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ABSTRACT

In the early days of the web, giving the same web page to different
browsers could provide very different results. As the rendering
engine behind each browser would differ, some elements of a page
could break or be positioned in the wrong location. At that time,
the User Agent (UA) string was introduced for content negotiation.
By knowing the browser used to connect to the server, a developer
could provide a web page that was tailored for that specific browser
to remove any usability problems. Over the past three decades, the
UA string remained exposed by browsers, but its current usefulness
is being debated. Browsers now adopt the exact same standards
and use the same languages to display the same content to users,
bringing the question if the content of the UA string is still relevant
today, or if it is a relic of the past. Moreover, the diversity of means
to browse the web has become so large that the UA string is one
of the top contributors to tracking users in the field of browser
fingerprinting, bringing a sense of urgency to deprecate it.

In this paper, our goal is to understand the impact of the UA
on the web and if this legacy string is still actively used to adapt
the content served to users. We introduce UA-Radar, a web page
similarity measurement tool that compares in-depth two web pages
from the code to their actual rendering, and highlights the similari-
ties it finds. We crawled 270, 048 web pages from 11, 252 domains
using 3 different browsers and 2 different UA strings to observe
that 100% of the web pages were similar before any JavaScript was
executed, demonstrating the absence of differential serving. Our
experiments also show that only a very small number of websites
are affected by the lack of UA information, which can be fixed
in most cases by updating code to become browser-agnostic. Our
study brings some proof that it may be time to turn the page on
the UA string and retire it from current web browsers.
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1 INTRODUCTION

In the early days of the web, web browsers had different techno-
logical stacks and would not interpret HTML tags the exact same
way [19]. This created usability problems as the exact same version
of a web page would render differently on different browsers. To
remedy this problem, each browser started to include a User Agent
(UA) header that would expose the browser and its version to the

server. Web developers could then provide a version that was tai-
lored to the user’s browser so that the website would appear as
intended with all the elements in the right place.

In 2023, more than 30 years after it was first officially intro-
duced [50], the UA string is still being used and its history is long,
granular, and complex [24]. What was first introduced as a tool to
help servers to deliver the most optimized content to users became
a source of competition and now tracking [2]. In particular, UA
exposed by browsers can be leveraged by browser fingerprinting,
which has seen a steady rise in the past decade [28]. By running
a little script on a web page, a server can collect a wide range of
information on the device being used by the user from the browser
and its version to the size of the screen or the GPU. The diversity of
today’s devices and configurations is so large that it is possible to
identify users based only on this information. No other identifiers
like cookies are needed to track users on the Internet if a fingerprint
is precise enough. Because of the danger posed by fingerprinting,
some browser vendors started to make modifications to limit the
information revealed by the browser. One such initiative is the UA
Client Hints by Google [53], whose goal is to freeze the UA string as
it is one of the most revealing information in fingerprints [13, 27].

In this paper, we investigate the impact of the UA string on the
web and whether servers still leverage it to adapt the content that
is served to users. We introduce UA-Radar, a web page similarity
measurement tool to assess the impact of restricting the User-Agent
request-header field, the navigator.userAgent, and other identi-
fying information in the Navigator object on the web. We crawl
270, 048 web pages from 11, 252 domains using standard and so-
called none browsers, and we observe 100% similarity of the web
pages before the execution of JavaScript, demonstrating the absence
of differential serving. However, 8.4% of the web pages change after
the execution of JavaScript, hence highlighting dependency on UA
for content adaptation. We conduct a change impact analysis on
UA-dependent web pages and find third-party scripts from ads,
bot detection, and content delivery network services behind the
changes in the web pages.

This paper addresses the following research questions:
• RQ1: Do modern websites adapt to the UA?
• RQ2: What are the changes created by different UA? What

are their causes?
• RQ3: What is the impact of removing identifying informa-

tion from the UA?
The remainder of this paper is organized as follows. Section 2

describes the related work. Section 3 details our methodology and
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how we measure web similarity in the wild. Section 4 goes over
details of our crawl and analysis of our dataset. Section 5 discusses
the impact of UA on the web, based on our findings. Section 7
discusses the threats to the validity of our work and Section 8
concludes the paper.

2 RELATEDWORK

2.1 User Agent on the Web

In the literature, UA has been studied for security improvements,
network monitoring, Internet traffic analysis, and user behavior
analysis [9, 22–24, 26, 34, 37]. We want to highlight here 2 specific
areas that are relevant to this study.

The threat of the UA to privacy. In the past decade, a tracking
technique known as browser fingerprinting [28] has grown a lot.
By collecting attributes in a web browser from HTTP headers and
JavaScript, a script can build the fingerprint of a device that can
be used later on to identify a user [13]. The diversity of hardware
and software configuration is so broad that the combination of all
collected attributes can be unique. According to three large-scale
fingerprinting studies [13, 17, 27], the HTTP user agent is one of
the most revealing attributes in a fingerprint, as it always ended
up in the top 3 of collected attributes with the most entropy. In
particular, this header on mobile can even reveal the exact model of
the user’s smartphone along with the phone carrier which is very
worrisome for privacy [27]. For this reason, we want to investigate
in this study how useful the UA is on today’s web, more than 25
years after it was introduced, because if it is possible to remove it,
it would seriously affect the capacity of browser fingerprinting to
track users online.

Restricting the User Agent. In the past, developers of the Safari
browser froze the UA to reduce web compatibility risks and to pre-
vent the use of UA for browser fingerprinting [11]. The community
quickly reported page breakages, due to lack of UA information.
Building on past experience, the W3C Community Group intro-
duced UA client hints to reduce UA granularity [53]. Developers of
Chrome browser built on that work to implement UA reduction and
has since been progressively released in new Chrome versions [53].
Developers at Mozilla/Tor have been working on browser finger-
print resistance and have collected several reports of web page
breakages [47]. However, no study has been conducted to study the
impact of frozen or reduced UA on the web.

