
Client-specific Property Inference against Secure Aggregation in
Federated Learning

Raouf Kerkouche
raouf .kerkouche@cispa.de
CISPA Helmholtz Center for

Information Security
Germany

Gergely Ács
acs@crysys.hu

Department of Networked Systems
and Services, CrySyS Lab, BME

Hungary

Mario Fritz
fritz@cispa.de

CISPA Helmholtz Center for
Information Security

Germany

ABSTRACT
Federated learning has become a widely used paradigm for collabo-
ratively training a commonmodel among different participants with
the help of a central server that coordinates the training. Although
only the model parameters or other model updates are exchanged
during the federated training instead of the participant’s data, many
attacks have shown that it is still possible to infer sensitive informa-
tion or to reconstruct participant data. Although differential privacy
is considered an effective solution to protect against privacy attacks,
it is also criticized for its negative effect on utility. Another possible
defense is to use secure aggregation, which allows the server to
only access the aggregated update instead of each individual one,
and it is often more appealing because it does not degrade the model
quality. However, combining only the aggregated updates, which
are generated by a different composition of clients in every round,
may still allow the inference of some client-specific information.

In this paper, we show that simple linear models can effectively
capture client-specific properties only from the aggregated model
updates due to the linearity of aggregation. We formulate an opti-
mization problem across different rounds in order to infer a tested
property of every client from the output of the linear models, for
example, whether they have a specific sample in their training data
(membership inference) or whether they misbehave and attempt
to degrade the performance of the common model by poisoning
attacks. Our reconstruction technique is completely passive and un-
detectable. We demonstrate the efficacy of our approach on several
scenarios, showing that secure aggregation provides very limited
privacy guarantees in practice. The source code is available at
https://github.com/raouf-kerkouche/PROLIN.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning; Distributed artificial intelligence;

KEYWORDS
Federated learning, Secure aggregation, Client-specific property
inference, Membership inference, Poisoning attacks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0235-8/23/11. . . $15.00
https://doi.org/10.1145/3603216.3624964

ACM Reference Format:
Raouf Kerkouche, Gergely Ács, and Mario Fritz. 2023. Client-specific Prop-
erty Inference against Secure Aggregation in Federated Learning. In Pro-
ceedings of the 21st Workshop on Privacy in the Electronic Society (WPES
’23), November 26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3603216.3624964

1 INTRODUCTION
Machine learning models have made their way into a broad range
of application domains. However, accuracy of such models is typ-
ically dependent on the amount of available data. Often a lack of
sufficient data prevents training of accurate models. One of the
simplest solutions is collaboration between data holders by sharing
data in order to train better models. Yet, this solution may not be
viable if the data in question is sensitive and privacy is crucial.
Federated Learning addresses the above constraints by allowing
collaborative training of a model without sharing any data. Instead,
only the model parameters are shared between a central server
and the different entities that participate in the learning process.
Federated learning has become a veritable paradigm and is used
to train shared models for many applications, such as input text
prediction[29], ad selection [55], drug discovery[60] or various med-
ical applications [17, 19, 33] that use the confidential data of many
different entities.

Unfortunately, even though private training data is not shared
directly in federated learning, many attacks have shown that it
is possible to infer sensitive information about the training data
of each client. Membership attacks [45, 47] allow, for example, to
infer whether a specific record is included in a participant’s dataset.
Similarly, the attack in [45] allows inferring whether a group of
people with a specific property independent of the main task is
included in any participant’s dataset. Even worse, it is possible to
reconstruct the training data [22, 25, 38, 39, 45, 61, 75, 76].

Solutions exist to remedy the above attacks, such as Differential
Privacy. Although this can provide a strong privacy guarantee, it
can also jeopardize the benefits of federated learning by severely
deteriorating the accuracy of the commonly trained model. Hence,
many companies are still reluctant to use Differential Privacy, es-
pecially in scenarios, where only a limited number of companies
engage in training (process) and want to prevent the leakage of any,
not only sample-specific information about their abundant training
data1. However, the small number of clients is usually insufficient
to counterbalance the negative effect of noise on model accuracy,
which can eventually incur a (business) risk for the clients.

1https://www.melloddy.eu

ar
X

iv
:2

30
3.

03
90

8v
2

 [
cs

.C
R

]
 2

7
O

ct
 2

02
3

https://github.com/raouf-kerkouche/PROLIN
https://doi.org/10.1145/3603216.3624964
https://doi.org/10.1145/3603216.3624964
https://www.melloddy.eu

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

Secure aggregation [12] is often used as an alternative (or com-
plementary) mitigation technique against unintended information
leakage. This cryptographic solution allows the protocol partic-
ipants to access only the aggregated model updates but not the
individual update of any client sent for aggregation. Indeed, most
existing inference and reconstruction attacks rely on accessing the
individual gradients (model updates) in order to succeed. Secure
aggregation guarantees that even if any participant learns some
confidential information from the aggregated model, they are still
unlikely to attribute this information to any specific client without
the necessary background knowledge [9]. Albeit providing strictly
weaker confidentiality guarantees than differential privacy, secure
aggregation does not degrade model accuracy, has small computa-
tional overhead, and has therefore become an indispensable part
of any federated learning protocol. Although there exist active
attacks [8, 10, 20, 50, 64] even against secure aggregation, which en-
force information leakage by model or data poisoning, these attacks
are either detectable, thereby providing evidence of the misdeed, or
can be prevented [21, 26–28, 31, 41, 46, 70, 73]. This makes such an
active attack less likely in practice, especially if clients can suffer a
reputation loss due to the potential repercussions that can easily
outbalance the benefit of a successful attack.

In this paper, we show that secure aggregation often fails to
prevent the attribution of confidential information to a client, even
if the adversary is only a passive observer who faithfully follows the
federated learning protocol. Our attribution technique shows that
the server or a client who can access only the common model in
each training round can learn accurate client-specific information
(i.e., a property of the client, such as whether its training data
includes some specific samples) without being detected, even if
secure aggregation is employed. Our technique does not need any
background knowledge about any specific client to succeed, just the
aggregated common model observed per round, and the identity of
the clients participating per round.

We exploit the fact that the composition of participating clients
changes in almost every round to decrease communication costs
and guarantee convergence. This optimization allows us to solve
a system of linear equations, where the unknowns are some (pri-
vate) contributions of the clients whose sums are observable. Prior
work [36] has shown that if these contributions are the gradients,
then simple linear regression can be used to reconstruct the mean
gradient vector of every client as long as the variance of the gradi-
ent is small per client and there are a sufficient number of rounds
(equations). We show that, instead of disaggregating the sum of
gradients and then launching a supervised inference attack on the
reconstructed individual gradients per client, it is more effective
to directly reconstruct the linear features used by this inference
attack. In particular, we substantially improve on [36] by leveraging
the linearity of model aggregation: the unknowns are the linear
features of an individual model update that effectively capture prop-
erty information and are reconstructed from the observed model
aggregates. The (private) property value of every client is computed
by maximizing the likelihood of these reconstructed features over
the rounds given their prior distributions on the auxiliary dataset.
Since only a small number of features are reconstructed and used
for inference instead of the potentially large gradient vectors, our
approach has a significantly smaller variance compared to [36] at

the cost of a slight bias. Our approach is general and can be utilized
to infer various client-specific properties only from the observable
aggregations of model updates. Moreover, it is completely passive,
unintrusive, and does not intervene in the normal operation of
federated learning.

Our main contributions are the following:
• We show that secure aggregation is not sufficient to prevent
the reconstruction of client-specific information. We pro-
pose a general, completely passive reconstruction technique
called PROLIN, which, exploiting the linearity of model ag-
gregation, uses linear models to capture property informa-
tion from aggregated model updates and attributes them to
specific clients. We demonstrate our general approach on
two detection tasks.

• We identify clients whose training data includes a specific
target sample. We disaggregate the linear features used by
the membership inference attack that yields increased attack
accuracy compared to related work [36]. This negative result
shows that accurate private information leakage is still pos-
sible with secure aggregation, even without client-specific
background knowledge, and that membership inference at-
tacks remain a significant risk, even with a passive adversary.

• We detect clients that exhibit malicious behavior by launch-
ing (untargeted) poisoning attacks. To the best of our knowl-
edge, prior works have only addressed poisoning detection
without secure aggregation [13, 24, 48, 52]. This positive result
shows that secure aggregation is not enough to hide poison-
ing attacks, which decreases the incentive and therefore the
risk of such attacks.

The operation of PROLIN is illustrated in Figure 1.

Property inference
(3)

 Reconstruct ing
the linear features

(2)

Training property
inference model M r

(1)

Server
Secure

Aggregat ion

Client 1

Client 2

Client 3

Figure 1: Illustration of PROLIN.

2 BACKGROUND
2.1 Federated Learning
In federated learning [43, 57], multiple clients build a common ma-
chine learning model from the union of their training data without

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

sharing the data with each other. At each round of the training,
in order to reduce communication costs, only a fraction 𝐶 of all
𝑁 clients are randomly selected to retrieve the common model
from the parameter server, update the global model based on their
own training data, and send back their updated model to the server.
The server aggregates the updated models of all clients to obtain a
global model that is re-distributed to some selected parties in the
next round. Different aggregation techniques [16, 43, 54, 72] have
been proposed, we consider federated averaging (FedAvg) [43] in
this paper.

More specifically, let A ∈ {0, 1}𝑛×𝑁 denote the participation
matrix, where A𝑟,𝑖 = 1 if client 𝑖 participates in round 𝑟 , and 0 oth-
erwise. As the total number of participants is the same in each round,
it holds that

∑
𝑖 A𝑟,𝑖 = 𝐶 · 𝑁 for all 𝑟 . At round 𝑟 , a participating

client 𝑖 (i.e., A𝑟,𝑖 = 1) executes 𝑇gd local gradient descent iterations
on the common model 𝑇𝑟−1 with parameters w𝑟−1, using its own
training data 𝐷𝑖 , and sends the model update Δw𝑖

𝑟 = w𝑖
𝑟 − w𝑖

𝑟−1 to
the server, which then obtains the new common model 𝑇𝑟 by ag-
gregating the received updates as w𝑟 = w𝑟−1 +

∑
𝑖

|𝐷𝑖 |∑
𝑗 |𝐷 𝑗 | A𝑟,𝑖Δw𝑖

𝑟

(a client’s update is weighted with the size of its training data),
where 𝑧 denotes the model (update) size [43]. Finally, the server
re-distributes w𝑟 to the clients selected in the next round. The
server stops training after a fixed number of rounds 𝑛 or when the
performance of the common model does not improve on held-out
data.

Federated learning is often combined with secure aggregation
to prevent the server and any client from accessing the individual
updates Δw𝑖

𝑟 rather than just their aggregation
∑
𝑖

|𝐷𝑖 |∑
𝑗 |𝐷 𝑗 | A𝑟,𝑖Δw𝑖

𝑟

per round [1, 11]. When secure aggregation is used, each client
encrypts its individual update before sending it to the server. Upon
reception, the server sums the encrypted updates as:∑︁

𝑖∈{ 𝑗 :A𝑟,𝑗=1}
EncK𝑖

(
|𝐷𝑖 |∑
𝑗 |𝐷 𝑗 |

Δw𝑖
𝑟

)
=

∑︁
𝑖

|𝐷𝑖 |∑
𝑗 |𝐷 𝑗 |

A𝑟,𝑖Δw𝑖
𝑟 (1)

where EncK𝑖
(x) = x + K𝑖 mod 𝑝 and

∑
𝑖∈{ 𝑗 :A𝑟,𝑗=1} K𝑖 = 0 (see

[1, 11] for details). Here the modulo is taken element-wise and
𝑝 = 2⌈log2 (max𝑘 | |Δw𝑘

𝑟 | |∞ |K |) ⌉ .

