
Programming B. Wegbreit
Languages Editor

The Denotational
Semantics of
Programming
Languages
R.D. Tennent
Queen's University, Kingston, Ontario

This paper is a tutorial introduction to the theory of
programming language semantics developed by D.
Scott and C. Strachey. The application of the theory
to formal language specification is demonstrated and
other applications are surveyed. The first language
considered, LOOP, is very elementary and its definition
merely introduces the notation and methodology of the
approach. Then the semantic concepts of environments,
stores, and continuations are introduced to model
classes of programming language features and the
underlying mathematical theory of computation due
to Scott is motivated and outlined. Finally, the paper
presents a formal definition of the language
GEDANKEN.

Key Words and Phrases: semantics, programming
language, applicative, imperative, environment, store,
continuation, theory of computation, higher-order
function, recursive definition, LOOP, GEDANKEN

CR Categories: 4.22, 5.24

Copyright (~) 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, aU or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the pubhcation, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the National Research
Council of Canada, Grant A8990. Author's address: Department of
Computing and Information Science, Queen's University, Kingston,
Ontario, Canada.

i Copyright (~) 1956, 1957, 1958 by Frederick Winsor. Re-
printed by permission of Simon and Schuster, Inc.

1. Introduction

See the little phrases go,
Watch their funny antics.
The men who make them wiggle so
Are teachers of semantics.

F. Winsor
(Space Child's Mother Goose 1)

A great deal of progress has been made in the last
few years towards the development of a theoretical
framework appropriate to formal analysis and speci-
fication of the semantical aspects of computer lan-
guages. Despite the complexity and variety exhibited
by modern programming languages, it has been shown
by D. Scott and C. Strachey and their colleagues at
Oxford University that a remarkably small number of
fundamental semantic constructs provide an adequate
conceptual basis for defining concise formal models of
their meanings. This paper is a tutorial exposition of
these concepts and demonstrates their usefulness to
the formal definition of programming languages. Most
of the references to the literature are provided in a bib-
liography at the end of this paper.

There are several applications which motivate
analysis of the semantic structure of programming
languages. A formal definition of a language provides a
precise and complete reference standard for users and
implementers, so that the omissions, contradictions, and
ambiguities typical of informal semantic specifications
such as those in the Algol 60 Report [Naur, 1963] may
be avoided. Even if a formal definition were not com-
prehensible to average programmers, it could provide
the basis for an accurate informal description.

A general language-independent framework of
semantical concepts would help to standardize termi-
nology, clarify similarities and differences between
languages, and allow rigorous formulation and proof
of semantic properties of languages. A language de-
signer could analyze proposed constructs to help find
undesirable restrictions, incompatibilities, ambiguities,
and so on.

A theory of semantics should contribute to syste-
matic composition and verification of programs, es-
pecially compilers. Indeed, a general notation for
semantic specification would permit the development
of a true compiler-generator, just as BNF led to the
development of parser generators. Many of these goals
have not yet been achieved, but sufficient progress is
being made (see the references) to suggest that sem-
antic analysis of programming languages will play
a significant role in the development of computer
science.

437 Communications August 1976
of Volume 19
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360303.360308&domain=pdf&date_stamp=1976-08-01

2. Bas ic Concepts

The point of our approach is to allow a proper balance be-
tween rigorous formulation, generality of application and
conceptual simplicity. One essential achievement of the
method we shall wish to claim is that by insisting on a suit-
able level of abstraction and by emphasizing the right
details we are going to hit squarely what can be called the
mathematical meaning of a language.

[Scott and Strachey, 1971]

2.1 Interpretat ion Funct ions
In mathematical logic, a semantic interpretation for

a formal language is specified by defining mappings of
the syntactic constructs of the object language into
their abstract "meaning" in an appropriate mathemati-
cal model. For example, a class of numerals would be
interpreted by mapping every possible numeral into
the number it denoted. Similarly, if the object language
is that of an applied predicate calculus, .then every
closed well-formed formula would be mapped into a
truth value (true or false) relative to a domain of in-
terpretation and specified meanings for the constant,
function, and predicate symbols.

It is possible to define the semantics of programming
languages using essentially the same approach. The
abstract meanings appropriate to nontrivial computer
languages are more complex and less familiar than
truth values and numbers, but are no less mathemati-
cal. In order to demonstrate the practicability of this
approach and to establish some notational and meth-
odological conventions, we begin by considering a
variant of an extremely simole language called LOOP
[Meyer and Ritchie, 1967].

2.2 S y n t a x
In specifying a syntax as the domain of a semantic

interpretation, it is convenient to be able to avoid some
semantically irrelevant complications such as operator
precedence and associativity by providing only an
"abstract" form of syntax. In effect, an abstracted
syntax specifies the compositional structure of programs
while leaving open some aspects of their concrete
representations as strings of symbols.

An abstract syntax of the LOOP language may be
specified as shown in Figure 1.

The domains section specifies that the symbols ,%
E, F, and xI, are to be used as metavariables (possibly
with primes or subscripts) over the sets of variables,
expressions, commands, and programs, respectively.
These are denoted Var, E x p , Cmd, and Prog, and are
defined by BNF-like productions in which the meta-
variables stand for arbitrary elements of the correspond-
ing syntactic category. Capital Greek letters are used as
metavariables over syntactic domains, which are de-
noted by boldface symbols of three or more letters.

2.3 S e m a n t i c s
To specify the meaning of programs in the language

given above we need to define three interpretation
functions:

g: E x p --~ . .

e : C m d - - ~ . . .
ffr~ : P r o g - - ~ . . .

where the co-domains will have to be constructed to
model the type of "meaning" appropriate to the cor-
responding syntactic category. Script capital letters
such as 8 will be used to denote semantic interpreta-
tion functions; i.e. mappings from syntactic constructs
into their mathematical meanings.

The meaning of a LOOP program is the input-to-
output function it computes; hence, if N is the set of
(non-negative) integers, then the functionality (do-
main and co-domain) of ~: may be specified as being:

~E : P r o g ~ (N --> N)

i.e. every program will have a unique meaning given by
~z, and this meaning will be the function which maps
every possible " input" number into the "ou tpu t" that
should be produced by all correct implementations of
LOOP. The convention that the operator "--->" associates
to the right will allow us to write ~lZ : P r o g --> N ~ N
without parentheses.

The "value" of any expression is an integer; how-
ever, its meaning is more complex because in general
the value may depend upon the state of the variables
when the expression is evaluated. If S is the set of all
possible "states" of the variables, then the functionality
of 8 is:

8 : E x p --* S --~ N

i.e. the meaning of an expression is a function that
when applied to the current state, gives the value of
the expression relative to that state. Use of a functional
meaning here may seem surprising at first, but it is
natural since an expression should have a unique value
for every possible state.

Any state a defines a correspondence between every
variable and the integer that is its current "contents" ;

Fig. 1. Abstract syntax of the LOOP language.

Syntactic domains:

: Var
E: Exp
r : Cmd
,12: Prog

Productions:
E : : = 0

I suee E

F ::= F~; F2
I . ~ : = E
[to E do F
L(r)

xI, ::= read ~; P; write E

variables
expressions
commands
programs

constant
variable
operation
sequencing
assignment
repetition
parenthesization

438 Communications
of
the ACM

August 1976
Volume 19
Number 8

hence, it is convenient to model states by functions
with domain Var and co-domain N:

:S = V a r ~ N states

Then for any variable N, ¢[Y,] is the contents of ~, in
state ¢; the symbols t[and]} are used to enclose syn-
tactic elements in order to separate the object and meta-
languages.

To "update" a state the notation air/E] is used to
mean the state ¢' such that ¢'{[~1 = v and for all
~' ~ E, ¢ ' ~ '] = ¢[[E']; that is, ~' is the same function
as ¢ except at the argument N which is mapped into v.
Semantic domains such as N and S will always be
denoted by boldface symbols of one or two letters and
lower-case Greek letters will be used as metavariables
over such domains.

The meaning of a LOOP command is then a state
transition function:

e : Cmd ~ S - - , S

Then for any command P, e~[P~ is the state transition
function it specifies and (e~[rD(¢) is the state after
execution of r if ¢ is the state before its execution.
To minimize the number of parentheses the conventions
are to assume that function application associates to
the left and to omit parentheses (but not ['s and]%)
around single-symbol arguments; hence, we may write:
e[r~.

We may now complete the definition of the three
interpretation functions by specifying their results
when applied to typical elements of their domains.
When a program of the form "read ~,"" P; write E" is
executed, the implementation must carry out the fol-
lowing sequence of actions:

1. An initial state ¢~ is established in which all variables
are initialized to zero.

2. An integer v is read in and stored in the variable ,~,.
3. The body of the prograria, P, is executed, resulting in

some final state ~s •
4. The expression E is evaluated relative to ~ and this

value is output.

Mathematically:

fiE[read ~; F; write E]]v
= g [E 1or[
where ~/ = e~r~(~&/z])

where ed[.~,']] = 0 for all ~ ' : Var

The definition of the syntactic domain Exp is re-
cursive, and so is the definition of its interpretation
function; for each production defining Exp there is a
corresponding clause in the definition of g:

[succ E 1¢ = a [~ 1¢ + z

Note the difference between the numeral 0 which is
part of the given object language, and the abstract

concept of zero which we have chosen to denote by
0 in our metalanguage.

