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ABSTRACT

Fine-grained network telemetry is becoming a modern datacenter
standard and is the basis of essential applications such as conges-
tion control, load balancing, and advanced troubleshooting. As
network size increases and telemetry gets more fine-grained, there
is a tremendous growth in the amount of data needed to be reported
from switches to collectors to enable network-wide view. As a con-
sequence, it is progressively hard to scale data collection systems.

We introduce Direct Telemetry Access (DTA), a solution opti-
mized for aggregating and moving hundreds of millions of reports
per second from switches into queryable data structures in collec-
tors’ memory. DTA is lightweight and it is able to greatly reduce
overheads at collectors. DTA is built on top of RDMA, and we
propose novel and expressive reporting primitives to allow easy
integration with existing state-of-the-art telemetry mechanisms
such as INT or Marple.

We show that DTA significantly improves telemetry collection
rates. For example, when used with INT, it can collect and aggregate
over 400M reports per second with a single server, improving over
the Atomic MultiLog by up to 16x.

1 INTRODUCTION

In modern data centers, telemetry is the foundation for many net-
work management tasks such as traffic engineering, performance
diagnosis, and attack detection [6, 26, 34, 38, 67, 72, 74, 75]. With
the rise of programmable switches [8, 31, 54], telemetry systems
can now monitor network traffic in real time and at a fine granu-
larity [6, 21, 43, 51, 71, 76]. They are effectively the key enabler to
support automated network control [2, 25, 44] and detailed trou-
bleshooting [22, 34, 63]. To provide network-wide views, telemetry
systems also aggregate per-switch data into a centralized collec-
tor [5, 10, 23, 27, 34, 37, 53], commonly located in a ordinary rack
within the datacenter fabric [28, 50].

Unfortunately, as telemetry gets more fine-grained, the amount
of data to send to a collector increases and it is progressively harder
to scale data collection systems [37, 68, 75]. Indeed, a switch can
generate up to millions of telemetry reports per second [51, 75]
and a data center network can comprise thousands of them [22].
Also, the amount of data keeps growing with larger networks
and higher line rates [60].

Existing research boosts scalability in data collection by improv-
ing the collector’s network stacks [37, 68], by aggregating and filter-
ing data at switches [32, 40, 51, 69, 75], or by reducing the exported
information through switch cooperation [42]. However, as we show,
a collector can easily become either CPU- or memory bounded (§2).
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Figure 1: An overview of the telemetry data flow in DTA.

This is due to the amount of data processing (i.e., I/O, parsing, and
data insertion) it is required to perform for every incoming report.

We propose Direct Telemetry Access (DTA) — a telemetry col-
lection system (Figure 1) optimized for aggregating and moving
hundreds of millions of reports per second from switches into
queryable data structures in collectors’ memory. In designing DTA,
we considered four key goals: (1) relieving a collector’s CPU from
processing incoming reports while also (2) greatly lowering the
number of memory access into it. Those aspects dramatically re-
duce overheads at the collectors. Furthermore, we wanted (3) to
be compatible with state-of-the-art telemetry reporting solutions
(e.g., INT [32], Marple [51]) while (4) imposing minimal hardware
resource overheads at switches.

To meet the first goal, we could simply have switches gener-
ate RDMA (Remote Direct Memory Access) [30] calls to a collec-
tor’s memory. RDMA is available on many commodity network
cards [33, 64, 70] and can perform hundreds of millions of memory
writes per second [64], significantly faster than the most perfor-
mant CPU-based telemetry collector [37]. Previous work [39] has
shown that one can generate RDMA instructions between a switch
and a server for network functions. However, it is challenging to
adopt RDMA between multiple switches and a collector for teleme-
try systems as RDMA performance degrades substantially when
multiple clients write to the same server [36]. Furthermore, manag-
ing RDMA connections at switches is costly in terms of hardware
resources and this would conflict with our fourth goal.

We instead developed a solution where the telemetry data ex-
ported by switches is encapsulated into our custom and lightweight
protocol. This encapsulated data is then intercepted by the last hop
switch in front of the collector (generally the Top-of-Rack switch),
which we call a DTA translator, and converted into standard RDMA
calls for the corresponding memory (§3). For the first goal, the
CPU avoids processing reports by design as data is inserted into
a collector’s memory via RDMA. For the second, the translator



Preprint, ,

System Per-switch Report Rate
INT Postcards (Per-hop latency, 0.5% sampling) 19 Mpps
Marple [51] (Flowlet sizes) 7.2 Mpps
Marple [51] (TCP out-of-sequence) 6.7 Mpps
NetSeer [75] (Loss events) 950 Kpps

Table 1: Per-reporter data generation rates by various moni-
toring systems, as presented in their individual papers and
verified through our experiments. Numbers are based on
6.4Tbps switches.

aggregates and batches reports before invoking RDMA calls and
inserts the data in a collector’s memory using RDMA-compatible
write-only data structures that enable indexing of aggregates with-
out reading from memory, thus reducing memory pressure on a
collector’s memory. For the third, we designed several switch-level
RDMA-extension primitives (Key-Write, Postcarding, Append, and
Key-Increment), available to reporting switches. These are converted
by the translator into standard RDMA calls and allow compatibility
with many telemetry systems (§4). Finally, for the fourth, telemetry-
reporting switches use our UDP-based protocol to send reports,
thus freeing them from the burden of managing RDMA, which is
the duty of only the translator.

We implemented DTA using commodity RDMA NICs and pro-
grammable switches (§5) and our evaluation (§6) shows that we
process and aggregate over 400M INT reports per second, without
any CPU involvement, which is 16x faster than the state-of-the-art
CPU-based collector for high-speed networks [37]. Further, when
the received data can be recorded sequentially, as in the case of
temporally ordered event reports, we can ingest up to a billion
reports per second, 41x more than state-of-the-art.

Our main contributions are:

e We show that collectors can easily become either CPU- or
memory bounded and this greatly limits their ability to pro-
cess reports and store them in queryable data structures.

e We propose Direct Telemetry Access, a novel telemetry col-
lection system generic enough to support major telemetry
reporting solutions proposed by the research community
(e.g., Marple) or industry (e.g., INT).

e We implement DTA using commodity RDMA NICs and pro-
grammable switches.

e We release DTA as open source to foster reproducibility [1].

2 MOTIVATION

Telemetry systems are commonly composed of two main com-
ponents: (1) switches reporting data and (2) collectors, special-
ized software installed in dedicated servers located in ordinary
racks within the datacenter fabric, that store the reported data [28,
50]. As telemetry systems move to fine-grained real-time analysis
with support for network-wide queries, report collection becomes
the new key bottleneck [37].

We investigated several state-of-the-art telemetry systems and
summarize the reporting rate generated by a single switch in Ta-
ble 1, based on the numbers available in the corresponding papers.!

HINT does not advertise a telemetry reporting rate. Thus, we chose an arbitrary
sampling rate of 0.5% to keep overheads reasonably low, as an example.
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Figure 2: The performance of CPU-based collectors. MultiLog
is CPU bounded, while Cuckoo is memory bounded as with
20 cores, 42% of the cycles are spent in waiting for a memory

operation to finish.

For example, INT Postcard [32] could generate up to 19M reports
per second when enabled on a commodity 6.4Tbps switch and in
the presence of a standard load of ~40% [73]. Other solutions ex-
port less data, either because they pre-process and filter data at
switches [23, 75], or because they focus on more specific tasks,
thus limiting the data to report [51].

The main takeaway is that state-of-the-art solutions can easily
generate millions of reports per second per switch. However, to be
able to gather a network-wide view at datacenter scale, we may
need to collect data from thousands of switches [22] and this re-
quires high-performance collection stacks [37, 68]. For each report
from a switch, collectors spend CPU cycles to receive the data (i.e.,
1/0), parse it (extract content from the report), and to insert it in a
queryable data structure for later use (i.e., indexing) [11, 37, 48, 68].

Here, an important trade-off must be taken into account: the
more complex the indexing mechanism used for final storage, the
more they are suited to efficiently answer different types of queries,
but in turn this generally means more CPU cycles spent in inserting
data. As an example, consider a simple collector that uses only a
hash table to record incoming reports. This solution is good for
storing and retrieving counters (e.g., Netflow flow records [13]).
However, such a solution might be impractical for essential queries
that look, e.g., at a time interval (such as analyzing losses [75],
congestion [21], suspicious flows [40] or latency spikes [73] that
happens at a certain point in time).

To better understand this trade-off, we have deployed the state-
of-the-art DPDK-based telemetry collector allowing storage and
diverse queries through an Atomic MultiLog [37] (from now on we
refer to it as MultiLog).? We used a high-speed server equipped
with 2x Intel Xeon Silver 4114 CPUs with 10 cores each clocked to
2.20GHz, and 2x32GB DRAM clocked to 2.67GHz. We compared the
performance of this system to a DPDK-based lightweight solution
which employs only a simple cuckoo hash table to store the received
information (we refer to it as Cuckoo). We analyzed their behavior
when receiving and storing INT reports and found that the MultiLog
collector is CPU bounded: indeed, its ability to ingest reports grows
linearly with its number of cores (Figure 2a). Moreover, the majority

2 Atomic MultiLog is the basic storage abstraction in Confluo [37], and it is similar in
interface to database tables.
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Figure 3: Number of cores needed for single-metric collection
with MultiLog at various network sizes.

of its CPU cycles, around 72.8%, are spent in inserting the data
into its internal database (Figure 2c). The main takeaway is that a
complex indexing scheme can have a huge toll on the performance
of the collector. To put this in perspective, in Figure 3, we show
the number of cores that would be needed for a growing size of a
datacenter network when employing the MultiLog collector in the
presence of switches reporting different information. Here, we can
see that for networks comprising around a thousand switches [22],
we would need to dedicate nearly 10K cores just for collection. For
example, in a K = 28 fat tree, this would correspond to over 11% of
the servers (assuming 16 cores each), and the problem gets worse
for smaller networks.