2.2 Linear regression
Given a linear model as

b = Ax̂ + 𝜹 (2)

where A ∈ R𝑛×𝑁 is a known matrix, b ∈ R𝑛 are the observed
(noisy) aggregates, and 𝜹 ∈ R𝑁 are random variables describing
the noise with zero mean and finite variance. In machine learning
parlance, each row of A corresponds to a training sample with 𝑁

input variables (features), and x̂ is the unobserved parameter vector
of the linear model to be determined. Eq. (2) defines a system of 𝑛
linear equations for x̂ as unknowns, and the method of ordinary
least squares (OLS) provides an unbiased estimate x̃ of x̂ as

x̃ = argmin
x

(b − Ax)2 (3)

that is, 𝐸 [x̃] = x̂ regardless of A. Eq. (3) has the closed-form solution
of x̃ = A+b, where A+ is the Moore-Penrose inverse of A. According
to the Gauss-Markov theorem, x̃ has the smallest variance among

all unbiased estimators if 𝜹𝑖 are uncorrelated, have zero mean, and
equal variance. Although x̃ is an unbiased estimate, there are other
estimators that exploit the bias-variance trade-off and decrease the
variance of the estimate at the cost of introducing some bias by
regularization, so that the total error (the sum of squared bias and
variance) is still smaller than for any unbiased estimator, including
OLS.

Ridge Regression (RR) provides an 𝐿2 regularized estimation of
x̂ as

x̃′ = argmin
x

[(b − Ax)2 + 𝜆 · x⊤x] (4)

where 𝜆 is the regularization parameter. RR introduces bias by con-
straining the set of feasible solutions of the least square problem
into a zero-centered 𝐿2 ball even if the real solution x̂ is outside this
ball. Compared to OLS, this can significantly reduce the variance
and hence the mean squared error of the final estimate x̃′, which is
especially useful when the variance of 𝜹 is too large (e.g., when the
number of observations 𝑛 is too small or the observations are too
noisy). In general, the larger the variance of 𝜹 , the larger the regu-
larization should be since increased 𝜆 causes the variance to vanish
and the bias will dominate the total estimation error. Ultimately,
the optimal choice of 𝜆 depends on the distribution of x̂ and 𝜹 .

3 RELATEDWORK
Privacy attacks in Federated Learning: Several privacy attacks
have been proposed to learn confidential information about the
client’s training data in federated learning [8, 22, 25, 36, 38, 39, 45,
47, 61, 75, 76].

In [47], membership inference attack (MIA) is proposed to infer
if a specific record is included in the training dataset of the partici-
pants. At each round, the adversary first extracts a set of features
from every snapshot of the trained global model received from each
selected client, such as the output value of the last layers and the
hidden layers, the loss values, and the gradient of the loss with
respect to the parameters of each layer. These features are used
to train a single membership inference model, which is a convolu-
tional neural network, at the end of the training. The attack requires
access to each individual update and is therefore ineffective when
secure aggregation is used. Finally, the paper has also shown that
the attack can be much more effective if the adversary is active in-
stead of passive. [45] introduced the first membership attack under
federated learning settings that consists of exploiting the non-zero
values of the embedding layer and is therefore only valid for this
specific type of layer. Moreover, it requires access to individual
updates and is thus also ineffective when secure aggregation is
used.

In [36], the authors reconstruct the participation matrix and then
the average update per client. The reconstruction of the partici-
pation matrix is out of scope in our paper because, in federated
learning, the server selects the participating clients according to
their availability in each round and therefore knows the partici-
pation matrix. However, the reconstruction of the average update
per client is naturally the baseline we will consider in our paper
(see Section 5.1). To the best of our knowledge, [36] is the first
and only work that performs disaggregation in federated learning
against secure aggregation by considering a passive adversary (the

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

server). After reconstructing the average update per client using
ordinary least squares (OLS), the server infers the membership
information from these reconstructed updates. We show that dis-
aggregating some linear features of the update vector used by the
attacker/detector model (e.g., membership inference model) pro-
vides more accurate membership inference than disaggregating
the whole update vector. Instead of training a single membership
model at the very end of the training, we train a distinct mem-
bership inference model in each round and combine their inner
representations (features) into a final decision with optimization.
This approach is more robust especially if some rounds have very
inaccurate inference models. Moreover, we also demonstrate the
efficacy of our approach on identifying malicious clients.

Recently, a new line of research has focused on active privacy
attacks [8, 10, 20, 50, 64], where a malicious server poisons the
parameters of the global model in order to reveal a client’s update
vector. These attacks try to increase the norm of the update vector
for a targeted client while decreasing it for non-targeted clients.
Some attacks are more restricted than our proposal because they
either require large linear layers after the input layer [8, 20] or are
designed and evaluated only for FedSGD [43], where each client
performs a single SGD update [20, 50, 64], unlike FedAvg [43]. In
addition, except for [50], these active attacks only link the recovered
update vector to the set of participating clients in a round and do
not combine the recovered updates across rounds to infer a property
of a client. Although a stealthier active attack has been proposed
in [50] that is harder to detect, it is not undetectable, in contrast
to passive attacks. In fact, at the cost of additional computational
overhead but without harming model quality, all active attacks can
be prevented by using cryptographic protocols to verify whether
the server manipulates the common model [21, 26–28, 31, 41, 46,
70, 73, 74].

Since active attacks can be detected (or prevented) without
degrading model accuracy, they are less practical than passive
attacks. Moreover, passive attacks can even be launched offline on
more powerful hardware after capturing the protocol messages.

Poisoning attacks in Federated Learning:We focus on integrity
attacks [49] and more specifically on poisoning attacks and their
defenses. Poisoning attacks are performed either by manipulating
the training data (data poisoning) [6, 15, 23, 30, 34, 44, 53, 56, 58, 65]
or by directly manipulating the model update (model poisoning) [3,
4, 7, 32, 47] . These attacks can be either targeted by aiming only at
reducing the accuracy of the model on some target classes [2, 5] or
untargeted, in which case they aim at reducing the accuracy of the
model globally without any distinction between the classes [3, 4, 7,
32, 47].

Numerous defenses exist against these attacks, which generally
choose the best update in each round [7, 14, 18, 23, 58, 62] or derive
a more robust update in each round [56, 69, 71] based, for exam-
ple, on the median value calculated from the updates sent by the
participants to the server [71]. However, they generally require
access to each individual update and therefore cannot be employed
with secure aggregation because the latter only allows access to
the sum of the individual updates. To the best of our knowledge,
only [4] and [32] use a more robust update with secure aggregation,
however, they also require that each client sends only the sign of

each coordinate’s value of the update vector, which slows down
convergence. Some works also aim to detect clients launching poi-
soning attacks [13, 24, 48, 52], assuming that the model updates of
every client are available for detection in every round.

In our paper, we identify participants with malicious behavior
in federated training even if secure aggregation is used. Specifi-
cally, we consider two untargeted poisoning attacks called gradient
inversion [4] and gradient ascent attacks [47], which modify the
update vector locally so that the performance of the common model
declines.

4 THREAT MODEL
The server can infer two types of properties of each client: the
occurrence of a given target sample in the client’s training data
(membership detection) and whether the client executes poisoning
attacks (misbehaving detection). In membership detection, the server
is a semi-honest adversary who aims to identify all clients that have
the target sample in their training data. In misbehaving detection,
the server is a honest detector who aims to identify all malicious
clients that perform a poisoning attack to degrade the performance
of the federated model (at most a fraction 𝜙 of all clients are mali-
cious). As opposed to previous works [8, 10, 20, 50, 64], the server
is passive in both cases, that is, it faithfully follows the federated
protocol in Section 2.1. This can be enforced by applying verifiable
federated learning schemes [21, 26–28, 31, 41, 46, 70, 73].

In misbehaving detection, malicious clients perform poisoning
by executing gradient ascent or inversion attacks. In a Gradient
Ascent Attack [47], malicious clients aim at maximizing the loss by
performing gradient ascent instead of descent on their own training
data. In particular, they update the model parameters locally as
w𝑖
𝑟 = w𝑖

𝑟−1 + 𝜂∇ℓ (𝐷𝑖 ;w𝑖
𝑟−1), where 𝜂 is the learning rate and ℓ

is the loss function. This attack attempts to maximize the average
misclassification rate of the global model and is more effective if
the training data of the malicious and benign nodes come from
similar distributions. In a Gradient Inversion Attack [4], malicious
clients faithfully compute their model update Δw𝑖

𝑟 but send −Δw𝑖
𝑟

(instead of Δw𝑖
𝑟) for aggregation.

Since the model update Δw𝑖
𝑟 is computed on the entire local

data of a client, the target sample always influences Δw𝑖
𝑟 in mem-

bership inference if it is included in the training data. Likewise,
poisoning is often executed in each round by every malicious client
and therefore has a direct impact on Δw𝑖

𝑟 . Hence, the server can
train a (supervised) binary detector model 𝑀𝑟 to recognize such
changes in Δw𝑖

𝑟 and tell only from the model update of a client
whether it has the tested property in round 𝑟 : 𝑀𝑟 (Δw𝑖

𝑟) denotes
the confidence of the server that the client has the target sample
in its training data in membership detection or that it performs
poisoning in misbehaving detection. To train the detector model
𝑀𝑟 , an auxiliary (or shadow) dataset 𝐷𝑎𝑢𝑥 is also available to the
server, which has sufficiently similar distribution as the clients’
training data, though 𝐷𝑎𝑢𝑥 does not include any training samples
of any honest client. The availability of an auxiliary dataset is a
natural assumption of any supervised inference model and not spe-
cific to our proposal. Our approach can also be generalized to any
unsupervised or semi-supervised inference model𝑀𝑟 as long as it
uses a linear map of the gradients (see Section 5.2 for details). Also,

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

𝐷𝑎𝑢𝑥 can be generated synthetically: at the end of the federated
learning protocol, the final common model is inverted2 to generate
synthetic training data, and𝑀𝑟 is trained with such synthetic data
for property reconstruction3.

For detection, the individual model updates Δw𝑖
𝑟 are not accessi-

ble due to secure aggregation, however, the server can access and
record their sum

∑
𝑖 A𝑟,𝑖Δw𝑖

𝑟 in each round as well as the interme-
diate snapshots 𝑇𝑟 of the common model. In addition, the complete
participation matrix A is known to the server, which is a reasonable
assumption. Otherwise, the server can exploit side information to
reconstruct A (see [36] for details).

5 PROPERTY RECONSTRUCTION
We show how the server can reconstruct the property information
of every client accessing only the aggregated model updates. We
present two reconstruction approaches in this section. In the first
naive approach, described in Section 5.1, the server disaggregates
the sum of update vectors into the individual update of every client
and applies the trained detector model𝑀𝑟 on each disaggregated
update vector separately. However, the error of this approach can
be proportional to the update (model) size in the worst case. Hence,
we improve this naive approach and rather disaggregate the linear
features of the aggregated update vector, which are used by the
detector model𝑀𝑟 . The server finds client-specific properties that
maximize the observation probability of these disaggregated fea-
tures. This improved approach is called PROLIN and described in
Section 5.2.

5.1 Naive property reconstruction with gradient
disaggregation

The naive reconstruction technique is based on [36] and consists
of three steps: (1) reconstructing the expected update vector for
every client, (2) training the detector model𝑀𝑟 per round to predict
property 𝑃 from the reconstructed updates, and (3) combining the
per-round model predictions to make the final decision about the
property of each client.

