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1. Introduction 

See the little phrases go, 
Watch their funny antics. 
The men who make them wiggle so 
Are teachers of semantics. 

F. Winsor 
(Space Child's Mother Goose 1) 

A great deal of progress has been made in the last 
few years towards the development of a theoretical 
framework appropriate to formal analysis and speci- 
fication of the semantical aspects of computer lan- 
guages. Despite the complexity and variety exhibited 
by modern programming languages, it has been shown 
by D. Scott and C. Strachey and their colleagues at 
Oxford University that a remarkably small number of 
fundamental semantic constructs provide an adequate 
conceptual basis for defining concise formal models of 
their meanings. This paper is a tutorial exposition of 
these concepts and demonstrates their usefulness to 
the formal definition of programming languages. Most 
of the references to the literature are provided in a bib- 
liography at the end of this paper. 

There are several applications which motivate 
analysis of the semantic structure of programming 
languages. A formal definition of a language provides a 
precise and complete reference standard for users and 
implementers, so that the omissions, contradictions, and 
ambiguities typical of informal semantic specifications 
such as those in the Algol 60 Report  [Naur, 1963] may 
be avoided. Even if a formal definition were not com- 
prehensible to average programmers, it could provide 
the basis for an accurate informal description. 

A general language-independent framework of 
semantical concepts would help to standardize termi- 
nology, clarify similarities and differences between 
languages, and allow rigorous formulation and proof  
of semantic properties of languages. A language de- 
signer could analyze proposed constructs to help find 
undesirable restrictions, incompatibilities, ambiguities, 
and so on. 

A theory of semantics should contribute to syste- 
matic composition and verification of programs, es- 
pecially compilers. Indeed, a general notation for 
semantic specification would permit the development 
of a true compiler-generator, just as BNF led to the 
development of parser generators. Many of these goals 
have not yet been achieved, but sufficient progress is 
being made (see the references) to suggest that sem- 
antic analysis of programming languages will play 
a significant role in the development of computer 
science. 
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2. Bas ic  Concepts  

The point of our approach is to allow a proper balance be- 
tween rigorous formulation, generality of application and 
conceptual simplicity. One essential achievement of the 
method we shall wish to claim is that by insisting on a suit- 
able level of abstraction and by emphasizing the right 
details we are going to hit squarely what can be called the 
mathematical meaning of a language. 

[Scott and Strachey, 1971] 

2.1 Interpretat ion Funct ions  
In mathematical logic, a semantic interpretation for 

a formal language is specified by defining mappings of 
the syntactic constructs of the object language into 
their abstract "meaning" in an appropriate mathemati- 
cal model. For  example, a class of numerals would be 
interpreted by mapping every possible numeral into 
the number it denoted. Similarly, if the object language 
is that of an applied predicate calculus, .then every 
closed well-formed formula would be mapped into a 
truth value (true or false) relative to a domain of in- 
terpretation and specified meanings for the constant, 
function, and predicate symbols. 

It is possible to define the semantics of programming 
languages using essentially the same approach. The 
abstract meanings appropriate to nontrivial computer 
languages are more complex and less familiar than 
truth values and numbers, but are no less mathemati- 
cal. In order to demonstrate the practicability of this 
approach and to establish some notational and meth- 
odological conventions, we begin by considering a 
variant of an extremely simole language called LOOP 
[Meyer and Ritchie, 1967]. 

2.2  S y n t a x  
In specifying a syntax as the domain of a semantic 

interpretation, it is convenient to be able to avoid some 
semantically irrelevant complications such as operator 
precedence and associativity by providing only an 
"abstract"  form of syntax. In effect, an abstracted 
syntax specifies the compositional structure of programs 
while leaving open some aspects of their concrete 
representations as strings of symbols. 

An abstract syntax of the LOOP language may be 
specified as shown in Figure 1. 

The domains section specifies that the symbols ,% 
E, F, and xI, are to be used as metavariables (possibly 
with primes or subscripts) over the sets of variables, 
expressions, commands, and programs, respectively. 
These are denoted Var, E x p ,  Cmd, and Prog, and are 
defined by BNF-like productions in which the meta- 
variables stand for arbitrary elements of the correspond- 
ing syntactic category. Capital Greek letters are used as 
metavariables over syntactic domains, which are de- 
noted by boldface symbols of three or more letters. 

2.3 S e m a n t i c s  
To specify the meaning of programs in the language 

given above we need to define three interpretation 
functions: 

g: E x p  --~ . .  

e : C m d  - - ~ . . .  
ffr~ : P r o g  - - ~ . . .  

where the co-domains will have to be constructed to 
model the type of "meaning" appropriate to the cor- 
responding syntactic category. Script capital letters 
such as 8 will be used to denote semantic interpreta- 
tion functions; i.e. mappings from syntactic constructs 
into their mathematical meanings. 

The meaning of a LOOP program is the input-to- 
output function it computes; hence, if N is the set of 
(non-negative) integers, then the functionality (do- 
main and co-domain) of ~:  may be specified as being: 

~E : P r o g  ~ ( N  --> N )  

i.e. every program will have a unique meaning given by 
~z, and this meaning will be the function which maps 
every possible " input"  number into the "ou tpu t"  that 
should be produced by all correct implementations of 
LOOP. The convention that the operator "--->" associates 
to the right will allow us to write ~lZ : P r o g  --> N ~ N 
without parentheses. 

The "value" of any expression is an integer; how- 
ever, its meaning is more complex because in general 
the value may depend upon the state of the variables 
when the expression is evaluated. If S is the set of all 
possible "states" of the variables, then the functionality 
of 8 is: 

8 : E x p  --* S --~ N 

i.e. the meaning of an expression is a function that 
when applied to the current state, gives the value of 
the expression relative to that state. Use of a functional 
meaning here may seem surprising at first, but  it is 
natural since an expression should have a unique value 
for every possible state. 

Any state a defines a correspondence between every 
variable and the integer that is its current "contents" ;  

Fig. 1. Abstract syntax of the LOOP language. 

Syntactic domains: 

: Var 
E: Exp 
r :  Cmd 
,12: Prog 

Productions: 
E : : = 0  

I suee E 

F ::= F~; F2 
I . ~ : = E  
[ to E do F 
L(r) 

xI, ::= read ~; P; write E 

variables 
expressions 
commands 
programs 

constant 
variable 
operation 
sequencing 
assignment 
repetition 
parenthesization 
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hence, it is convenient to model states by functions 
with domain Var and co-domain N: 

:S  = V a r ~ N  states 

Then for any variable N, ¢[Y,] is the contents of ~, in 
state ¢; the symbols t[ and ]} are used to enclose syn- 
tactic elements in order to separate the object and meta- 
languages. 

To "update"  a state the notation air/E] is used to 
mean the state ¢' such that ¢'{[~1 = v and for all 
~'  ~ E, ¢ ' ~ ' ]  = ¢[[E']; that is, ~' is the same function 
as ¢ except at the argument N which is mapped into v. 
Semantic domains such as N and S will always be 
denoted by boldface symbols of one or two letters and 
lower-case Greek letters will be used as metavariables 
over such domains. 

The meaning of a LOOP command is then a state 
transition function: 

e : Cmd ~ S - - ,  S 

Then for any command P, e~[P~ is the state transition 
function it specifies and (e~[rD(¢) is the state after 
execution of r if ¢ is the state before its execution. 
To minimize the number of parentheses the conventions 
are to assume that function application associates to 
the left and to omit parentheses (but not ['s and ]%) 
around single-symbol arguments; hence, we may write: 
e[r~.  

We may now complete the definition of the three 
interpretation functions by specifying their results 
when applied to typical elements of their domains. 
When a program of the form "read ~,"" P; write E" is 
executed, the implementation must carry out the fol- 
lowing sequence of actions: 

1. An initial state ¢~ is established in which all variables 
are initialized to zero. 

2. An integer v is read in and stored in the variable ,~,. 
3. The body of the prograria, P, is executed, resulting in 

some final state ~s • 
4. The expression E is evaluated relative to ~ and this 

value is output. 

Mathematically: 

fiE[read ~; F; write E]]v 
= g [E 1or[ 
where ~/ = e~r~(~&/z]) 

where ed[.~,']] = 0 for all ~ ' :  Var 

The definition of the syntactic domain Exp is re- 
cursive, and so is the definition of its interpretation 
function; for each production defining Exp there is a 
corresponding clause in the definition of g: 

[succ E 1¢ = a [~ 1¢ + z 

Note the difference between the numeral 0 which is 
part of the given object language, and the abstract 

concept of zero which we have chosen to denote by 
0 in our metalanguage. 

For  the specification of e we define first the "itera- 
tions" of any function ¢ : X ---* X to be the functions 
¢~ : X ---* X for any v = 0, 1, 2 , . . .  such that ¢°(x) = x 
and ¢,+1 = ¢o4, where "o" is the usual function com- 
position operation; that is, ¢'+'(x) = ¢(¢'(x)) for 
all x. Then: 

e~(r )~  = e/[r~ 
e [ r~  ; r d  = e[rdoel~rl]} 
e [ z  := E]~ = ~[~[Et- /Z]  
e [ to  E do r ] ¢  = ( ( e [ r D %  

where v = g lIE ]~ 

In the case of the iteration construction, the formal 
definition gives definite answers to questions such as 
when and how often the control expression is to be 
evaluated, and what the behavior should be if this 
value is zero. In the first two clauses of the definition 
the use of functional meanings permitted omission of 
the "state" argument; that is: 

e F ,  ; r~t¢ = ( e [ r d o e [ r , D ¢  for all ¢: S 

but ~ can be "canceled" on the right of both sides of 
this equation, because equality of the functions im- 
plies equality of the function results for all elements 
of their domain. 