In contrast, the lightweight Cuckoo scheme can ingest more
reports per second (Figure 2a) using the same number of cores.
However, a new bottleneck arises: in our tests we see that with
more than 11 cores it becomes memory bounded. For example,
with 20 cores, 42% of the cycles are spent waiting for a memory
operation to finish (Figure 2b). This is because the high number
of reports received impose a huge stress on the memory subsys-
tem, which needs to be read and written to parse the reports,
calculate the hashes, and resolve eventual collisions.

Based on the observations, we enumerate our desired goals for a

telemetry collection system:
Goals. We wish to have a solution that (1) reduces as much as
possible the number of cores required for data collection; (2) low-
ers the number of memory accesses per report; (3) is compatible
with state-of-the-art telemetry reporting systems such as INT and
Marple; (4) uses minimal hardware resources to get reports from
switches to the collector.

3 DIRECT TELEMETRY ACCESS OVERVIEW

DTA leverages translators, which are the last-hop switches adjacent
to the collectors. Translators receive telemetry data from reporters
(i.e., switches exporting telemetry data), encapsulated in our light-
weight custom protocol. They then aggregate and batch the reports
and use standard RDMA calls to write them directly into queryable
data structures in the collectors’ memory (Figure 1). In the following,

we discuss how, with this architecture, we meet the goals set above.

Meeting goal #1. A strawman solution to meet the first goal could
have switches write their reports directly in collectors’ memory
with RDMA calls. This would zero any CPU requirements at collec-
tors by design. Although this idea appears attractive, and generating
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Figure 4: DTA supports legacy telemetry systems through
encapsulation with new headers.

RDMA instructions directly from switches is possible [39], it be-
comes problematic when applied to telemetry collection. Namely,
It is inefficient to support multiple RDMA senders writing in the
same servers [36]. This is paramount for network telemetry, where
multiple switches have to report their data to a collector. Addi-
tionally, RDMA NICs can only handle a limited number of active
connections (also known as queue pairs) at high speed. Increasing
the number of queue pairs degrades RDMA performance by up to
5x [15]. This limits the total number of switches that can generate
telemetry RDMA packets to a collector before performance starts
degrading. Alternatively, several switches can share the same queue
pair, but RDMA imposes the assumption that every packet received
at the collector has a strictly sequential ID, which is impractical for
a distributed network of switches. DTA overcomes these challenges
by having the translator, which is the last-hop switch before the col-
lector, act as the RDMA writer. Further, by aggregating the reports
we can optimize the number of CPU cycles needed for querying as
related information is stored contiguously.

Meeting goal #2. We propose two techniques to lower the num-
ber of accesses into collectors’ memory. First, we aggregate re-
ports at the translator, thereby writing each aggregate using a
single write rather than one per report. Second, while telemetry
data has to be stored in the collectors’ memory in such a way
that it is easy to query [37], even simple data structures like hash
tables often require an excessive number of memory accesses,
e.g., for conflict resolution. Instead, we design RDMA-compatible
write-only data structures that enable the indexing of aggregates
without reading from memory.

Meeting goal #3. We propose a number of powerful primitives
available at the translator that can be used by state-of-the-art
telemetry reporting systems (Table 2). The primitives abstract away
many common challenges (e.g., deciding where to write data to or
how to leverage the small switches’ memory) and allow telemetry
system designers to seamlessly benefit from our optimizations (e.g.,
CPU and memory accesses minimization).

Meeting goal #4. In DTA, to minimize in-network hardware re-
sources utilization, reporting switches simply use our UDP-based
lightweight protocol to send reports to the translator. That way,
we alleviate the burden of RDMA generation and aggregation
in all switches but the translators. Indeed, the standard RDMA
communication protocol (RoCEv2) requires maintaining expen-
sive per-connection metadata and generate appropriate headers
and associated checksums.

4 DESIGN

DTA allows easy integration with state-of-the-art telemetry mon-
itoring systems [6, 21, 23, 51] through our four collection primi-
tives that together support a wide range of telemetry solutions:
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Primitive Example monitoring Description
(Interface)
INT-MD (Path Tracing) [21, 38] INT sinks reporting 5x4B switch IDs using flow 5-tuple keys
Key-Write Marple (Host counters) [51] Reporting 4B counters using source IP keys, through non-merging aggregation
(key,data) PacketScope (Flow troubleshooting) [65] Report fixed-size per-flow per-switch traversal information using <switchID,5-tuple> as key
’ PINT (Per-flow queries) [6] 1B reports with 5-tuple keys, using redundancies for data compression through n = f(pktID)
Sonata (Per-query results) [23] Reporting fixed-size network query results using queryID keys
Postcarding INT-XD/MX (Path Measurements) [21, 38] Switches report 4B INT postcards using (flow 5-tuple, hop) keys
(key,hop,data) Trajectory Sampling (Path Frequencies) [16] Collection of unique packet labels from all hops for sampled packets
dShark (Parser-Grouper transfer) [17] Parsers append packet summaries to lists hosted by Grouper-servers
INT (Congestion events) [21, 38] INT sinks append 4B reports to a list of network congestion events
Append Marple (Lossy connections) [51] Report 13B flows to a list with packet loss rate greater than threshold
(listID,data) NetSeer (Loss events) [75] Appending 18B loss event reports into network-wide list of packet losses

PacketScope (Pipeline-loss insight) [65]
Sonata (Raw data transfer) [23]

On packet drop: send 14B pipeline-traversal information to central list of pipeline-loss events
Appending query-specific packet tuples from switches to lists at streaming processors

Key-Increment  Marple (Host counters) [51]
(key,counter) TurboFlow (Per-flow counters) [61]

Reporting 4B counters using source IP keys, through addition-based aggregation
Sending 4B counters from evicted microflow-records for aggregation using flow key as keys

Table 2: Existing telemetry monitoring systems, mapped into the primitives proposed by the current iteration of DTA.

Key-Write, Postcarding, Append, and Key-Increment. These prim-
itives provide for placing data in the right place at the collec-
tor’s memory during reporting time, so as to alleviate as much
as possible the cost of query execution.

In Table 2, we show that the primitives are sufficiently generic
to support many state-of-the-art telemetry systems. In Figure 4, we
show the structure of a DTA report. The telemetry payload exported
by a switch, which depends on the specific monitoring system
being used, is encapsulated into a UDP packet that carries our
custom headers. The DTA header (specifying the DTA primitive) and
primitive sub-header (containing the primitive parameters) are used
by the translator to decide what and where to write in the collectors’
data structures. This flexibility is essential as the various monitoring
systems require writing telemetry in different ways for efficient
analysis at the collector. In the following, we discuss our designed
primitives. This description assumes that no DTA messages are lost,
which could be either through Priority Flow Control (PFC) or a
custom flow control solution as discussed later in §7. The primitives
themselves would still work even in case of severe in-transit loss
of reports, although with degraded probabilistic guarantees which
is not accounted for in the following theoretical analysis.

Key-Write (KW). This primitive is designed for key-value pair
collection. Storing per-flow data is one scenario where this primitive
is useful (additional examples are in Table 2).

Key-value indexing is challenging when the keys come from
arbitrary domains (e.g., flow 5-tuples) and we want to map them to
a small address space using just write operations. KW provides a
probabilistic key-value storage of telemetry data and is designed
for resource-efficient data plane deployments. We achieve this by
constructing a central key-value store as a shared hash table for
all telemetry-generating network switches. Indexing per-key data
in this hash table is performed statelessly without collaboration
through global hash functions. However, data written to a single
memory location is highly susceptible to overwrites due to hash
collisions with another key’s write. The algorithm, therefore, in-
serts telemetry data as N identical entries at N memory locations to
achieve partial collision tolerance through built-in data redundancy.
In addition, a checksum of the telemetry key is stored alongside
each data entry, which allows queries to be verified by validating

the checksum. We further reduce the network and hardware re-
source overheads of KW by moving the indexing and redundancy
generation into the DTA translator. This design choice effectively
reduces the telemetry traffic by a factor of the level of redundancy
and further reduces the telemetry report costs in the individual
switches by replacing costly RDMA generation with the much
more lightweight DTA protocol (§6.3). Isolating KW logic inside
collector-managing translators allows us to entirely remove this
resource cost from all other switches.

As analyzed in Appendix A.5, we can derive rigorous bounds on
the probability that KW succeeds. There are two possible errors:
(i) we fail to output the value for a given key; (ii) we output the
wrong value for a given key. Denoting the number of slots by M,
the number of pairs written after the queried key by aM, and the
checksum length by b bits, we show that the probability of (i) is
bounded by:

(1—e NN . (1-270)N (1)

+(1-e NN -2V _N.27b. (1-270)N-1) (9
N-1 /5 ) _ )

‘" ( > (]) (1= @N) L em e NIN=I) (1 - (1 —z—b)f)). (3)
Jj=1

Here, (1) bounds the probability that all N locations are over-
written with other checksums; (2) bounds the probability that all
locations are overwritten and at least two items with our key’s
checksum write different values; and (3) bounds the probability
that not all slots are overwritten, but at least one is overwritten
with the query key’s checksum. We also bound the probability
of giving the wrong output (ii) by

(1-e*NN.N.27b, (4)

For example, if N = 2, b = 32, ¢ = 0.1, the chance of not providing
the output is less than 3.3%, while the probability of wrong output
is bounded by 1.6 - 101, This aligns with the best effort standard
of network telemetry (e.g., INT is often collected using UDP, and
packet loss results in missing reports) while having a negligible
chance of wrong output. Note that this error is significantly lower
than with N = 1 (which results in not providing output with proba-
bility 9.5%) and higher than for N = 4 (probability 1.2%). However,
increasing N also has implications to throughput (more RDMA
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Figure 5: The Postcarding memory structure at the collector.

writes) and is not always justified; we elaborate on this tradeoff
in §6.5 and show that N = 2 is often a good compromise.

DTA also lets switches specify the importance of per-key teleme-
try data by including the level of redundancy, or the number of
copies to store, as a field in the KW header. Higher redundancy
means a longer lifetime before being overwritten, as we discuss in
§6.5.2. As the level of redundancy used at report-time may not be
known while querying, the collector can assume by default a maxi-
mum (e.g., 4) redundancy level. If the data was reported using fewer
slots, unused slots would appear as overwritten entries (collision).