2.2 Measuring Web Page Similarities

Web similarity was previously studied for content categorization,
anti-phishing, browser performance optimization, user experience,
web archiving, and crawling strategy [1, 8, 15, 29, 44, 51, 52]. Those
studies were limited to individual comparisons of text, visual ren-
dering, or HTML structure. Tombros et al. studied factors that
determine web page similarity by evaluating the effectiveness of
HTML structure and content [46]. Hashmi et al. worked on QLUE, a
visual comparison tool that evaluates the content and functionality
of web pages using structural similarity [20]. QLUE takes an exces-
sive amount of time to produce results, hindering its scalability, so
a novel approach was required to compare visual rendering in the
wild. No work has been done before to develop compound metrics

to fully understand the similarity of web pages. Our paper is the
first that provides similarity metrics to explore the impact of UA
on the web.

3 UA-RADAR: MEASURING WEB SIMILARITY

IN THEWILD

3.1 Overview

Given the evolution of web technologies, measuring the similarity
of two web pages is a complex task that requires considering multi-
ple dimensions. While a raw web page is an HTML document sent
by the web server, web pages include Cascading Style Sheets (CSS)
that describe how the page must be rendered in the browser, and
JavaScript (JS) programs that the browser relies on to interact with
the user and inject dynamic behavior into the web page. Therefore,
an effective comparison of two web pages requires exploring multi-
ple dimensions of similarities to better detect the occurrences of
any difference. To that end, we introduce a similarity radar that
relies on the following dimensions: 1) the HTML markup which rep-
resents the structure of the page with only the nodes of the DOM
tree, 2) the HTML content which contains all the content of the
nodes of the DOM tree, 3) the JavaScript code present in the page,
4) the CSS code included in the page, and 5) the visual rendering
or visual similarity between two pages. Separating a page along
these dimensions ensures the comparison can be articulated around
meaningful and logical parts of a page. This helps us pinpoint more
easily the source of a difference and it also facilitates the compar-
ison, as each dimension can have its own comparison algorithm
since JS code behaves differently from CSS code and regular textual
content. Finally, visual rendering was added to understand if pro-
viding a UA header with only the string "None", which contains
no specific device information would break a website or not.

In Figure 1, we present the similarity radar with three colored
pentagons, each representing a comparison between a standard
browser and its corresponding None browser counterpart. Specifi-
cally, we compare Chromium versus Chromium-None (CCN), Fire-
fox versus Firefox-None (FFN), and WebKit versus WebKit-None
(WWN). The vertices of each pentagon are anchored to the similar-
ity scores for the five dimensions discussed above: HTML structure,
HTML content, visual rendering, JavaScript, and CSS. The further
a vertex is from the center of the chart, the higher the similarity
score. As such, a pentagon that covers a larger area within the chart
represents a higher degree of overall similarity. In the scenario
where all three pentagons overlap towards the 100% mark on all
five dimensions, the radar charts reveal that the None-browsers
are highly similar to their standard counterparts. This indicates
that the UA has a marginal impact on the web page. On the other
hand, if there are deviations from the overlap scenario such as the
FFN where the pentagon is smaller than the others, it suggests that
Firefox is impacted when the UA is not known.

Removing dynamic content. To understand the impact of dif-
ferent UA, it is important to filter out the content that may differ
because a page may have been visited at a different time of the day
(like different articles shown on a news website) or that has been
personalized based on user preferences. To achieve this goal, we
extract a backbone for each visited web page by comparing the page
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Figure 1: Similarity radar for a web page: the above

represents the similarity between standard browsers and

their None counterparts when accessing the home page of

www.academiabarilla.it. Each colored pentagon

corresponds to a single comparison, and its vertices

represent the similarity scores across five dimensions:

HTML structure, HTML content, visual rendering,

JavaScript, and CSS. Overlapping pentagons near the 100%

mark indicate a marginal impact of the UA on the web page.

with itself collected from two distinct crawls. This way, the dynamic
content is revealed and can be excluded from our similarity analysis.
For example, if we visit a web page twice using a standard browser
(𝑈𝐴) and download its resources as𝑊1 and𝑊2, 𝐴 is the backbone
of the visited web page such that every resource in 𝐴 belongs to
both𝑊1 and𝑊2. Similarly, when investigating the impact of 𝑈𝐴,
the same page is visited twice with a None-browser (𝑈𝐴′), and
resources are downloaded as𝑊3 and𝑊4. 𝐵 is the backbone for the
web page visited using 𝑈𝐴′, such that every resource in 𝐵 belongs
to both𝑊3 and𝑊4. Finally, a comparison between A and B results
in a similarity radar for the web page visited using𝑈𝐴 and𝑈𝐴′ (cf.
Fig. 2).

3.2 Implementation Details

Our methodology for measuring web page similarity is a combina-
tion of both existing tools and research to evaluate the similarity
of the HTML structure, HTML content, JavaScript, and CSS. To
measure the visual similarity of web pages, we propose a novel
approach for comparing web page screenshots using traditional im-
age processing techniques. This comprehensive approach provides
an in-depth understanding of web page similarity in the wild.

Removing dynamic content. Every browser uses document
object model (DOM) to hierarchically organize nodes of the HTML
document as a tree that renders in the browser. This allows struc-
tural comparison of 2 DOM trees to capture the similarity of the
HTML structure of 2 web pages. Previous works have studied doc-
ument structural similarity algorithms based on tree edit distance,
tree matching, and various approximation techniques [4, 6, 40]. We
use SFTM, a DOM tree matching tool, to measure the similarity of
the HTML structure of two web pages in the wild [5]. We choose
SFTM because, in contrast to other tree-matching algorithms, the
algorithm behind it efficiently processes any valid DOM tree in
microseconds, not dozens of seconds. To assess the similarity of the
HTML structure of 2 web pages, we extract the DOM trees from
the HTML documents and feed them to SFTM. SFTM then builds
a graph between the two DOM trees with edges representing edit
operations on the nodes. We then create labels for the insertion,
deletion, and replacement operations on the nodes in the graph.
The output of the process is an object containing the number of
edges (|𝐸 |) and the number of edit operations (|𝐶 |).