2.4 Discussion 
It is important to realize that the definition of LOOP 

does not impose or imply any arbitrary constraints on 
implementations of the language, as would a more con- 
crete implementation-oriented model, because nothing 
is specified about how the various functions must be 
computed or represented; the definition requires of an 
implementation merely that it computes the right 
mathematical function and this is what is more ap- 
propriate in a "s tandard" specification. The role of 
operational models of language semantics is to formalize 
language implementation methods so that their correct- 
ness may be verified by reference to the standard defini- 
tion [Milne, 1974]. 

As an aid to verification of programs written in the 
defined language, it is convenient to tabulate useful 
rules of inference for constructs in the language, as in 
Hoare and Wirth [1973]. Such rules can be validated 
relative to a denotational definition when the conditions 
on their applicability are made explicit [Ligler, 1975a, 
1975b]. 

In summary, semantic analysis of a programming 
language is founded on its denotational definition, but 
includes, on the one hand, formal models of imple- 
mentations and, more concretely, implementations 
themselves, and, on the other hand, statements of 
"surface properties" of language constructs and, more 
abstractly, deeper theorems about the language as a 
whole. 

The remainder of this paper considers denotational 
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definitions of languages that are more complex and 
practical than LOOP. Semantic constructs needed to 
model three broad classes of programming language 
features are presented and the mathematical theory 
underlying these constructions outlined. Then, as a 
demonstration of this conceptual framework, we give a 
definition of the language GEDANKEN [Reynolds, 1970], 
and conclude with a guide to the literature in the area. 

These forms of expression all involve the idea of binding 
an identifier to a denotation; the corresponding con- 
structions in programming languages are the various 
forms of local declarations, including local variables, 
function definitions, formal parameter lists, iteration 
control variables, and so on. Because of binding con- 
structions, it is necessary in general to evaluate an ex- 
pression relative to an environment which provides a 
value for each free variable in the expression. 

3. Expressions and Environments 

The commonplace expressions of arithmetic and algebra 
have a certain simplicity that most communications to 
computers lack. 

[Landin, 1966] 

3.1 Applicative Languages 
The characteristic semantic feature of expressions 

is that they are "evaluated";  that is, the semantic in- 
terpretation of an expression ultimately defines its 
"value." Furthermore,  for "pure"  expressions, it is 
exclusively the value that has semantic importance. 
This linguistic property is termed referential trans- 
parency [Quine, 1960], for it allows a subexpression 
to be replaced by any other expression having the same 
value without any effect on the value of the whole. 
Languages or language subsets having the property of 
referential transparency are termed applicative; other 
adjectives that have been used include declarative, 
denotative, descriptive, and functional. 

In most programming languages other than "pure"  
LISP [McCarthy, 1960] expressions are not purely ap- 
plicative; however, in this section we shall be excluding 
from consideration any of the imperative (i.e. non- 
applicative) aspects of programming languages, such as 
updating assignments, jumps, and intermediate input /  
output which spoil referential transparency by in- 
troducing the possibility of "side effects" or transfers of 
control during expression evaluations. 

On the other hand, the expression concept is not as 
shallow as is implied by the syntactical descriptions of 
most programming languages, in which the only forms 
of expression recognized as such are atomic con- 
stituents (constants, identifiers, etc.) and operator- 
operand combinations in a variety of syntactical ar- 
rangements such as prefix, infix, distributed (e.g. 
i f . . . t h e n . . ,  e l s e . . . )  and so on. The applicative 
subsets include other forms as well, as may be seen by 
considering the following which are forms of expression 
typical of mathematical discourse: 

(i) let x = 5 in x + 3 ,  

(ii) x + 3  where x = 5, 

(iii) let f (x )  = x + 3 in f(5),  
b 

(iv) ~ i + 3, 
i= l  

(v) f(5) where f(n) = f l ,  if n = 0 
~n X f ( n - 1 ) ,  otherwise. 

3.2 Abstractions 
A more primitive form of binding construction in 

some programming languages is the abstraction, which 
appears as the "lambda expression" in LISP [McCarthy, 
1960] and the "routine denotat ion" in Algol 68 [Bran- 
quart et al., 1971]. In the notation of Church [1941], an 
abstraction expression has the form "XI.E", where I 
is an identifier (the bound variable) and E is an expres- 
sion (the body, usually containing I). Informally, the 
value of kl.E (in some environment) is the function 
that maps an argument value to which it is applied 
into the value of E relative to the environment extended 
by binding I to the argument value; for simplicity, we 
assume that the functionality of the function is evident 
from context. For  example, in any environment kx.O 
denotes the constant zero function, kx.x  denotes the 
identity function, kx.x 2 denotes the squaring function, 
and kx.x + y denotes the function whose result is the 
sum of its argument and the value of y in that environ- 
ment. 

Because the value of an abstraction expression is a 
function, it may appear as the operator part of an 
operator-operand combination; for example, we may 
rewrite: 

square(5) where square(x) = x 2 

as 

(xx.x~)O). 

This is an example of referential transparency with 
respect to the operator part of a combination. 

Abstraction expressions are not often used in prac- 
tical programming, but  they play a fundamental role 
in the semantical analysis of applicative languages 
which will be described in the next section; the notation 
will also prove useful as part of the metalanguage for 
semantic definitions. 

3.3 Applicative Structure 

We have discussed three classes of expressions: 
(i) atomic constituents, denoting fixed or locally 

defined values, 
(ii) operator-operand combinations, denoting the ap- 

plication of a function to an argument (possibly a 
tuple), 

(iii) various identifier-binding constructions. 

It turns out that identifier-binding constructions may 
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be regarded as being merely more readable representa- 
tions ("syntactic sugarings") of certain arrangements of 
abstractions, atomic constituents(and operator-operand 
combinations. The analysis of an expression in terms 
of these primitive constructs is called its applicative 
structure. 

For  instance, the use of auxiliary definitions in 
examples (i) and (ii) of Section 3.1 is semantically 
equivalent to a combination of the form (Xx.x+3) (5) 
in which the operator part is an abstraction; that is, 
if g : Exp ~ . . .  is the semantic interpretation function 
for expressions, then: 

~[let x=5 in x+3]  
= g[x+3 where x=5]  
= ~ ( X x . x + 3 )  (5)]  

Similarly: 

g [ le t f (x )  = x+3 inf(5)~ 
= g{[letf = Xx.x-t-3 inf (5)~ 
= g [[Xfif(5)](Xx.x+3) ~, 

illustrating the use of an abstraction as an operand. 
The summation notation may be analyzed as follows: 

Sigma(l, 5, Xi.i+3) 

where Sigma(a, b, g) = i r a  > b t h e n 0 e l s e g ( a )  + 
Sigma(a + 1, b, g), but this introduces the problem of  
recursive (self-referential) definitions, also seen in 
example (v). Recursive definitions raise some very 
important questions as to the existence and unique- 
ness of the defined entity which will be considered in 
Section 4; here, we are interested only in the problem 
of  finding an appropriate applicative structure for 
such definitions. 

The recursion of example (v) may be considered to 
be the following equation in a function variable f :  

f =  Xn. i f n  = 0 t h e n l e l s e n  X f ( n - 1 )  

i.e. we are interested in functions that satisfy the above 
equation for f a t  all argument values n. Such equations 
may be assigned a unique solution by assuming the 
existence of a functional Y having the following fixed- 
point property: when Y is applied to a function F the 
result is an entity f such that the equation f = F(f) 
is satisfied; that is, Y(F) = F(Y(F)). In example (v), 
F is the function-valued functional defined by: 

F(g) = Xn. if n = 0 then 1 else n X g(n-- 1) 

a n d f i s  the factorial function; hence it may be analyzed 
as being semantically equivalent to: 

f(5) where f = Y(F) 
where F(g)(n) = i fn  = 0 then I else n X g(n--1) 

and then, using transformations already discussed, to: 

(Xf.f(5)) 
[(XF. Y(F)) 

(~g.Xn. i fn=O then 1 else n X g(n--1))] 

Similarly, Sigma may be explicitly defined as follows: 

Sigma = Y(F) 
where F(S)(a, b, g) = if a > b then 0 

else g(a) -t- S(a+ l, b, g) 

The mathematical definition of Y will be discussed in 
Section 4.3. 

These examples have provided evidence for the 
thesis due to Landin [1964] that applicative languages 
are "spanned" by the "basis" of atomic constituents, 
combinations, and abstractions. In the next section, 
we discuss the semantics of applicative languages and, 
without loss of generality, may restrict consideration 
to only this small number of constructs. 

3.4 Semantics 
We consider the following archetypal expression 

language, called AEXP (applicative expressions): 

B : Bas bases 
I : Ide identifiers 
E : Exp expressions 

E ::= B base 
1I identifier 
[XI.E abstraction 
I E 1 E 2  combination 
I(E) parenthesization 

We shall not specify any particular bases (constants) 
or domain of interpretation, but assume that there is a 
space of expressible values E and an interpretation func- 
tion 63 : Bas ~ E. Now, in order to determine the value 
of  an expression which may in general contain free 
identifiers, it is necessary to know the values to which 
such identifiers are bound in that local context. In 
aF.xe the binding must be established by both an ab- 
straction (which defines its textual scope) and a combi- 
nation (whose operand supplies the value to be de- 
noted); the set of associations of identifiers and their 
denotations in any context is termed the environment. 

A convenient model for environments is as follows: 

o : U = Ide ~ D environments 

where D is a space of denotable values, so that the 
value to which an identifier I is bound in the environ- 
ment p is p{[I]. In order to bind I to a value ~ :D  we 
use the "updating" notation of Section 2.3; that is, 
oil/I] is the environment in which I is bound to ~ and 
is otherwise the same as p. In general, the values that 
are denotable in a language (D) need not  be as ex- 
tensive as those that are expressible (E); for example, in 
Algol 60 an integer, real, or Boolean value is not  de- 
notable, but can only be dynamically assigned to a 
named storage location or array component  [Strachey, 
1972]. 

Among the expressible values in AEXP are functions: 

¢ : F  = D---> E 
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and we use the notation "¢ in E" to represent the 
injection of the function ¢ into the space of all ex- 
pressible values, and similarly "6 in E." The notation 
" e l F "  represents the projection of the expressible 
value e onto F, and similarly "~ I D"  for the projection 
onto D; these operations will be defined more exactly 
in Section 4.2. 

