
Network Load Balancing with
In-network Reordering Support for RDMA

Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, Mun Choon Chan
National University of Singapore

{songch,khooixz,rajjoshi,inhochoi,lijl,chanmc}@comp.nus.edu.sg

ABSTRACT
Remote Direct Memory Access (RDMA) is widely used in high-
performance computing (HPC) and data center networks. In this
paper, we first show that RDMA does not work well with existing
load balancing algorithms because of its traffic flow characteris-
tics and assumption of in-order packet delivery. We then propose
ConWeave, a load balancing framework designed for RDMA. The
key idea of ConWeave is that with the right design, it is possi-
ble to perform fine granularity rerouting and mask the effect of
out-of-order packet arrivals transparently in the network datapath
using a programmable switch. We have implemented ConWeave
on a Tofino2 switch. Evaluations show that ConWeave can achieve
up to 42.3% and 66.8% improvement for average and 99-percentile
FCT, respectively compared to the state-of-the-art load balancing
algorithms.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; Data path algorithms; Data center networks.

KEYWORDS
Network Load Balancing, Programmable Network, In-Network
Packet Reordering, Programmable Switches, RDMA, P4

ACM Reference Format:
Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, Mun Choon
Chan. 2023. Network Load Balancing with In-network Reordering Support
for RDMA. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), Sep-
tember 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3603269.3604849

1 INTRODUCTION
Remote Direct Memory Access (RDMA) allows end hosts to di-
rectly exchange data in the main memory while offloading network
I/O responsibilities from the CPU onto RDMA-capable network
interface cards (RNICs). Given the significant performance benefits
that RDMA brings, it has been widely used in high-performance
computing (HPC) settings deployed over proprietary Infiniband
networks [51]. For its low-latency performance and to free up
precious CPU cycles, nowadays, modern data centers are using

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604849

ECMP LetFlow
(10us)

LetFlow
(100us)

LetFlow
(500us)

DRILL101

102

103

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(u

s)

Avg
p99

(a) Avg.Load 50%

ECMP LetFlow
(10us)

LetFlow
(100us)

LetFlow
(500us)

DRILL101

102

103

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(u

s)

(b) Avg.Load 80%

Figure 1: RDMA FCTs with existing load balancing schemes
on our hardware testbed (§4.2).

RoCEv2 [14] to actively adopt RDMA technologies on Ethernet
networks [17, 21, 25].

Data center network topologies (e.g., leaf-spine) are typically de-
signed to scale while having sufficient redundancy in mind. Specifi-
cally, there are multiple end-to-end paths between any two server
racks. Thus, to maximally utilize the available network capacity,
load balancing is performed to spread network traffic across differ-
ent paths. Equal Cost Multi-Path (ECMP), in particular, is widely
used in today’s data centers [38]. The next hop path is selected by
hashing the packet fields and then taking the modulo of it over the
number of available paths. Packets from a flow would always map
onto the same path and thus these packets will always be delivered
in the same order that it is sent.

However, numerous studies have shown that ECMP is unable to
distribute the load evenly over different paths [9, 27, 52] when the
traffic is highly skewed. A plethora of works have been proposed
to address the shortcomings of ECMP. For instance, some works
use per-packet switching [18, 23] to achieve near-optimal load bal-
ance, but result in massive amounts of out-of-order packets. Other
works [11, 35, 52, 59, 62] split a flow into chunks of packets based
on inactive time gaps, so-called flowlet switching. Although flowlet
switching provides a way to perform load balancing and avoids
out-of-order packets, it is an opportunistic mechanism. Hence, the
efficiency of flowlet-based approaches depends on the traffic char-
acteristics i.e. whether there are flowlets available.

The motivation for this work comes from the observation that
existing load balancing algorithms that improve upon ECMP are
designed to run with TCP but not RDMA. In Fig. 1, we show how
RDMAworkloads perform using existing load balancing algorithms
on our hardware testbed (see §4.2 for setup details). Regardless
of the traffic load, existing approaches perform worse, if not on
par, when compared to ECMP. We identify two causes for this
performance degradation: (i) RDMA flow characteristics, and (ii)
RDMA’s response to packet out-of-order packets.
RDMA flow characteristics: Fig. 2 shows the flowlet sizes for
TCP and RDMA traffic using different inactive time thresholds

816

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3603269.3604849
https://doi.org/10.1145/3603269.3604849
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604849&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

1KB 100KB 10MB 1GB
Flowlet Size

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 B

yt
es

1us 10us 100us 500us

(a) TCP

1KB 100KB 10MB 1GB
Flowlet Size

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 B

yt
es

1us 10us 100us 500us

(b) RDMA

Figure 2: Flowlet characteristics in TCP and RDMA using 8
concurrent connections performing bulk data transfer on
25Gbps link. We share similar findings with [42].