A similarity score (𝑆1) is then computed as 𝑆1 = |𝐶 |/|𝐸 |.

Comparing the HTML content. We use the Diff Match Patch
library [18] to compare the similarity of HTML content over other
text comparison tools for several reasons. Firstly, it has a high level
of accuracy in detecting similarities between text snippets even
in the presence of minor variations, such as white space or case
sensitivity. Additionally, the library has the capability to handle
long text sequences efficiently, making it ideal for comparing HTML
content which can often be lengthy. Finally, the library offers a
flexible API, allowing for customization of the comparison process
to meet specific requirements, such as ignoring HTML markups in
this context. These features make Diff Match Patch an ideal choice
for evaluating the similarity of HTML content. The Diff Match
Patch library implements Myer’s diff algorithm [33]. To assess the
similarity of the HTML content of 2 web pages, we feed the raw
content of the HTML documents to Diff Match Patch. The library
returns a graph of edges (𝐸) with edit operations on the nodes.
Diff Match Patch uses the Levenshtein distance (𝑑) to compute the
number of edit operations between 2 streams of characters from the
HTML documents. A similarity score (𝑆2) is then computed such
as 𝑆2 = 𝑑/|𝐸 | [54].

Comparing JS & CSS. To assess the similarity of JS or CSS on 2
web pages, we need to first build an abstract syntax tree (AST) from
each JS script and CSS stylesheet. We apply a Locality-Sensitive Hash
(LSH) function on the content of each file to determine specific files
with changes [10]. Once we extract ASTs to compare, similarly to
the process of comparing the HTML structure, we conduct a tree-
matching process to obtain a graph of edges and edit operations
on nodes of the AST trees. We use GumTree, an AST diff tool that
allows a plug-and-play of language parsers, to compare the AST
trees [16]. We then create labels for the insertion, deletion, and
replacement operations on the nodes in the resulting graph. The
output of the process is an object containing the number of edges
(|𝐸 |) and the number of edit operations (|𝐷 |) reported by GumTree.
A similarity score (𝑆3) is then computed such as 𝑆3 = |𝐷 |/|𝐸 |.
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using UA

using UA

using UA'

using UA'

Webpage
W1

Crawl #1

Crawl #2

Crawl #3

Crawl #4

Webpage
W2

Webpage
W3

Webpage
W4

Webpage diffing 
W1 vs. W2

Webpage diffing
W3 vs. W4

Extract static content

Static content
for UA (A)

Extract static content

Static content
for UA' (B)

Static comparison
A vs. B

Difference between
UA and UA'

UA  - standard browser
UA' - none browser

Figure 2: Highlighting web page similarity: standard browser (𝑈𝐴) versus None-browser (𝑈𝐴′). We crawl each web page twice

using standard browsers (Chromium, Firefox, WebKit) and their None-browser counterparts. The dual crawl allows us to filter

out dynamic content and focus on the static content of the web page, thereby eliminating potential bias in our analysis.

Subsequently, we execute a static comparison between standard and None-browsers’ pages to identify UA-attributable

differences, thereby facilitating the computation of similarity scores.

Comparing visual rendering. State-of-the-art image compari-
son algorithms are based on perceptual hashing, histogram, or by
looking at pixel-by-pixel changes [12, 25, 43, 48, 49]. While those
algorithms can detect the smallest difference when comparing pic-
tures or screenshots of web pages, they fail to capture more macro
changes, like text changes, broken links, or missing images. We
introduce a novel approach to compare the visual rendering of web
pages based on the Canny edge detection algorithm to detect any
object or shape in the screenshot, which can represent text, multi-
media content, and visual sections of the web page regardless of its
size [7]. Our algorithm computes the number of edges (contours)
in a screenshot of the web pages, hence calling it contour-based
analysis.

We rely on OpenCV [36] to retrieve contours from an image.
OpenCV implements the shape analysis algorithm by Satoshi et al. [45].
For better accuracy, we convert the original screenshot into a bi-
nary image and then find the contours in the image. Using the
contours in the image, we compute the areas of the contours and
their moments. In OpenCV, moments are the average of the intensi-
ties of an image’s pixels. The area of a contour gives it relevance
compared to other contours in the image while the moment helps
us determine the difference in the same contour. For example, web
pages on news websites often have the same contours, but with
different text and photos in the same placeholder. Using moments
helps us determine if the content within the same contour has
changed. Algorithm 1 shows the steps we take to compute the
properties of our image contour analysis, where s is the file path of
the screenshot, while cv::cvtColor, cv::findContours, cv::contourArea,

cv::boundingRect are arrays computed using OpenCV functions.
The image contour properties that we compute are the number of
contours (|𝐶 |), the weighted aggregate of contour areas (𝐴), and
the weighted aggregate contour moments (𝑀).