5.1.1 Gradient reconstruction: The update vector Δw𝑖
𝑟 of every

client 𝑖 is changing over the rounds due to the stochasticity of
learning. Still, it is possible to approximate the mean of these per-
round updates of a client (i.e., a single "average" update vector per
client) with linear regression as follows.

Suppose that the aggregation is described as

b𝑟 =

𝑁∑︁
𝑖

A𝑟,𝑖Δw𝑖
𝑟 =

𝑁∑︁
𝑖

A𝑟,𝑖∆ŵ𝑖 + 𝝃𝑟 (5)

where Δŵ𝑖 is the expected update vector of client 𝑖 that we want to
reconstruct, and 𝝃𝑟 represents a vector of independent, unobserved
random variables that accounts for the aforementioned stochastic-
ity of learning and models the variance of the individual updates
over the rounds (Δw𝑖

𝑟 ,Δŵ𝑖 , 𝝃𝑟 ∈ R𝑧 for all 𝑖 and 𝑟). Given b𝑟 and
A, Eq. (6) defines 𝑧 systems of linear equations (one per update
2Model inversion can be performed by training a Generative Adversarial Network
(GAN) where the discriminator is the final common model and the trained generative
model is used to produce synthetic data [59].
3In that case, reconstruction is performed after federated learning, if all model updates
are recorded during training.

coordinate), each with 𝑛 equations over 𝑧×𝑁 unknowns altogether,
which can be approximated by OLS. Formally,

W̃ = argmin
x∈R𝑁 ×𝑧

| |B − Ax| |2𝐹 (6)

where B = (b1, . . . , b𝑛) ∈ R𝑛×𝑧 , and | | · | |𝐹 is the Frobenius norm.
According to the Gauss-Markov Theorem, W̃ is the best unbiased
estimator of Ŵ = (Δŵ1, . . . ,Δŵ𝑁) ∈ R𝑁×𝑧 if 𝝎1, . . . ,𝝎𝑛 are un-
correlated, have zero mean and identical finite variance.

5.1.2 Training the detector model𝑀𝑟 : The server trains a per-round
detector model𝑀𝑟 on 𝐷𝑎𝑢𝑥 in order to infer the property 𝑃 from
the reconstructed expected update Δw̃𝑖 for each client as follows:

First, the server creates two disjoint sets of batches B+ and B−
from 𝐷aux , which are used to generate updates with and without
property 𝑃 , respectively. For membership detection, every batch
in B+ includes the target sample whose membership is detected,
while every batch in B− excludes the same target sample. Then,
provided with the common model 𝑇𝑟−1 in round 𝑟 , the server
creates the (balanced) training data 𝐷′ = 𝐷+ ∪ 𝐷− such that
𝐷+ = {(Δw𝐵

𝑟 , True) |𝐵 ∈ B+} and 𝐷− = {(Δw𝐵
𝑟 , False) |𝐵 ∈ B−},

where Δw𝐵
𝑟 is the update of model 𝑇𝑟−1 computed on batch 𝐵. For

misbehaving detection, 𝐷− = {(Δw𝐵
𝑟 , False) |𝐵 ∈ B−} is the set

of faithfully computed updates, and 𝐷+ = {(Δw𝐵
𝑟 , True) |𝐵 ∈ B+}

where Δw𝐵
𝑟 is defined according to the actual poisoning attack to

be detected: Δw𝐵
𝑟 = −Δw𝐵

𝑟 for a gradient inversion attack, whereas
Δw𝐵

𝑟 is obtained bymaximizing the loss function on 𝐵 for a gradient
ascent attack (see Section 4).

5.1.3 Property inference: The detector model𝑀𝑟 is applied on the
reconstructed expected update Δw̃𝑖 for every client 𝑖 , which results
in 𝑟 individual decisions per client. These decisions are averaged to
obtain the final decision about the property of each client.

5.2 PROLIN: Property reconstruction from
linear features

The above technique applies OLS to reconstruct every single coor-
dinate of the expected update vector separately. Since the detector
model𝑀𝑟 combines every reconstructed gradient coordinate into a
single decision, the reconstruction error per coordinate can accu-
mulate and impact the decision, especially if 𝑧 is large.

We instead propose to first reconstruct 𝑡 linear features of every
individual update vector (𝑡 ≪ 𝑧), that capture the relevant property
information, and then to infer the property values in this linear
feature space. As aggregation is also a linear operation, gradient
disaggregation corresponds to feature disaggregation in the fea-
ture space, therefore property inference can also be executed in
this linear subspace of the gradient vectors with an error that is
proportional to 𝑡 (instead of 𝑧).

To make it more concrete, let 𝜏𝑖 ∈ {0, 1} denote a binary vari-
able indicating whether client 𝑖 has property 𝑃 . Our goal is to find
the property assignment 𝝉max = (𝜏1, . . . 𝜏𝑁) with the largest likeli-
hood 𝐿(𝝉 |b1, . . . , b𝑛) given the observed gradient aggregates as con-
straints, that is, 𝝉max = argmax𝝉 𝐿(𝝉 |b1, . . . , b𝑛). Let 𝑔𝑟 : R𝑧 → R𝑡
be a linear function that maps the update vector from the larger
gradient space into a smaller feature space where the property

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

inference of an update is still accurate. In other words, 𝑔𝑟 per-
forms feature reduction so that property-relevant information is
preserved. In that case, the above likelihood maximization in the
gradient space (given the gradient aggregates) is roughly equivalent
to likelihood maximization in the feature space (given the feature
aggregates) due to the linearity of aggregation:

𝝉max = argmax
𝝉

𝐿 (𝝉 |b1, . . . , b𝑛)

≈ argmax
𝝉 ,X∈X

∏
𝑖

(
𝜏𝑖 ·

∏
𝑟

𝑝 (X𝑟,𝑖 |𝜏𝑖 = 1)

+ (1 − 𝜏𝑖) ·
∏
𝑟

𝑝 (X𝑟,𝑖 |𝜏𝑖 = 0)
)

(7)

where X𝑟,𝑖 ≈ 𝑔𝑟 (Δw𝑖
𝑟) is the individual feature vector of client 𝑖

in round 𝑟 whose per-round aggregates are given as constraints:
X = {X ∈ R𝑛×𝑁×𝑡 | ∑𝑖 A𝑟,𝑖X𝑟,𝑖 = 𝑔𝑟 (b𝑟)}, and 𝑝 (X𝑟,𝑖 |·) is approx-
imated on the auxiliary data 𝐷𝑎𝑢𝑥 . Owing to the linearity of 𝑔𝑟 , the
server can easily compute the feature aggregates by applying 𝑔𝑟 on
the observed gradient aggregates b𝑟 :

𝑔𝑟 (b𝑟) = 𝑔𝑟

(
𝑁∑︁
𝑖

A𝑟,𝑖Δw𝑖
𝑟

)
=

𝑁∑︁
𝑖

A𝑟,𝑖 · 𝑔𝑟 (Δw𝑖
𝑟)

≈
𝑁∑︁
𝑖

A𝑟,𝑖 · X𝑟,𝑖 (8)

Therefore, the server can solve Eq. (7) and find a slightly biased ap-
proximation of 𝝉max in the feature space jointly with the most likely
disaggregation X of the known feature aggregates (see Appendix A
for a more detailed argument).

However, the individual features X are unobserved, other than
their per-round aggregates, therefore the above likelihood maxi-
mization is overly complex: Eq. (7) has a large number of variables
(X and 𝝉) and much fewer observations (𝑔1 (b1), . . . , 𝑔𝑛 (b𝑛)). This
would yield an inaccurate approximation of 𝝉max even if 𝑡 is small.
Hence we introduce additional constraints for the purpose of reg-
ularization: The server computes the expected feature vector of a
client from the known feature aggregates with linear regression
and requires that these expected feature vectors match the mean∑
𝑟 X𝑟,𝑖/𝑛 of the reconstructed individual feature vectors of the

same client. Linear regression is less likely to overfit with 𝑡 · 𝑁
variables, especially if 𝑁 < 𝑛, therefore can provide realistic con-
straints for the optimization problem in Eq. (7) and decrease the
variance of its solution (see Appendix B).

Although the approximation of 𝝉max is biased in the feature
space, it has a smaller variance than in the gradient space, which
can eventually outbalance the bias and result in a more accurate
property inference. This is detailed in Appendix A and also shown
empirically in Section 6. Indeed, Eq. (7) has fewer variables in the
feature space and the regression can also be more accurate in this
𝑡-dimensional space. We stress that the accurate approximation of
𝝉max in the feature space is only feasible because𝑔𝑟 , as well as gradient
aggregation, are linear.

Our proposal has four main steps, which are also summarized in
Table 1:

(1) Training the linear feature extractor 𝑔𝑟 : The server
learns the per-round feature extractor 𝑔𝑟 on 𝐷𝑎𝑢𝑥 .

(2) Computing the distribution of linear features: The con-
ditional probabilities 𝑝 (X𝑟,𝑖 |𝜏𝑖) in Eq. (7) are approximated
with the client-independent feature distribution in round 𝑟 ,
that is, the output distribution of 𝑔𝑟 on the held-out data
𝐷𝑎𝑢𝑥 .

(3) Reconstructing the expected linear features: For the
purpose of regularization, the expected linear feature vector
of every client is reconstructed from the feature aggregates
𝑔1 (b1), . . . , 𝑔𝑛 (b𝑛) with linear regression.

(4) Property inference: Given the feature distributions from
Step 2 and the reconstructed expected features per client
from Step 3, the most likely property assignment 𝝉max =

argmax𝝉 𝐿(𝝉 |b1, . . . , b𝑛) is approximated by solving Eq. (7).

5.2.1 Training the feature extractor. The server trains a detector
model𝑀𝑟 = ℎ𝑟 ◦ 𝑔𝑟 per round, which first extracts 𝑡 linear features
of the update by applying 𝑔𝑟 : R𝑧 → R𝑡 on the update vector and
then applies a non-linear function ℎ𝑟 : R𝑡 → {0, 1} on these linear
features to recognize property 𝑃 . Since the output of ℎ𝑟 is the tested
property, ℎ𝑟 pushes 𝑔𝑟 to capture the property relevant information
from the update vector. For example, if 𝑔𝑟 is a scalar linear function
and ℎ𝑟 is the sigmoid function, then𝑀𝑟 (x) = 1/(1 + exp(−𝑔𝑟 (x)))
defines logistic regression. In that case, only a single feature is
extracted from the entire update vector (𝑡 = 1).

To train𝑀𝑟 , the server creates training data𝐷′ = 𝐷+∪𝐷− , which
consists of model updates with (𝐷+) and without (𝐷−) property 𝑃
just as described in Section 5.1.2. After splitting 𝐷′ into a training
and testing part, the server trains𝑀𝑟 on the training part of 𝐷′.

5.2.2 Computing the distribution of linear features. The output dis-
tributions of 𝑔𝑟 conditioned on 𝑃 are approximated on the testing
part of 𝐷′ in every round 𝑟 : 𝑓 +𝑟 denotes the Probability Density
Function (PDF) of a random variable describing the output of 𝑔𝑟
on 𝐷+, and 𝑓 −𝑟 denotes the PDF of a random variable describing
the output of 𝑔𝑟 on 𝐷− . As the server has no client-specific back-
ground knowledge to compute 𝑝 (X𝑟,𝑖 |𝜏𝑖) in Eq. (7), it approximates
𝑝 (X𝑟,𝑖 |𝜏𝑖 = 1) with 𝑓 + (X𝑟,𝑖) and 𝑝 (X𝑟,𝑖 |𝜏𝑖 = 0) with 𝑓 − (X𝑟,𝑖).