For the specification of e we define first the "itera-
tions" of any function ¢ : X ---* X to be the functions
¢~ : X ---* X for any v = 0, 1, 2 , . . . such that ¢°(x) = x
and ¢,+1 = ¢o4, where "o" is the usual function com-
position operation; that is, ¢'+'(x) = ¢(¢'(x)) for
all x. Then:

e~(r)~ = e/[r~
e [r~ ; r d = e[rdoel~rl]}
e [z := E]~ = ~[~[Et- /Z]
e [to E do r] ¢ = ((e [r D %

where v = g lIE]~

In the case of the iteration construction, the formal
definition gives definite answers to questions such as
when and how often the control expression is to be
evaluated, and what the behavior should be if this
value is zero. In the first two clauses of the definition
the use of functional meanings permitted omission of
the "state" argument; that is:

e F , ; r~t¢ = (e [r d o e [r , D ¢ for all ¢: S

but ~ can be "canceled" on the right of both sides of
this equation, because equality of the functions im-
plies equality of the function results for all elements
of their domain.

2.4 Discussion
It is important to realize that the definition of LOOP

does not impose or imply any arbitrary constraints on
implementations of the language, as would a more con-
crete implementation-oriented model, because nothing
is specified about how the various functions must be
computed or represented; the definition requires of an
implementation merely that it computes the right
mathematical function and this is what is more ap-
propriate in a "s tandard" specification. The role of
operational models of language semantics is to formalize
language implementation methods so that their correct-
ness may be verified by reference to the standard defini-
tion [Milne, 1974].

As an aid to verification of programs written in the
defined language, it is convenient to tabulate useful
rules of inference for constructs in the language, as in
Hoare and Wirth [1973]. Such rules can be validated
relative to a denotational definition when the conditions
on their applicability are made explicit [Ligler, 1975a,
1975b].

In summary, semantic analysis of a programming
language is founded on its denotational definition, but
includes, on the one hand, formal models of imple-
mentations and, more concretely, implementations
themselves, and, on the other hand, statements of
"surface properties" of language constructs and, more
abstractly, deeper theorems about the language as a
whole.

The remainder of this paper considers denotational

439 Communications August 1976
of Volume 19
the ACM Number 8

definitions of languages that are more complex and
practical than LOOP. Semantic constructs needed to
model three broad classes of programming language
features are presented and the mathematical theory
underlying these constructions outlined. Then, as a
demonstration of this conceptual framework, we give a
definition of the language GEDANKEN [Reynolds, 1970],
and conclude with a guide to the literature in the area.

These forms of expression all involve the idea of binding
an identifier to a denotation; the corresponding con-
structions in programming languages are the various
forms of local declarations, including local variables,
function definitions, formal parameter lists, iteration
control variables, and so on. Because of binding con-
structions, it is necessary in general to evaluate an ex-
pression relative to an environment which provides a
value for each free variable in the expression.

3. Expressions and Environments

The commonplace expressions of arithmetic and algebra
have a certain simplicity that most communications to
computers lack.

[Landin, 1966]

3.1 Applicative Languages
The characteristic semantic feature of expressions

is that they are "evaluated"; that is, the semantic in-
terpretation of an expression ultimately defines its
"value." Furthermore, for "pure" expressions, it is
exclusively the value that has semantic importance.
This linguistic property is termed referential trans-
parency [Quine, 1960], for it allows a subexpression
to be replaced by any other expression having the same
value without any effect on the value of the whole.
Languages or language subsets having the property of
referential transparency are termed applicative; other
adjectives that have been used include declarative,
denotative, descriptive, and functional.

In most programming languages other than "pure"
LISP [McCarthy, 1960] expressions are not purely ap-
plicative; however, in this section we shall be excluding
from consideration any of the imperative (i.e. non-
applicative) aspects of programming languages, such as
updating assignments, jumps, and intermediate input /
output which spoil referential transparency by in-
troducing the possibility of "side effects" or transfers of
control during expression evaluations.

On the other hand, the expression concept is not as
shallow as is implied by the syntactical descriptions of
most programming languages, in which the only forms
of expression recognized as such are atomic con-
stituents (constants, identifiers, etc.) and operator-
operand combinations in a variety of syntactical ar-
rangements such as prefix, infix, distributed (e.g.
i f . . . t h e n . . , e l s e . . .) and so on. The applicative
subsets include other forms as well, as may be seen by
considering the following which are forms of expression
typical of mathematical discourse:

(i) let x = 5 in x + 3 ,

(ii) x + 3 where x = 5,

(iii) let f (x) = x + 3 in f(5),
b

(iv) ~ i + 3,
i= l

(v) f(5) where f(n) = f l , if n = 0
~n X f (n - 1) , otherwise.

3.2 Abstractions
A more primitive form of binding construction in

some programming languages is the abstraction, which
appears as the "lambda expression" in LISP [McCarthy,
1960] and the "routine denotat ion" in Algol 68 [Bran-
quart et al., 1971]. In the notation of Church [1941], an
abstraction expression has the form "XI.E", where I
is an identifier (the bound variable) and E is an expres-
sion (the body, usually containing I). Informally, the
value of kl.E (in some environment) is the function
that maps an argument value to which it is applied
into the value of E relative to the environment extended
by binding I to the argument value; for simplicity, we
assume that the functionality of the function is evident
from context. For example, in any environment kx.O
denotes the constant zero function, kx.x denotes the
identity function, kx.x 2 denotes the squaring function,
and kx.x + y denotes the function whose result is the
sum of its argument and the value of y in that environ-
ment.

Because the value of an abstraction expression is a
function, it may appear as the operator part of an
operator-operand combination; for example, we may
rewrite:

square(5) where square(x) = x 2

as

(xx.x~)O).

This is an example of referential transparency with
respect to the operator part of a combination.

Abstraction expressions are not often used in prac-
tical programming, but they play a fundamental role
in the semantical analysis of applicative languages
which will be described in the next section; the notation
will also prove useful as part of the metalanguage for
semantic definitions.

3.3 Applicative Structure

We have discussed three classes of expressions:
(i) atomic constituents, denoting fixed or locally

defined values,
(ii) operator-operand combinations, denoting the ap-

plication of a function to an argument (possibly a
tuple),

(iii) various identifier-binding constructions.

It turns out that identifier-binding constructions may

440 Communications August 1976
of Volume 19
the ACM Number 8

be regarded as being merely more readable representa-
tions ("syntactic sugarings") of certain arrangements of
abstractions, atomic constituents(and operator-operand
combinations. The analysis of an expression in terms
of these primitive constructs is called its applicative
structure.

For instance, the use of auxiliary definitions in
examples (i) and (ii) of Section 3.1 is semantically
equivalent to a combination of the form (Xx.x+3) (5)
in which the operator part is an abstraction; that is,
if g : Exp ~ . . . is the semantic interpretation function
for expressions, then:

~[let x=5 in x+3]
= g[x+3 where x=5]
= ~ (X x . x + 3) (5)]

Similarly:

g [le t f (x) = x+3 inf(5)~
= g{[letf = Xx.x-t-3 inf (5)~
= g [[Xfif(5)](Xx.x+3) ~,

illustrating the use of an abstraction as an operand.
The summation notation may be analyzed as follows:

Sigma(l, 5, Xi.i+3)

where Sigma(a, b, g) = i r a > b t h e n 0 e l s e g (a) +
Sigma(a + 1, b, g), but this introduces the problem of
recursive (self-referential) definitions, also seen in
example (v). Recursive definitions raise some very
important questions as to the existence and unique-
ness of the defined entity which will be considered in
Section 4; here, we are interested only in the problem
of finding an appropriate applicative structure for
such definitions.

The recursion of example (v) may be considered to
be the following equation in a function variable f :

f = Xn. i f n = 0 t h e n l e l s e n X f (n - 1)

i.e. we are interested in functions that satisfy the above
equation for f a t all argument values n. Such equations
may be assigned a unique solution by assuming the
existence of a functional Y having the following fixed-
point property: when Y is applied to a function F the
result is an entity f such that the equation f = F(f)
is satisfied; that is, Y(F) = F(Y(F)). In example (v),
F is the function-valued functional defined by:

F(g) = Xn. if n = 0 then 1 else n X g(n-- 1)

a n d f i s the factorial function; hence it may be analyzed
as being semantically equivalent to:

f(5) where f = Y(F)
where F(g)(n) = i fn = 0 then I else n X g(n--1)

and then, using transformations already discussed, to:

(Xf.f(5))
[(XF. Y(F))

(~g.Xn. i fn=O then 1 else n X g(n--1))]

Similarly, Sigma may be explicitly defined as follows:

Sigma = Y(F)
where F(S)(a, b, g) = if a > b then 0

else g(a) -t- S(a+ l, b, g)

The mathematical definition of Y will be discussed in
Section 4.3.

These examples have provided evidence for the
thesis due to Landin [1964] that applicative languages
are "spanned" by the "basis" of atomic constituents,
combinations, and abstractions. In the next section,
we discuss the semantics of applicative languages and,
without loss of generality, may restrict consideration
to only this small number of constructs.

3.4 Semantics
We consider the following archetypal expression

language, called AEXP (applicative expressions):

B : Bas bases
I : Ide identifiers
E : Exp expressions

E ::= B base
1I identifier
[XI.E abstraction
I E 1 E 2 combination
I(E) parenthesization

We shall not specify any particular bases (constants)
or domain of interpretation, but assume that there is a
space of expressible values E and an interpretation func-
tion 63 : Bas ~ E. Now, in order to determine the value
of an expression which may in general contain free
identifiers, it is necessary to know the values to which
such identifiers are bound in that local context. In
aF.xe the binding must be established by both an ab-
straction (which defines its textual scope) and a combi-
nation (whose operand supplies the value to be de-
noted); the set of associations of identifiers and their
denotations in any context is termed the environment.