Postcarding. One of the most popular INT working modes is
postcarding (INT-XD/MX [21]), where switches generate postcards
when processing selected packets and send them to the collec-
tor (e.g., for tracing a flow’s path.) A report is a collection of one
postcard from each hop. Intuitively, while we could use the KW
primitive to write all postcards for a given packet, this is poten-
tially inefficient for several reasons. First, each packet can trigger
multiple reports that will use multiple RDMA writes even if N = 1
(e.g., one per switch ID for path tracing.) In turn, for answering
queries with KW (e.g., outputting the switch ID list), the collector
will need to make multiple random-access reads, which is slow.
Further, adding the KW’s checksum to each hop’s information is
wasteful and degrades the memory-queryability tradeoff. For ease
of presentation, we first explain how to reduce the number of writes
and later elaborate on how to decrease the width of each slot.

Our observation is that if we know a bound B on the number of
hops a packet traverses (e.g., five for fat tree topology), we can im-
prove the above by writing all of a packet’s postcards into a consec-
utive memory block. To that end, we break the M memory locations
into chunks of size B, yielding C = M/B chunks. The i’th postcard
for a packet/flow ID x is written into B-h(x) + i, where h maps iden-
tifiers into chunks (i.e., h(x) € {0,...,C — 1}). This way, the report
for all up to B is consecutive in the memory, as shown in Figure 5.

To reduce the number of RDMA writes, we use a mapping from
IDs to postcards at the translator. That is, the translator shall cache
postcards 0, 1, ..., B — 1 before writing the report to the collector’s
memory using a single RDMA write, once B flow postcards are
counted in the translator. Further, answering queries will thus re-
quire a single memory random access. As not all packets follow
a B hop path, egress switches can provide a packet’s path length
inside postcards, and translators can use this value to trigger writes
before the postcard-counter reaches B. Additionally, reports may
be flushed early due to collisions on the switch cache.

Finally, we reduce the number of bits needed for each loca-
tion, compared with writing the value and checksum to each slot.
Intuitively, we leverage the B postcards to amplify the success
probability — we output the report only if all checksums are valid
thereby minimizing the chance of wrong outputs. Intuitively, we use
b > log, |V| bits per location to get a collision chance of ~ (|V| 27b)
b)B

for each location and ~ (|V| - 277)" overall. Here, V is the set of
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all possible values (e.g., all switch IDs). As noted by PINT [6], |V|
is often smaller than 232 (although the INT standard requires that
each value is reported using exactly four bytes [21]), allowing us
to use small b values.

Let g be a hash function that maps values v € V into b-bit bit-
strings, where b is the desired slot width. We use a “blank” value
LI to denote that values for a given hop were not collected (po-
tentially because the path length was shorter than B); this way,
each flow always writes all B hops’ values, minimizing the chance
of false output due to hash collisions. Then, when receiving a
postcard value vy ; € V from the i’th hop of flow/packet ID x,
we write checksum(x, i) ® g(vy,;) into location B - h(x) + i (here
checksum(x, i) also returns a b-bit result and @& is the bitwise-xor
operator). When answering queries about x, we check if there exists
¢ such that for all i € {0,..., ¢ — 1} there exists a value vy; € V for
which checksum(x, i) ®g(vy, ;) is stored in slot B-h(x) +i and for all
i€{t,...,B—1} checksum(x, i) ® g(U) is stored. If so, we output
that the postcard reports were vy, 0, 0,1, - - ., Ux,¢—1. In this case, we
say that the chunk contains valid information. We further note that
checking the existence of such vy ; can be done in constant time
using a pre-populated lookup table that stores all key-value pairs
{(9(v),0) v e VU{L}}.

Our approach generalizes with redundancy N > 1: we use N
hash functions hy, ..., hx such that checksum(x, i) ® g(vy,;) is writ-
ten into locations {B “hi(x)+i|je{L,.. N}} For answering
queries, we output vy 0, x,1, - - ., Ux,e—1 if it appears in a valid subset
of the N chunks and all other chunks contain invalid information.

In Appendix A.6, we analyze the primitive and prove that the
probability of not providing an output is bounded by:

(1- e_aAN)N : (1 - ((|V| +1) - Z_b)B )N ©
N (R (R (AP Z’b)B)N

—N~(<|V\+1)~2*”)B-(1—(<|V|+1>~z*”)B)N71) ©

N-1 N
+ . (1 _ efa-N)j . efa."N(ij)
2]

"~ -(1 - (1 - ((|V| +1) - z"’)B)j). @)

We also show that the chance of wrong output is bounded by:
B
(1= NN N (V] +1)-270) (®)

We consider a numeric example to contrast these results with
using KW for each report of a given packet. Specifically, suppose
that we are in a large data center (|V| = 2!8 switches) and want to
run path tracing by collecting all (up to B = 5) switch IDs using
N = 2 redundancy. Further, let us set b = 32-bit per report and
compare it with 64 bits (32 for the key’s checksum and 32 bits for the
switch ID) used in KW, and that C- « packets’ reports were collected
after the queried one, for & = 0.1. The probability of not outputting
a collected report (5-7) is then at most 3.3% and the chance of
providing the wrong output (8) is lower than 10722, In contrast,
using KW for postcarding gives a false output probability of ~
8-10~ ! (in at least one hop) using twice the bit-width per entry!



Preprint, ,

Append. Some telemetry scenarios are not easily managed with
key-value stores. A classic example is when a switch exports a
stream of events, where a report would include an event identifier
and an associated timestamp (e.g., packet losses [75], congestion
events [21], suspicious flows [40], latency spikes [73]). We thus
provide a primitive that allows reporters to append information
into global lists, with a pre-defined telemetry category in each list.

Telemetry reporters simply have to craft a single DTA packet
declaring what data they want to append to which list, and forward
it to the appropriate collector. The translator then intercepts the
packet and generates an RDMA call to insert the data in the correct
slot in the pre-allocated list. The translator utilizes a pointer to
keep track of the current write location for each list, allowing it
to insert incoming data per-list. Append adds reports sequentially
and contiguously into memory. This leads to an efficient use of
memory and strong query performance. Translation also allows
us to significantly improve on the collection speeds by batching
multiple reports together in a single RDMA operation.

Key-Increment (KI). This is similar to the KW primitive, but
allows for addition-based data aggregation. That is, the KI primitive
does not instruct the collector to set a key to a specific value, but
it instead increments the value of a key. For example, switches
might only store a few counters in a local cache, and evict old
counters from the cache periodically when new counters take their
place [51, 61]. The KI primitive can then deliver collection of these
evicted counters at RDMA rates. As with KW, the translator reduces
network overheads compared with a more naive design.

Our KI memory acts as a Count-Min Sketch [14] and we incre-
ment N values using the RDMA Fetch-and-Add primitive. On a
query, KI returns the minimum value from these N locations. Hash
collisions may lead to an overestimate of the value, with error guar-
antees matching those of Count-Min Sketches [14]. The counters’
memory may be reset periodically, depending on the application.

Extensibility. DTA is easily extensible to other primitives by the
addition of new translation paths at translators, although they
would remain constrained by the limitations imposed by commod-
ity programmable switches [47]. Some of these limitations could be
overcome by implementing the translator logic into FPGA-based
smartNICs (see §7). For example, one could extend DTA to sup-
port collection of sketch-based measurements. This could allow
for either in-network discovery of network-wide heavy hitters, or
aggregation of counters at the translator to decrease the collection
load at compute servers. Additionally, the translator does not have
to be a semi-passive data aggregator as presented here, and primi-
tives could be designed to be more active. For example, one could
use techniques similar to the ones presented by Gao et al. [18] to
derive the network state directly at the translator based on the inter-
cepted telemetry reports, thereby offloading even parts of analysis
from the telemetry collectors.

5 IMPLEMENTATION

Our codebase includes approximately 5K lines of code divided be-
tween the logic for the DTA reporter (§5.1), the translator (§5.2), and
collector RDMA service (§5.3). The hardware resource footprints
are presented later in Sections §6.3 and §6.4. DTA is released in
open-source [1].

Langlet et al.

5.1 DTA Reporter

The reporter takes =~ 700 lines of P4_16 for the Tofino ASIC. Con-
troller functionality is written in & 100 Python lines, and is respon-
sible for populating forwarding tables and inserting collector IP
addresses for the DTA primitives.

DTA reports are generated entirely in the data plane and the logic
is in charge of encapsulating the telemetry report into a UDP packet
followed by the two DTA-specific headers where the primitive and
its configuration parameters are included.

5.2 DTA Translator

The translator has a control program written in 800 lines of Python
that runs on the switch CPU. It is in charge of setting up the RDMA
connection to the collector by crafting RDMA Communication
Manager (RDMA_CM) packets, which are then injected into the
ASIC.

The translator pipeline (Figure 6) is written in 2K lines of P4_16

for the Tofino ASIC. This pipeline includes support for internal
processing of the DTA primitives, RDMA generation, basic user-
traffic forwarding, as well as RDMA queue-pair resynchronization
and rate limiting to ensure stable RDMA connections in case of
congestion events at the collectors’ NICs. Rate limiting can be
configured to generate a NACK sent back to the reporter in case of
a dropped report during these congestion events.
The RDMA logic is shared by all primitives. This includes lookup
tables filled with RDMA metadata, SRAM storage for the queue pair
packet sequence numbers, and the task of crafting RoCEv2 headers.
The DTA packets themselves are used as the base for RDMA gen-
eration. This is done by completely substituting the DTA headers
with the specific RoCEv2 headers required by the DTA operation.
The redundancy in Key-Write, Key-Increment, and Postcarding is
generated by the packet replication engine through multicasting
(Multicaster in Figure 6). The switch CPU crafts specific multicast
rules to force the ASIC to emit several packets at the correct egress
port as triggered by a single DTA ingress.