10 100 1000
Flow Completion Time (us)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

In Order
Reorder+GoBN
Reorder+SR

(a) 10KB message

300 1000 2000 4000
Flow Completion Time (us)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

In Order
Reorder+GoBN
Reorder+SR

(b) 1MB message

Figure 3: The effect of 1 packet arriving out-of-order to the
FCT on Go-Back-N and Selective-Repeat loss recovery mech-
anisms.

ranging from 1𝑢𝑠 to 500𝑢𝑠 . We see that for RDMA, flowlets are
noticeably larger compared to TCP even for a small inactive time
threshold of 10𝑢𝑠 . This implies that given an inactive time gap, there
are significantly fewer chances to find flowlets in RDMA traffic
compared to TCP. These observations are similar to those reported
by Lu et al. [42]. This can be attributed to the fact that TCP transmits
in bursts (e.g. TSO [34, 46]) and uses ACKs with batch optimization
in order to achieve I/O and CPU efficiency which naturally creates
time gaps between transmissions [20]. On the other hand, RDMA
performs hardware-based packet pacing per connection (i.e., rate
shaping) resulting in a continuous packet stream with small time
gaps. Thus, due to the lack of sufficiently large flowlet gaps, flowlet
switching-based approaches cannot work well with RDMA.
RDMA’s response to out-of-order packets: RoCEv21 inherits
many of the design assumptions of RDMA in Infiniband networks,
one of which is that there is generally no loss in the network and
therefore packets are delivered in-order [28]. As a result, when an
RNIC receives a packet out-of-order, it treats it as an indication
of packet loss (e.g., due to network congestion) and immediately
initiates loss recovery which results in the sending RNIC decreasing
its sending rate. On the contrary, TCP is more tolerant to out-
of-order packets by buffering some out-of-order packets without
immediate rate reductions or retransmissions (e.g., by waiting up
to 3 dup-ACKs [13] or more [16]). Also, compared to TCP which is
generally more programmable with kernel-level changes, RNICs
are mostly fixed-function and typically have limited resources (e.g.
for packet buffering) [60].

1In this paper, we use RoCEv2 and RDMA interchangeably.

per-flow

packet out-of-ordermany

ECMP

DRILL
Spraying

ConWeave

few

per-packet

reroute
granularity

Flowlets
(e.g., Conga,

Letflow)

trade-off

Better

Network-

assistance

Figure 4: Trade-off between reroute granularity and packet
out-of-order for in-network load balancing mechanisms [11,
18, 23, 59].

To quantify how out-of-order packets affect RDMA performance,
we conduct two experiments consisting of one sender and one re-
ceiver connected to an Intel Tofino2 programmable switch [5]. The
sender and receiver are both equipped with an NVIDIA Mellanox
ConnectX-5 (CX5) [48] or ConnectX-6 (CX6) [49] RNICs that sup-
port different loss-recovery mechanisms, i.e., Go-Back-N (GBN)
and Selective Repeat (SR), respectively. We artificially induce out-
of-order packet arrivals by randomly selecting a packet from the
RDMA flow and recirculating it in the switch before forwarding it.

Fig. 3 compares the FCTs2 for short (10𝐾𝐵) and long (1𝑀𝐵) flows.
We note that RDMA is highly sensitive to even a single out-of-
order packet arrival. Generally, we observe that CX6 (using SR)
exhibits better performance than CX5 (using GBN) due to fewer
retransmissions. Nevertheless, in both cases, the performance is
impacted by the reception of out-of-order packets which causes the
sender to reduce its sending rate.

The reason for the rate reduction is that the RNIC interprets the
detection of packet gap as packet loss, even though the cause can
be attributed to either packet drops or out-of-order packet arrivals.
However, if the cause is due to out-of-order packets, then the rate re-
duction is unnecessary, and together with spurious retransmission,
it leads to lower network utilization.

In this paper, we pose the following question: Is it possible to
support fine-grained rerouting for RDMA flows to spread and load
balance the traffic among multiple paths without causing out-of-
order packet arrivals? We answer this question in the affirmative
and propose a solution called ConWeave (or Congestion Weaving
3), a load balancing framework designed for RDMA in data centers.

ConWeave has 2 components, one running in the source and the
other in the destination top-of-rack (ToR) switches. The component
running in the source ToR switch continuously monitors the path
delay for active flows and attempts to reroute whenever congestion
is detected, instead of passively waiting for flowlet gaps. Such
rerouting without sufficient packet time gaps can result in out-of-
order packet arrivals at the destination ToR switch.

The key idea of ConWeave is to mask out-of-order packets from
the RDMA end-hosts connected to the destination ToR switch. We
do so by exploiting the state-of-the-art queue pausing/resuming
features [39] on the Intel Tofino2 [5] programmable switch to put
packets back in order, entirely in the data plane. To ensure that this

2We measure the flow completion time (FCT) based on queue completion events at the
RDMA clients so as to understand the latency experienced by application-layer.
3In boxing, "weaving" refers to a defensive technique used to avoid attacks. The boxer
shifts their body and weight from side to side in a weaving motion, making it difficult
to land a clean punch.

817

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

can be done given the available hardware resources, ConWeave
reroutes traffic in a principled manner such that out-of-order pack-
ets only arrive in a predictable pattern and these packets can be
put back in the original order in the data plane efficiently. Notably,
ConWeave is end-host agnostic. It is designed to be introduced in
the network (i.e., at the ToRs) to work seamlessly with existing
RNICs and applications without any modifications.

As shown in Figure 4, ConWeave presents a new paradigm in
load balancer designs. With in-network reordering4 capabilities,
ConWeave can reroute traffic frequently while keeping out-of-order
packets at bay. As a result, ConWeave is able to reach amore optimal
operating point compared to existing schemes.

The contributions of this paper are as follows:
• We present a lightweight design for resolving packet reordering
on a commodity programmable switch. The system has been
implemented using P4 running on the Intel Tofino2 [5] switch.

• We design ConWeave, a load balancer design that performs per-
RTT latency monitoring for active flows, and path switching
while masking the out-of-order packet arrivals using the above
in-network packet reordering scheme.

• We evaluate ConWeave on both software simulations and hard-
ware testbed. Our results show that ConWeave improves the
average and 99-percentile FCT by up to 42.3% and 66.8%, respec-
tively, compared to the state-of-the-art.
The paper is organized as follows: in §2, we discuss how can we

perform reordering using programmable switches; then, we discuss
the design and implementation in §3; later, the evaluation results of
ConWeave are presented in §4; before wrapping up in §7, we offer
additional discussions and outline future work in §5 and summarize
related work in §6.