Algorithm 1 Contour properties: this algorithm takes an input
image 𝑠 , converts it to a grayscale image 𝑔, finds contours 𝐶 from
the grayscale image, stores the area of each contour in 𝑌 , calculates
the bounding rectangle 𝑍 , and computes the weighted areas 𝐴 and
moments𝑀 of the contours.
1: function FindContourProperties(𝑠)
2: 𝑔 = cv::cvtColor(𝑠) ⊲ Convert image 𝑠 to grayscale image 𝑔
3: 𝐶 = cv::findContours(𝑔) ⊲ Find contours 𝐶 from image 𝑔
4: 𝑌 = cv::contourArea(𝐶) ⊲ Store area of each contour in 𝑌
5: 𝑍 = cv::boundingRect(𝐶) ⊲ Bounding rectangle 𝑍
6: Let 𝐴 = 0,𝑀 = 0 ⊲ Weighted areas 𝐴 & moments𝑀
7: for 𝑖 = 1 to |𝐶 | do
8: 𝐴 = 𝐴 + 𝑌 2

𝑖
÷ 𝑌

9: 𝑀 = 𝑀 + 𝑍 2
𝑖
÷ 𝑍

10: end for

11: return <|C|, A, M>
12: end function

Since the contour properties (𝐶 , 𝐴, and 𝑀) are heterogeneous,
when comparing two screenshots to find their similarity, we com-
pute the geometric mean (𝐺𝑀) of the contour properties of each
screenshot. Finally, we compute the visual similarity score (𝑆) as
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Figure 3: Contour-based visual analysis: the figure

illustrates the process of contour-based analysis on a

screenshot taken from www.academiabarilla.it. The top
image represents the original screenshot, while the bottom

image shows the identified contours (edges), representing

different objects and shapes within the web page. This

technique enables a comparison of visual rendering,

capturing significant changes such as text modifications,

broken links, or missing images.

the ratio of the absolute difference of the geometric means (𝐺𝑀1
and 𝐺𝑀2) to their arithmetic mean such that:

𝐺𝑀 =
3√︁|𝐶 | ×𝐴 ×𝑀 (1)

𝑆 =
|𝐺𝑀1 −𝐺𝑀2 |
(𝐺𝑀1 +𝐺𝑀2)/2

(2)

4 EXPLORING THE IMPACT OF UA CHANGES

To explore the impact of UA on the web, we crawled websites with
the default HTTP’s UA header and with the "None" string in its
place. We conducted regression tests based on the similarity radars
provided by UA-Radar. We then analyzed the edit operations for
the dimensions in each test to determine if the observed changes
were due to the removal of identifying information in the UA or
not. We also explore in this section why those changes occurred.

4.1 Crawl Description & Statistics

We used a web testing and automation framework called Play-
wright to instrument standard browsers, namely Chromium (𝐶),
Firefox (𝐹 ), and Safari (with the WebKit engine𝑊 ) [32]. To instru-
ment the None browsers, we modified the HTTP request-header
field User-Agent of the standard browsers and changed it to the
word "None". We also modified information that identifies the
browser in the Navigator objects of the standard browsers. In partic-
ular, we changed navigator.appVersion, navigator.platform,
navigator.userAgent, and
navigator.vendor and placed the word "None" on each of those
properties. Furthermore, to avoid our modified browsers from being
detected as bots, we set navigator.webdriver to false. Detailed
lists of navigator properties exposed on all browsers during the
crawl are available in the artifacts mentioned in Section A.We called
the resulting browsers after their modified versions: Chromium-
None (𝐶𝑁 ), Firefox-None (𝐹𝑁 ), and WebKit-None (𝑊𝑁 ). In the end,
we ran the crawl with 6 browsers in total.

After preparing the browsers to be used, we decided on how
to run the crawl. We used the Tranco list to choose the domains
to crawl [39]. We chose the Tranco list as its ranking of web-
site popularity surpasses other sources of web traffic analysis [38].
Nevertheless, previous studies have expressed concerns about the
methodology used to create popular lists, such as Tranco and their
representativeness [42]. For that reason, we randomized our crawl
of domains on the Tranco list until we reached the limit of our com-
puting resources. We finally crawled homepages of 12, 000 domains
with 1, 765 in the Top 10k domains, 6, 036 between the Top 10k and
Top 100k, and 4, 199 between the Top 100k and Top 1M. Aqeel et al.
have also questioned the representativeness of measurement stud-
ies that rely only on landing pages and no internal pages, citing a
difference in structure and content between the landing page and
the internal pages[3]. This was not a concern for our study as our
objective was to analyze the impact of restricting the UA without
being specific on the type of structure or content.

We crawled the homepage of each domain four times with each
browser: twice (for self-comparison to remove dynamic content)
before the execution of JS to study differential serving, and twice
after the execution of JS to study content adaptation. This represents
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24 visits per homepage in total. For differential serving, we waited
for the 𝑑𝑜𝑚𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑙𝑜𝑎𝑑𝑒𝑑 event to be fired before saving on disk
the complete HTML document with all first and third-party JS and
CSS files. For content adaptation, we waited 15 seconds after the
𝑙𝑜𝑎𝑑 event was fired to save everything on disk. To avoid being
rejected due to a high number of requests, our crawler sent exactly
one request to one domain with one browser at a time, and only
multiple requests to multiple domains in parallel. The crawl ran for
1 month. A repository for the dataset of this paper is available in
the artifacts mentioned in Section A.

If all 24 requests were not successfully crawled with the data cor-
rectly saved, the crawled domain was ignored and all downloaded
resources for the crawled web page were deleted on the disk. In the
end, we successfully crawled and saved data for 270, 048 web pages
from 11, 252 domains. We stored 5.85 Terabytes of compressed files
on the disk. Table 1 summarizes the resources we saved on the
disk during our crawl. It is worth noting that JS takes most of the
resources on the Internet today with 73% of the downloaded files
and 80% of disk space in our dataset.

Table 1: Summary of crawled resources

Resource type Number of files Resource size

HTML 180, 032 17 GB
JavaScript 73, 573, 872 4, 705 GB
CSS 27, 060, 120 959 GB
Screenshots 180, 032 167 GB
Total: 100, 994, 056 5, 848 GB

4.2 Empirical Results & Findings

In this section, we use the following notations: CCN for the compar-
ison between pages from Chromium against Chromium-None, FFN
for Firefox against Firefox-None and WWN for WebKit against
WebKit-None.