The distributions of a single linear feature are illustrated in Figure
2 for membership detection, where both 𝑓 +𝑟 and 𝑓 −𝑟 have normal
distributions. Figure 2 shows that 𝑓 +𝑟 and 𝑓 −𝑟 are well-separated at
the beginning of the training, indicating an accurate detector model
𝑀𝑟 . However, as the training progresses, the two distributions start
to overlap, which implies a less accurate prediction. In fact, for
membership inference,𝑀𝑟 is usually more accurate at the beginning
of the training when the gradients are larger and the target sample
is likely to have a noticeable impact on the gradient. Unlike the
naive approach in Section 5.1 that averages the output of𝑀𝑟 over
the rounds, PROLIN considers these potentially different per-round
distributions of the features for more accurate inference.

If the output of𝑔𝑟 is high-dimensional (e.g., 𝑡 > 1) then the above
approximation of 𝑔𝑟 with sampling becomes inaccurate unless 𝐷′

is sufficiently large. In that case, estimating 𝑝 (X𝑟,𝑖 |𝜏𝑖) with the
output distribution of the entire detector model𝑀𝑟 = ℎ𝑟 ◦ 𝑔𝑟 can
be a more accurate approach. Since ℎ𝑟 is designed to reduce the
dimensionality of𝑔𝑟 , its output distribution conditioned on 𝑃 should

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

−30 −20 −10 0 10 20 30
Feature value

0.00

0.02

0.04

0.06

0.08

0.10
f−1 (x)

f+
1 (x)

g1(·) on D−

g1(·) on D+

(a) 𝑟 = 1

−30 −20 −10 0 10 20 30
Feature value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f−100(x)

f+
100(x)

g100(·) on D−

g100(·) on D+

(b) 𝑟 = 100

−30 −20 −10 0 10 20 30
Feature value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f−200(x)

f+
200(x)

g200(·) on D−

g200(·) on D+

(c) 𝑟 = 200

−30 −20 −10 0 10 20 30
Feature value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f−300(x)

f+
300(x)

g300(·) on D−

g300(·) on D+

(d) 𝑟 = 300

Figure 2: Distribution of a single linear feature 𝑔𝑟 (Δw𝐵
𝑟) for 𝐵 ∈ 𝐷𝑎𝑢𝑥 for membership detection depending on the round 𝑟 on

MNIST (𝑡 = 1). Overlap coefficient (OVL) is the overlap area between 𝑓 +𝑟 and 𝑓 −𝑟 colored with gray, measuring the performance
of detector model𝑀𝑟 .

provide a fairly accurate approximation of the feature distributions
𝑓 +𝑟 and 𝑓 −𝑟 .

5.2.3 Reconstructing the expected linear features. As the server can
compute the feature aggregates based on Eq. (8), it can also dis-
aggregate them into the expected linear feature vector per client,
similarly to gradient disaggregation in Section 5.1.1. However, in-
stead of ordinary least square, we use a weighted version of ridge
regression to address the potentially large variance of linear fea-
tures.

More precisely, suppose that the aggregation of linear features
can be described as

𝑔𝑟 (b𝑟) =
𝑁∑︁
𝑖

A𝑟,𝑖 · 𝑔𝑟 (Δw𝑖
𝑟) =

𝑁∑︁
𝑖

A𝑟,𝑖 · ĝ𝑖 + 𝜽𝑟 (9)

where ĝ𝑖 ∈ R𝑡 is the vector of expected linear features of client 𝑖
that we want to reconstruct, and 𝜽𝑟 ∈ R𝑡 is a vector of random
noise that accounts for the stochasticity of learning and models the
variance of the individual feature vectors over the rounds. Since
the variance of 𝜽 can be large, or the number of observations may
be less than the number of features to recover (𝑛 < 𝑡), we use
ridge regression with 𝐿2 regularization of the reconstructed linear
features (see Section 2.2):

G̃ = argmin
x∈R𝑁 ×𝑡

v| |G − Ax| |2𝐹 + 𝜆 | |x| |2𝐹 (10)

where G̃ ∈ R𝑛×𝑡 is an approximation of Ĝ = (ĝ1, . . . , ĝ𝑁) ∈ R𝑛×𝑡 ,
G = (𝑔1 (b1), . . . , 𝑔𝑛 (b𝑛)) ∈ R𝑁×𝑡 , and v𝑟 ∈ [0, 1] (1 ≤ 𝑟 ≤ 𝑛)
denotes some measure of the performance of𝑀𝑟 . If𝑀𝑟 provides an
accurate prediction of property 𝑃 , then the residual error | |𝑔𝑟 (b𝑟) −∑
𝑖 A𝑟,𝑖x𝑖 | |2 in round 𝑟 should have larger weight in the objective

function because the output of 𝑔𝑟 is likely to have smaller variance.
Eq. (10) can be solved efficiently by solving the objective function
in Eq. (4) for each linear feature individually.

5.2.4 Property inference. Given the feature aggregates
𝑔1 (b1), . . . , 𝑔𝑛 (b𝑛) from Eq. (8) and the reconstructed ex-
pected feature vectors G̃ from Eq. (10), the server solves the

following regularized version of Eq. (7):

max
𝜏𝑖 ,X

∑︁
𝑖

log

(
𝜏𝑖 ·

∏
𝑟

𝑓 +𝑟 (X𝑟,𝑖) + (1 − 𝜏𝑖) ·
∏
𝑟

𝑓 −𝑟 (X𝑟,𝑖)
)

s.t.
∑︁
𝑖

A𝑟,𝑖X𝑟,𝑖 = 𝑔𝑟 (b𝑟) (Constraint 1)∑︁
𝑟 ∈𝑅 (𝑖)

X𝑟,𝑖

|𝑅(𝑖) | = G̃𝑖 (Constraint 2)

𝜏𝑖 ∈ {0, 1},X ∈ R𝑛×𝑁×𝑡 (Constraint 3)

where 𝑓 +𝑟 and 𝑓 −𝑟 denote the PDFs of the linear features conditioned
on property 𝑃 (see Section 5.2.2), and 𝑅(𝑖) is the set of rounds in
which client 𝑖 participates. Constraint 1 requires that the recon-
structed linear features X𝑟,𝑖 should produce the known feature
aggregates. Constraint 2 provides regularization by requiring that
the mean of the reconstructed linear features X𝑟,𝑖 should match the
expected linear feature vector per client (see Eq. (9) and Eq. (10)). Fi-
nally, Constraint 3 pushes the optimization to find an integer-valued
solution for 𝜏𝑖 , as a client either has or does not have property 𝑃 .

The above optimization problem contains integer variables 𝜏𝑖 ,
which makes the problem NP-complete. Hence, we relax the prob-
lem into

min
𝜏𝑖 ,X

𝛾1Lml + 𝛾2Lreg + 𝛾3Llstsq

where Lml = −
∑︁
𝑖

log

(
𝜏𝑖 ·

∏
𝑟

𝑓 +𝑟 (X𝑟,𝑖) + (1 − 𝜏𝑖) ·
∏
𝑟

𝑓 −𝑟 (X𝑟,𝑖)
)

Lreg =
∑︁

𝑖,𝑟 ∈𝑅 (𝑖)

 X𝑟,𝑖

|𝑅 (𝑖) | − G̃𝑖

2
𝐹

Llstsq =
∑︁
𝑖,𝑟

v𝑟 ∥𝑔𝑟 (b𝑟) − A𝑟,𝑖X𝑟,𝑖 ∥2𝐹

s.t. 0 ≤ 𝜏𝑖 ≤ 1,X ∈ R𝑛×𝑁 ×𝑡

where 𝛾1, 𝛾2, 𝛾3 are the weighting factors of each loss in the objec-
tive function. Although this relaxed version is still non-convex if
𝑓 −𝑟 or 𝑓 +𝑟 are also non-convex, the variable 𝜏𝑖 is now continuous
in [0, 1] and hence can be approximated with projected gradient
descent (e.g., using an automatic differentiation framework such as
PyTorch [51]).

We provide a theoretical justification of PROLIN in Appendix A.

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

Table 1: PROLIN

Input: (1) observed aggregate b𝑟 =
∑𝑁
𝑖 A𝑟,𝑖 · Δw𝑖

𝑟 per
round; (2) participation matrix A; (3) auxiliary data 𝐷aux ;
(4) property 𝑃 ; (5) federated model 𝑇𝑟 per round
Output: 𝝉 ∈ {0, 1}𝑁 (𝝉𝑖 = 1 if client 𝑖 has property 𝑃)

Begin
(1) Training property inference model: For every

round 𝑟 use auxiliary data 𝐷𝑎𝑢𝑥 to
(a) train detector model𝑀𝑟 = ℎ𝑟 ◦ 𝑔𝑟
(b) computeweight v𝑟 , which is proportional to some

performance metric of𝑀𝑟

(2) Computing the distribution of linear features:
Approximate the PDFs 𝑓 +𝑟 and 𝑓 −𝑟 of the linear fea-
tures 𝑔𝑟 conditioned on property 𝑃 on 𝐷𝑎𝑢𝑥

(3) Reconstructing expected linear features:
(a) Compute the aggregation of linear features G𝑟 in

every round 𝑟 :

G𝑟 = 𝑔𝑟 (b𝑟) =
𝑁∑︁
𝑖

A𝑟,𝑖 · 𝑔𝑟 (Δw𝑖
𝑟)

(b) Approximate the expected linear features∑
𝑟 ∈𝑅 (𝑖)

𝑔𝑟 (Δw𝑖
𝑟)

|𝑅 (𝑖) | per client 𝑖 by G̃𝑖 , where

G̃ = argmin
x∈R𝑁 ×𝑡

v| |G − Ax| |2𝐹 + 𝜆 · | |x| |𝐹

(4) Property inference: Solve the following optimiza-
tion problem for 𝝉 :

min
𝜏𝑖 ,X

𝛾1Lml + 𝛾2Lreg + 𝛾3Llstsq

where Lml = −
∑︁
𝑖

log

(
𝜏𝑖

∏
𝑟

𝑓 +𝑟 (X𝑟,𝑖)

+ (1 − 𝜏𝑖)
∏
𝑟

𝑓 −𝑟 (X𝑟,𝑖)
)

Lreg =
∑︁

𝑖,𝑟 ∈𝑅 (𝑖)

 X𝑟,𝑖

|𝑅 (𝑖) | − G̃𝑖

2
𝐹

Llstsq =
∑︁
𝑖,𝑟

v𝑟
G𝑟 − A𝑟,𝑖X𝑟,𝑖

2
𝐹

s.t. 0 ≤ 𝜏𝑖 ≤ 1,X ∈ R𝑛×𝑁 ×𝑡

End

6 EVALUATION
In this section, we demonstrate that PROLIN can effectively disag-
gregate the linear features of different detector models. Although
we focus on two specific detection tasks (membership inference
and misbehaving detection), we emphasize that PROLIN is a gen-
eral approach that can disaggregate any linear function and hence
potentially reconstruct various client-specific properties given their
accurate detector models. Moreover, even if the detector model is
not consistently accurate in every round, PROLIN takes the best

combination of these per-round models to have a quasi-optimal
property inference.

6.1 Dataset
We compare the performance of PROLIN with different property
reconstruction techniques. We evaluate all approaches on the fol-
lowing datasets:

• The MNIST database of handwritten digits. It consists of
28 x 28 grayscale images of digit items and has 10 output
classes. The training set contains 60,000 data samples, while
the test/validation set has 10,000 samples [37].