2 REORDERING OUT-OF-ORDER PACKETS IN
THE NETWORK: A PRIMER

Generally, end-hosts assume the responsibility for putting the out-
of-order packets back in order. With the emergence of commodity
programmable switches, we believe that the network itself can, and
should play an important role in reordering packets. Ideally, with
data plane support, more fine-grained load-balancing mechanisms
can be introduced if the network can mask these out-of-order be-
haviors from the end hosts. So, the question becomes, how much
reordering can commodity programmable switches, e.g., the Intel
Tofino switches, support?

Scenario: To make the discussion more concrete, we use the hy-
pothetical scenario presented in Fig. 5. In the example, we assume
packets are sent every 2𝑢𝑠 . Fig. 5a shows four packets of a single
flow transmitted across paths with different delays, e.g., 9𝑢𝑠 , 6𝑢𝑠 ,
1𝑢𝑠 for S1, S2, and S3, respectively. At the source-ToR, the packets
are sent to paths S1, S2, and S3 to find a better path in an iterative
way. Fig. 5b shows the packet in-flight times and the sequence of
arrivals at the destination-ToR, i.e., 4, 2, 1, and 3.

2.1 Reordering on a Programmable Switch
In this paper, packet reordering refers specifically to the process of
buffering and releasing the received packets at the destination-ToR
4In this paper, we define “reordering” as the process of handling out-of-order packets
by putting them back in order.

SrcToR DstToR

S1

S2

S3

124 9µs

6µs

1µs

Inter-packet-gap (IPG): 2µs

3 1

2

4

3

(a) Topology and path delays.

Timeline (µs)

1
2

4

9µs

6µs

1µs

0

Arrival order: 4, 2, 1, 3

8

3 6µs

2 4 6 10

(b) Packet arrival schedule.

Figure 5: Sample trace of a single flow and the order of packet
arrivals at DstToR.

switch so that the packets will be “restored” back to the same order
as they were sent by the source-ToR switch.

To answer the question of howmuch reordering can a commodity
programmable switch perform, we first explore what features are
needed to reorder packets in the data plane. For simplicity, we
assume that there is no packet loss. Basically, we need to keep
track of the next expected packet sequence number to ensure in-
order delivery and hold out-of-order packets on a per-flow basis if
needed. For example, if the expected sequence is 1 but a packet with
sequence number 2 arrives, it has to be held until packet 1 arrives.
To realize this logic, we need two key elements: (1) a primitive to
hold/release packets (say, a queue), (2) stateful memory/operations
that allow to update/check the state upon packet arrivals. The state
operations include keeping track of the packet sequence number
and the associated queue being used.
Required features: Fortunately, recent programmable switches
have such capabilities. Using the Tofino2 [5] as an example:
(1) Up to 128 First-In-First-Out (FIFO) queues per egress port with

priority-based queue scheduling.
(2) Pause/Resume capability of an individual queue while main-

taining line-rate packet processing for other queues.
(3) Tens of MBs stateful memory (e.g., register arrays) which can

be updated by ALUs in the data plane.
Realizing mechanism: In Figure 6, we illustrate how the above
primitives are used in the example scenario. In the beginning, we
assign a queue 𝑄0 dedicated to forwarding in-order packets. When
packet 4 arrives, we compare the packet sequence with the state
NEXT SEQ and find that it is out-of-order. We hold the packet in
the empty queue 𝑄1. Similarly, when packet 2 arrives which is
out-of-order, we hold it in𝑄2. Next, packet 1 arrives and is in order.
Thus, we immediately forward it through 𝑄0. At this point, packet
2 is the next packet in sequence and is released from𝑄2. The NEXT
SEQ is increased to 3 accordingly. Lastly, for packet 3 arrival, we
forward it, flush𝑄1, and increment NEXT SEQ to 5 in a similar way.

2.2 Practical Considerations
While the above sorting mechanism is logically simple, there are a
couple of practical issues.
Limited queue resource: The idea of holding out-of-order packets
in the data plane is bounded by the number of queues available.
For instance, while our example needs only two queues to hold
two out-of-order packets, holding 𝑁 out-of-order packets would

818

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

4
Next SEQ

14
Q0

Q1

Q2
Hold!

Out-of-order

(a) Arrivals of packet 4, hold in𝑄1.

Next SEQ

12
Q0

Q1

Q2
Hold!Out-of-order

4
2

(b) Arrival of packet 2, hold in𝑄2.

Next SEQ

1 31
Q0

Q1

Q2Flush after `1'

1In-order

4
2

(c) Arrival of packet 1, release 2.

Next SEQ

3 53
Q0

Q1

Q2

3
Flush after `3'

In-order

4

(d) Arrival of packet 3, release 4.

Figure 6: An illustration of the packet reorderingmechanism.

require 𝑁 queues in the worst case (imagine 𝑁 packets arrive in
the reverse order). Unfortunately, there are only a limited number
of queues that can be repurposed for sorting on hardware. Thus,
this approach may not be amenable to cases where there can be
arbitrary out-of-orders arrivals.
Lack of sorting primitive: One may consider using packet re-
circulation within the switch for sorting. However, such an im-
plementation is inefficient. In fact, this is not a viable option as
there are scenarios whereby the incoming out-of-order packets rate
exceeds the speed of the in-order packet forwarding. In such cases,
the recirculation port overflows resulting in packet drops. Another
option is to use a sorted queue (e.g., PIFO [56]). Unfortunately, such
data structures are not available on existing switch ASIC, and its
approximated implementation (e.g., AIFO [61] and SP-PIFO [10])
falls short of providing strictly in-order delivery unless substantial
hardware resources are dedicated for reordering.