Differential serving. The average similarity scores before JS
is executed are 100% for all the tested browsers (𝐶𝐶𝑁 , 𝐹𝐹𝑁 , and
𝑊𝑊𝑁 ) on HTML structure, HTML content, JS, and CSS (cf. Fig-
ure 4a). One takeaway is that web servers reply to all HTTP requests
with the same HTML document, regardless of the fact that the UA
in the HTTP request header is known or not. This is possible be-
cause browsers adopt the same standards, such as responsive web
design to adjust the rendering of web pages to browsing environ-
ments. That means that, nowadays, websites focus on consistent
user experience across devices and browsers rather than device-
specific content. The fact that UA is no longer the sole factor in
determining the content served makes them less relevant and hence
removing the significance of the UA can reduce the attack surface
and improve the privacy and security of users.

Content adaptation. When JavaScript is executed, the average
similarity scores remain 100% on JS and CSS. However, there are
changes in visual rendering, the HTML structure, and the HTML
content. 158 out of the 11, 252 domains are not 100% visually similar
for at least one of𝐶𝐶𝑁 , 𝐹𝐹𝑁 , or𝑊𝑊𝑁 . Going with the same logic,

955 are not 100% similar on both the HTML structure and HTML
content for at least one of 𝐶𝐶𝑁 , 𝐹𝐹𝑁 ,𝑊𝑊𝑁 . We looked up the
158 domains with at least one difference and found that all those
domains also have at least one difference on both HTML structure
and HTML content for at least one of 𝐶𝐶𝑁 , 𝐹𝐹𝑁 , or𝑊𝑊𝑁 . We
then established that, out of 11, 252 domains, 955 are changed by
the lack of a known UA or other identifying information. That
is, 8.4% of our dataset was dependent on the UA. Table 2 lists the
Internet categories to which the UA-dependent domains belong.
We used McAfee SmartFilter to obtain the Internet categories of
the UA-dependent domains [30].

Table 2: Internet categories of the UA-dependent domains

Category

Number of

Domains

News 180
Internet Services 156
Business 128
Online Shopping 109
Marketing 106
Blogs 89
Education 71
Entertainment 68
Information 38
Finance 10
Total 955

Table 3: Summary of problem severity levels for

UA-dependent domains

Category Number of domains

IRRITANT 225
MODERATE 131
NO PATTERN 6
SEVERE 526
UNUSABLE 67
TOTAL 955

The last 5 radars depicted in Figure 4 provide a category-wise
breakdown of the average similarity scores between standard browsers
and their None-browser counterparts for the top 5 website cate-
gories in our data set, namely: news, internet services, business,
online shopping, and marketing. In the category "news" (cf. Fig-
ure 4b), the HTML content and visual rendering dimensions have
lower similarity scores compared to other dimensions. This sug-
gests that, in this category, the absence of a known UA tends to
influence the visual presentation and HTML content of the web
pages more significantly. For the "internet services", "business", and
"marketing" categories (cf. Figures 4c, 4d, and 4e), all three compar-
isons (CCN, FFN, and WWN) show similarity scores gravitating
towards 100% across all dimensions. This indicates the similarity of
HTML content and visual rendering, irrespective of the browser’s
UA. Therefore, we can infer that the impact of the UA on these cat-
egories is marginal. The category "online shopping" (cf. Figure 4f),
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Figure 4: Average similarity scores across website categories: this figure illustrates the average similarity scores between

standard browsers and their None-browser counterparts for the top five categories in our dataset.

however, presents a contrast. The HTML content and visual render-
ing dimensions have lower similarity scores, close to the category
"news", but we observe a departure from the pattern observed in
other categories.While, the similarity scores for theWebKit browser
usually top the charts, followed by Chromium, in the category "on-
line shopping" the HTML content similarity score for WebKit drops
dramatically, coming closer to Firefox. Additionally, the visual ren-
dering is impacted across all browsers. This may suggest that online
shopping websites employ more complex or diverse techniques for
content adaptation based on UA, which could potentially be linked
to the need for enhanced user experience or functionality specific
to the website’s purpose.

The consistent performance of WebKit, then Chromium across
categories prompts further exploration. One plausible explana-
tion could lie in the rendering engine used by the browsers. Both
browsers use Blink, however, WebKit consistently outperforms
Chromium in our analysis. While this difference could stem from
how each browser integrates and uses the Blink engine, the under-
lying reasons for this consistent trend are not immediately apparent

from our study and would require further investigation. Such re-
search could provide insights into how browser architecture and
rendering engines influence content adaptation.

Changes created by different UA and their causes. Due to
the intensive manual efforts required to analyze the changes, out
of the 955 domains that changed because of the None-browser, we
manually analyzed the changes for 204 domains. We detected 10
patterns of the impact of those changes and used the 10 patterns to
apply heuristics to the rest of the data set in order to classify the
severity of the impact on the usability of the web pages.

To build that classification, we borrowed the taxonomy of prob-
lem severity scale in usability by Rubin et al. [41]. Algorithm 2
details the steps in conducting the heuristics for that classification.
The algorithm takes six inputs: 𝐶 , 𝐶𝑁 , 𝐹 , 𝐹𝑁 ,𝑊 , and𝑊𝑁 , which
represent the used browsers: Chromium, Chromium-None, Firefox,
Firefox-None, WebKit, and WebKit-None, respectively. It then per-
forms static comparison operations between each standard browser
and its None counterpart to determine the differences, denoted as
Δ𝐶𝐶𝑁 , Δ𝐹𝐹𝑁 , and Δ𝑊𝑊𝑁 .
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(a) Standard browser - normal margin rendering (b) None browser - failure of margin collapse

Figure 5: Comparison of web page rendering with standard and none browsers, illustrating a ’severe’ problem severity case

where a failure of margin collapse occurs in the none browser. The affected area is highlighted in red.