A convenient model for environments is as follows:

o : U = Ide ~ D environments

where D is a space of denotable values, so that the
value to which an identifier I is bound in the environ-
ment p is p{[I]. In order to bind I to a value ~ :D we
use the "updating" notation of Section 2.3; that is,
oil/I] is the environment in which I is bound to ~ and
is otherwise the same as p. In general, the values that
are denotable in a language (D) need not be as ex-
tensive as those that are expressible (E); for example, in
Algol 60 an integer, real, or Boolean value is not de-
notable, but can only be dynamically assigned to a
named storage location or array component [Strachey,
1972].

Among the expressible values in AEXP are functions:

¢ : F = D---> E

441 Communications August 1976
of Volume 19
the ACM Number 8

and we use the notation "¢ in E" to represent the
injection of the function ¢ into the space of all ex-
pressible values, and similarly "6 in E." The notation
" e l F " represents the projection of the expressible
value e onto F, and similarly "~ I D" for the projection
onto D; these operations will be defined more exactly
in Section 4.2.

The semantic interpretation function for ~ x P is
then:

g : Exp ---~ U --* E]

8{I~p = p{I~ in K
g [XI.E]}p ~ ¢ in E

where ¢(~) = gI[E}(p[UI])
g[E1E2]p = ~b(~)

where ¢ = g[E~ }p [F
and ~ = g [E2]p lD

In words, the meaning of a parenthesization is that
of the parenthesized expression; the value of a base is
given by applying 6~ to it, independently of the environ-
ment, while that of an identifier is obtained by applying
the given environment to it; the value of an abstraction
is, as before, the function whose result for any argument
value is the value of the body relative to an environment
that binds the bound variable of the abstraction to the
argument value; the value of a combination is obtained
by applying the value of the operator part to the value
of the operand part.

Note that for the evaluation of an abstraction body,
the environment used is the one relative to which the
abstraction expression is evaluated (rather than the
operator-operand combination that caused the acti-
vation); i.e. the scope of identifiers is always statically
determined, as in Algol 60. To achieve this form of
binding for nonlocal variables in LISP the F U N C T I O N
operator must be used; see Gordon [1973].

Although this completes the definition of the in-
terpretation, its simplicity is deceiving; in the following
we consider whether the sets and functions assumed in
this model are mathematically well-defined.

4. Mathematical Foundations

The generalization from computable to continuous func-
tions is much like the generalization from algebraic to real
numbers. In both cases one moves from a small but subtle
set, determined by a certain kind of finite implicit repre-
sentation, to a larger but structurally simpler set which can
be constructed by limiting processes.

[Reynolds, 1973]

4.1 Motivation
The definition of g in Section 3.4 appears quite rea-

sonable, but it conceals some rather serious mathe-
matical problems. These arise because semantic models

typically make use of functions of higher order; i.e.
functions whose arguments or results are functions or
other infinite objects. For example, the meaning of an
expression specified by the interpretation function g
is a function whose argument is an environment func-
tion. Some examples of computational phenomena
which are modeled most naturally by using higher-order
functions are procedures whose parameters or results
are procedural, the input and output streams of a
nonterminating program such as an operating system
or an ordinary program stuck in a loop, and "re-
entrant" data structures.

One of the reasons that higher-order functions in
semantic models are mathematically troublesome is
that it is necessary to allow general recursive definitions.
The traditional approach to specifying the mathemati-
cal meaning of a recursive function definition [Kleene,
1952; Morris, 1971; Cadiou, 1972] is to demonstrate
that there is a "partial function" over a denumerable
domain which is the unique limit of a sequence of partial
functions, each of which is at least as well-defined as
the preceding elements in" the sequence. Of the many
partial functions that might satisfy the defining equa-
tion, this limit is the least defined and is also the "natu-
ral" solution from the computational point of view.
Now the question is: how can this approach be general-
ized to allow for recursive definitions of functionals
such as e and Sigma whose arguments and results may
also be "part ial" functions, or functionals, or other
infinite and recursively defined objects?

Another problem arises from the possibility of
self-application of higher-order functions. It may be
recalled that in the semantic model of AEXP the space
of "functions" was defined to be: F = D --~ E; now if
the functions are included in the space of denotable
values D, this implies that for any total function ¢, the
meaning of ¢(¢) should be well-defined. As a more
concrete example, consider the following unusual but
legal definition of the factorial function in Algol 60
[Ledgard, 1971]:

integer procedure factorial(n) ;
integer n;
integer proceduref(g, m);

integer procedure g;
integer m;
f : = i f m = 0 t h e n l e l s e m X g(g,m--1);

factorial := f (f , n)

The definition of f is not recursive (statically self-
referential) but the procedure is self-activating (dy-
namically re-entrant). Even when the object language
under consideration does not allow such self-application
of procedures, it may be very desirable to use self-
applicable "functions" to provide a natural and repre-
sentation-independent model of other aspects of the
language [Scott, 1970].

The problem is that unrestricted use of "funct ions"
which are self-applicable leads to variants of the "para-

442 Communications August 1976
of Volume 19
the ACM Number 8

doxical" contradictions of naive set theory; for ex- number
ample, if p were a predicate that is true just when its then the
argument is a predicate which is false when applied
to itself (i.e.p(q) = -~q(q)), then we would havep(p) = (i) D~
..rip(p). (ii) D~

A mathematical theory of computation which pro- (iii) D~
vides satisfactory solutions to these problems has (iv) D"
recently been developed by D. Scott, using ideas from
lattice theory and topology. A detailed technical ex- (v) D*
position of this theory is beyond the scope of this
paper and not necessary for the discussion of semantical
concepts which follows, but weshal l give an informal
overview of its main features.

4.2 Basic Concepts
The key point is that Scott's theory characterizes a

class of "data types," termed domains, and a class of
functions (including those of higher order) which are
sufficiently general to allow natural models of computa-
tional phenomena (including recursion and self-appli-
cation), but which are also sufficiently restricted to
exclude set theoretic paradoxes and allow finite ap-
proximations. The restrictions are imposed by a num-
ber of axioms, which are justified by demonstrating
that mathematically consistent spaces and mappings
needed in semantic models may be constructed satis-
fying these restrictions.

Informally, the main feature of a Scott domain is
that a sequence of better and better approximations
("part ial" objects, in a very general sense) in a domain
must converge to a well-behaved limit, also in the
domain; then all "operations" defined on the data type
must be continuous functions in order to preserve these
limits. The underlying topology is not the usual one,
so that this notion of continuity is much more general
than that of analysis.

Primitive domains may be formed by adjoining to
finite or denumerable sets such as {true, false}, or
{ . . . , 2, - 1 , 0, 1, "2 , . . . } two special objects " - "
(termed bottom, representing information which is
completely undetermined) and "r" (termed top, repre-
senting information which is consistent or overde-
termined). The following may then be considered as
primitive domains:

N = { . . . , - - 2 , - - I , 0 , 1 , 2 , . . . } ° integers
T = { true, false} o truth values
H = {"a", " b " , . . . } o characters

where { . . . }° denotes the augmentation of the set by
J_ and r. In such domains the notion of approximation
is very elementary: . approximates all elements, all
elements approximate v, and all other pairs are in-
comparable; hence there are no nontrivial limits or
recursive definitions of elements in primitive domains,
and the added structure is needed merely to satisfy the
general requirements of the axioms and provide a
basis for construction of more complex domains.

Nonprimitive domains may be constructed in a

of ways; if D, D~, and D2 are any domains,
following are also domains:

X D~
+ D2
~ D ~
= D X D X . . . X D

= D ° + D 1 + D 2 + . . .

product domain
sum domain
function domain
domain of lists of
length n
domain of finite lists

Except for the special treatment of • and r, the ele-
ments of D1 X D2 correspond to ordered pairs whose
first components are elements of D1 and whose second
components are in D2, and an element of D~ + D2
corresponds to an element of one of either D1 or D2.
The domain D1 --~ D2 consists of continuous functions
from D1 to D2. D" and D* are the domains of n-tuples
and all the finite lists, respectively, of elements from D.

All of these constructed domains contain also the
special elements ~ and v, and in some cases "part ial"
elements also, with approximation relations derived
from those of the constituent domains. For example,
in the case of a function domain D1 --~ D2, f approxi-
mates g when f (x) approximates g(x) for all x: D~.

Several of the constructions may be combined in a
domain definition; syntactically, it is assumed that of
the binary domain operators " X " has the highest
precedence and "---;' the lowest (and associates to the
right, as before). For a sum X + Y + . . . we
will use the following suffix notations for operations of
inspection, projection, and injection, respectively:

(i) for X: X,
KEY = [true, if X corresponds to an element 3': Y

~false, if x does not correspond to an
element of Y

(ii) for x: X,
x [Y = f3", if x corresponds to 3': Y

(erroneous), if x does not correspond
to any element of Y

(iii) for 3": Y,
3" in X = x, where x: X corresponds to 3".

Another method for domain definition will be
mentioned later, but we now turn to a consideration of
continuous functions on domains. Recalling the struc-
ture of AEXP, it is reassuring that constant and identity
functions over any domain are continuous, and that
any function defined by abstractions and combinations
is continuous when the constituent subexpressions de-
fine continuous functions on domains.