In addition, to achieve high-speed processing (e.g., tens of ter-
abits), switching ASICs allow only a limited set of stateful opera-
tions and imposes strict time constraints (e.g., per-stage in packet
processing pipeline). Therefore, a restricted mechanism but yet
fulfills the packet reordering requirement is needed.
Dealing with packet loss: Detecting out-of-order packet arrivals
can be done by keeping track of the packet sequence number. How-
ever, a naive sequence tracing will stall when a packet loss occurs.
The standard solution is to set a default waiting time and transmis-
sion proceeds to the next sequence after timeout. However, it is
non-trivial to set a proper timeout value given that there can be
substantial variability in path delay. Performing this task in the data
plane with limited resources makes the task even more challenging.

 ...

Continuous
RTT monitoring

Rerouting

Reroute!

SrcToR

Packet
Reordering

S1 S2

DstToR

Source Destination

Figure 7: Overview of ConWeave. Only the ToR switches are
required to be programmable.

3 CONWEAVE
The newfound capability to handle out-of-order packets in the
network raises new opportunities for fine-grained load balancing
mechanisms. Thus, we design ConWeave, a new load-balancing
framework that tightly incorporates the network’s reordering ca-
pability with “cautious” rerouting decisions.

Here, we describe the design and implementation of ConWeave.
First, we provide an overview in §3.1, followed by discussions on the
key components of ConWeave in §3.2 and §3.3. Finally, we discuss
the implementation aspects of ConWeave in §3.4. We list the key
parameters and packet types in Table 1 and Table 2, respectively.

3.1 Overview of ConWeave
The key idea of ConWeave is that we make decisions frequently
(approximately every RTT) to determine if rerouting is advanta-
geous based on network measurements. However, we need to take
care that packets will be rerouted only when out-of-order packets
can be efficiently sorted in the network prior to delivery to the end
hosts.

Figure 7 depicts the overview of ConWeave:
• There are two components, one running on the source ToR switch
and the other on the destination ToR switch. The ToR switches
are connected through the data center network. We assume the
use of some form of source routing so that the source ToR switch
can "pin" a flow to a given path.

• The component on the source ToR performs the following func-
tions: (1) latency monitoring to identify "bad" paths to avoid, (2)
if congestion is detected, selects a new path and, (3) implements
the mechanism which ensures that rerouting can be done "safely"
without causing out-of-order arrival at the end hosts.

• The component at the destination ToR switch provides a packet
reordering function that masks out-of-order delivery caused by
rerouting.
To make further discussion of ConWeave more concrete, we

refer to Fig. 8 when presenting the details using the example of a
flow arrival and its rerouting. The example can be generalized to
the case of many flows.

819

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Parameter Definition
\reply RTT_REPLY cutoff time at SrcToR
\path_busy Time period where a path is unavailable for rerouting
\inactive The inactive time gap to force a new epoch

Table 1: ConWeave parameters (see §3.2)

Type Definition
RTT_REQUEST request pkt. sent from SrcToR to DstToR
RTT_REPLY reply pkt. sent from DstToR to SrcToR
TAIL Last packet along the OLD path
REROUTED Packets sent through the new path after rerouting
CLEAR Signals no more out-of-order pkts. in the epoch
NOTIFY Signals a congested path to the SrcToR

Table 2: Packet types in ConWeave.

3.2 “Cautious” Rerouting Decisions
Ideally, we want fine-grained traffic rerouting, e.g., packet spray-
ing, to maximize network utilization. However, this increases the
number of packets that would arrive out-of-order in unpredictable
patterns and would require multiple rounds of sorting at the re-
ceiving end. Thus, it is crucial for the rerouting design to produce
predictable packet arrival patterns in order to exploit the hardware
reordering capabilities efficiently. How can this be done?

We perform rerouting under the following three conditions: (i)
the existing path is congested, (ii) there exists a viable path that is
not congested, and (iii) any out-of-order packets caused by previous
reroutes have been received at the destination ToR.

Conditions (i) and (ii) are imposed to ensure that rerouting is
needed and a good alternative path is available. Conditions (iii) is
imposed to produce predictable arrival patterns in the sense that
any flow can only have in-flight packets in at most two paths at any
instance of time. The reason is the following. First, for rerouting
to occur, condition (iii) is met. All the packets sent in the previous
rerouting should have arrived at the destination ToR switch and
all current in-flight packets are traveling on a single path. After
rerouting, there can now be two active paths with inflight pack-
ets. Condition (iii) prohibits another rerouting to occur until the
condition becomes true again.

Next, we describe the ConWeave’s rerouting mechanism using
Figure 8. In the initial state, a flow always begins with a new epoch.

3.2.1 Continuous RTT monitoring. For each individual active flow,
ConWeave continuously monitors the RTT to detect congestion.
To achieve that, ConWeave selects and marks one packet from the
flow as 1○ RTT_REQUEST in every epoch at the SrcToR (Source ToR
Switch). At the DstToR (Destination ToR Switch), whenever an
RTT_REQUEST is received, it replies with an 2○ RTT_REPLY to the
SrcToR. Here, the RTT_REPLY is always marked with the highest
priority. Thus, the time taken for the SrcToR to receive it on the
reverse path indicates the current path congestion status to the
DstToR in the forward path. As long as the RTT_REPLY is received
prior to the cutoff, the process is repeated for the next epoch. How-
ever, if an 3○ RTT_REQUEST is sent and no reply was received before

RTT_REPLY (late)
TAIL

REROUTED

RTT_REQUEST

OLD path NEW path RTT_REPLY CLEAR
SrcToR DstToR

RTT_REQUEST

...Start new epoch!

late, so ignored

RTT_REQUEST

RTT_REPLY cutoff

RTT_REPLY

Start new epoch!