If all three differences are identical, the algorithm then computes
the differences between every pair of standard browsers, denoted
as Δ𝐶𝐹 , Δ𝐶𝑊 , and Δ𝐹𝑊 . It also assigns the three differences from
the standard to None comparisons to the list 𝑅, and the differences
from the standard to standard comparisons to the list 𝑁 . Following
this, the algorithm checks for specific CSS and HTML properties
and attributes in the differences. These include the CSS proper-
ties "margin-top, bottom", "white-space: wrap", "page-break-before,
after", any CSS attributes associated with HTML tags, the image
source attribute, and the width or height attributes of iframes. For
each of these, if they are found in the differences, the algorithm
returns a corresponding impact statement. To select the properties
and attributes that the algorithm used, we conducted a manual
analysis of 100 websites to build a list of HTML and CSS properties
that cause changes in the web page when the UA is not known.
Afterward, we utilized that list to classify the levels of problem
severity identified by our change impact analysis.

1 function rn(a, b, c, d) {

2 O(a.K, {

3 transition: c / 1E3 + "s",

4 "transition -timing -function": d,

5 "margin -top": b

6 })

7 }

Listing 1: Example of unintentional restriction: a function

that relies on known UA (parameter 𝑏) in a script from

Google Ad Manager.

Additionally, if a disabled or inactive tag is found, or any instance
of CAPTCHA, HTTP 403 error is detected, the algorithmwill return
the respective impact statements. If the differences in 𝑅 are not
identical to this 𝑁 , the algorithm returns "content restriction". If
none of the specific properties or attributes is found, it returns "no
pattern". If the three differences are not identical, the algorithm

checks if each difference is unique and returns "no impact" if that
is the case. Otherwise, it returns "no impact".

Below are the definitions of the problem severity categories that
we use:

(1) Irritant: The problem occurs only intermittently, can be
circumvented easily, or is dependent on a standard that is
outside the product’s boundaries. Could also be a cosmetic
problem.

(2) Moderate: The user will be able to use the product in most
cases, but will have to undertake some moderate effort in
getting around the problem.

(3) Severe: The user will probably use or attempt to use the
product here, but will be severely limited in his or her ability
to do so.

(4) Unusable: The user is not able to or will not want to use a
particular part of the product because of the way that the
product has been designed and implemented.

It should be noted that we do not address the behaviour and
interaction with the functionality of the web page, so the use of
the word "UNUSABLE" in the problem severity scale by Rubin et al.
should not create confusion. Table 4 shows the classes of the impact
of the changes and the severity of the impact. On 425 out of the
955 domains (44.5%), the impact of browsing those domains with
a None-browser was spacing issues (failure of margin collapsing,
failure of soft-wrap, and unnecessary blank lines), while on 515
domains, the impact was driven by CSS issues. Table 3 shows the
distribution of problem severity for the 955 domains, revealing that
just 7% of the domains were unusable when we browsed them using
a None-browser.

Some HTML elements change while the browser adjusts the
web page to an unknown UA. These changes only occur after the
execution of JavaScript. Therefore, the cause of the changes is
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Table 4: Change impact analysis of the 955 UA-dependent websites: this table details the specific changes detected, their

associated impact, the problem severity level, and the number of occurrences, providing a comprehensive overview of how

changes in the UA affect different aspects of the web page.

Change Impact Severity Occurences

CSS property: margin-{top,bottom} Failure of margin collapsing SEVERE 252
{Δ𝐶𝐶𝑁≠Δ𝐹𝐹𝑁≠Δ𝑊𝑊𝑁 } & {Δ𝐶𝐹≠Δ𝐶𝑊 ≠Δ𝐹𝑊 } No impact IRRITANT 225
Missing image SRC reference Failure of lazy loading SEVERE 101
CSS property: white-space: wrap Failure of soft-wrap SEVERE 99
Change of CSS attribute(s) Change of inline CSS MODERATE 83
CSS property: page-break-{before,after} Unnecessary blank lines SEVERE 74
iFrame width | height Displaced iframe MODERATE 48
{Δ𝐶𝐶𝑁 = Δ𝐹𝐹𝑁 = Δ𝑊𝑊𝑁 } ≠ {Δ𝐶𝐹 = Δ𝐶𝑊 = Δ𝐹𝑊 } Content restriction UNUSABLE 38
CAPTCHA or 403 Error or Browser Error Browser not identified UNUSABLE 22
CSS :disabled | :inactive Disabled component UNUSABLE 7
No pattern - - 6

located in JS scripts on the web pages. Hence, we can say that JS
is the cause of the changes and that CSS and HTML are affected
by those changes. Looking at the content of JS scripts on the web
pages, we did not find a pattern of similar instructions in the scripts.
However, the sources of the scripts produced a pattern. 76% of the
SEVERE issues were caused by third-party scripts from Google Ad
Manager, while 93% of all changes in the HTML content comparison
were caused by third-party scripts from ad domains. The remaining
7% of domains responsible for UA changes were from bot detection
and content delivery networks (CDN) websites.

Current ad-displaying scripts rely on known browsers, so the use
of None-browsers creates invalid references. For example, in Figure
5, we showcase a prominent instance of a ’severe’ problem severity
case that we investigated during our study. In the first subfigure, we
see the web page as accessed through a standard browser, where the
rendering and layout are as intended. However, the same web page,
when accessed through a None browser, as shown in the second
subfigure, experiences a failure of margin collapse, a fundamental
aspect of CSS layout. This failure results in a distortion in the web
page’s layout, as highlighted in red in the figure. Upon investigating
the cause of this issue, we found a script from Google Ad Manager
that was affecting the rendering of the page in None browsers. As
presented in Listing 1, the function ‘rn(a, b, c, d)‘ applies a CSS
transition and a top margin to an element based on the known UA
(parameter ‘b‘). When the User Agent is not recognized, as in the
case of a None browser, the function fails to apply the intended
styles, causing the observed layout distortion.