On primitive domains the requirement of con-
tinuity reduces to monotonicity: a funct ionf is monotone
when, if x approximates y then f (x) approximates
f (y) . Hence any "part ial" function on a set may be ex-
tended to a continuous total function on the corre-
sponding domain by defining f (.) = ± (since ~ approxi-
mates everything), f(v) -- v (since v is approximated
by everything) and f (x) = - if the partial function is

443 Communications August 1976
of Volume 19
the ACM Number 8

undefined at x. Such extensions are termed " d o u b l y
s t r i c t " .

Less strict extensions of functions are also possible;
if a function is constant with respect to one of its
arguments, then it need not have the result ,, even
when that argument is undefined. For example, a con-
tinuous cond i t i ona l function may be defined as follows:
r ---> ~1, ~2 is equal to x, ~1, ~2, or r respectively, as the
value of r is ~, true, f a l s e , or v. Although the function is
doubly strict with respect to r, its result may be "de-
fined" even when the alternative that is not selected
happens to be . ; of course, this provides a mathe-
matical model of the c o m p u t a t i o n a l treatment of a
conditional expression.

4.3 Reeursion
As discussed in Section 3.3, the problem of speci-

fying a mathematical meaning for a general recursive
definition is that of showing the existence of a fixed-
point-finding function Y to produce an appropriate
solution to equations of the form f --- F (f) , given the
higher-order transformation F : D -+ D. Now if D is
a domain, there is an approximation relation defined
on it and a "worst" element ,; then, by monotonicity,
F(~) approximates F (F (x)) , and by induction:

. , F (,) , F (F (.)) , . . . , F ' (x) , . . .

is a sequence of better and better approximations which,
by continuity, converges to a limit f such that F~(.)
approximates f for all i >_ 0 and F (f) = f . It can be
shown that for any domain D there is a c o n t i n u o u s
fixed-point function Y ~ : (D -+ D) -+ D such that
for any continuous F : D --+ D,

(i) Y D (F) = lim,.~ F ; (.) is a solution of the equation
f =- F (f) and

(ii) any other solution of the equation is approximated
by YD(F) .

This result is a generalization of the classical recursion
theorem of Kleene [1952] in that the approximation
relation allows the arguments and results of recursively
defined functions to be "partially defined" objects of
higher order, rather than either strictly defined or un-
defined. The argument can be generalized to give
meanings to arbitrarily complex systems of mutually
recursive definitions.

The self-application problem discussed in Section
4.1 is solved in Scott's theory by showing that domains,
as well as domain elements, may be recursively defined.
For example, it is possible to construct by a limiting
process a mathematically consistent solution D to a
re f l ex i ve domain "equat ion" of the form: D = B
+ (D ~ E), where B is any domain of "basic" values
and E is a domain which might include D; that is, any

: D corresponds either to a basic value or to a function
: D --* E applicable to every element of D, including

possibly its own representative in D. This argument is
very general and applies to all recursive or mutually

444

recursive domain definitions involving any of the
domain constructions we have discussed.

As another example of recursive domain definitions,
consider adding the following simple subroutine fa-
cility to the LOOP language discussed in Section 2: the
expression proc P defines a (parameter-less) procedure
whose body is the command r . The procedure may be
assigned to a variable and subsequently activated by
the command call E.

To model this facility, the following mutually re-
cursive equations must be solved:

P = S --+ S procedures
E = N + P expressible values

~r : S = Var ~ E states

and then the semantic interpretations of the new con-
structs are:

8 ~proc F ~ = e [~P ~ in E and

where, as before, e : Cmd ~ S ---> S, but now ~ : Exp
---* S ~ E. Except for the projections and injections
between E and N that are now needed, the other con-
structs in LOOP may be interpreted as before.

This completes our brief overview of Scott 's theory
of computation; more detailed technical presentations
may be found in the references. We have outlined how
the theory solves the problems raised by the higher-
order interpretation of AEXP, and we may now proceed
to analyze more complex languages with the assurance
that such semantic models are mathematically sound,
provided that we limit ourselves to functions and
domains defined using the methods we have discussed.

5. Commands and Stores

Once a person has understood the way in which variables
are used in programming he has understood the quintes-
sence of programming.

[Dijkstra, 1972]

5.1 Basic Model
The meanings of commands in the simple language

LOOP were defined to be state transition functions,
where a state could be modeled by a function from
"variables" into their current contents. For more
complex languages this simple approach is not adequate
and it is necessary to structure their semantic models to
incorporate both a textually determined environment
(as discussed in Section 3) and a dynamically changing
abstract s tore .

This complication arises because it is necessary to
distinguish between ident i f iers (program variables,
symbolic names, formal parameters) which are syn-
tactic entities, and l oca t ions (storage variables, refer-
ences, L-values, addresses, pointers) which are semantic.
An identifier appears in a program and is statically
bound to its denotation within the scope of its declara-

Communications August 1976
of Volume 19
the ACM Number 8

tion or binding construction; a location is in general
computed (for example, by an array indexing operation
or an indirect reference via a "pointer"-valued ex-
pression), and it may even be allocated or deallocated
dynamically. The contents of a location may be irre-
versibly updated at any point, but identifier denotations
"nest" so that upon leaving an " inner" scope, the
previous environment reverts back. In many languages
the class of values which are d e n o t a b l e by identifiers is
not the same as those which are s to rab le in locations;
in Algol 60, for example, they are completely disjoint:
only numbers and Booleans are storable, whereas the
denotable values are locations, arrays, procedures,
labels, switches, strings, and parameters called " b y -

name" [Strachey, 1972].
A semantic model which allows such distinctions to

be made is obtained by interpreting expressions and
commands relative to both an environment and a
store, defined essentially as follows:

I : Ide identifiers
a : L locations
8 : D denotable values
fl : V storable values
0 : U = Ide ~ D environments

: S = L --~ V stores

Typical semantic interpretation functions using these
domains would be:

g : Exp ---~ U ---~ S ---~ E
e : Cmd ---~ U ---~ S ---~ S

where E, the generic domain of all expressible values, is
usually constructed as the sum of D and V. Then
~[E]}p~ is the conventional value of E in the environ-
ment p when the state of the store is ~, and ~[[F~p is
the change of state of the store resulting from execution
of r in p.

The primitive operations on stores are con ten t :

L ---> S ~ V and upda t e : (L X V) ---r S --~ S, defined
a s :

con t en t a ¢ = era

and

u p d a t e (a , #)~ = ~[fl/a].

Then, in the store ~ the value at a location denoted by
an assignable identifier I in the environment p is con-

t en t (p~ I])~ , and an assignment command might be
interpreted as follows:

e~E1 := E~]p~ = u p d a t e (a , ~)cr

where a = g ~[E1]~P~I L
and fl = g[E2~p~IV

This basic model must be elaborated if the language
under consideration has coerc ion conventions; i.e.
implicit accesses of location contents, type conversions,
allocations, or other operations inserted in appropriate
contexts for the convenience of programmers . The

445

need for a specific coercion might be determined either
f rom the expression and its textual context (i.e. at
compile time), or f rom the value of the expression
(i.e. at " run t ime"), depending on the conventions of
the particular programming language. Another over-
simplification, failure to allow for possible "side effects"
of expression evaluation, is treated in Section 5.3.

5.2 Generalizations
Some straightforward extensions of this basic model

can account for a variety of features found in many
languages. Selectively updateable data structures such
as arrays and records may be accommodated by al-
lowing identifiers to be bound to lists of locations.
"Pointer" values or references may be modeled by al-
lowing locations or lists of locations to be storable
values, so that a location may contain (a reference to)
another or a data structure.

Dynamic allocation and dealiocation of locations
require a more complex model of the abstract store.
The locations in any store must be partitioned into
"act ive" and "inactive" areas, as follows:

:S = L ~ (V × T) stores

Each location has associated with it (in addition to the
usual stored value) a truth value " tag" to record
whether it is active or inactive in the current store.
Then the following additional primitive operations are
appropriate:

area: L ~ S --~ T

new: S ---~ L
lose: L ---~ S ---~ S

where area a~ = t rue just if a is active in ~, n e w ~ is
any location not in the active area of ~, and lose a ~

is the store identical to a but with location a deacti-
vated (i.e. area a (lose a~) = f a l s e) , c o n t e n t and u p d a t e

must be redefined to take into account the added
structure of S; we always want con t en t a (upda te (a, fl)~r)

= fl when area a~ = true, but language-dependent or
even implementation-dependent properties might have
to be considered when modeling the effects of at-
tempting to access an inactive or uninitialized location.

Intermediate input and output operations have a
dynamic and irreversible character, similar to assign-
ment; hence, file components may be incorporated
into a domain of stores as follows (we assume that
only "basic" values may be read or written) :

:S = (L - - - > (V × T)) × I × O stores
I = B* input flies
O = B* output flies

fl : B basic values

Then the following primitive operations may be used
to model the reading of input and writing of output:

ge t : S ---> (B)< S)
p u t : B ~ S ~ S

Communications August 1976
of Volume 19
the ACM Number 8

get ~ is a pair (~, ~') such that ~3 is the next value in the
I component of ~ and a' is identical to ~ but with that
value removed; put ~ appends the output value t3
to the O component of a. Additional file components
and primitive functions for opening, closing, rewind-
ing, enquiring about, and so on may be necessary for
modeling features of particular languages.

5.3 Procedures and Side Effects
The distinction between the statically determined

environment and the dynamically changing store is
most evident in the consideration of function and
procedure definitions and activations. As in Section 3.4,
the environment relative to which a procedure body is
executed in a statically scoped language is that of its
defining construction (extended by parameter bindings
and local declarations), which may be different from
that of the call; however, the store must be the one
current when the procedure is activated, and the store
resulting from that execution must be passed along
when control returns to the point of call.