Start new epoch! ...

REROUTED

1
2

3

REPLY Timeout!

Out-of-Order

RTT_REPLY cutoff

CLEAR
Queue Resume

4
5

6
7
8

9

Figure 8: ConWeave in-action. Illustration for a single flow
case but generalizes to many flows.

the cutoff time, we infer that the existing path is likely to experi-
ence congestion given the sudden increase in RTT. The rerouting
mechanism is triggered.

Design intuition. The SrcToR is able to infer the path status, e.g.,
impending congestion if the RTT_REPLY does not reach back in time
as opposed to waiting for the probes or piggyback packets [11, 62].
This ensures timely rerouting.

3.2.2 Path selection. Before rerouting, ConWeave needs to select
a non-congested path to reroute. ConWeave keeps track of con-
gested paths through in-band signaling between the ToR switches.
Whenever a ConWeave DstToR receives packets with congestion
indications (e.g., marked ECN bit [12, 63]), it triggers a NOTIFY
packet carrying path-related information (e.g., path ID) that is sent
to the SrcToR. Upon receiving a NOTIFY packet, the corresponding
path will be marked as unavailable by the SrcToR for a time of
\path_busy. We explain how \path_busy is set in §4.1.

Whenever a new path is needed, ConWeave randomly selects
a few sample paths (e.g., 2) (no active probing is performed) and
checks if any of them aremarked as unavailable. If a path is available,
we select the path for rerouting. If all paths are unavailable, the
network is considered highly congested and rerouting is aborted.

Design intuition. ConWeave does not actively probe for less
loaded paths to minimize measurement overhead. Instead, it avoids
congested paths by inferring the network load through in-band sig-
naling. When the network load is high and all paths are congested,
rerouting to another (congested) path exacerbates the congestion
and is thus not performed.

3.2.3 Rerouting traffic. For rerouting purposes, ConWeave splits
the packet stream into two “chunks” – OLD and NEW. Once a path
is selected for rerouting, ConWeave sends one more packet over
the OLD path by marking it as 4○ TAIL. The remaining packets are

820

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

then rerouted to the NEW path and marked with the 5○ REROUTED
flag. The TAIL and REROUTED flags allow the DstToR to differentiate
the two packet streams that are sent before, and after rerouting.
Once rerouting is performed, the SrcToR expects a 8○ CLEAR packet
from the DstToR to indicate that all OLD packets have been received.
DstToR knows that through the reception of the TAIL packet.
With the CLEAR packet, the SrcToR can then proceed to start a new
epoch 9○.

Handling CLEAR packet loss. The CLEAR packet is critical in ensur-
ing that ConWeave could progress into the next epoch. However,
if the CLEAR packet is lost or not sent by the DstToR, ConWeave
would not be able to resume the RTT monitoring mechanism. To
overcome this, the SrcToR keeps track of an inactive period of
connection, i.e., the gap between the last packet process time and
the current time. If it exceeds \inactive, ConWeave automatically
progresses to the next epoch without having to wait for the CLEAR
packets that may never arrive. We set \inactive long enough such
that it is unlikely to have out-of-order arrivals before starting a
new epoch (i.e., sum of the maximum propagation time of the TAIL
and CLEAR packets).

3.3 Masking Packet Reordering
To ensure in-order packet delivery to the end hosts, we make use
of the sorting primitives outlined in §2. Knowing that any flow can
only have in-flight packets in at most two paths, sorting the packet
streams is simple and can be done using only one queue to hold
the out-of-order packets.

3.3.1 Reordering Packets. At the DstToR, the order of packets can
be determined through the TAIL and REROUTED flags. Essentially,
any REROUTED packets should only be forwarded to the destina-
tion after the TAIL is received and transmitted by the DstToR. For
instance, if the 6○ REROUTED packets arrived earlier than the 7○
TAIL, they are held in a queue until the TAIL arrives. Once the
TAIL arrives, the queue can then be resumed and flushed while a
8○ CLEAR packet is sent to the SrcToR to signal that there are no
out-of-order packets pending.

To explain the reordering process in detail, we illustrate this
procedure in Fig. 9. Here, the default queue 𝑄0 has the lowest
scheduling priority and is common for all flows. When the first
REROUTED packets arrive before the TAIL (i.e., out-of-order), the
DstToR assigns a queue (say𝑄1) to this flow and the queue is paused
to hold the REROUTED packets (see Fig. 9b). Upon reception of TAIL,
ConWeave forwards the TAIL and then resumes 𝑄1. At the same
time, REROUTED packets that arrive after TAIL are directed to 𝑄0
instead of 𝑄1. Packets in 𝑄0 will continue to be forwarded once 𝑄1
is completely flushed by the strict queue priority (see Fig. 9c).

Handling TAIL packet losses. In the event of losing the TAIL
packet, the REROUTED out-of-order packets could remain in the
queue indefinitely. To cope with the loss, we introduce a timer,
𝑇resume. In the case of TAIL losses, the queue holding the packets
would be resumed and flushed when𝑇resume expires. We depict this
operation in Fig. 9d.