1 function Hl() {

2 var a, b;

3 return "function" === typeof(null == (a = E.navigator)

? void 0 : null == (b = a.userAgentData) ? void 0

: b.getHighEntropyValues)

4 }

5 ...

6 Hl() ? (d(), t(r.linkAttribution)) : r.enableRecaptcha &&

p("require", "recaptcha", "recaptcha.js");

Listing 2: Example of intentional restriction: a function that

runs a CAPTCHA test when the UA is not recognized.

We classified such cases that cause usability issues due to code
written to acknowledge the UA as an unintentional restriction.
However, the cause of the remaining 7% of the issues ranked as
"UNUSABLE"was intentional. For example, In Figure 6, we illustrate
a case of the "unusable" problem severity level. The first subfigure
portrays a standard browser smoothly accessing a web page nor-
mally without any issues. The second subfigure illustrates a None
browser attempting to access the same web page but being inten-
tionally restricted. This is an example of the "unusable" severity
level, where the user’s ability to access the web page is hindered
due to the intentional restriction applied when an unrecognized
UA is detected. This restrictive behavior is commonly driven by
JavaScript scripts embedded in the website that use the UA string
to dictate access or modify the user’s experience. As shown in List-
ing 2, some scripts initiate a CAPTCHA test or a similar challenge
when they fail to recognize the UA. In the case of a None browser,
whose UA string is not recognized, this results in an intentional
restriction, preventing the user from accessing the site’s content.

In Figure 7, we present the distribution of problem severity across
the top five website categories: news, Internet services, business,
online shopping, and marketing. The heat map allows us to ob-
serve the prevalence of the different severity levels, namely, irritant,
moderate, severe, and unusable, across these categories. The color
intensity in each cell of the heat map is proportional to the number
of websites in a category that falls under a particular problem sever-
ity level. Lighter colors indicate a lower count, while darker colors
represent a higher count. The heat map provides a visual summary
of our findings, revealing the extent to which different website
categories are impacted by changes in the UA. For example, we can
observe that the ’Severe’ problem severity level is particularly preva-
lent in the ’news’ and ’online Shopping’ categories. Conversely, the
’Internet services’ and ’marketing’ categories have a substantial
number of websites with ’irritant’ or ’moderate’ problem severity
levels. The final observation is the pattern of the ’unusable’ severity
level, where the majority of occurrences are concentrated in the
’Internet services’ and ’online shopping categories’.
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(a) Standard browser - normal page access (b) None browser - access intentionally restricted

Figure 6: Example of "unusable" problem severity: access to the web page is intentionally restricted when using a None Browser.
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Figure 7: Problem severity distribution across website

categories: this heat map depicts how changes in the UA

impact different website categories, highlighting the

prevalence of problem severity levels in each category.

Impact of removing identifying information from the UA.
Firstly, the UA request-header field in the HTTP request has no im-
pact on theweb server’s response. Secondly, the navigator.userAgent
is used marginally for ads, bot detection, and CDN services, and
the use of UA, in this case, causes usability problems of different
severity. Additionally, we found that browsers could still determine
that a None-browser is related to its descendant standard browser.
The usability problems experienced due to the removal of identi-
fying information in the UA could be fixed by adopting a feature
detection approach in determining the browser in the case of bot
detection or by adopting a browser-agnostic approach in writing
the code in the case of ads and CDN services. This approach ensures
that the user’s privacy is protected while also promoting a secure
web browsing experience.

5 DISCUSSION

While useful when it was introduced 3 decades ago, our study shows
that the User-Agent HTTP header, which contains precise device
information, has stopped being relevant on today’s web. With the
crawls that we performed, our results highlight that web servers
do not adapt their response anymore based on the provided HTTP
UA header. By providing different UA, all responses we collected
for a single web page were identical and the only differences we
observed were done by scripts that would parse the provided user
agent at runtime. Then, the data we obtained during our crawls
highlight the two following key insights:

• All the standardization efforts pursued by the major web
actors have had a real positive impact on the web. Browsers
have become robust enough that they do not need web
pages tailored for them. The browsers used on the market
today implement the same set of features and provide a
near-identical experience when it comes to rendering pages.

• There are no major hurdles to retiring the historical HTTP
User-Agent header and transitioning towards a less-granular
solution like UA Client hints [53]. As mentioned in 2.1, the
HTTP User-Agent header contributes a lot to the field of
browser fingerprinting as it is one of the top attributes re-
vealing the most information. Without it, the privacy of
web users would be severely improved as there would be
a lot fewer leaks of precise and unique information on the
web.

6 IMPACT OF NONE-BROWSERS ONWEB

PRIVACY

UA strings are a critical component in various tracking techniques,
including browser fingerprinting, posing a significant concern for
web privacy [14]. In our study, we first examined the impact of
None-browsers on web page usability. To understand the potential
implications on tracking techniques, we analyzed how domains
in our data set accessed UA information via the JavaScript API.
Specifically, 3,772 domains out of 11,252 access the UA via the
JavaScript API, a common method used in browser fingerprinting
[35]. Cross-referencing our dataset with a list of known trackers
from uBlock Origin (uBO) [21], we found that 612 domains (5.4%)
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Algorithm 2 Change impact analysis: this algorithm assesses the
impact on a web page when changes occur due to the use of a
None-browser. It evaluates the differences detected in the static
comparison (as illustrated in Figure 2) of both standard and None-
browsers. Subsequently, these differences are categorized based on
specific patterns that we identified during manual analysis.