Hence, for procedures having an explicit parameter in
the domain D, the store must also be supplied as an
implicit parameter in the semantic model as follows:

~k : P = D --~ S ~ S procedures

Activation of a function (value-returning procedure)
whose body involves the execution of commands may
also result in side effects to the store, so that the pos-
sibly modified store must be returned as an im-
plicit result as well as an implicit parameter of the
function:

:F = D - - * S ~ (E × S) functions

Now, any expression whose evaluation can result in a
function activation (or any other side effect-causing
construct) might produce a change in the store, and
so the functionality of the expression interpretation
function must also be changed to accommodate
this:

8 : Exp---* U---* S ---~ (E X S)

For example, if we assume that the order of evalu-
ation is left to right and that there are no coercions, an
assignment command might have the following in-
terpretation:

e[E~ := E2]}O~ = update (,I[L, ,21V)J'
where (e~, a") = gt[Ee]pcr'

where (,1, a') = ~[E1]O~

Note that as the constituent expressions are evaluated,
pP

the state of the store changes from ~ to ¢' to a , and
/ /

the updating operation is applied to ~ .
This form of model should not be construed as an

endorsement of the use of side effects by programmers,
but merely recognizes their existence in programming
languages; the same is true of "shared" locations; i.e.

locations accessible via more than one identifier [Ligler,
1975a].

$.4 Parameters and Declarations
Another manifestation of the differences between

environments and stores is to be found in the parame-
ter passing conventions of programming languages. In
principle, parameter binding should merely extend the
environment but changes to the store might be invoked
for the convenience of the programmer; also, since a
formal parameter must be bound to a denotable value
whereas the argument might in general be any expres-
sible value, coercions might be invoked when the actual
parameter is inappropriate. For example, a caU-by-
value in Algol 60 binds the parameter not to the value
of the actual parameter, but to a dynamically allocated
location which is initialized by the actual parameter
value, possibly coerced to obtain a storable value.

Analogous considerations apply to declarations
because of their close association with abstractions, as
discussed in Section 3.3. It is unfortunate that this
association is obscured i n m a n y languages; for ex-
ample, in I'ASCAL [Hoare and Wirth, 1973] a vat declara-
tion binds the identifier to a new storage structure,
whereas a var parameter involves only an extension of
the environment.

5.5 Elementary Control Structures
Many forms of "control structures" can be in-

terpreted using just the concepts described so far; for
example, assuming for simplicity that there are no side
effects or coercions, basic conditional and iterative
commands can be specified using the conditional
function

T "---9" O ' I , 0"2

as follows:

: Exp ----~ U ---,S ---~ E
C : Cmd ---~ U ---~ S ---~ S

e•if E do r~p~ = (8{[E]p~ IT ---> e{[r~p~r, or)

e ~while E do I']p~ = repeat cr
where repeat ~ = (8{lEaper IT ~ repeat (e[r~pa) , or)

The auxiliary definition of repeat is recursive, but could
of course be written explicitly using the appropriate
fixed-point operator.

For languages that use only control structures such
as these, the meaning of any constituent is specifiable
relative to only an environment (static context) and a
store (dynamic history) ; however, the presence of con-
trol mechanisms such as go to statements, exits, error
stops, backtracking, co-routines, and so on requires a
complete restructuring of the interpretation framework,
because the meaning of any constituent must be speci-
fied relative to a semantic component termed a con-
tinuation which models a possible computational
future.

446 Communications August 1976
of Volume 19
the ACM Number 8

6. Control Structures and Continuations

The problem with labels is that the evaluation of any sub-
expression may result in going to one, in which case the
computation which might have been planned on to com-
plete the evaluation of the main expression will have to be
forgotten about. This means that the function compiled
for the sub-expression should be passed as an argument
something which says what more is waiting to be done, so
that the sub-expression can decide whether to do it or not.

[Morris, 1970]

6.1 Basic Model
We may describe the interpretations to be considered

here as prophetic since they must specify not merely
the local result or effect of a construct, but its contribu-
tion to the final result of a complete program or process
execution. To demonstrate the use of prophetic interpre-
tations and continuations in a fairly simple context, we
shall begin by examining an imperative extension to
the language AEXP which requires a semantic model
having a continuation component, but not a store
component. Consider introducing the following con-
struction into AEXP:

enter

with E escape

exit

enter and exit are a form of scope brackets; if an escape
expression is evaluated within that scope, control
transfers immediately to the nearest textually sur-
rounding exit point, the value of E becoming the value
of that e n t e r . . , exit construction; otherwise, evaluation
proceeds in the normal way..

The extensions may easily be incorporated into the
syntactic definition of Exp as follows:

E : : = B
I
kI.E
EIE2
enter E exit
with E escape
(E)

But it should be clear that there is no simple way to ex-
tend the definition of 8 given for the purely applicative
language AEXP because any expression might have as a
constituent an escape which can transfer control to a
more global context and thereby prevent that expres-
sion from having a conventional value.

Now, consider interpreting an expression relative
to a function which specifies what is to be done with
the value of that expression if there is no escape. This
function is called a continuation and in this context

must be applicable to the value of an expression while
returning an "answer" ; i.e. the prophesized result of
the whole program in which the expression is embedded.
In a purely applicative language the answer must be an
expressible value but for the sake of clarity and to
allow for the generalizations that will soon be de-
scribed, we introduce a generic domain A of answers
which include expressible values and also other possible
results such as error messages, intermediate output,
and so on. Then we may construct the domain:

: K = E ~ A expression continuations

and the prophetic interpretation function 8' has func-
tionality:

8' : Exp ---> U --> K --~ A

so that 8't[E][pK is always the final answer yielded by
executing the complete program of which E is a part.

As before, parentheses contribute nothing to the
meaning and we have 8'{[(E)]]p~ = 8'~[E~0K. Also,
by examining the first three productions for Exp it
may be seen that for these forms of expression there is
no possibility of an escape during their evaluation, and
so the final answer is obtained by simply applying the
given continuation to the conventional value of the
expression:

8'[B]pK = K((~[B])
8'{[I]pK = K(O~[I~ in E)
8'~M.E]pK = K(¢ in E)

However, the function ¢ must be defined to allow for
the possibility of an escape out of the body of the ab-
straction (we assume that this is allowed). This is
accomplished by letting ¢ take a continuation as an
additional parameter; if there is no escape during the
evaluation of the body the final answer will be obtained
by applying this continuation to the usual result of
the function. Thus the domain of functions may be
defined as:

~b : F = D --~ K --~ A functions

and the function ¢ in the abstraction clause of the defi-
nition of 8' is such that:

¢(6){K} = #[E](0[~/I]){~}

Braces (rather than parentheses) are used to bracket
continuation arguments as a notational aid.

Operator-operand combinations are interpreted by
defining two new continuations (K1 and K2) to be applied
to the values of the operator and operand expressions
(el and e2, respectively) if there are no escapes during
their evaluations:

where Kl(ea) = 8' ~E2]pK2
where ~2(e2) = (el]F)(~21D){~}

When both values are available the function can be
applied to the explicit argument value, and the originat

447 Communications August 1976
of Volume 19
the ACM Number 8

continuation K is supplied as the additional argument.
Although structured quite differently, it can be

shown that the definition of ~' so far is essentially
equivalent S to that for 8; however, the use of continu-
ations provides the extra leverage that makes it possible
to also treat imperative transfers of control.

An escape is modeled by ignoring the "no rma l "
continuation and applying instead an " abno rma l "
continuation that models the computat ional future
f rom the proper exit point. Since this exit point is tex-
tually determined, it is appropriate to make the cor-
responding continuation a component of the environ-
ment, as follows:

p : U = (Ide--->D) X K environments

For convenience, the notations p~I~ and p[UI] will
continue to be used to access and modify the Ide ---> D
component of p; to access and modify the continuation
component p (exit) and p [K/exit] will be used.

Then the remaining clauses of the definition of 6'
a r e :

6' ~enter E exit~p~ = 6'[E~(p[x/exit])~
g' ~with E escape ~pK = 6' [E ~p { p(exit) }

The e n t e r . . , exit construction simply modifies the
second component of the environment for the con-
tained expression to be the given continuation; then
evaluation of an escape expression in that environment
will cause the application of that continuation to the
value which is to be escaped with, and the normal con-
tinuation is ignored.

I t is also easy to account for "error s tops"; for
example, the following modified form of the definition
of 6' {[E~E2] incorporates a dynamic test which produces
an appropriate error message as the answer with no
further computat ion if the value of the operator part
turns out not to be a function:

~;'~E1E2~pK = 8 ' [EI~p~
where KI(~I) : (cleF ~ 6'[E2]pK~,

"error: function expected")

where K2 is as before. In Section 7 it will be shown how
continuations allow intermediate outputs to be added
to a program's answer (even when the program is
nonterminating and generates an infinite stream of
outputs).