The semantic interpretation function for ~ x P  is 
then: 

g : Exp ---~ U --* E] 

8{I~p = p{I~ in K 
g [XI.E ]}p ~ ¢ in E 

where ¢(~) = gI[E}(p[UI]) 
g[E1E2]p = ~b(~) 

where ¢ = g[E~ }p [F  
and ~ = g [E2]p lD  

In words, the meaning of a parenthesization is that 
of the parenthesized expression; the value of a base is 
given by applying 6~ to it, independently of the environ- 
ment, while that of an identifier is obtained by applying 
the given environment to it; the value of an abstraction 
is, as before, the function whose result for any argument 
value is the value of the body relative to an environment 
that binds the bound variable of the abstraction to the 
argument value; the value of a combination is obtained 
by applying the value of the operator part to the value 
of the operand part. 

Note  that for the evaluation of an abstraction body, 
the environment used is the one relative to which the 
abstraction expression is evaluated (rather than the 
operator-operand combination that caused the acti- 
vation); i.e. the scope of identifiers is always statically 
determined, as in Algol 60. To achieve this form of 
binding for nonlocal variables in LISP the F U N C T I O N  
operator must be used; see Gordon  [ 1973 ]. 

Although this completes the definition of the in- 
terpretation, its simplicity is deceiving; in the following 
we consider whether the sets and functions assumed in 
this model are mathematically well-defined. 

4. Mathematical Foundations 

The generalization from computable to continuous func- 
tions is much like the generalization from algebraic to real 
numbers. In both cases one moves from a small but subtle 
set, determined by a certain kind of finite implicit repre- 
sentation, to a larger but structurally simpler set which can 
be constructed by limiting processes. 

[Reynolds, 1973] 

4.1 Motivation 
The definition of g in Section 3.4 appears quite rea- 

sonable, but it conceals some rather serious mathe- 
matical problems. These arise because semantic models 

typically make use of functions of higher order; i.e. 
functions whose arguments or results are functions or 
other infinite objects. For  example, the meaning of an 
expression specified by the interpretation function g 
is a function whose argument is an environment func- 
tion. Some examples of computational phenomena 
which are modeled most naturally by using higher-order 
functions are procedures whose parameters or results 
are procedural, the input and output streams of a 
nonterminating program such as an operating system 
or an ordinary program stuck in a loop, and "re- 
entrant" data structures. 

One of the reasons that higher-order functions in 
semantic models are mathematically troublesome is 
that it is necessary to allow general recursive definitions. 
The traditional approach to specifying the mathemati- 
cal meaning of a recursive function definition [Kleene, 
1952; Morris, 1971; Cadiou, 1972] is to demonstrate 
that there is a "partial function" over a denumerable 
domain which is the unique limit of a sequence of partial 
functions, each of which is at least as well-defined as 
the preceding elements in" the sequence. Of the many 
partial functions that might satisfy the defining equa- 
tion, this limit is the least defined and is also the "natu- 
ral"  solution from the computational point of view. 
Now the question is: how can this approach be general- 
ized to allow for recursive definitions of functionals 
such as e and Sigma whose arguments and results may 
also be "part ial"  functions, or functionals, or other 
infinite and recursively defined objects? 

Another problem arises from the possibility of 
self-application of higher-order functions. It  may be 
recalled that in the semantic model of AEXP the space 
of "functions" was defined to be: F = D --~ E; now if 
the functions are included in the space of denotable 
values D, this implies that for any total function ¢, the 
meaning of ¢(¢) should be well-defined. As a more 
concrete example, consider the following unusual but  
legal definition of the factorial function in Algol 60 
[Ledgard, 1971 ]: 

integer procedure factorial(n)  ; 
integer n; 
integer proceduref(g, m); 

integer procedure g; 
integer m; 
f : =  i f m  = 0 t h e n l e l s e m  X g(g,m--1); 

factorial := f ( f ,  n) 

The definition of f is not recursive (statically self- 
referential) but the procedure is self-activating (dy- 
namically re-entrant). Even when the object language 
under consideration does not allow such self-application 
of procedures, it may be very desirable to use self- 
applicable "functions" to provide a natural and repre- 
sentation-independent model of other aspects of the 
language [Scott, 1970]. 

The problem is that unrestricted use of "funct ions"  
which are self-applicable leads to variants of the "para- 
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doxical" contradictions of naive set theory; for ex- number 
ample, if p were a predicate that is true just when its then the 
argument is a predicate which is false when applied 
to itself (i.e.p(q) = -~q(q)), then we would havep(p)  = (i) D~ 
..rip(p). (ii) D~ 

A mathematical theory of computation which pro- (iii) D~ 
vides satisfactory solutions to these problems has (iv) D" 
recently been developed by D. Scott, using ideas from 
lattice theory and topology. A detailed technical ex- (v) D* 
position of this theory is beyond the scope of this 
paper and not necessary for the discussion of semantical 
concepts which follows, but weshal l  give an informal 
overview of its main features. 

4.2 Basic Concepts 
The key point is that Scott's theory characterizes a 

class of "data types," termed domains, and a class of 
functions (including those of higher order) which are 
sufficiently general to allow natural models of computa- 
tional phenomena (including recursion and self-appli- 
cation), but which are also sufficiently restricted to 
exclude set theoretic paradoxes and allow finite ap- 
proximations. The restrictions are imposed by a num- 
ber of axioms, which are justified by demonstrating 
that mathematically consistent spaces and mappings 
needed in semantic models may be constructed satis- 
fying these restrictions. 

Informally, the main feature of a Scott domain is 
that a sequence of better and better approximations 
("part ial"  objects, in a very general sense) in a domain 
must converge to a well-behaved limit, also in the 
domain; then all "operations" defined on the data type 
must be continuous functions in order to preserve these 
limits. The underlying topology is not the usual one, 
so that this notion of continuity is much more general 
than that of analysis. 

Primitive domains may be formed by adjoining to 
finite or denumerable sets such as {true, false}, or 
{ . . . ,  2, - 1 ,  0, 1, "2 , . . . }  two special objects " - "  
(termed bottom, representing information which is 
completely undetermined) and "r" (termed top, repre- 
senting information which is consistent or overde- 
termined). The following may then be considered as 
primitive domains: 

N = { . . . , - - 2 , - - I ,  0 , 1 , 2 , . . . } °  integers 
T = { true, false} o truth values 
H = {"a", " b " , . . . } o  characters 

where { . . . }°  denotes the augmentation of the set by 
J_ and r. In such domains the notion of approximation 
is very elementary: . approximates all elements, all 
elements approximate v, and all other pairs are in- 
comparable; hence there are no nontrivial limits or 
recursive definitions of elements in primitive domains, 
and the added structure is needed merely to satisfy the 
general requirements of the axioms and provide a 
basis for construction of more complex domains. 

Nonprimitive domains may be constructed in a 

of ways; if D, D~, and D2 are any domains, 
following are also domains: 

X D~ 
+ D2 
~ D ~  
= D X D X . . . X D  

= D ° + D  1 +  D 2 + . . .  

product  domain 
sum domain 
function domain 
domain of lists of 
length n 
domain of finite lists 

Except for the special treatment of • and r, the ele- 
ments of D1 X D2 correspond to ordered pairs whose 
first components are elements of D1 and whose second 
components are in D2, and an element of D~ + D2 
corresponds to an element of one of either D1 or D2. 
The domain D1 --~ D2 consists of continuous functions 
from D1 to D2. D" and D* are the domains of n-tuples 
and all the finite lists, respectively, of elements from D. 

All of these constructed domains contain also the 
special elements ~ and v, and in some cases "part ial"  
elements also, with approximation relations derived 
from those of the constituent domains. For  example, 
in the case of a function domain D1 --~ D2, f approxi- 
mates g when f (x )  approximates g(x) for all x: D~. 

Several of the constructions may be combined in a 
domain definition; syntactically, it is assumed that of 
the binary domain operators " X "  has the highest 
precedence and "---;' the lowest (and associates to the 
right, as before). For  a sum X . . . .  + Y + . . .  we 
will use the following suffix notations for operations of 
inspection, projection, and injection, respectively: 

(i) for X: X, 
KEY = [ true, if X corresponds to an element 3': Y 

~false, if x does not  correspond to an 
element of Y 

(ii) for x: X, 
x [Y = f3", if x corresponds to 3': Y 

(erroneous), if x does not  correspond 
to any element of Y 

(iii) for 3": Y, 
3" in X = x, where x: X corresponds to 3". 

Another method for domain definition will be 
mentioned later, but we now turn to a consideration of 
continuous functions on domains. Recalling the struc- 
ture of AEXP, it is reassuring that constant and identity 
functions over any domain are continuous, and that 
any function defined by abstractions and combinations 
is continuous when the constituent subexpressions de- 
fine continuous functions on domains. 

On primitive domains the requirement of con- 
tinuity reduces to monotonicity: a funct ionf is  monotone 
when, if x approximates y then f (x)  approximates 
f (y) .  Hence any "part ial"  function on a set may be ex- 
tended to a continuous total function on the corre- 
sponding domain by defining f ( . )  = ± (since ~ approxi- 
mates everything), f(v)  -- v (since v is approximated 
by everything) and f (x )  = - if the partial function is 
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undefined at x. Such extensions are termed " d o u b l y  
s t r i c t " .  

Less strict extensions of functions are also possible; 
if a function is constant with respect to one of its 
arguments, then it need not have the result ,, even 
when that argument is undefined. For  example, a con- 
tinuous cond i t i ona l  function may be defined as follows: 
r ---> ~1, ~2 is equal to x, ~1, ~2, or r respectively, as the 
value of r is ~, true,  f a l s e ,  or v. Although the function is 
doubly strict with respect to r, its result may be "de- 
fined" even when the alternative that is not selected 
happens to be . ;  of course, this provides a mathe- 
matical model of the c o m p u t a t i o n a l  treatment of a 
conditional expression. 