To determine 𝑇resume, we estimate the expected arrival time of
the TAIL. Note that the packet arrival time is its departure time
plus the time in flight. We can approximate its expected arrival

1

1

Normal Queue

Q0

Q1

2

2

Reorder Queue

OLD

in-order
Path status Reorder-Q

- -

1
2

forward ..

(a) Forwarding in-order packets to a normal queue.

3

6

Q0

Q1

7

4

34
NEW

67
New Path

Path status Reorder-Q

- Q1
paused!

Reorder Queue
3
4

Old Path

..

OLD

(b) Start enqueuing the first out-of-order packet.

Q0

Q1
67

resume Q1 after "5"

TAILNEW
589

589

5
6
7
8
9Path status Reorder-Q

NEW - ..

Priority(Q1) > Priority(Q0)

(c) Resume reorder queue with priority queues.

.
Q0

Q1
67

resume Q1 by TIMEOUT

TAIL (lost)NEW
589

89
Path status Reorder-Q

NEW - ..

Resume
Timer

5
6
7
8
9

(d) In case of TAIL loss, timer triggers resume.

Figure 9: ConWeave packet reordering. A single flow needs
only one FIFO queue to reorder packets. ConWeave DOES
NOT rely on the packet sequence numbers to reorder them.
Instead, we differentiate the order of the packets through
the REROUTED and TAIL flags.

time at the DstToR using the OLD path’s delay and the departure
time of the TAIL at the SrcToR. Thus, all packets in ConWeave
carry the TX_TSTAMP in the ConWeave header when transmit-
ted by the SrcToR. In addition, the REROUTED packets include the
TAIL_TX_TSTAMP to inform the DstToR on when the TAIL departed
the SrcToR. Whenever the first REROUTED packet arrives, 𝑇resume
is initialized. Subsequently, the timer is updated by the packets
arriving from the OLD path using the latest telemetry. We discuss
the 𝑇resume estimation algorithm in detail in Appendix §A.

3.4 Implementation
We implement ConWeave’s data plane on an Intel Tofino2 pro-
grammable switch in ∼2400 lines of P4_16 [15] code. The data
plane consists of two key components, i.e., the rerouting module
and the sorting module. The implementation is available under [4].
ConWeave packet headers: We depict the layout of ConWeave’s
packet headers in Fig. 10. To minimize overhead, ConWeave repur-
poses the reserved fields (which are not included in the invariant
CRC computation) in the RDMA BTH header [14]. We use 8 bits to

821

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

IP Header UDP Header BTH Header ConWeave Header ...

TX_TSTAMP
16 bits

TAIL_TX_TSTAMP
16 bits

RDMA
fields 0
32 bits

PathID
8 bits

RDMA
fields 1
25 bits

Opcode
3 bits

REROUTED
1 bit

Epoch
2 bits

TAIL
1 bit

RDMA
fields 2
24 bits

...

Figure 10: ConWeave header format (total 47 bits). We use
the 15 reserved bits in the RDMA BTH header.

hold the PathID field which allows us to express up to 255 uplink
paths in a 2-tier Clos topology in our prototype5. Next, the 3-bit
Opcode field is used to differentiate between packets, i.e., normal,
RTT_REQUEST, RTT_REPLY, CLEAR, and NOTIFY. The 2-bit Epoch
field indicates the epoch of the packet 6. Finally, the remaining 2
bits are allocated for the REROUTED, and TAIL flags, respectively.
In addition, we include a separate header for ConWeave to carry
the TX_TSTAMP – the time when the packet leaves the SrcToR, and
TAIL_TX_TSTAMP – the time when the last TAIL has been sent by
SrcToR, separately.
ConWeave packets:We refer to Table 2 for the ConWeave packets.
ConWeave piggybacks information on existing packets to reduce
overhead. More specifically, the DstToR mirrors the RTT_REQUEST
received and modifies it before sending the modified packet back
to the SrcToR as the RTT_REPLY. For CLEAR, we mirror and modify
the TAIL or the 𝑇resume timer packet at the DstToR. Finally, for
NOTIFY, the DstToR mirrors and modifies the packet carrying the
congestion signals (e.g., with the ECN bit marked) and then sends
it to the SrcToR. Note that ConWeave control packets are always
transmitted with the highest priority in the network and with
payload truncation to ensure a low-latency feedback loop.
Timestamp resolution: Timestamps are used extensively in Con-
Weave. To minimize bandwidth and header overhead, we use only
16-bit timestamps in the ConWeave header (e.g., TX_TSTAMP and
TAIL_TX_TSTAMP). With 16 bits, we can keep track of up to 32𝑚𝑠
at 1𝑢𝑠 resolution. The most significant bit is used to keep track of
potential wraparounds. We believe this is sufficient to handle the
worst-case ToR-to-ToR path delay in data center networks.

3.4.1 Rerouting Module. To perform continuous RTT monitoring
(§3.2.1), we make use of register arrays to store the timestamp when
the last RTT_REQUEST was sent in the data plane. Every forwarded
packet would check against the timestamp stored to determine
whether the RTT_REPLY cutoff has been exceeded so that rerouting
may be triggered. In addition, we maintain a set of states to keep

5In cases where an 8-bit field may not be sufficient to represent the available paths,
source routing mechanisms (e.g., SRv6 [19]) should be used instead.
6Based on how ConWeave is designed, each connection typically has at most two
epochs at any given time (i.e., at most 2 concurrent paths) whereas we assumed a
failure-free case. However, in exceptional cases where packets arrive unexpectedly
late (e.g., due to PFC deadlock [30]) or \inactive is set too small, a 2-bit epoch field
may not be sufficient to handle epoch collisions resulting from bit wrap-around. Such
occurrences are infrequent and do not break ConWeave. That said, this can be addressed
by either increasing the number of bits in the epoch field or by comparing the departure
timestamps of packets to allow older packets to bypass the ConWeave logic.

track of rerouting status, e.g., timestamps to track connection status,
current epoch, and whether the current path is rerouted or not.