• The CIFAR-10 dataset consists of 60,000 32x32 color images
in 10 classes, with 6000 images per class. There are 50,000
training images and 10,000 test images [35].

• Fashion-MNIST database of fashion articles consists of 60,000
28x28 grayscale images of 10 fashion categories, along with
a test set of 10,000 images [66].

For each dataset, we randomly select 10% of the training set for
auxiliary data 𝐷𝑎𝑢𝑥 . Therefore, the server has |𝐷𝑎𝑢𝑥 | = 6000 sam-
ples for MNIST and Fashion-MNIST and |𝐷𝑎𝑢𝑥 | = 5000 samples
for CIFAR-10. 𝐷′ is generated from 𝐷𝑎𝑢𝑥 as described in Section
5.2.1, where |𝐷′ | = 2 · |𝐷𝑎𝑢𝑥 | in our evaluations4. We use 80% of
𝐷′ to train𝑀𝑟 and 20% to compute weights v in Eq. (10) as well as
distributions 𝑓 +𝑟 and 𝑓 −𝑟 .

6.2 Model Architectures
As in [36], we use LeNet neural network as the global model 𝑇𝑟
with the following architectures:

• For MNIST and Fashion-MNIST, we use two 5x5 convolution
layers (the first with 10 filters, the second with 20), each
followed by 2x2 max pooling, a dropout layer with ratio
set to 0.5, and two fully connected layers with 50 and 10
neurons, respectively. A dropout layer separates the two
fully connected layers.

• For CIFAR-10, we use two 5x5 convolution layers (the first
with 6 filters, the second with 16), each followed by 2x2 max
pooling and three fully connected layers with 120, 84 and 10
neurons, respectively.

6.3 Property reconstruction
We consider the detection of three properties: (1) membership in-
formation of a randomly chosen target sample, malicious behavior
by launching (2) gradient inversion or (3) gradient ascent attack.

6.3.1 Approaches. We compare the following approaches to recon-
struct the above properties.

BASELINE: This is based on gradient reconstruction from [36],
which is also described in Section 5.1. As opposed to [36], we train
a distinct inference model𝑀𝑟 per round instead of a single model
over all the rounds and average the decisions of these per-round
models. This "ensemble" approach is more accurate since𝑀𝑟 can
have very different performances per round.𝑀𝑟 is a logistic regres-
sion model.
PROLIN: This is based on feature reconstruction and described in
4Since 𝐷 ′ contains batches of 𝐷𝑎𝑢𝑥 , it can have larger size.

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

Section 5.2. It is instantiated with a single linear feature (𝑡 = 1) and
𝑀𝑟 = ℎ ◦ 𝑔𝑟 is a logistic regression model where ℎ is the sigmoid
function. As 𝑀𝑟 is trained only on the update of a single round,
this simple model is accurate and also fast to train. Following from
empirical observations (also illustrated in Figure 2), the feature
distributions 𝑓 +𝑟 and 𝑓 −𝑟 are approximated to be normal5 whose
means and variances equal the empirical means and variances of
the single linear feature 𝑔𝑟 on the testing part of 𝐷′ conditioned
on property 𝑃 . The weight v𝑟 per round is set to 1 − OVL𝑟 , where
OVL𝑟 is the overlapping coefficient between the distributions of 𝑓 +𝑟
and 𝑓 +𝑟 and is a value between 0 and 1 that measures the overlap
area of the two probability density functions (also illustrated in
Figure 2). Therefore, a coefficient with a small value means that
𝑀𝑟 is accurate and vice versa6. The regularization parameter 𝜆 is
fixed to 5 for all experiments. The weights 𝛾1, 𝛾2, and 𝛾3 of different
losses in the objective function of PROLIN (see Section 5.2.4) are
adjusted dynamically during optimization using the technique in
[42].
OLS: This is based on feature reconstruction that infers the prop-
erty by applying the sigmoid function ℎ on the approximation G̃𝑖 of
the single expected linear feature of a client (𝑡 = 1). G̃𝑖 is obtained
by solving Eq. (10) with v = 1 and 𝜆 = 0, that is, each round has
equal weight and there is no regularization. 𝜏𝑖 = 1 if ℎ(G̃𝑖) > 0.5.
REG: This is based on a feature reconstruction like OLS, except
that ridge regression is applied to obtain G̃𝑖 by solving Eq. (10) with
v and 𝜆 as defined in PROLIN. 𝜏𝑖 = 1 if ℎ(G̃𝑖) > 0.5.

6.3.2 Experimental setup. We perform 3 runs for each experiment
and average the results obtained over these 3 runs. For the global
model, we use a batch size of 10 for MNIST and Fashion-MNIST
and 25 for CIFAR-10 and a batch size of 10 to train𝑀𝑟 . The learning
rate 𝜂 is set to 0.01 to train the global model for MNIST and Fashion-
MNIST, 0.1 for CIFAR-10, and 0.001 to train𝑀𝑟 in order to identify
𝑔𝑟 . SGD is used to train all models. For membership inference
attack (MIA), the target sample is chosen uniformly at random
in each experiment and remains fixed over all the rounds for one
experiment. All clients with the membership property have this
sample in their local training data. The number of federated rounds
is 𝑛 = 300, the number of all clients is 𝑁 = 50, and a fraction of
𝜙 = 0.1 of all clients are positive (i.e., have the property). In each
round, a fraction of 𝐶 = 0.2 of all clients are selected uniformly at
random to send their model update for aggregation after performing
a single epoch of local training on their own training data. Each
client has the same number of training samples, which are assigned
to the clients uniformly at random at the very beginning of the
training. All settings are summarized in Table 2 in the appendix.

6.4 Results
Figures 3, 4 and 5 show the results for the membership inference
attack (MIA) and for the detection of gradient inversion (INV) and
gradient ascent attacks (GAA), respectively. We report the F1-score
of the detection, which is the harmonic mean of the precision and

5The PDF of a normal random variable withmean 𝜇 and variance𝜎2 is 1
𝜎
√
2𝜋

𝑒

−(𝑥−𝜇)2
2𝜎2

61 − OVL is also equivalent to Youden’s index since OVL is the sum of False Negative
and False Positive Ratios

recall, where the precision is the number of correctly detected posi-
tive clients divided by the number of all clients who are detected as
positive, and the recall is the number of correctly detected positive
clients divided by the number of all positive clients.

Out of the three detection tasks, membership information is the
most difficult (Figure 3) and gradient ascent is the easiest to detect
(Figure 5). Indeed, a single target sample has less significant impact
on the aggregated model update as the training progresses (see
Section 5.2.1), while gradient manipulation depends only on the
performance of the common model 𝑇𝑟−1. Unlike gradient ascent,
gradient inversion does not modify the magnitude of the update,
hence it is more difficult to detect (Figures 4 and 5).

6.4.1 Feature vs. gradient reconstruction. Feature reconstruction
(OLS, REG, PROLIN) is superior to gradient reconstruction (BASE-
LINE) on almost all tasks, albeit to different degrees. The difference
is the most salient on CIFAR-10, which shows that feature recon-
struction is indeed a more appealing approach for property
inference especially if the common model is more complex.
The exception is the detection of the gradient ascent attack when
the dataset size is 50 (see Figure 5.h), where BASELINE is more ac-
curate than other approaches. Indeed, Figure 6 depicts the 𝐿2-norm
of the weights 𝜶 of the linear model 𝑔𝑟 depending on 𝑟 for this
scenario. This shows that the norm falls below 1 after round 100,
which means that the reconstruction error of BASELINE can be
less than for other approaches as explained in Appendix B. Feature
reconstruction also generally shows a smaller variance in accuracy
over the rounds, and it converges faster especially when clients
have larger datasets.

6.4.2 PROLIN vs. BASELINE. For MIA, BASELINE reaches the max-
imum F1-score of 0.83 in Figure 3.e at round 20 and then drops
quickly, while PROLIN reaches the peak at round 120 with an F1-
score of 79%, providing a more stable performance. Similarly, in
Figure 3.b, BASELINE is more accurate at the end of the training,
however, PROLIN obtained the maximum F1-score (86%) in this
case. In fact, BASELINE reaches the best performance with the GAA
shown in Figure 5.h by reaching an F1-score of 100%, while PROLIN
reaches 76%. Nevertheless, PROLIN is more accurate overall and
has larger F1-scores on average over the rounds. For example, the
worst F1-score on all the considered scenarios is 69% for PROLIN,
while it is 56% for BASELINE (Figure 4.h). In addition, PROLIN has
a more stable performance with a smaller variance over the
rounds than BASELINE. Indeed, in many cases, the F1-score of
BASELINE has a larger variance (Figure 3.f-h, Figure 4.g-h), which
makes it difficult to choose the round number where it provides
good performance: Even if the detector can access all the rounds, it
must choose one where it is supposed to obtain the final detection
result. It is therefore crucial to have a stable performance to ensure
that the reconstruction remains accurate over a sufficiently wide
range of rounds. Finally, PROLIN also converges much faster to
good F1-scores in general (Figure 3.e-h, Figure 4.a-h, Figure 5.f-g).
This is also important because the server stops federated learning
as soon as the global model reaches acceptable performance, and
therefore the reconstruction must also be accurate by then.

6.4.3 PROLIN vs. REG and OLS. PROLIN is also superior to REG
and OLS. Although this difference is more apparent when PROLIN

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00

F1
-s
co
re

(a) MNIST, Dataset size=10

0 100 200 300
Round

0.0

0.2

0.4

0.6

0.8

(b) MNIST, Dataset size=20

0 100 200 300
Round

0.00

0.25

0.50

0.75

(c) MNIST, Dataset size=30

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00

F1
-s
co
re

(d) FMNIST, Dataset size=10

0 100 200 300
Round

0.0

0.2

0.4

0.6

0.8

(e) FMNIST, Dataset size=20

0 100 200 300
Round

0.0

0.2

0.4

0.6

0.8
(f) FMNIST, Dataset size=30

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00

F1
-s
co
re

(g) CIFAR-10, Dataset size=25

0 100 200 300
Round

0.2

0.4

0.6

0.8

(h) CIFAR-10, Dataset size=50

OLS
REG
BASELINE
PROLIN

Figure 3: Membership detection on the MNIST, Fashion-MNIST, and CIFAR-10 datasets by varying the size of the local dataset
per client (|𝐷𝑖 |)

0 100 200 300
Round

0.25

0.50

0.75

1.00

F1
-s
co
re

(a) MNIST, Dataset size=10

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00
(b) MNIST, Dataset size=20

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00
(c) MNIST, Dataset size=30

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00

F1
-s
co
re

(d) FMNIST, Dataset size=10

0 100 200 300
Round

0.25

0.50

0.75

1.00
(e) FMNIST, Dataset size=20

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00
(f) FMNIST, Dataset size=30

0 100 200 300
Round

0.2

0.4

0.6

0.8

F1
-s
co
re

(g) CIFAR-10, Dataset size=25

0 100 200 300
Round

0.2

0.4

0.6

(h) CIFAR-10, Dataset size=50

OLS
REG
BASELINE
PROLIN

Figure 4: Misbehaving detection (gradient inversion attack) on the MNIST, Fashion-MNIST, and CIFAR-10 datasets by varying
the size of the local dataset per client (|𝐷𝑖 |)

is compared with OLS (Figure 3.a-h, Figure 4.f-h, Figure 5.g-h),
PROLIN is also more accurate than REG over all the rounds when
a MIA is executed on CIFAR-10 (Figure 3.g-h). For the other cases,

they have very similar performance: Lml evaluates the likelihood
with the round specific feature distributions 𝑓 +𝑟 and 𝑓 −𝑟 , while REG
uses the fixed sigmoid function ℎ in all the rounds. Since ℎ infers