4.3 Reeursion 
As discussed in Section 3.3, the problem of speci- 

fying a mathematical meaning for a general recursive 
definition is that of showing the existence of a fixed- 
point-finding function Y to produce an appropriate 
solution to equations of the form f --- F ( f ) ,  given the 
higher-order transformation F : D -+ D. Now if D is 
a domain, there is an approximation relation defined 
on it and a "worst"  element ,; then, by monotonicity, 
F(~) approximates F ( F ( x ) ) ,  and by induction: 

. ,  F (  , ) , F (  F (  . ) ) , . . . , F '  ( x ) , . . . 

is a sequence of better and better approximations which, 
by continuity, converges to a limit f such that F~(.) 
approximates f for all i >_ 0 and F ( f )  = f .  It can be 
shown that for any domain D there is a c o n t i n u o u s  
fixed-point function Y ~ : ( D  -+ D) -+ D such that 
for any continuous F : D --+ D, 

(i) Y D ( F )  = lim,.~ F ; ( . )  is a solution of the equation 
f =- F ( f )  and 

(ii) any other solution of the equation is approximated 
by YD(F) .  

This result is a generalization of the classical recursion 
theorem of Kleene [1952] in that the approximation 
relation allows the arguments and results of recursively 
defined functions to be "partially defined" objects of 
higher order, rather than either strictly defined or un- 
defined. The argument can be generalized to give 
meanings to arbitrarily complex systems of mutually 
recursive definitions. 

The self-application problem discussed in Section 
4.1 is solved in Scott's theory by showing that domains, 
as well as domain elements, may be recursively defined. 
For  example, it is possible to construct by a limiting 
process a mathematically consistent solution D to a 
re f l ex i ve  domain "equat ion" of the form: D = B 
+ (D ~ E), where B is any domain of "basic" values 
and E is a domain which might include D; that is, any 

: D corresponds either to a basic value or to a function 
: D --* E applicable to every element of D, including 

possibly its own representative in D. This argument is 
very general and applies to all recursive or mutually 
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recursive domain definitions involving any of  the 
domain constructions we have discussed. 

As another example of recursive domain definitions, 
consider adding the following simple subroutine fa- 
cility to the LOOP language discussed in Section 2: the 
expression proc P defines a (parameter-less) procedure 
whose body is the command r .  The procedure may be 
assigned to a variable and subsequently activated by 
the command call E. 

To model this facility, the following mutually re- 
cursive equations must be solved: 

P = S --+ S procedures 
E = N + P expressible values 

~r : S = Var ~ E states 

and then the semantic interpretations of the new con- 
structs are: 

8 ~proc F ~ = e [~P ~ in E and 

where, as before, e : Cmd ~ S ---> S, but  now ~ : Exp 
---* S ~ E. Except for the projections and injections 
between E and N that are now needed, the other con- 
structs in LOOP may be interpreted as before. 

This completes our brief overview of Scott 's theory 
of computation;  more detailed technical presentations 
may be found in the references. We have outlined how 
the theory solves the problems raised by the higher- 
order interpretation of AEXP, and we may now proceed 
to analyze more complex languages with the assurance 
that such semantic models are mathematically sound, 
provided that we limit ourselves to functions and 
domains defined using the methods we have discussed. 

5. Commands and Stores 

Once a person has understood the way in which variables 
are used in programming he has understood the quintes- 
sence of programming. 

[Dijkstra, 1972] 

5.1 Basic Model 
The meanings of commands in the simple language 

LOOP were defined to be state transition functions, 
where a state could be modeled by a function from 
"variables" into their current contents. For  more 
complex languages this simple approach is not adequate 
and it is necessary to structure their semantic models to 
incorporate both a textually determined environment 
(as discussed in Section 3) and a dynamically changing 
abstract s tore .  

This complication arises because it is necessary to 
distinguish between ident i f iers  (program variables, 
symbolic names, formal parameters) which are syn- 
tactic entities, and l oca t ions  (storage variables, refer- 
ences, L-values, addresses, pointers) which are semantic. 
An identifier appears in a program and is statically 
bound to its denotation within the scope of its declara- 
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tion or binding construction; a location is in general 
computed (for example, by an array indexing operation 
or an indirect reference via a "pointer"-valued ex- 
pression), and it may even be allocated or deallocated 
dynamically. The contents of a location may be irre- 
versibly updated at any point, but identifier denotations 
"nest"  so that upon leaving an " inner"  scope, the 
previous environment reverts back. In many languages 
the class of values which are d e n o t a b l e  by identifiers is 
not the same as those which are s to rab le  in locations; 
in Algol 60, for example, they are completely disjoint: 
only numbers and Booleans are storable, whereas the 
denotable values are locations, arrays, procedures, 
labels, switches, strings, and parameters  called " b y -  

name"  [Strachey, 1972]. 
A semantic model which allows such distinctions to 

be made is obtained by interpreting expressions and 
commands  relative to both an environment and a 
store, defined essentially as follows: 

I : Ide identifiers 
a : L locations 
8 : D denotable values 
fl : V storable values 
0 : U = Ide ~ D environments 

: S = L --~ V stores 

Typical semantic interpretation functions using these 
domains would be: 

g : Exp ---~ U ---~ S ---~ E 
e : Cmd ---~ U ---~ S ---~ S 

where E, the generic domain of all expressible values, is 
usually constructed as the sum of D and V. Then 
~[E]}p~ is the conventional value of E in the environ- 
ment p when the state of  the store is ~, and ~[[F~p is 
the change of state of the store resulting from execution 
of r in p. 

The primitive operations on stores are con ten t :  

L ---> S ~ V and upda t e :  (L X V) ---r S --~ S, defined 
a s :  

con t en t  a ¢  = era 

and 

u p d a t e ( a ,  #)~ = ~[fl/a]. 

Then, in the store ~ the value at a location denoted by 
an assignable identifier I in the environment p is con-  

t en t (p~ I ] )~ ,  and an assignment command  might be 
interpreted as follows: 

e~E1 := E~]p~ = u p d a t e ( a ,  ~)cr 

where a = g ~[E1 ]~P~I L 
and fl = g[E2~p~IV 

This basic model must be elaborated if the language 
under consideration has coerc ion  conventions; i.e. 
implicit accesses of  location contents, type conversions, 
allocations, or other operations inserted in appropriate  
contexts for the convenience of programmers .  The 

445 

need for a specific coercion might be determined either 
f rom the expression and its textual context (i.e. at 
compile time), or f rom the value of the expression 
(i.e. at " run t ime"),  depending on the conventions of 
the particular programming language. Another over- 
simplification, failure to allow for possible "side effects" 
of  expression evaluation, is treated in Section 5.3. 

5.2 Generalizations 
Some straightforward extensions of this basic model 

can account for a variety of features found in many 
languages. Selectively updateable data structures such 
as arrays and records may be accommodated by al- 
lowing identifiers to be bound to lists of locations. 
"Pointer"  values or references may be modeled by al- 
lowing locations or lists of  locations to be storable 
values, so that a location may contain (a reference to) 
another or a data structure. 

Dynamic allocation and dealiocation of locations 
require a more complex model of the abstract store. 
The locations in any store must be partitioned into 
"act ive" and "inactive" areas, as follows: 

:S  = L ~ ( V × T )  stores 

Each location has associated with it (in addition to the 
usual stored value) a truth value " tag"  to record 
whether it is active or inactive in the current store. 
Then the following additional primitive operations are 
appropriate:  

area:  L ~ S --~ T 

new:  S ---~ L 
lose:  L ---~ S ---~ S 

where area  a~  = t rue  just  if a is active in ~, n e w  ~ is 
any location not in the active area of  ~, and lose  a ~  

is the store identical to a but with location a deacti- 
vated (i.e. area  a ( lose a~)  = f a l s e ) ,  c o n t e n t  and u p d a t e  

must be redefined to take into account the added 
structure of  S; we always want con t en t  a (upda te  (a,  fl)~r) 

= fl when area  a~  = true,  but language-dependent or 
even implementation-dependent properties might have 
to be considered when modeling the effects of at- 
tempting to access an inactive or uninitialized location. 

Intermediate input and output operations have a 
dynamic and irreversible character, similar to assign- 
ment;  hence, file components  may be incorporated 
into a domain of stores as follows (we assume that  
only "basic"  values may be read or written) : 

:S  = ( L - - - > ( V × T ) )  × I ×  O stores 
I = B* input flies 
O = B* output  flies 

fl : B basic values 

Then the following primitive operations may be used 
to model the reading of input and writing of output:  

ge t :  S ---> (B)<  S) 
p u t :  B ~ S ~ S 
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get ~ is a pair (~, ~') such that ~3 is the next value in the 
I component of ~ and a' is identical to ~ but with that 
value removed; put ~ appends the output value t3 
to the O component of a. Additional file components 
and primitive functions for opening, closing, rewind- 
ing, enquiring about, and so on may be necessary for 
modeling features of particular languages. 

5.3 Procedures and Side Effects 
The distinction between the statically determined 

environment and the dynamically changing store is 
most evident in the consideration of function and 
procedure definitions and activations. As in Section 3.4, 
the environment relative to which a procedure body is 
executed in a statically scoped language is that of its 
defining construction (extended by parameter bindings 
and local declarations), which may be different from 
that of the call; however, the store must be the one 
current when the procedure is activated, and the store 
resulting from that execution must be passed along 
when control returns to the point of call. 