For rerouting to happen (§3.2.2), there need to be available paths
to select from. We keep track of the uplink path statuses using a
4-way associate hash table implemented using four register arrays,
spanning across four pipeline stages. A packet would access all four
registers to sample two paths and then decide whether to reroute
or not.

3.4.2 Reordering Module. To reorder packets, we make use of the
queue pause/resume feature on the Intel Tofino2 [5, 39] to hold the
out-of-order packets, i.e., REROUTED packets that arrive before the
TAIL. For each uplink (depending on the port link rate), we dedicate
𝑁 − 1 queues out of the 𝑁 queues (e.g., 31 out of 32 queues for a
100G link). At any given time, reordering can be done for up to
𝑀 ∗ (𝑁 − 1) number of flows where𝑀 is the number of downlinks
to servers. Later in §4.1.3, we show that only a fraction amount of
the queues are needed.

To reorder packets, the flow first needs to be assigned an avail-
able queue to hold the out-of-order packets. Similarly, we make use
of a 4-way associative hash table realized using 4 register arrays to
perform a lookup for available queues. To deal with TAIL losses, we
make use of individual resume timers for each queue. Since today’s
programmable switches lack timers, we realize the resume timer
by mirroring the first out-of-order packet with payload truncation,
then appending the specific connection information (e.g., connec-
tion ID, queue assigned) to the header before recirculating it. In
every recirculation, it checks the associated timeout value.

Once the assigned queue is flushed, the entry in the hash table is
then updated by the recirculated packet to mark the queue as avail-
able for other flows. We drop this recirculated packet whenever the
respective queue is flushed. Note that Tofino2 supports 400Gbps re-
circulation bandwidth and one recirculation in ConWeave typically
takes ≈ 1𝑢𝑠 . Thus, there is no queuing delay in recirculation unless
the total number of recirculated packets is over 1 BDP of recircula-
tion loop (≈50KB) or the number of connections concurrently with
reordering is over ∼800, which is extremely rare.

3.4.3 Dataplane resource utilization. ConWeave uses stateful ALUs
(SALUs) to maintain the connection states, e.g., timestamps, timers,
path status, available queues and etc, in the data plane. In our proto-
type implemented on the Intel Tofino2, ConWeave requires ∼22% of
the total SRAMmemory and uses ∼44% of the available SALUs. The
usage of other hardware resources (e.g., hash bits and VLIW instruc-
tions) is no more than ∼15% of available resources on the switch.
In the current prototype implementation, we did not integrate Con-
Weave with the reference data-center switch implementation, i.e.,
switch.p4. Instead, we applied our own L2/L3 switching and rout-
ing implementation to realize a multi-tier topology via network
virtualization. Based on the current implementation, we believe that
there is sufficient headroom for integration with other data-plane
programs. In cases where there are more active connections than
what ConWeave supports, ConWeave applies ECMP to the rest as
a fallback while dynamically maintaining hardware states with hot
and active connections [33, 57].

822

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

10B 1KB 100KB 10MB
Message/Flow Size (Bytes)

0.0

0.5

1.0

CD
F

Meta Hadoop (2015)
AliCloud Storage (2019)
Solar RPC (2022)

Figure 11: Traffic distribution from several applications in
datacenters [40, 43, 53].

Parameter Usage Value
\reply Timeout value for RTT_REPLY 8us
\path_busy Duration to avoid using a congested path 8us

\inactive
Duration of flow inactivity to start
a new epoch w/o out-of-order packets 300us

Table 3: Simulation parameters used for 2-tier topology
(see §4.1).

4 EVALUATION
In this section, we perform software simulations using NS3 [6]
and use a hardware testbed equipped with RNICs to evaluate the
performance of ConWeave. Particularly, we seek to answer the
following questions:
(1) How effective is the ConWeave’s active congestion-evasive

rerouting? We compare ConWeave’s performance to existing
state-of-the-art load balancing algorithms using both simula-
tion and hardware testbed.

(2) What are the resource requirements of ConWeave in terms of
buffer space and per-connection queues?

(3) What are the hardware resource and bandwidth consumption
of ConWeave when implemented on a programmable switch
such as the Tofino2 switch?

4.1 Software Simulations
We first present the setup for the simulation evaluation.
Network topologies: The topology in NS3 simulation is a Clos
topology [8] with the over-subscription ratio of 2:1. By default, we
use a leaf-spine topology which is common in data center clusters.
The topology consists of 8 × 8 leaf-spine switches, and 128 servers
(16 servers for each rack). All links are 100Gbps with 1𝑢𝑠 latency.
For the switch model, we enable buffer sharing for flexible buffer
allocation using a publicly available source code [41]. Each switch
has a buffer size of 9MB.
Workloads: Fig. 11 shows several industry data center workloads
available in the literature. We use the AliCloud storage [40] and
Meta Hadoop [53] workloads in the simulation. The SolarRPCwork-
load will be used in the hardware testbed evaluation. We schedule
a flow by randomly selecting a pair of client and server and then
select a flow size from the chosen flow size distribution. Inter-flow
arrival times follow a Poisson distribution and the average flow
arrival rate is used to control the overall traffic load intensity. Due
to the space limitation, we will only show the results for AliCloud
storage. The result for Meta Hadoop is shown in Appendix §B.