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00

F1
-s
co
re

(a) MNIST, Dataset size=10

0 100 200 300
Round

0.25

0.50

0.75

1.00
(b) MNIST, Dataset size=20

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00
(c) MNIST, Dataset size=30

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00

F1
-s
co
re

(d) FMNIST, Dataset size=10

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00
(e) FMNIST, Dataset size=20

0 100 200 300
Round

0.00

0.25

0.50

0.75

1.00
(f) FMNIST, Dataset size=30

0 100 200 300
Round

0.2

0.4

0.6

0.8

1.0

F1
-s
co
re

(g) CIFAR-10, Dataset size=25

0 100 200 300
Round

0.2

0.4

0.6

0.8

1.0
(h) CIFAR-10, Dataset size=50

OLS
REG
BASELINE
PROLIN

Figure 5: Misbehaving detection (gradient ascent attack) on the MNIST, Fashion-MNIST, and CIFAR-10 datasets by varying the
size of the local dataset per client (|𝐷𝑖 |)

0 50 100 150 200 250 300
Round

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10 Norm_2

Figure 6: 𝐿2-norm of the weights of the linear model 𝑔𝑟 on
CIFAR10with client datasize 50when a gradient ascent attack
is detected.

the property from a single "average" feature vector of a client, it dis-
regards the per-round feature distributions unlike PROLIN, which
can lead to a lower accuracy when these distributions differ over
the rounds (see Fig. 2 for illustration). The difference between the
two approaches becomes significant when𝑀𝑟 is inaccurate and the
distributions 𝑓 +𝑟 and 𝑓 −𝑟 have a larger overlap (i.e., their difference
is smaller towards the end of the training, which indicates decreas-
ing confidence, while ℎ always assigns the same confidence to any
feature value across rounds independently of 𝑟). REG only uses the
accuracy of 𝑀𝑟 as weights v in linear regression, while PROLIN
considers, in addition, all feature distributions directly during opti-
mization, which is more accurate. To confirm this, we report the
overlapping coefficient (OVL) between these distributions in Figure
7.b, which shows that this coefficient is almost 0 over all rounds
when the detection of a gradient inversion attack is considered (on
CIFAR-10 with local dataset size |𝐷𝑖 | = 25). This explains why the

performances of PROLIN and REG are almost the same (Figure 4.g).
However, OVL increases over the rounds for MIA (Figure 7.a), and
PROLIN becomes superior to REG (Figure 3.g).

0 50 100 150 200 250 300
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6
OVL

(a) Membership inference at-
tack

0 50 100 150 200 250 300
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6
OVL

(b) Gradient inversion attack

Figure 7: OVL coefficients over the rounds for membership
and misbehaving detection on CIFAR-10 with dataset size 25.

6.4.4 Impact of round number. In general, the accuracy of all ap-
proaches increases with the number of rounds. This is expected
because the number of different observed aggregates also increases,
which makes linear regression more accurate. Feature reconstruc-
tion techniques converge faster than BASELINE in general (except
Figure 5.h as detailed above): for MNIST and FMNIST, PROLIN
and REG reach an accuracy of 0.8 by round 80-100 on gradient
inversion and ascent detection due to regularization. The variance
of the reconstructed features is larger if the number of observed
aggregates is too small at the beginning of the training or the at-
tacker model𝑀𝑟 is too inaccurate towards the end of the training

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

for MIA. The effect of this noise is mitigated in PROLIN and REG by
regularization, which is not the case for BASELINE and OLS. More-
over, PROLIN and REG need roughly 2𝑁 rounds to converge,
while BASELINE generally needs more rounds. This is remarkable
considering the fact that any approach needs at least 𝑁 rounds to
converge.

6.4.5 Impact of dataset size. As the dataset size increases, all
approaches decline on MIA, as shown in Figure 3.a-h. Indeed,
as the model update is computed from the average gradient of all
training samples, the impact of a single target sample on the update
is smaller if the number of training samples is large. This results
in larger variance of the linear features (illustrated in Figure 2),
which is mitigated by regularization in PROLIN and REG. The
detections of gradient inversion and ascent attacks are less impacted
by the dataset size (Figure 4 and 5) because these attacks directly
manipulate the update vectors.

6.4.6 Impact of the number of clients. In order to evaluate the
impact of the total number of participants 𝑁 on property inference,
we perform an experiment on CIFAR-10 considering the MIA and
gradient ascent attacks. We set 𝑁 to 50, 100 and 200 but fix the
number of positive clients to 5, and the dataset size is 25. Figure 8
shows that BASELINE and OLS are the most influenced by the
increase in the number of clients. For example, BASELINE reaches
an F1-score of 100% with 50 clients on the gradient ascent attack,
and then it decreases to 69% and then to 21% with 100 and 200
clients, respectively (see Figure 8.d-f). There is a similar decrease
for MIA (see Figure 8.a-c). Similarly, OLS decreases from 83% to 62%
and then to 24% with 50, 100 and 200 clients, respectively, for the
gradient ascent attack. Although the F1-score also decreases
with PROLIN and REG, this accuracy degradation remains
less compared to BASELINE and OLS as the number of clients
increases. The increase in the number of clients seems to widen
the gap between the F1-score of PROLIN (which remains better)
and REG.

7 CONCLUSION
We showed that secure aggregation fails to protect client-specific
information. We proposed a technique called PROLIN that uses
a linear model (due to the linearity of aggregation in federated
learning) to extract and disaggregate features for the inference of
client-specific property information.

We evaluated our approach on two different tasks: membership
inference and the detection of poisoning attacks. In membership
inference, the goal is to identify clients whose training data in-
cludes a specific target record. In poisoning detection, the goal
is to identify clients that launch untargeted poisoning attacks to
degrade the accuracy of the global model. We show that, for both
tasks, feature-based reconstruction, and linear models in particular,
is surprisingly more accurate than earlier gradient-based recon-
struction techniques. Our proposal PROLIN outperforms both the
state-of-the-art baseline [36] and our proposed baselines. In ad-
dition, PROLIN has more stable accuracy over rounds, converges
faster, and is more robust to more complex scenarios such as when
the total number of clients increases or when the attacker model is
less accurate.

Our approach is passive and therefore undetectable. Although
there are techniques to prevent property reconstruction, those ap-
proaches usually introduce trade-offs. For example, Differential
Privacy can be used to avoid detection but at the cost of reducing
the accuracy of the common model. Similarly, a client can selec-
tively launch poisoning or use only a subset of all training samples
in certain rounds, which can make property reconstruction less
accurate. However, these countermeasures also imply less effective
attacks or the slower convergence of the common model if the local
dataset is small.

PROLIN is not limited tomembership inference andmisbehaving
detection, it can disaggregate the linear features of any supervised
detector model. Therefore, there are several avenues of future work
that are facilitated by our novel approach, such as contribution
scoring, where a score is assigned to each participant measuring,
the quality of its contribution to the common federated model,
even if secure aggregation is employed. This would also allow
to detect free-rider attacks, where a selfish participant benefits
from the global model without any useful contribution. There are
also stealthier poisoning (backdoor) attacks [63, 67] than gradient
inversion and ascent, whose evaluation is left for future work.

Although supervised detector models are generally more accu-
rate than any unsupervised approaches [40], they are also restricted
to detect only the properties that they are trained for. However,
if malicious clients are adaptive and know what detector model
the server uses, they can evade detection by launching stealthy
attacks [68] irregularly over the training. The extension of PROLIN
to unsupervised misbehaving detection belongs to future work.

ACKNOWLEDGMENTS
This work was partially supported by the Helmholtz Association
within the project “Trustworthy Federated Data Analytics (TFDA)”
(ZT-I-OO1 4) and ELSA – European Lighthouse on Secure and
Safe AI funded by the European Union under grant agreement
No. 101070617. Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the
European Union or European Commission. Neither the European
Union nor the European Commission can be held responsible for
them. Support by the European Union project RRF-2.3.1-21-2022-
00004 within the framework of the Artificial Intelligence National
Laboratory. Funded by the European Union (Grant Agreement Nr.
10109571, SECURED Project). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect
those of the European Union or the Health and Digital Executive
Agency. Neither the European Union nor the granting authority
can be held responsible for them.

REFERENCES
[1] Gergely Ács and Claude Castelluccia. 2011. I Have a DREAM! (DiffeRentially

privatE smArt Metering). In IH.
[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2018. How To Backdoor Federated Learning. CoRR abs/1807.00459
(2018). arXiv:1807.00459 http://arxiv.org/abs/1807.00459

[3] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A Little
Is Enough: Circumventing Defenses For Distributed Learning. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf

https://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
https://proceedings.neurips.cc/paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

[4] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, andAnimaAnandkumar.
2018. signSGD with majority vote is communication efficient and fault tolerant.
arXiv preprint arXiv:1810.05291 (2018).

[5] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing federated learning through an adversarial lens. In International
Conference on Machine Learning. PMLR, 634–643.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against
Support Vector Machines. In Proceedings of the 29th International Coference on
International Conference on Machine Learning (Edinburgh, Scotland) (ICML’12).
Omnipress, Madison, WI, USA, 1467–1474.

[7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017.
Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In
NIPS. 119–129.

[8] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia
Shumailov, and Nicolas Papernot. 2021. When the curious abandon honesty:
Federated learning is not private. arXiv preprint arXiv:2112.02918 (2021).

[9] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia
Shumailov, and Nicolas Papernot. 2022. All You Need Is Matplotlib, or Federated
Learning with Untrusted Servers is Not Private. Retrieved January 20, 2023 from
http://www.cleverhans.io/2022/04/17/fl-privacy.html

[10] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia
Shumailov, and Nicolas Papernot. 2023. Is Federated Learning a Practical PET
Yet? arXiv preprint arXiv:2301.04017 (2023).

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2016. Prac-
tical secure aggregation for federated learning on user-held data. arXiv preprint
arXiv:1611.04482 (2016).

[12] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1175–
1191.

[13] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang Gong. 2023. Fe-
dRecover: Recovering from Poisoning Attacks in Federated Learning using His-
torical Information. In 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023. IEEE, 1366–1383. https://doi.org/10.1109/
SP46215.2023.10179336

[14] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. 2019.
Cronus: Robust and heterogeneous collaborative learning with black-box knowl-
edge transfer. arXiv preprint arXiv:1912.11279 (2019).

[15] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[16] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. 2020. Client selection in federated
learning: Convergence analysis and power-of-choice selection strategies. arXiv
preprint arXiv:2010.01243 (2020).

[17] Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, Issa Sylla,
Yoonyoung Park, Grace Hsu, and Amar Das. 2019. Differential privacy-enabled
federated learning for sensitive health data. arXiv preprint arXiv:1910.02578
(2019).

[18] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. 2018. The Hidden
Vulnerability of Distributed Learning in Byzantium. In Proceedings of the 35th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 3521–3530.
http://proceedings.mlr.press/v80/mhamdi18a.html

[19] CBICA Center for Biomedical Image Computing & Analytics. 2020. The Federated
Tumor Segmentation (FeTS) initiative. Retrieved January 19, 2023 from https:
//www.med.upenn.edu/cbica/fets/

[20] Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein.
2022. Robbing the fed: Directly obtaining private data in federated learning with
modified models. Tenth International Conference on Learning Representations
(ICLR) 2022 (2022).