Key-Write and Key-Increment both follow the same fundamen-
tal logic, with the main difference being the RDMA operation that
they trigger. Key-Write triggers RDMA Write operations, while
a Key-Increment triggers RDMA Fetch-and-Add. Both cause N
packet injections into the egress pipeline, using the multicast tech-
nique. The Tofino-native CRC engine is used to calculate the N
memory locations, and is also used to calculate a concatenated
4B checksum for Key-Write. Carefully selected CRC polynomi-
als are used to create several independent hash functions using
the same underlying CRC engine.

Postcarding uses an SRAM-based hash table with 32K slots storing
fixed-size 32-bit payloads. The Tofino-native CRC engine is used
for indexing and value encoding. The hop-specific checksums are
implemented through custom CRC polynomials instead. Emissions
are triggered either by a collision or when a row counter reaches
the path length. We note that an efficient implementation requires
the RDMA payload sizes to be powers of 2 (due to bitshift-based
multiplication during address calculation) and the chunk sizes are
therefore padded from 5+4B = 20B to 32B, trading storage efficiency
for a reduced switch footprint.
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Figure 6: A translator pipeline with support for Key-Write, Key-Increment, Postcarding, and Append. Five paths exist for
pipeline traversal, used to process different types of network traffic in parallel while efficiently sharing pipeline logic.

Append has its logic split between ingress and egress, where
ingress is responsible for building batches, and egress tracks per-list
memory pointers. Batching of size B is achieved by storing B — 1
incoming list entries into SRAM using per-list registers. Every Bth
packet in a list will read all stored items, and bring these to the
egress pipeline where they are sent as a single RDMA Write packet.
Lists are implemented as ring-buffers, and the translator keeps a
per-list head pointer to track where in server memory the next
batch should be written. Our prototype supports tracking up to
131K simultaneous lists.

5.3 Collector RDMA Service

The collector is written in 1.3K lines of C++ using standard Infini-
band RDMA libraries, and has support for per-primitive memory
structures and querying the reported telemetry data. The collector
can host several primitives in parallel using unique RDMA_CM
ports, and advertise primitive-specific metadata to the translator
using RDMA-Send packets.

6 EVALUATION

In this section, we show that:

DTA supports very high collection rates (§6.1).

DTA imposes a negligible memory pressure at collectors (§6.2).
DTA is lightweight (§6.3, §6.4).

DTA’s primitives are fast (§6.5, §6.6, §6.7).

We use two x86 servers connected through a BF2556X-1T [52]
Tofino 1 [31] switch with 100G links. Both servers mount 2x Intel
Xeon Silver 4114 CPUs, 2x32GB DDR4 RAM @ 2.6GHz, and run
Ubuntu 20.04 (kernel 5.4). One of them serves as a DTA report
generator using TRex [12]. The other, equipped with an RDMA-
enabled Mellanox Bluefield-2 DPU [55], serves as the collector. Here,
server BIOS has been optimized for high-throughput RDMA [35],
and all RDMA-registered memory is allocated on 1GB huge pages.

6.1 DTA in Action

We first investigate if DTA scales better than CPU-based collectors
in the presence of telemetry volumes generated by large-scale net-
works. To do so, we compare the performance of DTA and state-of-
the-art CPU-collectors when coupled with two different monitoring
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Figure 7: A performance comparison of DTA against state-of-
the-art CPU-collectors. These use 16 cores for data ingestion,
while DTA essentially bypasses the CPU entirely for data
ingestion by using RDMA. (b) MultiLog vs DTA when using
Marple as a monitoring system running on switches.

systems: INT [21, 38] and Marple [51]. Here, we use a DTA config-
uration with N = 1 and batching of size 16, while CPU-collectors
use 16 dedicated CPU cores in the same NUMA-node.

The collectors in Figure 7a collect generic 4B INT reports that
are available for offline queries using the flow 5-tuple as the key.
We test INTCollector [68], to the best of our knowledge the only
open source INT collector that uses InfluxDB for storage. We also
study BTrDB [4], and the state-of-the-art solution for high-speed
networks, Confluo, which is based on MultiLog technology.Key-
Write inserts each report into its key-value store, and Postcarding
assumes 5-hop aggregation with no intermediate reports. Append
instead inserts the reports into one of the available data lists. As
Figure 7a shows, DTA improves on key-based INT collection by
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at least 4x, or up to 16x when aggregating the postcards into 5-
hop tuples, with even higher performance gains if pre-categorized
and chronological storage through Append suffices.

We also integrated Marple with DTA and MultiLog and config-
ured them to support the same queries against the collected data
(i.e., Lossy Flows, TCP Timeout, and Flowlet Sizes). Here, Lossy
Flows reports high loss rates together with their corresponding
flow 5-tuples, and DTA uses the Append primitive to store the data
chronologically in several lists, allowing operators to retrieve the
most recently reported network flows with packet loss rates in one
of several ranges. TCP Timeouts reports the number of TCP time-
outs per-flow in recent time, and DTA uses the Key-Write primitive
to allow operators to query the number of timeouts experienced
by any arbitrary flow. Flowlet Sizes reports flow 5-tuples together
with the number of packets in their most recent flowlets, and DTA
appends the flow identifiers to one of the available lists to allow
the construction of per-flow histograms of flowlet sizes.

We experimented using real data center traffic [7] and found
that DTA increases the number of Marple reporters (i.e., network
switches) that a collector can support before the rate of data genera-
tion overwhelms the collector (Figure 7b). Their queries cost as well
as their performances are analyzed in later sections (§6.5, §6.7).

Takeaway: DTA improves on data collection speeds compared with
CPU-based collectors by one to two orders of magnitude when inte-
grated with state-of-the-art telemetry systems, while supporting
the same types of queries.

6.2 Reduced Memory Pressure

In Figure 8, we present the average number of memory instructions
required per-report for the DTA primitives, when configured with
a redundancy level of 2, path length of 5 hops, and batch size of 16
elements. DTA imposes a low pressure on memory. This is achieved
mostly because no accesses are needed for I/O and report parsing,
regardless of the indexing scheme used. Some DTA primitives use
less than a single memory instruction per report on average, owing
to its aggregation and batching techniques, which can intelligently
insert several reports simultaneously with a single RDMA operation.
For example, Key-Write, the primitive that imposes the heaviest
load on memory, needs just 0.58% as many accesses as MultiLog.

Takeaway: DTA significantly reduces the number of memory ac-
cesses required for report ingestion.
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Figure 9: Hardware resource costs of a DTA Reporter com-
pared to an RDMA-generating reporter, and a baseline UDP-
based reporter. Note how DTA imposes an almost identical
resource footprint to UDP.

Match Table Ternary Stateful

§ Crossbar IDs Bus ALU
Base footprint 13.2% 10.6% 49.0%  30.7% 25.0%
Batching +3.2%  +7.2% +7.8% +7.8% +31.3%

Table 3: Resource footprint of a translator in Tofino while
supporting Key-Write, Postcarding, and Append. Append is
batching 16x4B reports.

6.3 Reporter Resource Footprint of DTA

We compared the hardware costs associated with generating DTA
reports against either directly emitting RDMA calls from switches,
or creating UDP-based messages as generally done by CPU-based
collectors. We used a switch implementing a simple INT-XD system
and, in Figure 9, we show the cost associated with the change of its
report-generation mechanism. Here, we see that DTA is as light-
weight as UDP, while RDMA generation is much more expensive.

Takeaway: DTA halves the resource footprint of reporters com-
pared with RDMA-generating alternatives, and has a similar re-
source footprint to simple UDP generation.

6.4 Translator Resource Footprint

Table 3 shows the resource usage of the translator, alongside the
additional costs of including Append batching The footprint of the
DTA translator is mainly due to its concurrent built-in support
for several different primitives. Application-dependent operators
might reduce their hardware costs by enabling fewer primitives.

Batching of Append data has a relatively high cost in terms of
memory logic (Stateful ALU), due to our non-recirculating RDMA-
generating pipeline requiring access to all B — 1 entries during a
single pipeline traversal. It is worth noting that batching also has
the potential for a tenfold increase in collection throughput, and
we conclude that it is a worthwhile tradeoff. A compromise is to
reduce the batch sizes, as they linearly correlate with the number
of additional stateful ALU calls.

Deploying multiple simultaneous Append-lists does not require
additional logic in the ASIC, it just necessitates more statefulness
for keeping per-list information (e.g., head-pointers and per-list
batched data). Note that the actual SRAM footprint of the translator
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Figure 10: Per-flow path tracing collection rates, using the
DTA Key-Write primitive, either as INT-XD/MX postcards
(4B) or full 5-hops path as in INT-MD (20B).

is small, and tests show that the translator can support hundreds of
thousands of simultaneous lists for complex setups, which is much
more than the 255 lists included at the time of evaluation.

Takeaway: A translator pipeline which simultaneously supports
the Key-Write, Postcarding, and Append primitives fits in first-
generation programmable switches, while leaving a majority of
resources freed up for other functionality. Batching can impose a
high toll on the Stateful ALUs.

6.5 Key-Write Primitive Performance

We have benchmarked the collection performance of the DTA Key-
Write primitive using INT as a use case. We instantiated a 4GiB
key-value store at the collector and had the translator receive either
4B or 20B encapsulated INT messages from the reporter (our traffic
generator). The former case emulates the scenario of having INT
working in postcard mode with event detection (so some hops
may not generate a postcard), while the latter reproduces an INT
path tracing configuration on a 5-hops topology where the last
hop reports data to a collector. We repeated the test using different
levels of redundancy (N) and reported the results we obtained
in Figure 10. Notice the expected linear relationship between the
throughput and level of redundancy since each incoming report
will generate N RDMA packets towards the collector. However, one
might still prefer the performance tradeoff against the increased
data robustness in the collector storage, which allows for successful
queries against much older telemetry reports. Furthermore, the
collection rate is unaffected by the increase in the telemetry data
size until the 100Gbps line rate is reached. In our tests, we saw that
this was the case for telemetry payloads of 16B or larger.

Takeaway: Key-Write can collect 100M INT reports per second and
its performance depends on the redundancy level.