Hence, for procedures having an explicit parameter in 
the domain D, the store must also be supplied as an 
implicit parameter in the semantic model as follows: 

~k : P = D --~ S ~ S procedures 

Activation of a function (value-returning procedure) 
whose body involves the execution of commands may 
also result in side effects to the store, so that the pos- 
sibly modified store must be returned as an im- 
plicit result as well as an implicit parameter of the 
function: 

:F  = D - - * S ~ ( E ×  S) functions 

Now, any expression whose evaluation can result in a 
function activation (or any other side effect-causing 
construct) might produce a change in the store, and 
so the functionality of the expression interpretation 
function must also be changed to accommodate 
this: 

8 : Exp---* U---* S ---~ (E X S) 

For  example, if we assume that the order of evalu- 
ation is left to right and that there are no coercions, an 
assignment command might have the following in- 
terpretation: 

e[E~ := E2]}O~ = update (,I[L, ,21V)J' 
where (e~, a") = gt[Ee]pcr' 

where (,1, a') = ~[E1]O~ 

Note that as the constituent expressions are evaluated, 
pP 

the state of the store changes from ~ to ¢' to a , and 
/ /  

the updating operation is applied to ~ . 
This form of model should not be construed as an 

endorsement of the use of side effects by programmers, 
but merely recognizes their existence in programming 
languages; the same is true of "shared" locations; i.e. 

locations accessible via more than one identifier [Ligler, 
1975a]. 

$.4 Parameters and Declarations 
Another manifestation of the differences between 

environments and stores is to be found in the parame- 
ter passing conventions of programming languages. In 
principle, parameter binding should merely extend the 
environment but  changes to the store might be invoked 
for the convenience of the programmer; also, since a 
formal parameter must be bound to a denotable value 
whereas the argument might in general be any expres- 
sible value, coercions might be invoked when the actual 
parameter is inappropriate. For  example, a caU-by- 
value in Algol 60 binds the parameter not  to the value 
of the actual parameter, but  to a dynamically allocated 
location which is initialized by the actual parameter 
value, possibly coerced to obtain a storable value. 

Analogous considerations apply to declarations 
because of their close association with abstractions, as 
discussed in Section 3.3. It is unfortunate that this 
association is obscured i n m a n y  languages; for ex- 
ample, in I'ASCAL [Hoare and Wirth, 1973] a vat declara- 
tion binds the identifier to a new storage structure, 
whereas a var parameter involves only an extension of 
the environment. 

5.5 Elementary Control Structures 
Many forms of "control  structures" can be in- 

terpreted using just the concepts described so far; for 
example, assuming for simplicity that there are no side 
effects or coercions, basic conditional and iterative 
commands can be specified using the conditional 
function 

T "---9" O ' I  , 0"2 

as follows: 

: Exp ----~ U ---,S ---~ E 
C : Cmd ---~ U ---~ S ---~ S 

e•if E do r~p~ = (8{[E]p~ IT  ---> e{[r~p~r, or) 

e ~while E do I' ]p~ = repeat cr 
where repeat ~ = (8{lEaper IT ~ repeat (e[ r~pa) ,  or) 

The auxiliary definition of repeat is recursive, but could 
of course be written explicitly using the appropriate 
fixed-point operator.  

For  languages that use only control structures such 
as these, the meaning of any constituent is specifiable 
relative to only an environment (static context) and a 
store (dynamic history) ; however, the presence of con- 
trol mechanisms such as go to statements, exits, error 
stops, backtracking, co-routines, and so on requires a 
complete restructuring of the interpretation framework, 
because the meaning of any constituent must be speci- 
fied relative to a semantic component  termed a con- 
tinuation which models a possible computational 
future. 
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6. Control Structures and Continuations 

The problem with labels is that the evaluation of any sub- 
expression may result in going to one, in which case the 
computation which might have been planned on to com- 
plete the evaluation of the main expression will have to be 
forgotten about. This means that the function compiled 
for the sub-expression should be passed as an argument 
something which says what more is waiting to be done, so 
that the sub-expression can decide whether to do it or not. 

[Morris, 1970] 

6.1 Basic Model 
We may describe the interpretations to be considered 

here as prophetic since they must specify not merely 
the local result or effect of  a construct, but its contribu- 
tion to the final result of  a complete program or process 
execution. To demonstrate the use of prophetic interpre- 
tations and continuations in a fairly simple context, we 
shall begin by examining an imperative extension to 
the language AEXP which requires a semantic model 
having a continuation component,  but not a store 
component.  Consider introducing the following con- 
struction into AEXP: 

enter 

with E escape 

exit 

enter and exit are a form of scope brackets; if an escape 
expression is evaluated within that scope, control 
transfers immediately to the nearest textually sur- 
rounding exit point, the value of E becoming the value 
of  that e n t e r . . ,  exit construction; otherwise, evaluation 
proceeds in the normal  way.. 

The extensions may easily be incorporated into the 
syntactic definition of Exp as follows: 

E : : = B  
I 
kI.E 
EIE2 
enter E exit 
with E escape 
(E) 

But it should be clear that there is no simple way to ex- 
tend the definition of 8 given for the purely applicative 
language AEXP because any expression might have as a 
constituent an escape which can transfer control to a 
more global context and thereby prevent that expres- 
sion from having a conventional value. 

Now, consider interpreting an expression relative 
to a function which specifies what is to be done with 
the value of that expression if there is no escape. This 
function is called a continuation and in this context 

must be applicable to the value of an expression while 
returning an "answer" ;  i.e. the prophesized result of 
the whole program in which the expression is embedded. 
In a purely applicative language the answer must be an 
expressible value but for the sake of clarity and to 
allow for the generalizations that will soon be de- 
scribed, we introduce a generic domain A of answers 
which include expressible values and also other possible 
results such as error messages, intermediate output, 
and so on. Then we may construct the domain:  

: K = E ~ A expression continuations 

and the prophetic interpretation function 8' has func- 
tionality: 

8' : Exp ---> U --> K --~ A 

so that 8't[E][pK is always the final answer yielded by 
executing the complete program of which E is a part.  

As before, parentheses contribute nothing to the 
meaning and we have 8'{[(E)]]p~ = 8'~[E~0K. Also, 
by examining the first three productions for Exp it 
may be seen that for these forms of expression there is 
no possibility of  an escape during their evaluation, and 
so the final answer is obtained by simply applying the 
given continuation to the conventional value of the 
expression: 

8'[B]pK = K((~[B]) 
8'{[I]pK = K(O~[I~ in E) 
8'~M.E]pK = K(¢ in E) 

However,  the function ¢ must be defined to allow for 
the possibility of an escape out of the body of the ab- 
straction (we assume that this is allowed). This is 
accomplished by letting ¢ take a continuation as an 
additional parameter;  if there is no escape during the 
evaluation of the body the final answer will be obtained 
by applying this continuation to the usual result of  
the function. Thus the domain of functions may be 
defined as: 

~b : F = D --~ K --~ A functions 

and the function ¢ in the abstraction clause of  the defi- 
nition of 8' is such that:  

¢(6){K} = #[E](0[~/I]){~} 

Braces (rather than parentheses) are used to bracket 
continuation arguments as a notational aid. 

Operator-operand combinations are interpreted by 
defining two new continuations (K1 and K2) to be applied 
to the values of the operator and operand expressions 
(el and e2, respectively) if there are no escapes during 
their evaluations: 

where Kl(ea) = 8' ~E2]pK2 
where ~2(e2) = (el]F)(~21D){~} 

When both values are available the function can be 
applied to the explicit argument value, and the originat 
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continuation K is supplied as the additional argument.  
Although structured quite differently, it can be 

shown that  the definition of ~' so far is essentially 
equivalent S to that  for 8; however, the use of continu- 
ations provides the extra leverage that  makes it possible 
to also treat  imperative transfers of  control. 

An escape is modeled by ignoring the "no rma l "  
continuation and applying instead an " abno rma l "  
continuation that  models the computat ional  future 
f rom the proper exit point. Since this exit point is tex- 
tually determined, it is appropriate  to make the cor- 
responding continuation a component  of the environ- 
ment, as follows: 

p : U = (Ide--->D) X K environments 

For  convenience, the notations p~I~ and p[UI] will 
continue to be used to access and modify the Ide ---> D 
component  of  p; to access and modify the continuation 
component  p (exit) and p [K/exit] will be used. 

Then the remaining clauses of  the definition of 6' 
a r e :  

6'  ~enter E exit~p~ = 6'[E~(p[x/exit])~ 
g'  ~with E escape ~pK = 6' [E ~p { p(exit) } 

The e n t e r . . ,  exit construction simply modifies the 
second component  of  the environment for the con- 
tained expression to be the given continuation; then 
evaluation of an escape expression in that environment  
will cause the application of that  continuation to the 
value which is to be escaped with, and the normal  con- 
tinuation is ignored. 

I t  is also easy to account for "error  s tops";  for 
example, the following modified form of the definition 
of 6' {[E~E2 ] incorporates a dynamic test which produces 
an appropriate  error message as the answer with no 
further computat ion if the value of the operator part  
turns out not to be a function: 

~;'~E1E2~pK = 8 ' [EI~p~ 
where KI(~I) : (cleF ~ 6'[E2]pK~, 

"error: function expected") 

where K2 is as before. In Section 7 it will be shown how 
continuations allow intermediate outputs to be added 
to a program's  answer (even when the program is 
nonterminating and generates an infinite stream of 
outputs).  

6.2 Generalizations 
The use of  continuations and prophetic interpreta- 

tions is also possible when the object language re- 

2 This definition, however, differs from that of 6 in that it 
specifies a "call-by-value" form of parameter evaluation: the ope- 
rand is evaluated just once before the activation of the function. 
A "call-by-name" approach (in which the actual parameter is in 
principle evaluated only for references to the formal parameter) 
could also be specified using more complex environments appli- 
cable to a continuation as well as an identifier: U' = Ide --~ K --~ A 
and "functions" which are modeled by elements of F' = (K --~ A) 

K ~ A; see Reynolds [1974b], who also discusses how "call-by- 
value" may he specified without using continuations. 

quires a store component  in its semantic model. The 
following domains and functionalities would be ap- 
propriate for expressions in a language allowing dy- 
namic changes of state: 

: Exp --~ U --~ K --* S ---* A 
K : K = E ~ S ~ A expression continuations 
¢ : F = D ---> K ----> S ~ A functions 

where the other domains are as before. Then 8[E]pK~ 
defines the contribution of E to the answer when ~ is 
the state of the store and ~ is the normal  continuation, 
to be applied to the value of E and the possibly updated 
state of the store after the evaluation (if there is no 
transfer of control). 