[21] Anmin Fu, Xianglong Zhang, Naixue Xiong, Yansong Gao, Huaqun Wang, and
Jing Zhang. 2020. VFL: A verifiable federated learning with privacy-preserving
for big data in industrial IoT. IEEE Transactions on Industrial Informatics 18, 5
(2020), 3316–3326.

[22] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing
Guo, Jun Zhou, Alex X Liu, and TingWang. 2022. Label Inference Attacks Against
Vertical Federated Learning. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA.

[23] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018. Mitigating sybils in
federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018).

[24] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2020. The Limitations of
Federated Learning in Sybil Settings. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain, October 14-
15, 2020, Manuel Egele and Leyla Bilge (Eds.). USENIX Association, 301–316.

https://www.usenix.org/conference/raid2020/presentation/fung
[25] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020.

Inverting Gradients - How easy is it to break privacy in federated learning?. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 16937–
16947.

[26] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and Thar
Baker. 2020. V eri fl: Communication-efficient and fast verifiable aggregation for
federated learning. IEEE Transactions on Information Forensics and Security 16
(2020), 1736–1751.

[27] Changhee Hahn, Hodong Kim, Minjae Kim, and Junbeom Hur. 2021. Versa: Veri-
fiable secure aggregation for cross-device federated learning. IEEE Transactions
on Dependable and Secure Computing (2021).

[28] Gang Han, Tiantian Zhang, Yinghui Zhang, Guowen Xu, Jianfei Sun, and Jin Cao.
2022. Verifiable and privacy preserving federated learning without fully trusted
centers. Journal of Ambient Intelligence and Humanized Computing (2022), 1–11.

[29] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert
Eichner, Kanishka Rao, Rajiv Mathews, and Sean Augenstein. 2018. Federated
Learning for Mobile Keyboard Prediction. https://arxiv.org/abs/1811.03604

[30] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and coun-
termeasures for regression learning. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 19–35.

[31] Changsong Jiang, Chunxiang Xu, and Yuan Zhang. 2021. PFLM: Privacy-
preserving federated learning with membership proof. Information Sciences
576 (2021), 288–311.

[32] Raouf Kerkouche, Gergely Ács, and Claude Castelluccia. 2020. Federated learning
in adversarial settings. arXiv preprint arXiv:2010.07808 (2020).

[33] Raouf Kerkouche, Gergely Ács, Claude Castelluccia, and Pierre Genevès. 2021.
Privacy-Preserving and Bandwidth-Efficient Federated Learning: An Application
to in-Hospital Mortality Prediction. In Proceedings of the Conference on Health, In-
ference, and Learning (Virtual Event, USA) (CHIL ’21). Association for Computing
Machinery, New York, NY, USA, 25–35. https://doi.org/10.1145/3450439.3451859

[34] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions
via influence functions. In International Conference on Machine Learning. PMLR,
1885–1894.

[35] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[36] Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, and Michael
Mitzenmacher. 2021. Gradient disaggregation: Breaking privacy in federated
learning by reconstructing the user participant matrix. In International Conference
on Machine Learning. PMLR, 5959–5968.

[37] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

[38] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Vir-
ginia Smith, and Chong Wang. 2020. Label leakage and protection in two-party
split learning. NeurIPS 2020 Workshop on Scalability, Privacy, and Security in
Federated Learning (SpicyFL) (2020).

[39] Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. 2022. Auditing Privacy
Defenses in Federated Learning via Generative Gradient Leakage. The IEEE / CVF
Computer Vision and Pattern Recognition Conference (CVPR) (2022).

[40] Zhuoran Ma, Jianfeng Ma, Yinbin Miao, Yingjiu Li, and Robert H. Deng. 2022.
ShieldFL: Mitigating Model Poisoning Attacks in Privacy-Preserving Federated
Learning. IEEE Transactions on Information Forensics and Security 17 (2022),
1639–1654.

[41] Abbass Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric Gouy-
Pailler, and Renaud Sirdey. 2021. A secure federated learning framework using
homomorphic encryption and verifiable computing. In 2021 Reconciling Data
Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS).
IEEE, 1–8.

[42] Itzik Malkiel and Lior Wolf. 2020. Mtadam: Automatic balancing of multiple
training loss terms. arXiv preprint arXiv:2006.14683 (2020).

[43] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2016. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS.

[44] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal
Training-Set Attacks on Machine Learners. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (Austin, Texas) (AAAI’15). AAAI Press,
2871–2877.

[45] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE symposium on security and privacy (SP). IEEE, 691–706.

[46] Wenhao Mou, Chunlei Fu, Yan Lei, and Chunqiang Hu. 2021. A verifiable fed-
erated learning scheme based on secure multi-party computation. In Wireless
Algorithms, Systems, and Applications: 16th International Conference, WASA 2021,
Nanjing, China, June 25–27, 2021, Proceedings, Part II. Springer, 198–209.

http://www.cleverhans.io/2022/04/17/fl-privacy.html
https://doi.org/10.1109/SP46215.2023.10179336
https://doi.org/10.1109/SP46215.2023.10179336
http://proceedings.mlr.press/v80/mhamdi18a.html
https://www.med.upenn.edu/cbica/fets/
https://www.med.upenn.edu/cbica/fets/
https://www.usenix.org/conference/raid2020/presentation/fung
https://arxiv.org/abs/1811.03604
https://doi.org/10.1145/3450439.3451859
http://yann.lecun.com/exdb/mnist/

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

[47] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739–753.

[48] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider.
2022. FLAME: Taming Backdoors in Federated Learning. In 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin
R. B. Butler and Kurt Thomas (Eds.). USENIX Association, 1415–1432. https:
//www.usenix.org/conference/usenixsecurity22/presentation/nguyen

[49] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman.
2018. Sok: Security and privacy in machine learning. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 399–414.

[50] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2022. Eluding Secure
Aggregation in Federated Learning via Model Inconsistency. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security (Los
Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York,
NY, USA, 2429–2443. https://doi.org/10.1145/3548606.3560557

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[52] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.
2022. DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection. In 29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA, April 24-28, 2022. The Internet
Society. https://www.ndss-symposium.org/ndss-paper/auto-draft-205/

[53] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-
hon Lau, Satish Rao, Nina Taft, and JD Tygar. 2009. Stealthy poisoning attacks
on PCA-based anomaly detectors. ACM SIGMETRICS Performance Evaluation
Review 37, 2 (2009), 73–74.

[54] EK Sannara, Francois Portet, Philippe Lalanda, and VEGA German. 2021. A
federated learning aggregation algorithm for pervasive computing: Evaluation
and comparison. In 2021 IEEE International Conference on Pervasive Computing
and Communications (PerCom). IEEE, 1–10.

[55] Justin Schuh. 2019. Potential uses for the Privacy Sandbox. Retrieved January
19, 2023 from https://blog.chromium.org/2019/08/potential-uses-for-privacy-
sandbox.html

[56] Shiqi Shen, Shruti Tople, and Prateek Saxena. 2016. Auror: Defending against
poisoning attacks in collaborative deep learning systems. In Proceedings of the
32nd Annual Conference on Computer Security Applications. 508–519.

[57] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learning. In
CCS.

[58] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data
poisoning attacks against federated learning systems. In European Symposium on
Research in Computer Security. Springer, 480–501.

[59] Jean-Baptiste Truong, PratyushMaini, Robert J. Walls, and Nicolas Papernot. 2021.
Data-Free Model Extraction. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision Foundation /
IEEE, 4771–4780. https://doi.org/10.1109/CVPR46437.2021.00474

[60] The European Union’s. 2019. The MELLODDY project. Retrieved January 19,
2023 from https://www.melloddy.eu/

[61] Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia Cordero,
Ephraim Zimmer, Tim Grube, Kristian Kersting, and Max Mühlhäuser. 2022.
User-Level Label Leakage from Gradients in Federated Learning. Proceedings on
Privacy Enhancing Technologies 2022, 2 (2022), 227–244.

[62] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor
attacks in neural networks. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 707–723.

[63] HongyiWang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S. Papailiopoulos. 2020.
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html

[64] Yuxin Wen, Jonas A. Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein.
2022. Fishing for User Data in Large-Batch Federated Learning via Gradient
Magnification. In Proceedings of the 39th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(Eds.). PMLR, 23668–23684. https://proceedings.mlr.press/v162/wen22a.html

[65] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
International Conference on Machine Learning. PMLR, 1689–1698.

[66] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747
(2017). arXiv:1708.07747

[67] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. DBA: Distributed Back-
door Attacks against Federated Learning. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=rkgyS0VFvr

[68] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. Dba: Distributed back-
door attacks against federated learning. In International conference on learning
representations.

[69] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2018. Generalized byzantine-
tolerant sgd. arXiv preprint arXiv:1802.10116 (2018).

[70] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. 2019. Veri-
fynet: Secure and verifiable federated learning. IEEE Transactions on Information
Forensics and Security 15 (2019), 911–926.

[71] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In
Proceedings of the 35th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.).
PMLR, 5650–5659. http://proceedings.mlr.press/v80/yin18a.html

[72] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald,
Nghia Hoang, and Yasaman Khazaeni. 2019. Bayesian nonparametric federated
learning of neural networks. In International conference on machine learning.
PMLR, 7252–7261.

[73] Xianglong Zhang, Anmin Fu, Huaqun Wang, Chunyi Zhou, and Zhenzhu Chen.
2020. A privacy-preserving and verifiable federated learning scheme. In ICC
2020-2020 IEEE International Conference on Communications (ICC). IEEE, 1–6.

[74] Yanci Zhang and Han Yu. 2022. Towards Verifiable Federated Learning. In Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22, Lud De Raedt (Ed.). International Joint Conferences on Artificial Intelli-
gence Organization, 5686–5693. https://doi.org/10.24963/ijcai.2022/792 Survey
Track.

[75] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

[76] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.
Advances in Neural Information Processing Systems 32 (2019).

A ANALYSIS
In the following, we provide a theoretical justification of PROLIN.
Without loss of generality, suppose that 𝑡 = 1. Somewhat abusing
the notation, let 𝝉𝑖 denote the probability that client 𝑖 has property
𝑃 . The maximum likelihood estimation of 𝝉 given the observed
gradient aggregates B = (b1, . . . , b𝑛) is

𝝉max = argmax
𝝉

𝑝 (𝝉 |B)

≈ argmax
𝝉

𝑝 (𝝉 |G) (11)

where 𝑝 (·|·) denotes a generic conditional PDF and G =

(𝑔1 (b1), . . . , 𝑔𝑛 (b𝑛)) are the feature aggregates. The last approxi-
mation holds if the features extracted by 𝑔𝑟 are sufficient to predict
the property information, that is, the detector model𝑀𝑟 = ℎ𝑟 ◦ 𝑔𝑟
is accurate.