6.5.1 Key-Write Query Speed. Querying for data stored in our
key-value store using the Key-Write primitive requires the calcula-
tion of several hashes. Here we evaluate the worst case performance
scenario, when the collector has to retrieve every redundancy slot
before being able to answer a query. Specifically, we queried 100M
random telemetry keys, with a key-value data structure of size
4GiB containing 4B INT postcards data alongside 4B concatenated
checksums for query validation. Figure 11a shows the speed at
which the collector can answer incoming telemetry queries using
various redundancy levels (N).
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Figure 11: Key-Write primitive querying performance.
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Figure 12: Average query success rates delivered by the Key-
Write primitive, depending on the key-value store load factor
and the number of addresses per key (N). The background
color indicates optimal N in each interval.

Key-Write query processing can be easily parallelized, and we
found the query performance to scale near-linearly when we allo-
cated more cores for processing. For example, 4 cores could query
7.1 million flow paths per second with N = 2, while 8 cores manage
14.2 million queries per second.

Figure 11b shows the time breakdown serving queries. Most
of the execution time is spent calculating CRC hashes, for either
verifying the concatenated checksum (Checksum), or calculating
memory addresses of the N redundancy entries (Get Slot). The
query performance is therefore highly impacted by the speed of
the CRC implementation®, and more optimized implementations
should see a performance increase.

Takeaway: Because of RDMA, our Key-Value store can insert en-
tries faster than the CPU can query. The performance of the CRC
implementation plays a key role.

6.5.2 Redundancy Effectiveness. The probabilistic nature of Key-
Write cannot guarantee final queryability on a given reported key
due to hash collisions with newer data entries. We show in Figure 12
how the query success rate? depends on the load factor (i.e., the
total number of telemetry keys over available memory addresses),
and the redundancy level (N). There is a clear data resiliency im-
provement by having keys write to N > 1 memory addresses when
the storage load factor is in reasonable intervals. When the load
factor increases, adopting more addresses per key does not help

3We use the generic Boost libraries’ CRC: https://www.boost.org/.
“The query success rate is defined as the probability at which a previously reported
key can be queried from the key-value store.
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Figure 13: DTA Key-Write ages out eventually. This figure
shows INT 5-hop path tracing queryability of 100 million
flows at various storage sizes.

because it is harder to reach consensus at query time. The back-
ground color in Figure 12 indicate which N delivered the highest
key-queryability in each interval.

Higher levels of redundancy improve data longevity, but at the
cost of reduced collection and query performance as demonstrated
previously in Figures 10 and 11. Determining an optimal redun-
dancy level therefore has to be a balance between an enhanced
data queryability and a reduction in primitive performance, and
N = 2 is a generally good compromise, showing great queryability
improvements over N = 1.

Takeaway: Increasing the redundancy of all keys does not always
improve the query success rate. An optimal redundancy should be
set on a case-by-case basis.

6.5.3 Data Longevity. Data reported by the Key-Write primitive
will age out of memory over time due to hash collisions with subse-
quent reports, which overwrites the memory slots. Figure 13 shows
the queryability of randomly reported INT 5-hop path tracing data
(i.e., 20B) at various storage sizes and report ages, with redundancy
level N = 2 and 4B checksums. For example, a key-value storage as
small as 3GiB is enough to deliver 99.3% successful queries against
flows with as many as 10 million subsequently reported paths,
which however falls to 44.5% when 100 million subsequent flow
are stored in the structure. However, increasing storage to 30GiB
would allow an impressive 99.99% query success rate for paths with
10 million subsequent reports, or 98.2% success even for flows as
old as 100 million subsequent reports.

Takeaway: It is possible to record data from around 10M flows in
the key-value store while maintaining a 99.99% queryability with
just 30GiB of storage.

6.6 Postcarding Primitive Performance

The Postcarding primitive has been benchmarked for aggregat-
ing and collecting INT-XD/MX postcards across 5-hop network
paths. The number of other flows appearing at the translator while
aggregating per-flow postcards increases the risk of premature
cache emission. Figure 14 shows us the effect that the number
of intermediate flows and the size of the cache has on the aggre-
gation performance, with a maximum achieved collection rate of
90.5MPaths/s (452.5MPostcards/s).”> Comparing the performance

SEarly emissions (i.e., path-reports with missing postcards) are counted as failures in
this test despite being potentially useful (e.g., knowing 4 out of 5 hops in a path), and
are not included in the collection throughput.
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Postcarding primitive. A report is defined as a successfully
aggregated 5-hop path (containing 5 postcards, one per hop).
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Figure 15: Telemery event-report collection, using DTA Ap-
pend and different batch sizes. Performance increases lin-
early with batch sizes until we achieve line-rate with batches
of 4x4B. The collection speed is not impacted by the list sizes.

to Key-Write in Figure 10, where we would need 5 different re-
ports to collect a full path, we see a significant performance gain
by the Postcarding primitive.

Takeaway: The performance of Postcarding depends on the rate
of cache collisions in the translator during the aggregation-phase,
and can improve upon the best-case Key-Write performance by up to
4.3x for 5-hop collection.

6.7 Append Primitive Performance

We have benchmarked the performance of the Append primitive
for collecting telemetry event-reports, both at different batch sizes
and total size of the allocated data list, while reporting data into a
single list. The results are shown in Figure 15.

We noticed no performance impact from different report sizes,
until we reached the line-rate of 100G for large batch sizes after
which the performance increased sub-linearly. The results in Fig-
ure 15 show this effect for 4B queue-depth reports, where we reach
line-rate at batches of 4. Our base performance is bounded by the
RDMA message rate of the NIC, which is the current collection
bottleneck in our system, and the high performance of the Append
primitive is due to including several reports in each memory op-
eration. Performing equivalent tests with up to 131K parallel lists
showed a negligible performance impact.

Takeaway: The Append primitive is able to collect over 1 billion
telemetry event reports per second.
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Figure 16: Append primitive querying performance.
Append-lists are queried either while collecting no
reports or at 50% capacity (while collecting 600M re-
ports per second). Collection has a negligible impact
on data retrieval rate, and processing rate scales near-
linearly with the number of cores. The dotted lines show
the maximum collection rates at different batch sizes.

6.7.1 Append List-Polling Rate. Figure 16a shows the raw list
polling rates, which is the speed at which appended data can be
read into the CPU for processing. We assume that collection runs
simultaneously to the CPU reading data from the lists, by having
the translator process 600 million Append operations per second in
batches of size 16, which approximates collection at half capacity.
Simultaneously collecting and processing telemetry data show no
noticeable impact on either collection or processing, showing that
DTA is not memory-bounded even at this speed®.

Extracting telemetry data from the lists is a very lightweight
process, as shown in Figure 16b, requiring a pointer increment,
possibly rolling back to the start of the buffer, and then reading the
memory location. We allocated a number of lists equal to the num-
ber of CPU cores used during the test to prevent race conditions at
the tail pointer.Our tests showed that just 8 cores proved capable of
extracting every telemetry report even when large batches reported
at maximum capacity. This leaves us much processing power for
complex real-time telemetry processing. We see that the collector
can even retrieve list entries faster than the RAM clock speed.

Takeaway: The CPU retrieves appended reports faster than they
can be collected (Figure 15), with margin left for further processing.

7 DISCUSSION

The generality and scope of DTA. DTA is not intended to be a
competitor of existing data plane assisted monitoring systems [6,
21, 23, 38, 51, 61, 65, 65, 75]. These either focus on extracting new
metrics or reducing the costs of telemetry monitoring through intel-
ligent pre-processing and filtering within the switching ASIC. Nev-
ertheless, these systems generate a significant amount of telemetry
information, especially with large-scale networks, multiple queries,
and/or fine telemetry granularities (Table 1).

DTA can be coupled with existing telemetry systems and serve
as an interface between the on-switch monitoring functions and
the telemetry analysis back-end in the control plane. To achieve

SDTA is neither memory- nor CPU bounded in these tests, regardless of the collection
rate, but is instead limited by the message rate of the network card
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broad compatibility with a variety of monitoring solutions, we have
designed several generic and highly flexible primitives to simplify
the integration of DTA into both existing and future telemetry
environments. As a consequence, with DTA, we replace only the
report ingestion mechanism of the telemetry collector (e.g., DPDK
along with data structure population), not the rest of the collector
(e.g., data analysis and decision-making). For example, it is possible
to couple the streaming analysis engine of Sonata [23] with DTA:
in this scenario our solution is in charge of transferring data from
switches to collector’s memory, while the original Sonata’s engine
performs analysis on the received data. For a more extensive list of
examples, we refer to Table 2 that recap how DTA can be integrated
into various telemetry systems to enhance their performances.
Implementing the translator in a SmartNIC. There are two
main approaches we have considered on where to deploy the trans-
lator: a SmartNIC located at the collector and the last-hop pro-
grammable switch (which we explored in this work). A SmartNIC
would allow us to completely remove RDMA traffic: the NIC data-
plane would process incoming DTA packets and translate them into
local DMA calls. Exploring DTA translation in SmartNICs is left for
future work. Nevertheless, we believe that our P4 implementation
can be a starting point for P4-capable NICs [62].

Supporting Multiple Collectors. It is beneficial to enable collec-
tion at multiple servers for scalability or resiliency. DTA can be
deployed alongside multiple collectors and permit easy partitioning
of reports based on the IP and DTA headers.

Flow Control in DTA. Best-effort transport protocols, e.g., UDP,
are used by many well-known telemetry systems (e.g., [13, 32]).
Similarly, DTA does not assure reliable delivery. However, it can be
used in conjunction with flow control mechanisms that allow for
lossless delivery of data [20, 29].

Query-Enhancing Extensions. In some cases, queries may be
known ahead of time, in which case our translator can aid in their
processing.For example, while switches can measure the queuing
latency of a flow, we are often interested in knowing the end to end
delay [58], which can be expressed as follows:

SELECT flowID,path WHERE SUM(latency) > T

Knowing the query ahead of time, our translator can wait for post-
cards from all switches through which the SYN packet of the flow
was routed, sum their latency, and report it if it is over the threshold.