Commands  may be interpreted by a prophetic 
semantic function 

C : Cmd --~ U --+ C ---~ S ---~ A, 

where C is a domain of command continuations, appli- 
cable to the state of  the store after execution of the 
command:  

0 : C = S --~ A command  continuations 

Then procedures with one parameter  are modeled by 
elements of 

P = D ---> C --~ S --* A. 

A command  continuation is also the appropriate  
model for a label value; for example, a simple go to 
command  with a fixed label may be interpreted as 
follows: 

The continuation 0 is ignored and control  is trans- 
ferred to the program-point  represented by the label 
by applying to the current store the continuation to 
which the label identifier is bound. 

I f  more general expressions can yield label values: 

e Ego to E ~p0~ = 6 [E ~p~ 
I ! 

w h e r e  ~ = ( ~ l C ) ~  

By right-canceling store arguments and using the 
lambda notation, the following more compact  form 
of the equation is obtained: 

e~go to E ~  = g[E~p{ke.e I C} 

Also the specifications of the functionalities of the 
interpretation functions may be simplified to: 

: E x p ~ U ~ K ~ C  and 
C : Cmd ---~ U --> C -~  C 

where K = E--->C. 

6.3 Discussion 
The semantic ideas we have in t roduced--environ-  

ments, stores, and cont inuat ions--provide  a conceptual 
f ramework for formal semantic specification of almost 
all features of high-level p rogramming languages. 
Topics which are beyond the scope of this tutorial 
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and are treated elsewhere are nondeterminism, com- 
pile-time types, and more complex control structures 
such as backtracking, coroutines, and parallelism. 
Well-known languages for which denotational defini- 
tions exist include Algol 60, Algol 68, PASCAL, LISP 
and SNOBOL. 

As an example of  a complete definition we shall 
consider the language GEDANKEN [Reynolds, 1970} which 
elegantly exemplifies many features of practical pro- 
gramming languages without the restrictions and 
syntactic complexities necessary in languages such as 
Algol 68 and PASCAL to achieve efficient implementation 
and compile-time verifiability. Because the description 
of GEDANKEN is readily accessible, we shall not give a 
concrete syntax or an informal description of its se- 
mantics; the explanations given by Reynolds should 
be consulted, especially for the unusual features of 
functional data structures and implicit references. 

7. Semantic  Specification of GEDANKEN 

The recent development of programming languages sug- 
gests that the simultaneous achievement of simplicity 
and generality in language design is a serious unsolved 
problem. 

[Reynolds, 1970] 

7.1 Notation 
The following conventions will be convenient: 

(i) Xa.X3 . . . .  will be abbreviated to )~a~ . . . .  

(ii) Nested continuations of  the form:  a{¢~{~,} } will be 
written: 

a;  
3; 
-y 

The semicolon has lower precedence than appli- 
cation, but it does not terminate a lambda ex- 
pression. 

(iii) Injections and projections will often be omitted 
when there can be no confusion as to the target 
domain. 

(iv) Symbols such as ~':,~w, O~R~OR, and 4~va,, denote 
predefined values in the initial environment. 

(v) The ith component  of  a tuple ~ will be denoted 
a $ i .  

7.2 Syntact ic  Domains  

B : Bas bases 
I : Ide identifiers 
E : Exp expressions 
~I, : Abs abstractions 
11 : Par parameters 

: Prog programs 
I A } o the null string 

7.3 
'if2' : :=  

II : :=  

E : : =  

Productions 

E 
I 

I 111, 112, • • • , II~ 
IA 
I(n) 
XIIE 

(n # I) 

B 
I 

ExE2 
if  E0 then Ex else E2 
E1 and E2 
E1 or E2 
case E0 of  Ea,  E ~ , . . . ,  E~ 
E 1 , E 2 , . . . , E ~  (n # 1) 
& 

E1 = E2 
E1 := E~ 
E1 ; Ez 
. . . ;  11isE; . . . ;  I i s r ~ ;  . . . ;  
(E) 

i !  t : E ; . . .  

7.4 Semantic Domains 

r : T = { true,  f a l s e }  ° truth values 
v : N  = { . . . , - - 2 , - - 1 , 0 , 1 , 2 , . . . } °  integers 

: H = { " a " ,  " b " ,  " e " , . . . } °  characters 
: At = {ll, u l , . . .  } ° atoms 

B = T + N + H + At basic values 
4, : F = E --~ K ~ C functions 
O : C = S ~ A label values 
a : L locations 

I m =  F × F implicit ref- 
erences 

Rf  = L + Im references 
: E = B + F + C + Rf  expressible 

values 
A = {error}  ° + B + (H X A) answers 

i.e. an answer is either an error message, the value of 
the final expression of the program, or an intermediate 
output followed by another answer; this allows for 
any number  of intermediate outputs (including zero or 
an infinite number),  followed by an error message or 
the final value if the program terminates. 

K : K = E --~ C expression continuations 
x :X = U --~ C parameter  continuations 

D = E denotable values 
p : U = Ide ~ D environments 

V = E storable values 
~ : S  = (L---~(V × T)) stores 

X (At ~ T) 
X H* X H* 

The second component  of  S associates a " t a g "  with 
each a tom to record whether or not  it has been gen- 
erated; the third and fourth components  are the input 
and output  file, respectively. We assume finite inouts. 
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7.5 Primit ive  Store Functions 
The following are similar to the primitives discussed 

in Section 5, except tha t  for  convenience they are 
used with cont inuat ions :  

content: L ~ K ----> C 
update: (L X V) ~ C ~ C 
new: K --~ C 
get: K --~ C 
put: H ~ C ~ C 

The design of  the language  precludes access to inactive 
or  uninitialized locations.  

The funct ion gensym: K ---> C activates a current ly 
inactive a tom;  tha t  is, 

gensym ca = ~ '  
where J =  (~ ~. 1, ~ ~ 2[true/~], ~ ~ 3, ~r + 4) 
and ~ $ 2(~) = false.  

7.6 Semantic  Functions 

~ : Exp --* U ----> K --> C 
6~ : Exp --~ U ---> K ---~ C 

The function 6~ evaluates an expression using a and 
then automat ical ly  coerces the value. 

• : Par ---> U --~ E --> X --~ C 

~[if  E0 then E~ else E2]pc 

ke.(eET ---> (e I T  --+ a[Ex]pc, 8[E~]pc), O~enon) 

8[E1 and E~pc  
= (R [El ]p; 

ke.(eET ~ (,~ I T  --~ ~{[Ez]p,, , ( false)) ,  O~nno~) 

= m[E~ ~ ;  
ke.(eET --+ (e I T  ~ ~(true), (R[E2]pc), 0 ~ o ~ )  

N o t e  tha t  the operands  of  or and and are evaluated 
"sequential ly".  

6[case  E0 of  E1 , Ee,  . . .  , E ~ p ~  
= m~E0~p; 

X~.(d~B ~ (e = 1 ~ ~E~]pc ,  
e = 2 --+ g[E~]pc, 

e = n --+ ~[E~]pc, 

e = ll--* c ( 1 ) ,  

, = u l ~  c(n), O~Rso,), O~n,ou) 

~[E~ , E2 , • . • , E , ]pc  

~x~ 2 . 

The  funct ion • is defined so that  if possible • [ I I  ]oex~r 
binds II  to  e and then applies the cont inua t ion  x to 
the resulting extended env, ronment .  

9: : Abs --+ U --.  F 
~Z : Prog  ~ H* --+ A 
6~ : Bas ~ B 

A subsidiary funct ion seq : E* ~ F will be used to 
conver t  a tuple o f  ekpressible values into a G~DANK~N 
funct ion value:  

seq (~  , e ~ , . . . ,  ~,) 

= k e ~ . ¢ o o ~ c ~ ;  
I t 

e'EAt ~ (e' = ll ---* c ( 1 ) ,  
! 

e = u l ~  c(n), Oe~non), O~nno~) 
where v = e'[N 

Another  subsidiary funct ion coerce : K  ~ K sim- 
plifies the specification of  coercions:  

coerce c = ke.~co~nc~ ec 

7.7 Semantic  Equations 

~ : Exp --* U ---~ K --+ C 

~ I ~ p c  = c(p[TD 

kea.(e,EF ~ ~[E2]p{ko.eae2c}, O~n~on) 

k~n.c (seq(q , , ' 2 , . . . ,  ~,.)) 

g{[A]pc = c (seqO) 

~[E1 = E2]tpc = (R[Ex~p; 

Xe2.¢NcE~traL (seq(el , e2) )c 

~{[E1 : =  E2]pc = ~[E1]p; 
~ ~.(~ [E2 ~p ; 

ke2.dp~cszr (seq(el , e2))K 

8[E1 ;E2]oc = ~El~o{ke.~iE2]oc} 

Ra the r  than  in t roduce addit ional  nota t ion,  it is 
convenient  to specify the block const ruct ion by 
first "s tr ipping off" the nonrecursive declarat ions as 
fol lows:  

~[n  is E ; . . . ]  = 8~ (~n . . . ) (E)~  

where the " . . . "  stands for the rest of  the b lock;  then:  

8 [ I l i s r ~ ; . . . ;  I ~ i s r ~ ;  
11 : E  1 ' , . . . , "  I ~ :E~]pc = 01 

i l where 0~. = 8lIE ]p {~e.0j+~} 
for j =  1 , 2 , . . . , n - -  1 

and  0, = 8 ~E" ]p'c 
and p' = p . . . [ ¢ ~ / I i ] . . . [ 0 / I ~ ] . . .  

for i = 1 , 2 , . . . , m  
and j =  1 , 2 , . . . , n  

and  ¢~ = f f [~ i ]p '  
for  i = 1 , 2 , . . . , m  

~[ (E) ]pc  = ~ E ] p ~  
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l ift : Exp -+ U --~ K - ~  C] 