6.2 Generalizations
The use of continuations and prophetic interpreta-

tions is also possible when the object language re-

2 This definition, however, differs from that of 6 in that it
specifies a "call-by-value" form of parameter evaluation: the ope-
rand is evaluated just once before the activation of the function.
A "call-by-name" approach (in which the actual parameter is in
principle evaluated only for references to the formal parameter)
could also be specified using more complex environments appli-
cable to a continuation as well as an identifier: U' = Ide --~ K --~ A
and "functions" which are modeled by elements of F' = (K --~ A)

K ~ A; see Reynolds [1974b], who also discusses how "call-by-
value" may he specified without using continuations.

quires a store component in its semantic model. The
following domains and functionalities would be ap-
propriate for expressions in a language allowing dy-
namic changes of state:

: Exp --~ U --~ K --* S ---* A
K : K = E ~ S ~ A expression continuations
¢ : F = D ---> K ----> S ~ A functions

where the other domains are as before. Then 8[E]pK~
defines the contribution of E to the answer when ~ is
the state of the store and ~ is the normal continuation,
to be applied to the value of E and the possibly updated
state of the store after the evaluation (if there is no
transfer of control).

Commands may be interpreted by a prophetic
semantic function

C : Cmd --~ U --+ C ---~ S ---~ A,

where C is a domain of command continuations, appli-
cable to the state of the store after execution of the
command:

0 : C = S --~ A command continuations

Then procedures with one parameter are modeled by
elements of

P = D ---> C --~ S --* A.

A command continuation is also the appropriate
model for a label value; for example, a simple go to
command with a fixed label may be interpreted as
follows:

The continuation 0 is ignored and control is trans-
ferred to the program-point represented by the label
by applying to the current store the continuation to
which the label identifier is bound.

I f more general expressions can yield label values:

e Ego to E ~p0~ = 6 [E ~p~
I !

w h e r e ~ = (~ l C) ~

By right-canceling store arguments and using the
lambda notation, the following more compact form
of the equation is obtained:

e~go to E ~ = g[E~p{ke.e I C}

Also the specifications of the functionalities of the
interpretation functions may be simplified to:

: E x p ~ U ~ K ~ C and
C : Cmd ---~ U --> C -~ C

where K = E--->C.

6.3 Discussion
The semantic ideas we have in t roduced--environ-

ments, stores, and cont inuat ions--provide a conceptual
f ramework for formal semantic specification of almost
all features of high-level p rogramming languages.
Topics which are beyond the scope of this tutorial

448 Communications August 1976
of Volume 19
the ACM Number 8

and are treated elsewhere are nondeterminism, com-
pile-time types, and more complex control structures
such as backtracking, coroutines, and parallelism.
Well-known languages for which denotational defini-
tions exist include Algol 60, Algol 68, PASCAL, LISP
and SNOBOL.

As an example of a complete definition we shall
consider the language GEDANKEN [Reynolds, 1970} which
elegantly exemplifies many features of practical pro-
gramming languages without the restrictions and
syntactic complexities necessary in languages such as
Algol 68 and PASCAL to achieve efficient implementation
and compile-time verifiability. Because the description
of GEDANKEN is readily accessible, we shall not give a
concrete syntax or an informal description of its se-
mantics; the explanations given by Reynolds should
be consulted, especially for the unusual features of
functional data structures and implicit references.

7. Semantic Specification of GEDANKEN

The recent development of programming languages sug-
gests that the simultaneous achievement of simplicity
and generality in language design is a serious unsolved
problem.

[Reynolds, 1970]

7.1 Notation
The following conventions will be convenient:

(i) Xa.X3 will be abbreviated to)~a~

(ii) Nested continuations of the form: a{¢~{~,} } will be
written:

a;
3;
-y

The semicolon has lower precedence than appli-
cation, but it does not terminate a lambda ex-
pression.

(iii) Injections and projections will often be omitted
when there can be no confusion as to the target
domain.

(iv) Symbols such as ~':,~w, O~R~OR, and 4~va,, denote
predefined values in the initial environment.

(v) The ith component of a tuple ~ will be denoted
a $ i .

7.2 Syntact ic Domains

B : Bas bases
I : Ide identifiers
E : Exp expressions
~I, : Abs abstractions
11 : Par parameters

: Prog programs
I A } o the null string

7.3
'if2' : :=

II : :=

E : : =

Productions

E
I

I 111, 112, • • • , II~
IA
I(n)
XIIE

(n # I)

B
I

ExE2
if E0 then Ex else E2
E1 and E2
E1 or E2
case E0 of Ea, E ~ , . . . , E~
E 1 , E 2 , . . . , E ~ (n # 1)
&

E1 = E2
E1 := E~
E1 ; Ez
. . . ; 11isE; . . . ; I i s r ~ ; . . . ;
(E)

i ! t : E ; . . .

7.4 Semantic Domains

r : T = { true, f a l s e } ° truth values
v : N = { . . . , - - 2 , - - 1 , 0 , 1 , 2 , . . . } ° integers

: H = { " a " , " b " , " e " , . . . } ° characters
: At = {ll, u l , . . . } ° atoms

B = T + N + H + At basic values
4, : F = E --~ K ~ C functions
O : C = S ~ A label values
a : L locations

I m = F × F implicit ref-
erences

Rf = L + Im references
: E = B + F + C + Rf expressible

values
A = {error} ° + B + (H X A) answers

i.e. an answer is either an error message, the value of
the final expression of the program, or an intermediate
output followed by another answer; this allows for
any number of intermediate outputs (including zero or
an infinite number), followed by an error message or
the final value if the program terminates.

K : K = E --~ C expression continuations
x :X = U --~ C parameter continuations

D = E denotable values
p : U = Ide ~ D environments

V = E storable values
~ : S = (L---~(V × T)) stores

X (At ~ T)
X H* X H*

The second component of S associates a " t a g " with
each a tom to record whether or not it has been gen-
erated; the third and fourth components are the input
and output file, respectively. We assume finite inouts.

449 Communications August 1976
of Volume 19
the ACM Number 8

7.5 Primit ive Store Functions
The following are similar to the primitives discussed

in Section 5, except tha t for convenience they are
used with cont inuat ions :

content: L ~ K ----> C
update: (L X V) ~ C ~ C
new: K --~ C
get: K --~ C
put: H ~ C ~ C

The design of the language precludes access to inactive
or uninitialized locations.

The funct ion gensym: K ---> C activates a current ly
inactive a tom; tha t is,

gensym ca = ~ '
where J = (~ ~. 1, ~ ~ 2[true/~], ~ ~ 3, ~r + 4)
and ~ $ 2(~) = false.

7.6 Semantic Functions

~ : Exp --* U ----> K --> C
6~ : Exp --~ U ---> K ---~ C

The function 6~ evaluates an expression using a and
then automat ical ly coerces the value.

• : Par ---> U --~ E --> X --~ C

~[if E0 then E~ else E2]pc

ke.(eET ---> (e I T --+ a[Ex]pc, 8[E~]pc), O~enon)

8[E1 and E~pc
= (R [El]p;

ke.(eET ~ (,~ I T --~ ~{[Ez]p,, , (false)) , O~nno~)

= m[E~ ~ ;
ke.(eET --+ (e I T ~ ~(true), (R[E2]pc), 0 ~ o ~)

N o t e tha t the operands of or and and are evaluated
"sequential ly".

6[case E0 of E1 , Ee, . . . , E ~ p ~
= m~E0~p;

X~.(d~B ~ (e = 1 ~ ~E~]pc ,
e = 2 --+ g[E~]pc,

e = n --+ ~[E~]pc,

e = ll--* c (1) ,

, = u l ~ c(n), O~Rso,), O~n,ou)

~[E~ , E2 , • . • , E ,]pc

~x~ 2 .

The funct ion • is defined so that if possible • [I I]oex~r
binds II to e and then applies the cont inua t ion x to
the resulting extended env, ronment .

9: : Abs --+ U --. F
~Z : Prog ~ H* --+ A
6~ : Bas ~ B

A subsidiary funct ion seq : E* ~ F will be used to
conver t a tuple o f ekpressible values into a G~DANK~N
funct ion value:

seq (~ , e ~ , . . . , ~,)

= k e ~ . ¢ o o ~ c ~ ;
I t

e'EAt ~ (e' = ll ---* c (1) ,
!

e = u l ~ c(n), Oe~non), O~nno~)
where v = e'[N

Another subsidiary funct ion coerce : K ~ K sim-
plifies the specification of coercions:

coerce c = ke.~co~nc~ ec

7.7 Semantic Equations

~ : Exp --* U ---~ K --+ C

~ I ~ p c = c(p[TD

kea.(e,EF ~ ~[E2]p{ko.eae2c}, O~n~on)

k~n.c (seq(q , , ' 2 , . . . , ~,.))

g{[A]pc = c (seqO)

~[E1 = E2]tpc = (R[Ex~p;

Xe2.¢NcE~traL (seq(el , e2))c

~{[E1 : = E2]pc = ~[E1]p;
~ ~.(~ [E2 ~p ;

ke2.dp~cszr (seq(el , e2))K

8[E1 ;E2]oc = ~El~o{ke.~iE2]oc}

Ra the r than in t roduce addit ional nota t ion, it is
convenient to specify the block const ruct ion by
first "s tr ipping off" the nonrecursive declarat ions as
fol lows:

~[n is E ; . . .] = 8~ (~n . . .) (E)~

where the " . . . " stands for the rest of the b lock; then:

8 [I l i s r ~ ; . . . ; I ~ i s r ~ ;
11 : E 1 ' , . . . , " I ~ :E~]pc = 01

i l where 0~. = 8lIE]p {~e.0j+~}
for j = 1 , 2 , . . . , n - - 1

and 0, = 8 ~E"]p'c
and p' = p . . . [¢ ~ / I i] . . . [0 / I ~] . . .

for i = 1 , 2 , . . . , m
and j = 1 , 2 , . . . , n

and ¢~ = f f [~ i]p '
for i = 1 , 2 , . . . , m

~[(E)]pc = ~ E] p ~

450 Communications August 1976
of Volume 19
the ACM Number 8

l ift : Exp -+ U --~ K - ~ C]