Push notifications. An advantage CPU-based collectors have over
DTA is that the CPU can trigger analysis tasks as soon as it receives
reports. In our case, for key-value store operations, the CPU must
first find out if new data has been written into the memory; how-
ever, we assume for Append operations the CPU is monitoring the
lists continuously, which would allow for equivalent reactivity to
CPU-based solutions. Additionally, DTA packets can include an
immediate flag, which can be used by the translator to inform the
CPU that new data has arrived through RDMA immediate inter-
rupts (e.g., a flow is experiencing problems). Deciding which reports
should carry such a flag is beyond the scope of this work.

The next telemetry bottleneck. DTA significantly reduces the
cost of telemetry ingestion mainly by bypassing any CPU process-
ing. In our experiments the new bottleneck is the message rate
of the RDMA NICs at the collectors. To address this message rate
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limitation, DTA already supports multi-NIC collectors. Future NICs
will have better speeds.

A possible future bottleneck is the memory speed where we store
the telemetry data structures. However, current-generation DRAM
can achieve billions of memory transfers per second and is likely to
increase further in the future. Therefore, it is possible that telemetry
ingestion itself might no longer be seen as the main bottleneck in
telemetry systems going forward, if the CPU is bypassed. Instead,
given the increasing sophistication and complexity of data analysis
tools, the de-facto bottleneck might instead be the rate at which we
can still meaningfully analyze the generated data in real time.

8 RELATED WORK

Telemetry and Collection. Traditional techniques for monitoring
the status of the network have looked into periodically collecting
telemetry data [22, 24] or mirroring packets at switches [56, 76].
The former generates coarse-grained data that can be significant
given the large scale of today’s networks [66]. The latter has been
recognized as viable option only if it is known in advance the spe-
cific flow to monitor [76]. The rise in programmable switches has
enabled fine-grained telemetry techniques that generate a lot more
data [6, 21, 23, 63, 75, 76]. Irrespective of the techniques, collection
is identified to be the main bottleneck in network-wide telemetry,
and previous works focus on either optimizing the collector stack
performance [37, 68], or reducing the load through offloaded pre-
processing [42] and in-network filtering [32, 40, 69, 75]. In an earlier
version of our project, we investigated the possibility of entirely
bypassing collectors’ CPU, but limited the collection process to data
that can be represented as a key-value store [41]. DTA expands
it significantly by introducing the translator, designing additional
primitives, building a prototype, investigating the systems aspects,
and showing an end-to-end improvement over state-of-the-art col-
lection systems. In particular, this paper proposes an alternative
solution which is generic and works with a number of existing
state-of-the-art monitoring systems. We show examples of where
these aforementioned systems can integrate DTA earlier in Table 2.
A further alternative approach is letting the end-hosts assist in
network-wide telemetry [26, 63], which unfortunately requires sig-
nificant investments and infrastructure changes and still lean on
centralized collection to achieve a network-wide view.

RDMA in programmable networks. Recent works have shown
that programmable switches can perform RDMA operations to ac-
cess server DRAM for expanded memory in their stateful network
functions [39, 57]. These works are interesting for these scenarios,
but are not suited for the queryable aggregation required for teleme-
try collection. Programmable network cards are also shown capable
of expanding upon RDMA with new and customized primitives [3].
Especially FPGA network cards show great promise for high-speed
custom RDMA verbs [46, 59]. However, as discussed in Section 2,
telemetry collection brings new challenges when used in conjunc-
tion with the RoCEv2 protocol. As previously mentioned earlier in
discussion, a protocol such as DTA that is tailored for telemetry
collection could very well be implemented at the NIC-level.
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9 CONCLUSION

We presented Direct Telemetry Access (DTA), a new telemetry
collection system optimized for storing reports from switches to
collectors’ memory. We built DTA on top of RDMA and provided
novel and expressive primitives that allow easy integration with
existing telemetry solutions.

DTA can write to our key-value store over 400M INT reports
per second, without any CPU processing, 16x better than the state-
of-the-art collector. When the received data can be recorded se-
quentially, as in the case of temporally ordered event reports, it can
ingest up to a billion reports per second, a 41x improvement over
the state-of-the-art.

This work does not raise any ethical issues.

ACKNOWLEDGEMENTS

We thank our shepherd Kate Lin, and the anonymous reviewers,
for valuable comments and feedback. This work was supported in
part by ACE, one of the seven centers in JUMP 2.0, a Semiconduc-
tor Research Corporation (SRC) program sponsored by DARPA,
by the UK EPSRC project EP/T007206/1, by the European Union
under the Italian National Recovery and Resilience Plan (NRRP)
of NextGenerationEU, partnership on “Telecommunications of the
Future” (PE00000001 - program “RESTART”), and by a gift from
Facebook/Meta. Michael Mitzenmacher was supported in part by
NSF grants CCF-2101140, CNS-2107078, and DMS-2023528. Finally,
a big thanks to Sivaram Ramanathan for invaluable input in the
early stages of the project.

REFERENCES

[1] Direct Telemetry Access source code. https://github.com/jonlanglet/DTA, 2023.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, et al. Conga: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 503-514, 2014.

[3] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishnamurthy, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Remote memory calls. In
Proceedings of the 19th ACM Workshop on Hot Topics in Networks, pages 3844,
2020.

[4] Michael P Andersen and David E Culler. Btrdb: Optimizing storage system
design for timeseries processing. In 14th {USENIX} Conference on File and
Storage Technologies ({FAST} 16), pages 39-52, 2016.

[5] Arista.  Telemetry and analytics.  https://www.arista.com/en/solutions/
telemetry-analytics, 2022. Accessed: 2022-02-02.

[6] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, and Michael Mitzenmacher. PINT: Probabilistic In-band Network
Telemetry. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 662—680, 2020.

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Char-
acteristics of Data Centers in the Wild. In Conference on Internet Measurement
(IMC). ACM, 2010.

[8] BROADCOM. Trident Programmable Switch. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56870-series, 2017.

[9] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters:

A survey. Internet mathematics, 1(4):485-509, 2004.

Cisco. Explore model-driven telemetry. https://blogs.cisco.com/developer/

model-driven-telemetry-sandbox, 2019. Accessed: 2021-06-24.

Cisco. How to scale IOS-XR Telemetry with InfluxDB

https://community.cisco.com/t5/service-providers-knowledge-base/

how-to-scale-ios-xr-telemetry-with-influxdb/ta-p/4442024, 2021.

Cisco. Trex. https://trex-tgn.cisco.com/, 2022. Accessed: 2022-01-25.

Cisco. Cisco ios netflow. https://www.cisco.com/c/en/us/products/

i0s-nx- os-software/ios-netflow/index.html, 2023. Accessed: 2023-02-08.


https://github.com/jonlanglet/DTA
https://www.arista.com/en/solutions/telemetry-analytics
https://www.arista.com/en/solutions/telemetry-analytics
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://blogs.cisco.com/developer/model-driven-telemetry-sandbox
https://blogs.cisco.com/developer/model-driven-telemetry-sandbox
https://community.cisco.com/t5/service-providers-knowledge-base/how-to-scale-ios-xr-telemetry-with-influxdb/ta-p/4442024
https://community.cisco.com/t5/service-providers-knowledge-base/how-to-scale-ios-xr-telemetry-with-influxdb/ta-p/4442024
https://trex-tgn.cisco.com/
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

Direct Telemetry Access

[14]

[15

[16]

[17

(18]

[19

[20

[21]

[22

[23]

[24
[25]

[26]

[32]

[33

[34

[35]

[36

[37]

[38]

[39

Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58-75,
2005.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
Farm: Fast remote memory. In 11th { USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), pages 401-414, 2014.

Nick G Duffield and Matthias Grossglauser. Trajectory sampling for direct traffic
observation. IEEE/ACM transactions on networking, 9(3):280-292, 2001.

Rodrigo Fonseca, Tianrong Zhang, Karl Deng, and Lihua Yuan. dshark: A general,
easy to program and scalable framework for analyzing in-network packet traces.
2019.

Sam Gao, Mark Handley, and Stefano Vissicchio. Stats 101 in p4: Towards in-
switch anomaly detection. In Proceedings of the Twentieth ACM Workshop on Hot
Topics in Networks, pages 84-90, 2021.

Michael T Goodrich and Michael Mitzenmacher. Invertible bloom lookup ta-
bles. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 792-799. IEEE, 2011.

Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-
izadeh, and Thomas E. Anderson. Backpressure flow control. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages
779-805, Renton, WA, 2022. USENIX Association.

The P4.org Applications Working Group. Telemetry report format specifica-
tion. https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_
report_latest.pdf, 2020. Accessed: 2021-06-23.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement and analysis. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication,
pages 139-152, 2015.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. Sonata: Query-driven streaming network telemetry. In Proceed-
ings of the 2018 conference of the ACM special interest group on data communication,
pages 357-371, 2018.

Chris Hare. Simple network management protocol (snmp), 2011.

Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastictree: Saving energy
in data center networks. In NSDI, volume 10, pages 249-264, 2010.

Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao.
Omnimon: Re-architecting network telemetry with resource efficiency and full
accuracy. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 404-421, 2020.

Huawei. Overview of telemetry. https://support.huawei.com/enterprise/en/doc/
EDOC1000173015/165fa2c8/overview-of-telemetry, 2020. Accessed: 2021-06-24.
Huawei. Telemetry. https://support.huawei.com/enterprise/en/doc/
EDOC1100196389, 2021.

IEEE 802.11Qbb. Priority Based Flow Control. 2011.

Infiniband Trade Association. Infinibandtm architecture specification, 2015.
Volume 1 Release 1.3.

Intel. Intel® tofino™ series programmable ethernet switch asic.
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html, 2016.  Accessed: 2022-
01-25.

Intel. In-band network telemetry detects network perfor-
mance  issues. https://builders.intel.com/docs/networkbuilders/
in-band-network- telemetry-detects-network-performance-issues.pdf, 2020.
Accessed: 2021-06-04.