6~E]p~ = 8[[E]p {coerce ~} 

[ ~ :  Par ~ U- -~  E-- -~X ~ C] 

• [~p~x = x(d~/I]) 

~ [ I I , ,  II2, • • • ,  II.]p~x 
= CkeogRe~e ; 

where x~(p~) = e'(i){X~.6,[II~]p~e~X~+l} 
for i =  1 , 2 , . . . , n  

where Xnq-1 : X 

6'FLA ~o,x = xo 

6"[(II)]peX = 6"~H ]p6x 

I~Y : Abs ---+ U ---~ F I 

4~tMP~ZV = X~x.rke ogee~e; 
Xe'.(~'EF --0 e'(1) {coerce r~}, O ~ O R )  
where ca(e,) = g (2 )  {coerce ~2} 

where ~(e~) = (clEF /k e2eF 

~baro~ = X ~ . g e n s y m  x 

¢~s~ev = X~.~(d~Rf) 

4 ,~ , , ,~ ,o , ,  = x,~.4,~ o , , ~  { x / . ~ ( & N )  } 

and similarly for 4,zsn o OLZam Czscaa~, etc. 
The remaining predefined functions are either 

arithmetics (INC, DEC), comparisons (GREATER,  
C H A R G R E A T E R ,  NCEQUAL) ,  or definable in terms 
of other predefined functions (REF, SET, UNITSEQ, 
NOT, INTTODIGIT,  DIGITTOINT,  VECTOR, NEQ, 
ADD,  SUBTRACT,  MULTIPLY,  DIVIDE, RE- 
MAINDER,  EQUAL);  their specifications are omitted. 

fie : Prog --~ H* ~ A [ 

f i E ~ , ~ ( . . . ,  ~ , , . . . )  
= 6~]po{Xe.(eEB ---+ ha.e I B, 0~RROR)}a0 

where Oo maps each predefined identifier into its initial 
denotation (these are defined in Section 7.8); in the 
initial store ao all locations are inactive, only the atoms 
ll and ul have been generated, the input file is 
(. • •, ~7~, • • .), and the output file is empty. 

The definition of 63 :Bas --+ B (which merely in- 
terprets numerals and character strings) is omitted. 

7.8 Predefined Values 
~Lz = ll ~vL = ul 

rrRUB = true r eaz s z  = fa l s e  

OznnoR = k~.error 

4'o or o = XeK.@c O~ReB~; 

CREaDeHaR = her.get  r 

dPVZ RZr~CrtAR = ~er.qbCOERC~e; 
he ' . (e 'EH --+ pu t  e'{X~.(~', re '@},  OERROR) 

The output value is appended both to the output file 
(as a model of the dynamic change to the abstract 
store), and to the stream of "answers" (the ultimate 
result of the execution of the program). 

~ e R ~ v  = X~ .new;  
XJ .update  (e', ,){Ke'} 

¢va~ = h~K.(eEL ---+ content  ~ ,  
eEIm ~ (e J. 2) (seqO)~, 0ERROR) 

4 ~ c s ~  = X~K.4~oo~cEE; 
xg.(&F ~ ,'(1)~,, 0 ~ o ~ )  
where ~1(~1) =J(2)~z 
where ~2(e2) = (qEL --+ update (el, E2){KE2}, 

elEIm ~ (~1 ,~ 1)e2{Xe.Ke2}, 
0 ~ o ~ )  

¢coenc~ = ~e~.fe~Rf ~ C w ~ e  [coerce K}, de) 

8. Bibliography 

8.1 Introduction 
We shall not attempt to reference every publication 

on semantics, but only those which are related to the 
material presented in this paper; additional material 
may be found in the following collections and in the 
papers referenced therein: Steel [ 19661, Engeler [1971 ], 
ACM [1971, 1972, 1973, 1975], and Rustin [19721. 

Possible applications of a theory of programming 
language semantics are also discussed in McCarthy 
[1963a, 1963b], de Bakker [1969], and Hoare and 
Wirth [1973]. Language analyses and specifications 
using the denotational approach to semantics discussed 
in this paper may be found in Tennent [1973], Gordon 
[1973], Mosses [1974] and Milne [1974]; Tennent 
[1973] and Ligler [1975a] demonstrate applications to 
language design. Models and verification of language 
implementations are discussed in Milner and Weyrauch 
[1972], Morris [1972], Vuillemin [1973], Gordon [1973], 
and Milne [19741. Program verification methods using 
an underlying logic based on Scott's theory of compu- 
tation are described in Milner [1972] and Vuillemin 
[1973]. The following discuss the relations between 
denotational definitions and other aspects of semantic 
analysis: Reynolds [1972aj, Hoare and Lauer [1973], 
Milne [19741, Donahue [1974], and Ligler [1975a, b]. 

8.2 Basic Concepts 
Scott and Strachey [1971] is the first published 

description of their approach to programming language 
semantics. Abstract forms of syntactic description were 
introduced by McCarthy [1963a] and Landin [1964]. 

8.3 Expressions and Environments 
The indispensable reference for this chapter is the 

classic by Landin [1964]; also useful are McCarthy 
[1960], Landin [1966], Strachey [1967], and Reynolds 
[1972@ 
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8.4 Mathematical Foundationn 
Scott [1970] is an outline of  the axiomatic basis of  

his theory and its applications; the theory is developed 
in detail in Scott [1971a, 1971b, 1972b, 1972c, 1972d]. 
A fairly complete and systematic exposition is given in 
Reynolds [1972b]; related material may be found in 
Park [1969], Beki6 [1969], Wadsworth [1971, 1975], 
de Bakker [1971, 1974], Milner [1973a], Egli [1973], 
Reynolds [1973, 1974b], and Milne [1974]. 

8.5 Commands and Stores 
The model of storage has its origins in McCar thy  

[1963a] and Strachey [1966, 1967], and is discussed 
also in Burstall [1967], Reynolds [1970], Ledgard 
[1971], Strachey [1972], and Scott [1972a]. A rigorous 
treatment of  some technical issues not  raised in this 
paper  is given in Milne [1974]. 

8.6 Control Structures and Continuations 
The escape control structure is similar to the "pro-  

gram-poin t"  of  Landin [1966] and many other con- 
structions that  have been proposed more recently 
[Reynolds, 1972a; Knuth,  1974]. A typical application is 
described in Burstall [1968]. 

Prophetic interpretations for modeling imperative 
control structures were proposed independently by 
Morris  [1970] and Wadsworth [Strachey and Wads- 
worth, 1974]; see also Reynolds [1972a]. Mathematical  
semantic models of  programming language features not 
discussed in this paper may be found in Tennent [1973], 
Reynolds [1974], Kahn  [1973], Milner [1973b], Cadiou 
and Levy [1973], Gordon  [1973], Milne [1974], and 
Cohen [1975]. 

8.7 Semantic Specification of GEDANKEN 
The denotational definition given here may be com- 

pared with the "opera t ional"  description in Reynolds 
[1969]. Languages similar to GEDANKEN are defined in 
Tennent  [1973] and Milne [1974]. 

Note  added in proof .  A n  important  new book  on the 
subject of  this paper is to appear  soon: A Theory o f  
Programming Language Semantics,  by R.E. Milne 
and C. Strachey (Chapman and Hall, London;  Wiley, 
New York) .  I t  will include an account of the funda- 
mental  concepts of programming languages, a discussion 
of Scott 's work, explanations of  various sorts of  se- 
mantics, and methods for establishing equivalence of 
programs and correctness of implementations. 

Acknowledgments .  The author is extremely grateful 
to J.C. Reynolds,  C. Wadsworth,  and R. Milne for 
their very helpful comments  on earlier drafts of this 
paper.  

Received November 1974; revised March 1975 

References 
ACM [1971]. Proc. ACM Symp. on Data Structures in Pro- 

gramming Languages. SIGPLAN Notices (ACM Newsletter) 
6, 2 (1971). 

ACM [1972]. Proc. ACM Conf. on Proving Assertions about 
Programs. SIGPLAN Notices (ACM Newsletter) 7, 1 (1972) ; 
also SIGACT News (ACM Newsletter) 14 (1972). 

ACM [1973]. Conf. Rec. ACM Syrup. on Principles of Program- 
n-ring Languages, Boston, 1973. 

ACM [1975]. Conf. Rec. Second ACM Syrup. on Principles of 
Programming Languages, Palo Alto, Calif. 

de Bakker, J.W. [1969]. Semantics of Programming Languages. 
In Advances in Information Systems Science, Vol. 2, J.T. Tou, 
Ed., Plenum Press, New York, 1969, pp. 173-227. 

de Bakker, J.W. [1971]. Recursive Procedures. Mathematical 
Center, Amsterdam, 1971. 

de Bakker, J.W. [1974]. Least Fixed Points Re-visited. Mathe- 
matical Center, Amsterdam, 1974. 

Beki6, H. [1969]. Definable operations in general algebras, and 
the theory of automata and flowcharts (unpublished). 

BranquarL P. [1971]. The composition of semantics in Algol 68. 
Comm. ACM 14, 11 (Nov. 1971), 697-708. 

Burstall, R.M. [1967]. Semantics of assignment. In Machine 
Intelligence 2. American Elsevier, New York, pp. 3-20. 

Burstall, R.M. [1968]. Writing search functions in functional form. 
In Machine Intelligence 3. American Elsevier, New York, pp. 
373-385. 

Cadiou, J.M. [1972]. Recursive definitions of partial functions 
and their computations. Tech. Rep. CS-266, Computer Sci. 
Dep., Stanford U., Stanford, Calif. 

Cadiou, J., and Levy, J. [1973]. Mechanizable proofs about 
parallel processes. 14th Annual IEEE Syrup. on Switching 
Theory and Automata, pp. 34-48. 

Church, A. [1941]. The Calculi of  Lambda Conversion. Princeton 
U. Press, Princeton, N.J. 