6~E]p~ = 8[[E]p {coerce ~}

[~ : Par ~ U- -~ E-- -~X ~ C]

• [~p~x = x(d~/I])

~ [I I , , II2, • • • , II.]p~x
= CkeogRe~e ;

where x~(p~) = e'(i){X~.6,[II~]p~e~X~+l}
for i = 1 , 2 , . . . , n

where Xnq-1 : X

6'FLA ~o,x = xo

6"[(II)]peX = 6"~H]p6x

I~Y : Abs ---+ U ---~ F I

4~tMP~ZV = X~x.rke ogee~e;
Xe'.(~'EF --0 e'(1) {coerce r~}, O ~ O R)
where ca(e,) = g (2) {coerce ~2}

where ~(e~) = (clEF /k e2eF

~baro~ = X ~ . g e n s y m x

¢~s~ev = X~.~(d~Rf)

4 ,~ , , ,~ ,o , , = x,~.4,~ o , , ~ { x / . ~ (& N) }

and similarly for 4,zsn o OLZam Czscaa~, etc.
The remaining predefined functions are either

arithmetics (INC, DEC), comparisons (GREATER,
C H A R G R E A T E R , NCEQUAL) , or definable in terms
of other predefined functions (REF, SET, UNITSEQ,
NOT, INTTODIGIT, DIGITTOINT, VECTOR, NEQ,
ADD, SUBTRACT, MULTIPLY, DIVIDE, RE-
MAINDER, EQUAL); their specifications are omitted.

fie : Prog --~ H* ~ A [

f i E ~ , ~ (. . . , ~ , , . . .)
= 6~]po{Xe.(eEB ---+ ha.e I B, 0~RROR)}a0

where Oo maps each predefined identifier into its initial
denotation (these are defined in Section 7.8); in the
initial store ao all locations are inactive, only the atoms
ll and ul have been generated, the input file is
(. • •, ~7~, • • .), and the output file is empty.

The definition of 63 :Bas --+ B (which merely in-
terprets numerals and character strings) is omitted.

7.8 Predefined Values
~Lz = ll ~vL = ul

rrRUB = true r eaz s z = fa l s e

OznnoR = k~.error

4'o or o = XeK.@c O~ReB~;

CREaDeHaR = her.get r

dPVZ RZr~CrtAR = ~er.qbCOERC~e;
he ' . (e 'EH --+ pu t e'{X~.(~', re '@}, OERROR)

The output value is appended both to the output file
(as a model of the dynamic change to the abstract
store), and to the stream of "answers" (the ultimate
result of the execution of the program).

~ e R ~ v = X~ .new;
XJ .update (e', ,){Ke'}

¢va~ = h~K.(eEL ---+ content ~ ,
eEIm ~ (e J. 2) (seqO)~, 0ERROR)

4 ~ c s ~ = X~K.4~oo~cEE;
xg.(&F ~ ,'(1)~,, 0 ~ o ~)
where ~1(~1) =J(2)~z
where ~2(e2) = (qEL --+ update (el, E2){KE2},

elEIm ~ (~1 ,~ 1)e2{Xe.Ke2},
0 ~ o ~)

¢coenc~ = ~e~.fe~Rf ~ C w ~ e [coerce K}, de)

8. Bibliography

8.1 Introduction
We shall not attempt to reference every publication

on semantics, but only those which are related to the
material presented in this paper; additional material
may be found in the following collections and in the
papers referenced therein: Steel [19661, Engeler [1971],
ACM [1971, 1972, 1973, 1975], and Rustin [19721.

Possible applications of a theory of programming
language semantics are also discussed in McCarthy
[1963a, 1963b], de Bakker [1969], and Hoare and
Wirth [1973]. Language analyses and specifications
using the denotational approach to semantics discussed
in this paper may be found in Tennent [1973], Gordon
[1973], Mosses [1974] and Milne [1974]; Tennent
[1973] and Ligler [1975a] demonstrate applications to
language design. Models and verification of language
implementations are discussed in Milner and Weyrauch
[1972], Morris [1972], Vuillemin [1973], Gordon [1973],
and Milne [19741. Program verification methods using
an underlying logic based on Scott's theory of compu-
tation are described in Milner [1972] and Vuillemin
[1973]. The following discuss the relations between
denotational definitions and other aspects of semantic
analysis: Reynolds [1972aj, Hoare and Lauer [1973],
Milne [19741, Donahue [1974], and Ligler [1975a, b].

8.2 Basic Concepts
Scott and Strachey [1971] is the first published

description of their approach to programming language
semantics. Abstract forms of syntactic description were
introduced by McCarthy [1963a] and Landin [1964].

8.3 Expressions and Environments
The indispensable reference for this chapter is the

classic by Landin [1964]; also useful are McCarthy
[1960], Landin [1966], Strachey [1967], and Reynolds
[1972@

451 Communications August 1976
of Volume 19
the ACM Number 8

8.4 Mathematical Foundationn
Scott [1970] is an outline of the axiomatic basis of

his theory and its applications; the theory is developed
in detail in Scott [1971a, 1971b, 1972b, 1972c, 1972d].
A fairly complete and systematic exposition is given in
Reynolds [1972b]; related material may be found in
Park [1969], Beki6 [1969], Wadsworth [1971, 1975],
de Bakker [1971, 1974], Milner [1973a], Egli [1973],
Reynolds [1973, 1974b], and Milne [1974].

8.5 Commands and Stores
The model of storage has its origins in McCar thy

[1963a] and Strachey [1966, 1967], and is discussed
also in Burstall [1967], Reynolds [1970], Ledgard
[1971], Strachey [1972], and Scott [1972a]. A rigorous
treatment of some technical issues not raised in this
paper is given in Milne [1974].

8.6 Control Structures and Continuations
The escape control structure is similar to the "pro-

gram-poin t" of Landin [1966] and many other con-
structions that have been proposed more recently
[Reynolds, 1972a; Knuth, 1974]. A typical application is
described in Burstall [1968].

Prophetic interpretations for modeling imperative
control structures were proposed independently by
Morris [1970] and Wadsworth [Strachey and Wads-
worth, 1974]; see also Reynolds [1972a]. Mathematical
semantic models of programming language features not
discussed in this paper may be found in Tennent [1973],
Reynolds [1974], Kahn [1973], Milner [1973b], Cadiou
and Levy [1973], Gordon [1973], Milne [1974], and
Cohen [1975].

8.7 Semantic Specification of GEDANKEN
The denotational definition given here may be com-

pared with the "opera t ional" description in Reynolds
[1969]. Languages similar to GEDANKEN are defined in
Tennent [1973] and Milne [1974].

Note added in proof . A n important new book on the
subject of this paper is to appear soon: A Theory o f
Programming Language Semantics, by R.E. Milne
and C. Strachey (Chapman and Hall, London; Wiley,
New York) . I t will include an account of the funda-
mental concepts of programming languages, a discussion
of Scott 's work, explanations of various sorts of se-
mantics, and methods for establishing equivalence of
programs and correctness of implementations.

Acknowledgments . The author is extremely grateful
to J.C. Reynolds, C. Wadsworth, and R. Milne for
their very helpful comments on earlier drafts of this
paper.

Received November 1974; revised March 1975

References
ACM [1971]. Proc. ACM Symp. on Data Structures in Pro-

gramming Languages. SIGPLAN Notices (ACM Newsletter)
6, 2 (1971).

ACM [1972]. Proc. ACM Conf. on Proving Assertions about
Programs. SIGPLAN Notices (ACM Newsletter) 7, 1 (1972) ;
also SIGACT News (ACM Newsletter) 14 (1972).

ACM [1973]. Conf. Rec. ACM Syrup. on Principles of Program-
n-ring Languages, Boston, 1973.

ACM [1975]. Conf. Rec. Second ACM Syrup. on Principles of
Programming Languages, Palo Alto, Calif.

de Bakker, J.W. [1969]. Semantics of Programming Languages.
In Advances in Information Systems Science, Vol. 2, J.T. Tou,
Ed., Plenum Press, New York, 1969, pp. 173-227.

de Bakker, J.W. [1971]. Recursive Procedures. Mathematical
Center, Amsterdam, 1971.

de Bakker, J.W. [1974]. Least Fixed Points Re-visited. Mathe-
matical Center, Amsterdam, 1974.

Beki6, H. [1969]. Definable operations in general algebras, and
the theory of automata and flowcharts (unpublished).

BranquarL P. [1971]. The composition of semantics in Algol 68.
Comm. ACM 14, 11 (Nov. 1971), 697-708.

Burstall, R.M. [1967]. Semantics of assignment. In Machine
Intelligence 2. American Elsevier, New York, pp. 3-20.

Burstall, R.M. [1968]. Writing search functions in functional form.
In Machine Intelligence 3. American Elsevier, New York, pp.
373-385.

Cadiou, J.M. [1972]. Recursive definitions of partial functions
and their computations. Tech. Rep. CS-266, Computer Sci.
Dep., Stanford U., Stanford, Calif.

Cadiou, J., and Levy, J. [1973]. Mechanizable proofs about
parallel processes. 14th Annual IEEE Syrup. on Switching
Theory and Automata, pp. 34-48.

Church, A. [1941]. The Calculi of Lambda Conversion. Princeton
U. Press, Princeton, N.J.

Cohen, E.S. [1975]. A semantic model for parallel systems with
scheduling. In ACM [1975], pp. 87-94.