Intel. Intel® ethernet network adapter e810-cqdal/cqda2. https://www.intel.com/
content/www/us/en/products/docs/network-io/ethernet/network-adapters/
ethernet-800-series-network-adapters/e810-cqdal-cqda2-100gbe-brief html,
2020. Accessed: 2021-06-11.

Intel. Intel deep insight network analytics software. https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-switch/
network-analytics/deep-insight.html, 2021. Accessed: 2021-06-10.

Intel. Performance Tuning for Mellanox Adapters. https://support.mellanox.com/
s/article/performance-tuning-for-mellanox-adapters, 2022.

Anuj Kalia, Michael Kaminsky, and David G Andersen. Design guidelines for high
performance {RDMA} systems. In 2016 { USENIX} Annual Technical Conference
({USENIX} { ATC} 16), pages 437-450, 2016.

Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Confluo: Distributed mon-
itoring and diagnosis stack for high-speed networks. In 16th { USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 19), pages
421-436, 2019.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit, and
Lawrence ] Wobker. In-band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas
Sekar, and Srinivasan Seshan. Tea: Enabling state-intensive network functions

Preprint, ,

on programmable switches. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 90-106, 2020.
Jan Kucera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and
Gianni Antichi. Enabling event-triggered data plane monitoring. In Proceedings
of the Symposium on SDN Research, page 14-26. Association for Computing
Machinery, 2020.

Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan Ramanathan, Gabriele Oliaro,
Michael Mitzenmacher, Minlan Yu, and Gianni Antichi. Zero-cpu collection with
direct telemetry access. In Proceedings of the Twentieth ACM Workshop on Hot
Topics in Networks, pages 108-115, 2021.

Yiran Li, Kevin Gao, Xin Jin, and Wei Xu. Concerto: cooperative network-wide
telemetry with controllable error rate. In Proceedings of the 11th ACM SIGOPS
Asia-Pacific Workshop on Systems, pages 114-121, 2020.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better
netflow for data centers. In 13th { USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), pages 311-324, 2016.

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc: high
precision congestion control. In Proceedings of the ACM Special Interest Group on
Data Communication, pages 44-58. 2019.

Richard J Lipton. A new approach to information theory. In Annual Symposium
on Theoretical Aspects of Computer Science, pages 699-708. Springer, 1994.
Wassim Mansour, Nicolas Janvier, and Pablo Fajardo. Fpga implementation of
rdma-based data acquisition system over 100-gb ethernet. IEEE Transactions on
Nuclear Science, 66(7):1138—1143, 2019.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap using switching asics. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, pages 15-28, 2017.

Microsoft. Cloud Service Fundamentals: Telemetry - Reporting. https://azure.
microsoft.com/sv-se/blog/cloud-service-fundamentals- telemetry-reporting/,
2013.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

Tal Mizrahi, Vitaly Vovnoboy, Moti Nisim, Gidi Navon, and Amos Soffer. Network
telemetry solutions for data center and enterprise networks. Marvell, White Paper,
2018.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.
Language-directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, pages 85-98, 2017.

APS Networks. Advanced programmable switch. https://www.aps-networks.
com/wp-content/uploads/2021/07/210712_APS_BF2556X-1T_V04.pdf, 2019. Ac-
cessed: 2022-01-25.

Juniper Networks. Overview of the junos telemetry interface. https:
//www.juniper.net/documentation/us/en/software/junos/interfaces- telemetry/
topics/concept/junos-telemetry-interface-oveview.html, 2021. Accessed:
2021-06-24.

NVIDIA. NVIDIA Mellanox Spectrum Switch. https://www.mellanox.com/files/
doc-2020/pb-spectrum-switch.pdf, 2017.

NVIDIA. Nvidia bluefield-2 dpu. https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf, 2021.
Accessed: 2022-01-25.

Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. Planck: Millisecond-scale monitoring and
control for commodity networks. In Proceedings of the 2014 ACM Conference on
SIGCOMM, page 407-418. Association for Computing Machinery, 2014.
Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom Barbette, De-
jan Kostic, and Marco Chiesa. A high-speed stateful packet processing approach
for tbps programmable switches. In Proceedings of the 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), 2023.

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. Continuous in-network
round-trip time monitoring. In Proceedings of the ACM SIGCOMM 2022 Confer-
ence, SIGCOMM ’22, page 473-485, New York, NY, USA, 2022. Association for
Computing Machinery.

David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.
Strom: smart remote memory. In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1-16, 2020.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle,
Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, page 183-197.
Association for Computing Machinery, 2015.


https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_latest.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_latest.pdf
https://support.huawei.com/enterprise/en/doc/EDOC1000173015/165fa2c8/overview-of-telemetry
https://support.huawei.com/enterprise/en/doc/EDOC1000173015/165fa2c8/overview-of-telemetry
https://support.huawei.com/enterprise/en/doc/EDOC1100196389
https://support.huawei.com/enterprise/en/doc/EDOC1100196389
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://support.mellanox.com/s/article/performance-tuning-for-mellanox-adapters
https://support.mellanox.com/s/article/performance-tuning-for-mellanox-adapters
https://azure.microsoft.com/sv-se/blog/cloud-service-fundamentals-telemetry-reporting/
https://azure.microsoft.com/sv-se/blog/cloud-service-fundamentals-telemetry-reporting/
https://www.aps-networks.com/wp-content/uploads/2021/07/210712_APS_BF2556X-1T_V04.pdf
https://www.aps-networks.com/wp-content/uploads/2021/07/210712_APS_BF2556X-1T_V04.pdf
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf

Preprint, , Langlet et al.

[61] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. Turboflow:
Information rich flow record generation on commodity switches. In Proceedings
of the Thirteenth EuroSys Conference, pages 1-16, 2018.

Pensando Systems. Pensando dsc-100 distributed services card. https://pensando.

io/wp-content/uploads/2020/03/DSC-100-ProductBrief-v06.pdf, 2021. Accessed:

2022-01-23.

[63] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed network

monitoring and debugging with switchpointer. In 15th { USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI} 18), pages 453-456, 2018.

Mellanox Technologies. Connectx®-6 vpi card. https://www.mellanox.com/files/

doc-2020/pb-connectx-6-vpi-card.pdf, 2020. Accessed: 2021-05-12.

[65] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer Rexford. Packetscope:

Monitoring the packet lifecycle inside a switch. In Proceedings of the Symposium

on SDN Research, pages 76-82, 2020.

Olivier Tilmans, Tobias Biihler, Ingmar Poese, Stefano Vissicchio, and Laurent

Vanbever. Stroboscope: Declarative network monitoring on a budget. In Proceed-

ings of the 15th USENIX Conference on Networked Systems Design and Implemen-

tation, page 467-482. USENIX Association, 2018.

Nguyen Van Tu, Jonghwan Hyun, and James Won-Ki Hong. Towards onos-

based sdn monitoring using in-band network telemetry. In 2017 19th Asia-Pacific

Network Operations and Management Symposium (APNOMS), pages 76-81. IEEE,

2017.

Nguyen Van Tu, Jonghwan Hyun, Ga Yeon Kim, Jae-Hyoung Yoo, and James

Won-Ki Hong. Intcollector: A high-performance collector for in-band network

telemetry. In 2018 14th International Conference on Network and Service Manage-

ment (CNSM), pages 10-18. IEEE, 2018.

[69] Jonathan Vestin, Andreas Kassler, Deval Bhamare, Karl-Johan Grinnemo, Jan-Olof
Andersson, and Gergely Pongracz. Programmable event detection for in-band
network telemetry. In 2019 IEEE 8th international conference on cloud networking
(CloudNet), pages 1-6. IEEE, 2019.

[70] Xilinx. Xilinx embedded rdma enabled nic. https://www.xilinx.com/support/
documentation/ip_documentation/ernic/v3_0/pg332-ernic.pdf, 2021. Accessed:
2021-06-11.

[62

[64

(66

[67

[68

[71] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 561-575, 2018.

[72] Minlan Yu. Network telemetry: towards a top-down approach. ACM SIGCOMM

Computer Communication Review, 49(1):11-17, 2019.
[73] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. High-
resolution measurement of data center microbursts. In Proceedings of the 2017
Internet Measurement Conference, page 78-85. Association for Computing Ma-
chinery, 2017.
Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Jiamin Cao, Dai Zhang, Yangyang Wang,
and Cheng Zhang. Hypersight: Towards scalable, high-coverage, and dynamic
network monitoring queries. IEEE Journal on Selected Areas in Communications,
38(6):1147-1160, 2020.
Yu Zhou, Chen Sun, Honggiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongging Xi, et al. Flow event telemetry on
programmable data plane. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 76-89, 2020.
Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry in
large datacenter networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 479-491, 2015.

[74

[75

[76

14


https://pensando.io/wp-content/uploads/2020/03/DSC-100-ProductBrief-v06.pdf
https://pensando.io/wp-content/uploads/2020/03/DSC-100-ProductBrief-v06.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ernic/v3_0/pg332-ernic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ernic/v3_0/pg332-ernic.pdf

Direct Telemetry Access

Appendices are supporting material that has not been peer-reviewed.

A APPENDIX
A.1 Key-Write Algorithm

What value does k hold?
Index

computation »

| Data
validation
1

Key k = "x", N=

N 22—

Key-Write]

.. Translator . " Collector.

Figure 17: Key-Write Overview.

The Key-Write primitive is an abstraction around a key-value
store, allowing read/writes of telemetry data. Figure 17 is a high-
level visualization of the primitive, and algorithm pseudo-code is

presented in Algorithm 1 and 2.

Algorithm 1: DTA-to-RDMA translation in Key-Write

Input:Redundancy N, Key K, Telemetry data D
Bufstart < Address to start of RDMA memory buffer
Buflen «— Number of allocated KeyVal slots
Slotlen « Size of one KeyVal slot
Function CraftWrite(n, K, D)

Slot «— hy(n, K) mod Buflen

Dest < Bufstart + Slot X Slotlen

Csum < hy(K)

Write (Csum, D) to address Dest through RDMA

for n=0to N do
L CraftWrite(n, K, D)

Algorithm 2: Querying the Key-Write storage

Input :Redundancy N, Key K, Consensus threshold T
Output: Dyinner
Buflen < Number of allocated KeyVal slots
Storage «— Array size Buflen with (Csum, D) elements
Function GetSlot(n, K)
Slot « hy(n, K) mod Buflen

return Storage[ Slot]

Csum « hy(K)
forn=0to N do
(Csumgj,p, D) «— GetSlot(n, K)
if Csum == Csumg,; then
L Add D to list of candidates

Duyiinner < candidate D if D appears at least T times
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A.2 Postcarding Algorithm
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Figure 18: Postcarding Overview.

