covering problem. Op.
Res. 20, 6 (June 1972), 1152-1161.
4. Salkin, H.M., and Koncal, R.D. Set covering by an all integer
algorithm: computational experience. J. ACM 20, 2 (Feb. 1973),
189-193.
5. Christofides, N. Zero-one programming using non-binary tree
search. Computer J. 14, 4 (Apr. 1971), 418--421.
6. Saal, H.J., and Shustek, L.J. On measuring computer systems
by microprogramming. State of the Art Report on Microprogram-
ming and System Architecture, INFOTECH, Maidenhead, Berk-
shire, England, 1975.

Programming
Techniques

G. Manacher, S.L. Graham
Editors

Referencing Lists
by an Edge
David S. Wise
Indiana University

An edge reference into a list structure is a pair of
pointers to adjacent nodes. Such a reference often
requires little additional space, but its use can yield
efficient algorithms. For instance, a circular link between
the ends of a list is redundant if the list is always refer-
enced by that edge, and list traversal is easier when
that link is null. Edge references also allow threading
of nonrecursive lists, can replace some header cells, and
enhance the famous exclusive-or trick to double-link
lists.

Key Words and Phrases: list processing, circular,
doubly linked, overlapping sublist, header cell, pointer,
cursor

CR Categories: 3.73, 4.10, 4.22

Introduction and Definition

The purpose of this paper is to indicate some
natural advantages of referring to and into lists by
pointing to an edge (i.e. to two adjacent nodes). These
appear as space savings for data structures, and often
as time savings for algorithms which depend upon
edge references.

In the following sections the list structures under
consideration are defined, and the technique of referring
to these structures by the edge between first and final
nodes is demonstrated. The sample algorithms, not

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Computer Science Department, Indiana
University, Bloomington, IN 47401.

338 Communications June 1976
of Volume 19
the ACM Number 6