Dijkstra, E.W. [1972]. Notes on structured programming. In
Structured Programming. Academic Press, New York, pp. 1-82.

Donahue, J.E. [1974]. Mathematical semantics as a comple-
mentary definition for defined programming language
constructs. Tech. Rep. CSRG-45, Computer Systems Research
Group, U. of Toronto, Toronto, Canada.

Egli, H. [1973]. An analysis of Scott's X-calculus models.
TR-73-191, Dep. of Computer Sci., Cornell U., Ithaca, N.Y.

Engeler, E., Ed. [1971]. Syrup. on Semantics of Algorithmic
Languages. Springer-Verlag Lecture Notes Series no. 188,
Springer-Verlag, Berlin, Heidelberg, New York.

Gordon, M.J.C. [1973]. Models of pure LISP. Experimental
Programming Rep. No. 31. School of Artificial Intelligence, U.
of Edinburgh, Edinburgh, Scotland.

Hoare, C.A.R., and Lauer, P.E. [1974]. Consistent and comple-
mentary formal theories of the semantics of programming
languages. Acta Inf. 3 (1974), pp. 135-153.

Hoare, C.A.R., and Wirth, N. [1973]. An axiomatic definition
of the programming language PASCAL. Acta Inf. 2 (1973),
pp. 335-355.

Kahn, G. [1973]. A preliminary theory for parallel programs.
Research Rep. 6, IRIA, France.

Kleene, S. [1952]. Introduction to Metamathematics. Van
Nostrand, New York.

Knuth, D.E. [1974}. Structured programming with go to state-
ments. Computing Surveys 6, 4 (Dec. 1974), 261-301.

Landin, P.J. [1964]. The mechanical evaluation of expressions.
Computer J. 6 (1964), 308-320.

Landin, P.J. [1966]. The next 700 programming languages.
Comm. ACM9, 3 (Mar. 1966), 157-164.

Ledgard, H. [1971]. Ten mini-languages, a study of topical issues
in programming languages. Computing Surveys 3, 3 (Sept.
1971), 115-146.

Ligler, G.T. [1975a]. A mathematical approach to language
design. In ACM [1975], pp. 41-53.

Ligler, G.T. [1975b]. Surface properties of programming language
constructs. International Syrup. on Proving and Improving
Programs, Arc-et-Senans, France.

452 Communications August 1976
of Volume 19
the ACM Number 8

McCarthy, J. [1960]. Recursive functions of symbolic expressions
and their computation by machine, I. Comm. ACM3, 4 (April
1960), 184-195.

McCarthy, J. [1963a]. Towards a mathematical science of
computation. In Information Processing 1962. Proc. IFIP
Cong. 62. North-Holland Pub. Co., Amsterdam, pp. 21-28.

McCarthy, J. [1963b]. A basis for a mathematical theory of
computation. Computer Programming and Formal Systems,
P. Braffort and D. Hirschberg, Eds., North-Holland Pub. Co.,
Amsterdam, pp. 33-69.

Meyer, A.R., and Ritchie, D.M. [1967]. The complexity of
LOOP programs. Proc. 22nd ACM National Conference, pp.
465--469.

Milne, R.E. [1974]. The formal semantics of computer languages
and their implementations. Ph.D. Th., Cambridge U. and
Tech. Microfiche TCF-2, Oxford U. Computing Lab.,
Programming Research Group.

Milner, R. [1972]. Implementation and applications of Scott's
logic for computable functions. In ACM [1972], pp. 1-6.

Milner, R. [1973a]. Models of LCF. Tech. Rep. CS-73-332,
Computer Sci. Dep., Stanford U., Stanford, Calif.

Milner, R. [1973b]. Processes: a mathematical model of computing
agents. Proc. Logic. Colloquium, Bristol, England.

Milner, R., and Weyrauch, R. [1972]. Proving compiler correct-
ness in a mechanized logic. Machine Intelligence 7. Edinburgh
U. Press, Edinburgh, Scotland, pp. 55-70.

Morris, F.L. [1970]. The next 700 formal language descriptions.
(unpublished).

Morris, F.L. [1972]. Correctness of translations of programming
languages, an algebraic approach. Tech. Rep. CS-72-303,
Computer Sci. Dep., Stanford U., Stanford, Calif.

M orris, J.H. [1971]. Another recursion induction principle.
Comm. ACM 14, 5 (May 1971), 351-354.

Mosses, P. [1974]. The mathematical semantics of Algol 60.
Tech. Mon. PRG-12, Oxford U. Computing Lab., Programming
Research Group.

Naur, P., Ed. [1963]. Revised report on the algorithmic language
Algol 60. Comm. ACM6, 1 (Jan. 1963), 1-17.

Park, D. [1969]. Fixpoint induction and proofs of program
properties. Machine Intelligence 5. American Elsevier, New
York, pp. 59-78.

Quine, W.V. [1960]. Word and Object. Technology Press,
Cambridge, Mass., and Wiley, New York.

Reynolds, J.C. [1969]. GEDANKEN--a simple typeless language
which permits functional data structures and coroutines.
ANL-7621, Argonne National Labs., Argonne, IlL

Reynolds, J.C. [1970]. GEDANKEN--a simple typeless language
based on the principle of completeness and the reference
concept. Comm. ACM 13, 5 (May 1970), 308-319.

Reynolds, J.C. [1972a]. Definitional interpreters for higher-order
programming languages. Proc. 25th ACM National Conf.,
pp. 717-740.

Reynolds, J.C. [1972b]. Notes on a lattice-theoretic approach
to the theory of computation. Dep. Systems and Information
Science, Syracuse U., Syracuse, New York.

Reynolds, J.C. [1975]. On the interpretation of Scott's domains.
Symposia Mathematica, VoL 15. Academic Press, London
pp. 123-135.

Reynolds, J.C. [1974a]. Towards a theory of type structure.
Programming Symp. Paris. Springer-Verlag Lecture Notes in
Computer Science, Vol. 19. Springer-Verlag, Berlin, Heidelberg,
New York, pp. 408-429.

Reynolds, J.C. [1974b]. On the relation between direct and
continuation semantics. 2nd Colloquium on Automata,
Languages, and Programming, Saarbrucken. Springer-Verlag
Lecture Notes in Computer Science, Vol. 14, Springer-Verlag,
Berlin, Heidelberg, New York.

Rustin, R., Ed. [1972]. Formal Semantics of Programming
Languages. Courant Computer Science Symposia 2. Prentice-
Hall, Englewood Cliffs, N.J.

Scott, D. [1970]. Outline of a mathematical theory of computation.
Proc. 4th Princeton Conf. on Information Sciences and
Systems; also Tech. Mon. PRG-2, Oxford U. Computing
Lab., Programming Research Group, pp. 169-176.

Scott, D. [1971a]. The lattice of fiow diagrams. In Engeler
[1971]; also Tech. Mon. PRG-3, Oxford U. Computing Lab.,
Programming Research Group, pp. 311-366.

Scott, D. [1971b]. Continuous lattices. Proc. 1971 Dalhousie
Conf. Springer-Verlag Lecture Note Series, No. 274, Springer-
Verlag, Berlin, Heidelberg, New York; also Tech. Mort. PRG-7,
Oxford U. Computing Lab., Programming Research Group.

Scott, D. [1972a]. Mathematical concepts in programming
language semantics. AFIPS Conf. Proc., Vol. 40, 1972 SJCC
AFIPS Press, Montvale, N.J., pp. 225-234.

Scott, D. [1972b]. Lattice theory, data types, and semantics. In
Rustin [1972], pp. 65-106.

Scott, D. [I 972c]. Lattice theoretic models for various type-free
calculi. Proc. 4th International Cong. for Logic, Methodology,
and the Philosophy of Science, Bucharest.

Scott, D. [1972d]. Data types as lattices. Unpublished lecture
notes, Amsterdam.

Scott, D., and Strachey, C. [1971]. Towards a mathematical
semantics for computer languages. Proc. Symp. on Computers
and Automata, Polytechnic Institute of Brooklyn; also Tech.
Mon. PRG-6, Oxford U. Computing Lab., pp. 19-46.

Steel, T., Ed. [1966]. Formal Language Description Languages.
North-HoUand Pub. Co., Amsterdam.

Strachey, C. [1966]. Towards a formal semantics. In Steel [1966],
pp. 198-218.

Strachey, C. [1967]. Fundamental concepts in programming
languages. In Notes for the International Summer School in
Computer Programming, Copenhagen (unpublished).

Strachey, C. [1972]. Varieties of programming language. Proc.
International Computing Symp., Cini Foundation, Venice; also
Tech. Monograph PRG-10, Oxford U. Computing Lab.
Programming Research Group.

Strachey, C., and Wadsworth, C. [1974]. Continuations, a
mathematical semantics for handling full jumps. Tech. Mon.
PRG-11. Oxford U. Computing Lab., Programming Research
Group.

Terment, R.D. [1973]. Mathematical semantics and design of
programming languages. Ph.D. Th., Dep. of Computer
Sci., U. of Toronto.

Vuillemin, J.E. [1973]. Proof techniques for recursive programs.
Tech. Rep. CS-73-393, Computer Sci. Dep., Stanford U.

Wadsworth, C.P. [1971]. Semantics and pragmatics of the lambda
calculus. Ph.D. Th., Oxford U.

Wadsworth, C.P. [1975]. The relation between lambda-expressions
and their denotations (unpublished).

4 5 3 ¸ Communications August 1976
of Volume 19
the ACM Number 8