The Postcarding primitive is an abstraction around a key-value
store with per-flow aggregation of INT postcards, allowing read-
/writes of telemetry data. Figure 18 is a high-level visualization of
the primitive. We refer to Section 4 for details on primitive transla-
tion and querying, as well as Appendix A.6 for analysis.
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A.3 Append Algorithm A.4 Key-Increment Algorithm
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Figure 19: Append Overview.

\_Translator - " Collector.

The Append primitive is an abstraction around data lists, al-
lowing read/insertion of telemetry data. Figure 19 is a high-level
visualization of the primitive, and algorithm pseudo-code is pre-
sented in Algorithm 3 and 4.

Figure 20: Key-Increment Overview.

The Key-Increment primitive is an abstraction around a key-
value store, allowing read/increment of counters. Figure 20 is a
high-level visualization of the primitive, and algorithm pseudo-
code is presented in Algorithm 5 and 6.

Algorithm 3: DTA-to-RDMA translation in Append

Input:List ID L, Data D
ListBuffers < Vector with |Lists| buffer pointers
BufferLengths « Vector with |Lists| buffer lengths
Heads <« Vector with |Lists| head-offsets
BatchSize < The global batch size
BatchPointer « Vector with |Lists| integers
Batches <« 2D-vector sized [|Lists|] [ BatchSize — 1]
Function WriteBatch(L,D)
Batch < (Batches[L], D)
Address « ListBuffers[L] + Heads[L]
Write Batch to address Address through RDMA
Heads[L] += BatchSize
if Heads|L] == BatchSize then

L Heads[L] < 0

if BatchPointer|L] == BatchSize then

WriteBatch(L,D)
BatchPointer[L] < 0

else

Batches[L][BatchPointer[L]] « D
BatchPointer|L]++

Algorithm 4: Querying the Append storage

Input :ListID L

Output: data

ListBuffers < Vector with |Lists| buffer pointers
BufferLengths < Vector with |Lists| buffer lengths
Heads « Vector with |Lists| head-offsets

data « ListBuffers[L] + Heads[L]

Heads|L] < (Heads|[L] + 1) mod BufferLengths[L]
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Algorithm 5: DTA-to-RDMA translation in Key-Increment

Input:Redundancy N, Key K, Counter C
Bufstart < Address to start of RDMA memory buffer
Buflen < Number of allocated KeyVal slots
Function CraftWrite(n,K,C)

Slot < hy(n,K) mod Buflen

Dest < Bufstart + Slot * 4

Increment Dest by C through RDMA Fetch&Add
forn=0— N do

L CraftWrite(n K, C)

Algorithm 6: Querying the Key-Increment storage

Input :Redundancy N, Key K
Output: Cyinner
Buflen < Number of allocated KeyVal slots
Storage «<— Array size Buflen with (C) elements
Function GetSlot(n, K)

Slot < hy(n,K) mod Buflen
L return Storage| Slot]

Counters « []
forn=0— Ndo
L Counters[n] < GetSlot(n,K)

Cyinner < min(Counters)
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A.5 Analysis of the Key-Write primitive

Because we treat the RDMA memory as a large key-value hash table
where only checksums of keys are stored and values may be over-
written over time, we must consider the possibility that when we
make a query, we are unable to return an answer, or we may return
an incorrect answer. We call the case where we have no answer to
return an empty return, and the case where we return an incorrect
answer a return error. The probability of an empty return or a return
error depends on the parameters of the system, and on the method
we choose to determine the return value. Below we present some
of the possible tradeoffs and some mathematical analysis; we leave
further results and discussions for the full paper.

Let us first consider a simple example. When a write occurs
for a key-value pair, in the hash table N copies of the b-bit key
checksum and the value are stored at random locations. We assume
the checksum is uniformly distributed for any given key throughout
our analysis. When a read occurs, let us suppose we return a value
if there is only a single value amongst the N memory locations
matching that checksum. (The value could occur multiple times, of
course.)

An empty return can occur, for example, if when we search the
N locations for a key, none of them have the right checksum. That
is, all N copies of the key have been overwritten, and none of the N
locations currently hold another key with the same checksum. To
analyze this case, let us consider the following scenario. Suppose
that we have M memory cells total, and that there are K = aM
updates of distinct keys between when our query key g was last
written, and when we are making a query for its values. We can
use the Poisson approximation for the binomial (as is standard
in these types of analyses and accurate for even reasonably large
M, N, K; see, for example, [9, 49]). Using such approximations,
the probability that any one of the N locations is overwritten is
given by (1 — e KN/M) and that all of them are overwritten is
(1 - e KN/M)N The probability that all of them are overwritten
and the key checksum is not found is approximated by

(1= e KNIMIN | _g=byN _ (1 _ g=aN\N (1 _5=b)N

We would also get an empty return if the N cells contained two
or more distinct values with the same correct checksum.

This probability is lower bounded by

N-1

% (Y)a-emye e a-zy)
=
and upper bounded by
N-1
( (7)(1—e*“N)fe*“N<N*ﬁ(1— (1—2*”)1))

Jj=1
+(1-e*NHNQ-(1-27)N _N.27b1 - 275N,

The first summation is the probability at least one of the original N
locations is not overwritten, but at least one overwritten location
gets the same checksum. (We pessimistically assume it obtains
a different value.) The second expression adds a term for when
all original values are overwritten and two or more obtain the
same checksum. Note that we need to give bounds as values in
overwritten locations may or may not be the same.
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We could have a return error if all N copies of the original key
are overwritten and one or more of those cells are overwritten with
the same checksum and same (incorrect) value. This probability is
lower bounded by

(1 _ e*th)Nszb(l _ sz)Nfl’

which is the probability that all of the original locations are over-
written and a single overwriting key obtains the checksum, and
upper bounded by

(1-e NN (1 - (1-270)N),

the probability that the original locations are overwritten and at
least one overwriting key obtains the checksum.

There are many ways to modify the configuration or return
method to lower the empty returns and/or return errors, at the
cost of more computation and/or more memory. The most natural
is to simply use a larger checksum; we suggest 32 bits should be
appropriate for many situations. However, we note that at “Internet
scale” rare events will occur, even matching of 32-bit checksums,
and so this should be considered when utilizing Key-Write infor-
mation. One can also use a “plurality vote” if more than one value
appears for the queried checksum; additionally one can require that
a checksum/value pair occur at least twice among the N values
before being returned. (Note that, for example, requiring consensus
of two values can be decided on a per query basis without changing
anything else; one can decide for specific queries whether to trade
off empty returns and return errors this way.) Additional ideas from
coding theory [19, 45], including using different checksums for
each location or XORing each value with a pseudorandom value,
could also be applied. As a default, we suggest a 32-bit checksum
and a “plurality vote”.
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A.6 Analysis of the Postcarding Primitive
We now calculate:

(a) The probability that a flow’s values fail to be reported, be-

cause the flow has been overwritten.

(b) The probability that a flow is reported with incorrect values.
We assume that the number of reports (up to B postcards that belong
to the same flow/packet) since the queried ID is « - C.

For (a), we consider several reasons (similar to (1)-(3)) for failing
to report the values and analyze them separately.

o All of the queried flow’s chunks are overwritten by other
flows and none of them produce valid information. We have
that the probability that a slot is overwritten is bounded by
(1—e~*N)_ Also, the probability of a given overwritten slot
to not produce valid information is: 1 — ((|V| +1)- Z’b)B .

Therefore, the overall probability of this event is at most

N
(1-e@N)N. (1 ~((vi+ - z—”)B) )

o All the flow’s chunks are overwritten and at least two pro-
duce valid information arrays that differ. This probability is
bounded by:

N
(1—e @N)N . (1 - (1 - ((|V| +1)- 2—”)3)

-N- ((|V|+1)-z—b)B

: (1 - ((vi+- z-b)B)N_l ) (10)

o At least one chunk (but not all) is overwritten and produces
valid information. This error probability is at most

18

Langlet et al.

Z

-1
(N) (1- e @N)J . gmaN(N=J)
J

: (1 - (1 ~(avi+n) -Z‘b)B)j). 1y

Next, we analyze the probability of replying incorrectly (b). This
happens when all the queried key’s chunks are overwritten and all
valid chunks are hold the same information. Thus, the probability
of such an error is at most:

Il
—_

J

(12)

Let us consider a numeric example to contrast these results with
using KW for each report of a given packet. Specifically, suppose
that we are in a large data center (|V| = 2!8 switches) and want to
run path tracing by collecting all (up to B = 5) switch IDs using
N = 2 redundancy. Further, let us set b = 32-bit per report and
compare it with 64 bits (32 for the key’s checksum and 32 bits for the
switch ID) used in KW and that C- & packets’ reports were collected
after the queried one, for @ = 0.1. We have that the probability of
not outputting a collected report (9-11) is at most 3.3% and the
chance of providing the wrong output (12) is lower than 10722, In
contrast, using KW for postcarding gives a false output probability
of ~ 8- 10711 (in at least one hop) using twice the width per entry!
This improvement is due to a couple of reasons. First, we leverage
the difference between the number of switches (e.g., [V| = 218)
and the width of the value field (hardcoded at 32-bits per the INT
standard [21]). Second, we leverage the fact that each packet carries
multiple (e.g., B = 5) reports to amplify the success probability and
mitigate the chance of wrong output. Further, for reports for which
we are able to cache all postcards at the translator (which depends
on the allocated memory and the number of simultaneous postcard
reports generated), this approach reduces the number of RDMA
writes by a factor of B.

(1-e NN . N. ((|V| +1)- 2—b)B.
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