Then,

𝝉max ≈ argmax
𝝉

𝑝 (𝝉 |G)

= argmax
𝝉

𝑝 (G|𝝉)𝑝 (𝝉) (by Bayes’ theorem)

= argmax
𝝉

𝑝 (𝝉)
∫

X∈R𝑛×𝑁
𝑝 (𝝉 ,G,X)

𝑝 (𝝉) 𝑑X

= argmax
𝝉

𝑝 (𝝉)
∫

X∈X

𝑝 (𝝉 ,X)
𝑝 (𝝉) 𝑑X

= argmax
𝝉

𝑝 (𝝉)
∫

X∈X
𝑝 (X|𝝉)𝑑X (12)

https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://doi.org/10.1145/3548606.3560557
https://www.ndss-symposium.org/ndss-paper/auto-draft-205/
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://doi.org/10.1109/CVPR46437.2021.00474
https://www.melloddy.eu/
https://proceedings.neurips.cc/paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html
https://proceedings.mlr.press/v162/wen22a.html
https://arxiv.org/abs/1708.07747
https://openreview.net/forum?id=rkgyS0VFvr
http://proceedings.mlr.press/v80/yin18a.html
https://doi.org/10.24963/ijcai.2022/792

Client-specific Property Inference against Secure Aggregation in Federated Learning WPES ’23, November 26, 2023, Copenhagen, Denmark

0 100 200 300
Round

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co
re

(a) MIA attack, 50 clients

0 100 200 300
Round

0.0

0.2

0.4

0.6

0.8

(b) MIA attack, 100 clients

0 100 200 300
Round

0.0

0.2

0.4

0.6

(h) MIA attack, 200 clients

0 100 200 300
Round

0.2

0.4

0.6

0.8

1.0

F1
-s
co
re

(d) GAA attack, 50 clients

0 100 200 300
Round

0.0

0.2

0.4

0.6

0.8

(e) GAA attack, 100 clients

0 100 200 300
Round

0.0

0.2

0.4

0.6

(f) GAA attack, 200 clients

OLS REG BASELINE PROLIN

Figure 8: Detection of membership inference attacks (MIA) and gradient ascent attacks (GAA) on CIFAR-10 datasets by varying
the total number of clients 𝑁 while keeping the number of clients with the property 𝑃 to 5.

where X = {X | X ∈ R𝑛×𝑁 ∧ ∀𝑟 : A𝑟,𝑖X𝑟,𝑖 = G𝑟 } denotes the set
of all individual feature vectors whose per-round aggregates are
exactly G.

Assuming a uniform prior on 𝝉 , we are searching for 𝝉 that
maximizes

∫
X∈X 𝑝 (X|𝝉)𝑑X. The likelihood function of 𝝉 given X is

𝐿(𝝉 |X) = 𝑝 (X|𝝉), therefore

argmax
𝝉

∫
X∈X

𝑝 (X|𝝉)𝑑X = argmax
𝝉

log
∫

X∈X
𝐿(𝝉 |X)𝑑X (13)

Let Y𝑖 be a Bernoulli random variable, where Y𝑖 = 1 if client 𝑖
has property 𝑃 . The likelihood function is

𝐿(𝝉 |X) = 𝑝 (X|𝝉)

=
∏
𝑖

𝑝 (X|𝜏𝑖) (by independence of clients)

=
∏
𝑖

(
𝑝 (X|Y𝑖 = 1, 𝜏𝑖)𝑝 (Y𝑖 = 1|𝜏𝑖)

+ 𝑝 (X|Y𝑖 = 0, 𝜏𝑖)𝑝 (Y𝑖 = 0|𝜏𝑖)
)

=
∏
𝑖

(𝜏𝑖 · 𝑝 (X|Y𝑖 = 1, 𝜏𝑖) + (1 − 𝜏𝑖)𝑝 (X|Y𝑖 = 0, 𝜏𝑖)) (14)

Plugging Eq. (14) into Eq. (13), we obtain:

𝝉max = argmax
𝝉

log
∫

X∈X

∏
𝑖

𝜏𝑖 · 𝑝 (X|Y𝑖 = 1, 𝜏𝑖)+

+(1 − 𝜏𝑖)𝑝 (X|Y𝑖 = 0, 𝜏𝑖) 𝑑X (15)

The exact computation of Eq. (15) is usually infeasible in practice
because 𝑝 (X|Y𝑖 , 𝜏𝑖) can be specific to client 𝑖 , however, the server
may not have any client-specific prior. The best strategy for the
server is to approximate 𝑃 (X|Y𝑖 , 𝜏𝑖) with the feature distributions

derived from its auxiliary dataset 𝐷aux . Specifically,

𝑝 (X|Y𝑖 = 1, 𝜏𝑖) =
∏

𝑟 ∈𝑅 (𝑖)
𝑝 (X𝑟,𝑖 |X𝑟−1,𝑖 , . . . ,X1,𝑖 ,Y𝑖 = 1, 𝜏𝑖)

≈
∏

𝑟 ∈𝑅 (𝑖)
𝑝 (X𝑟,𝑖 |Y𝑖 = 1, 𝜏𝑖)

≈
∏

𝑟 ∈𝑅 (𝑖)
𝑓 +𝑟 (X𝑟,𝑖) (16)

𝑝 (X|Y𝑖 = 0, 𝜏𝑖) =
∏

𝑟 ∈𝑅 (𝑖)
𝑝 (X𝑟,𝑖 |X𝑟−1,𝑖 , . . . ,X1,𝑖 ,Y𝑖 = 0, 𝜏𝑖)

≈
∏

𝑟 ∈𝑅 (𝑖)
𝑝 (X𝑟,𝑖 |Y𝑖 = 0, 𝜏𝑖)

≈
∏

𝑟 ∈𝑅 (𝑖)
𝑓 −𝑟 (X𝑟,𝑖) (17)

for a given client 𝑖 . Here, we assumed that the linear features
X1,𝑖 , . . . ,X𝑛,𝑖 of the same client 𝑖 are independent, which is not
true; even if the linear map 𝑔𝑟 is different per round, its values are
expected to concentrate around ĝ𝑖 for a given 𝑖 as defined by Eq. (9)
and approximated by linear regression in Eq. (10). This explains
Constraint 2 in PROLIN.

The integral in Eq. (15) can be approximated with Monte Carlo
integration, which takes several samples from X. These samples
should have a large likelihood 𝐿(𝝉 |X) since such values are more
significant to the integral. Hence, they should be re-sampled if
𝝉 changes, which can make the whole optimization process very
slow. To avoid this large overhead of re-sampling, we use the best
single sample estimate that maximizes the likelihood. This is a

WPES ’23, November 26, 2023, Copenhagen, Denmark Raouf Kerkouche, Gergely Ács, and Mario Fritz

lower bound of the likelihood because

log
∫

X∈X
𝐿(𝝉 |X)𝑑X ≥ logmax

X∈X
𝐿(𝝉 |X) (18)

Specifically,

argmax
𝝉

∫
X∈X

𝑃 (X|𝝉)𝑑X ≈ argmax
𝝉

max
X∈X

log𝐿(𝝉 |X) (19)

Therefore, combining Eq. (19) (16) (17) with Eq. (15), we get:

𝝉max ≈ argmax
𝝉

log
∫

X∈X
𝐿(𝝉 |X)𝑑X ≈

≈ argmax
𝝉

max
X∈X

∑︁
𝑖

log

(
𝜏𝑖 ·

∏
𝑟

𝑓 +𝑟 (X𝑟,𝑖)

+ (1 − 𝜏𝑖) ·
∏
𝑟

𝑓 −𝑟 (X𝑟,𝑖)
)

PROLIN performs exactly this optimization with the constraints
that X ∈ X (Constraint 1), X1,𝑖 , . . . ,X𝑛,𝑖 concentrate around the
solution Ĝ𝑖 of Eq. (10) for each client 𝑖 (Constraint 2), and 𝜏𝑖 ∈ {0, 1}
as a client either has or does not have property 𝑃 (Constraint 3).

The approximations in Eq. (11) and (19) introduce bias into
PROLIN, but they also decrease the variance of its prediction com-
pared to gradient reconstruction. If the gradient size 𝑧 is much
larger than the feature size 𝑡 , and 𝑔𝑟 effectively extracts all property
relevant information, then the variance reduction can outbalance
the bias, hence PROLIN can overcome gradient reconstruction.
However, if 𝑀𝑟 is inaccurate (i.e., 𝑔𝑟 cannot capture property rel-
evant information), or 𝐷𝑎𝑢𝑥 is not representative, then the bias
can outbalance the variance and gradient reconstruction becomes
better.

B COMPARISON OF GRADIENT AND
FEATURE RECONSTRUCTION

We compare the reconstruction error of OLS in the gradient space
with its error in the feature space. We show that if property in-
formation is scattered across several coordinates of the update
vector, then OLS in the feature space has a smaller error than in
the gradient space.

Following from Eq. (5), the linear model is

B = AŴ + 𝛀

for gradient aggregation and

G = AĜ + 𝚯

for feature reconstruction, where 𝛀𝑖, 𝑗 ∈ R𝑛×𝑧 and 𝚯𝑖, 𝑗 ∈ R𝑛×𝑡 are
random values that are assumed to have identical normal distribu-
tions with variance 𝜎 just for the sake of comparison. Assume that
OLS is used to obtain an approximation W̃ of Ŵ and also an approx-
imation G̃ of Ĝ, which means that W̃ = Ŵ+A+

𝛀 and G̃ = Ĝ+G+
𝚯

if A has full rank (recall that A+ ∈ R𝑁×𝑛 is the pseudo-inverse of
A). Therefore,

𝐸 | |𝑔(Ŵ) − 𝑔(W̃) | |1 = 𝐸 | |𝑔(Ŵ) − 𝑔(Ŵ + A+
𝛀) | |1

= 𝐸 | |𝑔(A+
𝛀) | |1 (by linearity of 𝑔)

= O(||𝜶 | |2𝑁
√
𝑛𝜎)

and

𝐸 | |Ĝ − G̃| |1 = 𝐸 | |Ĝ − (Ĝ + A+
𝚯) | |1

= 𝐸 | |A+
𝚯| |1

= O(𝑡𝑁
√
𝑛𝜎)

where 𝑔(x) = 𝜶x is fixed over the rounds and (A+
𝑖, 𝑗
)2 = O(1)7.

Therefore, the error when gradients are reconstructed is larger
with a factor of O(||𝜶 | |2/𝑡). Since 𝜶𝑖 represents the impact of
gradient coordinate 𝑖 on property inference, gradient- and feature-
based reconstructions can have comparable performance if 𝜶 is
sparse (i.e., when the property information is already encoded by
only a few gradient coordinate values whose reconstructions are
sufficient for successful inference).

C MORE DETAILS
All settings are summarized in Table 2.

Notation MNIST Fashion-MNIST CIFAR-10

𝑛 300 300 300
𝑧 21,840 21,840 62,006
𝑁 50 50 50
𝜆 5 5 5
𝐶 0.2 0.2 0.2
𝜙 0.1 0.1 0.1
𝜂 0.01 0.01 0.1
|𝐷𝑎𝑢𝑥 | 6,000 6,000 5,000
|𝐷′ | 2|𝐷𝑎𝑢𝑥 | 2|𝐷𝑎𝑢𝑥 | 2|𝐷𝑎𝑢𝑥 |
Table 2: Values of Hyperparameters

7Each element of A+
𝛀 ∈ R𝑁 ×𝑧 is a normal random variable with mean 0 and variance∑

𝑗 (A+
𝑖,𝑗)2𝜎2 , hence [𝑔 (A+

𝛀)]𝑖 is also a normal random variable with mean 0 and
variance

∑𝑧
𝑘=1 𝜶

2
𝑘

∑𝑛
𝑗=1 (A+

𝑖,𝑗)2𝜎2 .

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Linear regression

	3 Related Work
	4 Threat model
	5 Property reconstruction
	5.1 Naive property reconstruction with gradient disaggregation
	5.2 PROLIN: Property reconstruction from linear features

	6 Evaluation
	6.1 Dataset
	6.2 Model Architectures
	6.3 Property reconstruction
	6.4 Results

	7 Conclusion
	Acknowledgments
	References
	A Analysis
	B Comparison of gradient and feature reconstruction
	C More details