Cohen, E.S. [1975]. A semantic model for parallel systems with 
scheduling. In ACM [1975], pp. 87-94. 

Dijkstra, E.W. [1972]. Notes on structured programming. In 
Structured Programming. Academic Press, New York, pp. 1-82. 

Donahue, J.E. [1974]. Mathematical semantics as a comple- 
mentary definition for defined programming language 
constructs. Tech. Rep. CSRG-45, Computer Systems Research 
Group, U. of Toronto, Toronto, Canada. 

Egli, H. [1973]. An analysis of Scott's X-calculus models. 
TR-73-191, Dep. of Computer Sci., Cornell U., Ithaca, N.Y. 

Engeler, E., Ed. [1971 ]. Syrup. on Semantics of Algorithmic 
Languages. Springer-Verlag Lecture Notes Series no. 188, 
Springer-Verlag, Berlin, Heidelberg, New York. 

Gordon, M.J.C. [1973]. Models of pure LISP. Experimental 
Programming Rep. No. 31. School of Artificial Intelligence, U. 
of Edinburgh, Edinburgh, Scotland. 

Hoare, C.A.R., and Lauer, P.E. [1974]. Consistent and comple- 
mentary formal theories of the semantics of programming 
languages. Acta Inf. 3 (1974), pp. 135-153. 

Hoare, C.A.R., and Wirth, N. [1973]. An axiomatic definition 
of the programming language PASCAL. Acta Inf. 2 (1973), 
pp. 335-355. 

Kahn, G. [1973]. A preliminary theory for parallel programs. 
Research Rep. 6, IRIA, France. 

Kleene, S. [1952]. Introduction to Metamathematics. Van 
Nostrand, New York. 

Knuth, D.E. [1974}. Structured programming with go to state- 
ments. Computing Surveys 6, 4 (Dec. 1974), 261-301. 

Landin, P.J. [1964]. The mechanical evaluation of expressions. 
Computer J. 6 (1964), 308-320. 

Landin, P.J. [1966]. The next 700 programming languages. 
Comm. ACM9, 3 (Mar. 1966), 157-164. 

Ledgard, H. [1971]. Ten mini-languages, a study of topical issues 
in programming languages. Computing Surveys 3, 3 (Sept. 
1971), 115-146. 

Ligler, G.T. [1975a]. A mathematical approach to language 
design. In ACM [1975], pp. 41-53. 

Ligler, G.T. [1975b]. Surface properties of programming language 
constructs. International Syrup. on Proving and Improving 
Programs, Arc-et-Senans, France. 

452 Communications August 1976 
of Volume 19 
the ACM Number 8 



McCarthy, J. [1960]. Recursive functions of symbolic expressions 
and their computation by machine, I. Comm. ACM3, 4 (April 
1960), 184-195. 

McCarthy, J. [1963a]. Towards a mathematical science of 
computation. In Information Processing 1962. Proc. IFIP 
Cong. 62. North-Holland Pub. Co., Amsterdam, pp. 21-28. 

McCarthy, J. [1963b]. A basis for a mathematical theory of 
computation. Computer Programming and Formal Systems, 
P. Braffort and D. Hirschberg, Eds., North-Holland Pub. Co., 
Amsterdam, pp. 33-69. 

Meyer, A.R., and Ritchie, D.M. [1967]. The complexity of 
LOOP programs. Proc. 22nd ACM National Conference, pp. 
465--469. 

Milne, R.E. [1974]. The formal semantics of computer languages 
and their implementations. Ph.D. Th., Cambridge U. and 
Tech. Microfiche TCF-2, Oxford U. Computing Lab., 
Programming Research Group. 

Milner, R. [1972]. Implementation and applications of Scott's 
logic for computable functions. In ACM [1972], pp. 1-6. 

Milner, R. [1973a]. Models of LCF. Tech. Rep. CS-73-332, 
Computer Sci. Dep., Stanford U., Stanford, Calif. 

Milner, R. [1973b]. Processes: a mathematical model of computing 
agents. Proc. Logic. Colloquium, Bristol, England. 

Milner, R., and Weyrauch, R. [1972]. Proving compiler correct- 
ness in a mechanized logic. Machine Intelligence 7. Edinburgh 
U. Press, Edinburgh, Scotland, pp. 55-70. 

Morris, F.L. [1970]. The next 700 formal language descriptions. 
(unpublished). 

Morris, F.L. [1972]. Correctness of translations of programming 
languages, an algebraic approach. Tech. Rep. CS-72-303, 
Computer Sci. Dep., Stanford U., Stanford, Calif. 

M orris, J.H. [ 1971 ]. Another recursion induction principle. 
Comm. ACM 14, 5 (May 1971), 351-354. 

Mosses, P. [1974]. The mathematical semantics of Algol 60. 
Tech. Mon. PRG-12, Oxford U. Computing Lab., Programming 
Research Group. 

Naur, P., Ed. [1963]. Revised report on the algorithmic language 
Algol 60. Comm. ACM6, 1 (Jan. 1963), 1-17. 

Park, D. [1969]. Fixpoint induction and proofs of program 
properties. Machine Intelligence 5. American Elsevier, New 
York, pp. 59-78. 

Quine, W.V. [1960]. Word and Object. Technology Press, 
Cambridge, Mass., and Wiley, New York. 

Reynolds, J.C. [1969]. GEDANKEN--a simple typeless language 
which permits functional data structures and coroutines. 
ANL-7621, Argonne National Labs., Argonne, IlL 

Reynolds, J.C. [1970]. GEDANKEN--a simple typeless language 
based on the principle of completeness and the reference 
concept. Comm. ACM 13, 5 (May 1970), 308-319. 

Reynolds, J.C. [1972a]. Definitional interpreters for higher-order 
programming languages. Proc. 25th ACM National Conf., 
pp. 717-740. 

Reynolds, J.C. [1972b]. Notes on a lattice-theoretic approach 
to the theory of computation. Dep. Systems and Information 
Science, Syracuse U., Syracuse, New York. 

Reynolds, J.C. [1975]. On the interpretation of Scott's domains. 
Symposia Mathematica, VoL 15. Academic Press, London 
pp. 123-135. 

Reynolds, J.C. [1974a]. Towards a theory of type structure. 
Programming Symp. Paris. Springer-Verlag Lecture Notes in 
Computer Science, Vol. 19. Springer-Verlag, Berlin, Heidelberg, 
New York, pp. 408-429. 

Reynolds, J.C. [1974b]. On the relation between direct and 
continuation semantics. 2nd Colloquium on Automata, 
Languages, and Programming, Saarbrucken. Springer-Verlag 
Lecture Notes in Computer Science, Vol. 14, Springer-Verlag, 
Berlin, Heidelberg, New York. 

Rustin, R., Ed. [1972]. Formal Semantics of  Programming 
Languages. Courant Computer Science Symposia 2. Prentice- 
Hall, Englewood Cliffs, N.J. 

Scott, D. [1970]. Outline of a mathematical theory of computation. 
Proc. 4th Princeton Conf. on Information Sciences and 
Systems; also Tech. Mon. PRG-2, Oxford U. Computing 
Lab., Programming Research Group, pp. 169-176. 

Scott, D. [1971a]. The lattice of fiow diagrams. In Engeler 
[1971]; also Tech. Mon. PRG-3, Oxford U. Computing Lab., 
Programming Research Group, pp. 311-366. 

Scott, D. [1971b]. Continuous lattices. Proc. 1971 Dalhousie 
Conf. Springer-Verlag Lecture Note Series, No. 274, Springer- 
Verlag, Berlin, Heidelberg, New York; also Tech. Mort. PRG-7, 
Oxford U. Computing Lab., Programming Research Group. 

Scott, D. [1972a]. Mathematical concepts in programming 
language semantics. AFIPS Conf. Proc., Vol. 40, 1972 SJCC 
AFIPS Press, Montvale, N.J., pp. 225-234. 

Scott, D. [1972b]. Lattice theory, data types, and semantics. In 
Rustin [1972], pp. 65-106. 

Scott, D. [I 972c]. Lattice theoretic models for various type-free 
calculi. Proc. 4th International Cong. for Logic, Methodology, 
and the Philosophy of Science, Bucharest. 

Scott, D. [1972d]. Data types as lattices. Unpublished lecture 
notes, Amsterdam. 

Scott, D., and Strachey, C. [1971 ]. Towards a mathematical 
semantics for computer languages. Proc. Symp. on Computers 
and Automata, Polytechnic Institute of Brooklyn; also Tech. 
Mon. PRG-6, Oxford U. Computing Lab., pp. 19-46. 

Steel, T., Ed. [1966]. Formal Language Description Languages. 
North-HoUand Pub. Co., Amsterdam. 

Strachey, C. [1966]. Towards a formal semantics. In Steel [1966], 
pp. 198-218. 

Strachey, C. [1967]. Fundamental concepts in programming 
languages. In Notes for the International Summer School in 
Computer Programming, Copenhagen (unpublished). 

Strachey, C. [1972]. Varieties of programming language. Proc. 
International Computing Symp., Cini Foundation, Venice; also 
Tech. Monograph PRG-10, Oxford U. Computing Lab. 
Programming Research Group. 

Strachey, C., and Wadsworth, C. [1974]. Continuations, a 
mathematical semantics for handling full jumps. Tech. Mon. 
PRG-11. Oxford U. Computing Lab., Programming Research 
Group. 

Terment, R.D. [1973]. Mathematical semantics and design of 
programming languages. Ph.D. Th., Dep. of Computer 
Sci., U. of Toronto. 

Vuillemin, J.E. [1973]. Proof techniques for recursive programs. 
Tech. Rep. CS-73-393, Computer Sci. Dep., Stanford U. 

Wadsworth, C.P. [1971]. Semantics and pragmatics of the lambda 
calculus. Ph.D. Th., Oxford U. 

Wadsworth, C.P. [1975]. The relation between lambda-expressions 
and their denotations (unpublished). 

4 5 3  ¸ Communications August 1976 
of Volume 19 
the ACM Number 8 