1: function FindChangeImpact(𝐶,𝐶𝑁, 𝐹, 𝐹𝑁,𝑊 ,𝑊𝑁 )
2: Let Δ𝐶𝐶𝑁 ← StaticComparison(𝐶,𝐶𝑁 )
3: Let Δ𝐹𝐹𝑁 ← StaticComparison(𝐹, 𝐹𝑁 )
4: Let Δ𝑊𝑊𝑁 ← StaticComparison(𝑊,𝑊𝑁 )
5: Let Δ𝐶𝐹 ← StaticComparison(𝐶, 𝐹 )
6: Let Δ𝐶𝑊 ← StaticComparison(𝐶,𝑊 )
7: Let Δ𝐹𝑊 ← StaticComparison(𝐹,𝑊 )
8: if Δ𝐶𝐶𝑁 = Δ𝐹𝐹𝑁 & Δ𝐹𝐹𝑁 = Δ𝑊𝑊𝑁 then

9: Let 𝑅 ← [Δ𝐶𝐶𝑁,Δ𝐹𝐹𝑁,Δ𝑊𝑊𝑁 ]
10: Let 𝑁 ← [Δ𝐶𝐹,Δ𝐶𝑊 ,Δ𝐹𝑊 ]
11: if margin-{top,bottom} ∈ Δ𝐶𝐶𝑁 then

12: return"Margin collapsing fail"
13: else if white-space: wrap ∈ Δ𝐶𝐶𝑁 then

14: return"Soft-wrap fail"
15: else if page-break-before,after ∈ Δ𝐶𝐶𝑁 then

16: return"Unnecessary blank lines"
17: else if <tag css> ∈ Δ𝐶𝐶𝑁 then

18: return"Inline css changes"
19: else if <img src> ∈ Δ𝐶𝐶𝑁 then

20: return"Lazy loading fail"
21: else if <iframe width|height> ∈ Δ𝐶𝐶𝑁 then

22: return"Displaced iframe"
23: else if <tag inactive|disabled> ∈ Δ𝐶𝐶𝑁 then

24: return"Disabled component"
25: else if CAPTCHA|403|error ∈ Δ𝐶𝐶𝑁 then

26: return"Browser not identified"
27: else if 𝑅 ≠ 𝑁 then

28: return"Content restriction"
29: else

30: return"No pattern"
31: end if

32: else

33: Let 𝑥 ← Δ𝐶𝐶𝑁 ≠ Δ𝐹𝐹𝑁 ≠ Δ𝑊𝑊𝑁

34: Let 𝑦 ← Δ𝐶𝐹 ≠ Δ𝐶𝑊 ≠ Δ𝐹𝑊
35: if 𝑥 & 𝑦 then

36: return"No impact"
37: else

38: return"No pattern"
39: end if

40: end if

41: end function

out of the 11,252 were on the uBO list. 38.3% of these trackers were
affected by changes in the UA, suggesting that many trackers can
operate without issues in the face of None-browsers or may be using
other methods beyond UA strings to track users. Our findings also
highlight the current state of web practices. Only 129 domains out
of 11,252 contained Accept-CH response headers, suggesting that
the use of Client Hints for content adaptation is not yet widespread
[31]. Moreover, 584 domains return a Vary header that indicates

Domain category Number of Domains

Total domains analyzed 11, 252
Domains accessing UA via JS API 3, 772
Domains with Vary UA-related header 584
Domains listed on uBO 612
UA-dependent domains 955
Table 5: Web privacy implications of UA usage: this table

presents an analysis of domains based on their interaction

with UA.

their use of UA. Finally, our study suggests that the majority of the
web remains accessible even without UA information, with only 7%
of the domains becoming unusable when browsed using a None-
browser. This could encourage further adoption of None-browsers,
thereby increasing user privacy.

7 THREATS TO VALIDITY

A lot of process can run on the server-side of a website and this
paper focuses on the impact of UA on the client-side. This may
threaten our conclusion on the impact of the UA on the web since
the server-side is also part of the web ecosystem.

Our conclusion on the impact of the UA on the web is also based
on the fact that the None-browsers provided the string "None" for
UA and other identifying information. Empty, 𝑛𝑢𝑙𝑙 or 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑
UA and other identifying information may incur more breakages
and other findings.

8 CONCLUSION

In this study, we investigated the role of the User Agent in today’s
web by crawling We crawled 270, 048 web pages from 11, 252 do-
mains with different configurations. Our data shows that websites
no longer negotiate content based on the UA field in the HTTP
request headers. Through JS scripts, Navigator.userAgent can be
used for content adaptation, as few websites experience usability
issues when they face an unusual user agent. However, the majority
of those issues are unintentionally caused by third party scripts
from ads, bot detection, and CDN services and can be fixed by writ-
ing browser-agnostic code. By cross-referencing our dataset with
a list of known trackers from uBlock Origin, we discovered that a
substantial number of known trackers did not change due to None-
browsers, suggesting their robustness or the use of other tracking
methods beyond UA strings. The main takeaway of our results is
that after three decades of usage, it may be finally time to retire the
HTTP User Agent header and transition towards a more privacy-
preserving way of sharing device information. The UA has been
abused too many times over the years to reveal information about
users and sometimes even identify them by contributing to their
browser fingerprinting. Removing it from today’s ecosystem would
be a great step forward for online privacy and would contribute
greatly to reducing the clutter from legacy technology.
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Our dataset including a full list of crawled domains and their cate-
gories, a full list of navigator properties exposed during the crawl,

and other crawl and comparison data along with information on
the tool we developed for UA-Radar metrics can be found at
https://github.com/intumwa/ua-radar

https://github.com/intumwa/ua-radar
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