Transport: We use DCQCN [63] which is the standard conges-
tion control scheme for commodity RDMA NICs [31, 49]. Since the
recommendation in [63] does not fit into our setup due to a differ-
ent scale, we find the parameters giving the low latency and high
throughput, e.g., (𝐾𝑚𝑖𝑛 , 𝐾𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥) = (100𝐾𝐵, 400𝐾𝐵, 0.2) based
on the observations in [40]. For the rest of the parameters, we follow
the recommendations in the recent Mellanox driver/firmware [50].
Network flow controls: We implement two flow control mecha-
nisms as follows:
• Lossless RDMA - Go-Back-N loss recovery and priority-based flow
control (PFC).

• IRN RDMA [44] - Selective-Repeat for loss recovery and the end-
to-end flow control that bounds the number of in-flight packets
to 1 BDP (BDP-FC).

Schemes compared:We compare ConWeavewith ECMP, Conga [11],
Letflow [59], and DRILL [23]. For Conga and Letflow, we choose a
flowlet time gap of 100𝑢𝑠 . For DRILL, we use the recommended set-
ting DRILL(2,1), i.e., choosing a new output port with the smallest
queue among 2 random samples and 1 current port. For ConWeave,
the default parameters used are shown in Table 3. Specifically, \reply
is a timeout value for RTT_REPLY. A smaller value allows more
frequent rerouting, but too small a value may result in excessive
rerouting.We present howwe find the default value in appendix B.1.
\path_busy is the duration to avoid using the congested path after
NOTIFY is received. The value of \path_busy is chosen based on the
ECN marking threshold. For instance, if the threshold is 100KB,
then \path_busy should correspond to the minimum time required to
flush 100KB (e.g., 8𝑢𝑠 for a 100G link). Lastly, \inactive is the duration
to start a new epoch based on an inactivity period. It must be long
enough so that a new epoch starts without out-of-order packets.
For instance, we used 300𝑢𝑠 for leaf-spine topology.
Performance metrics: As the primary metric, we use FCT slow-
down, i.e., a flow’s actual FCT normalized by the base FCT when
the network has no other traffic. To measure the overhead and
effectiveness of ConWeave, we record the usage of the number
of reorder queues per egress port and the reorder queue memory
usage per switch by sampling every 10𝑢𝑠 from all nodes.

4.1.1 Reduction in FCT. We run the simulations with 50% and
80% average traffic loads which represent a moderately and highly
loaded network, respectively. In Fig. 12 and Fig. 13, we show the
average and tail FCT slowdowns. In some instances, DRILL’s per-
formance figures are not included because the FCTs are too large
to be included without substantial change in the scale.

For moderate traffic loads (i.e., 50%), ConWeave improves the av-
erage and 99-percentile FCT slowdowns for overall flow sizes by at
least 23.3%, 45.8% in lossless RDMA, and 12.7%, 46.2% in IRN RDMA
when compared to others. On the other hand, in a highly loaded
network (e.g., 80%), the average and tail FCTs improvement are at
least 17.6%, 35.8% in lossless RDMA, and 42.3%, 66.8% in IRN RDMA.
Our results show that ConWeave is effective in rerouting flows
away from congested links and provides significant improvements
over the baseline algorithms.

4.1.2 Load balancing efficiency. In this evaluation, we investigate
ConWeave’s load balancing efficiency. Fig. 14 shows the CDF of
throughput imbalance [11] across the 8 uplinks for each ToR switch

823

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K 31K

2.0M

Flow Size (Bytes)

1

2

3
4
5

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(a) 50% Avg.Load (avg)

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K31K

2.0M

Flow Size (Bytes)

1

5
10
1520

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(b) 50% Avg.Load (99%-ile)

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K31K

2.0M

Flow Size (Bytes)

5

10
15
20
2530

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(c) 80% Avg.Load (avg)

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K31K

2.0M

Flow Size (Bytes)

20

30
40
50

100

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(d) 80% Avg.Load (99%-ile)

Figure 12: Avg. and tail FCT slowdown for AliStorage in Lossless RDMA (50% and 80% Avg.Load).

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K31K

2.0M

Flow Size (Bytes)

1.0

1.5

2.0

3.0

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(a) 50% Avg.Load (avg)

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K 31K

2.0M

Flow Size (Bytes)

1

3
5
7
9

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(b) 50% Avg.Load (99%-ile)

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K31K

2.0M

Flow Size (Bytes)

1

2

5

10

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(c) 80% Avg.Load (avg)

0
1.8K

3.5K
4.6K

5.5K
6.3K

7.2K
8.6K16K31K

2.0M

Flow Size (Bytes)

5

10

20
30
4050

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(d) 80% Avg.Load (99%-ile)

Figure 13: Avg. and tail FCT slowdown for AliStorage in IRN RDMA (50% and 80% Avg.Load).

using 50% and 80% average load. The throughput imbalance is de-
fined as the maximum throughput minus the minimum throughput
divided by the average (among the uplinks). We calculate it using
snapshots sampled every 100𝑢𝑠 from all nodes. From the result,
we observe that except for DRILL, ConWeave is the most effective
in terms of spreading the load to various links. Recall that DRILL
performs per-packet switching resulting in a large amount of out-of-
order packets. Hence, while it achieves good load balancing among
the links, it has poor application performance over RDMA.

4.1.3 Hardware resource consumption. Fig. 15 shows the number
of queues used per switch egress port. Most of the time, we ob-
serve that ConWeave only needs to support less than 10 queues
for reordering regardless of the network loads. In the worst case,
the number of queues needed does not exceed 15. Given that the
number of queues available per egress port found on commodity
programmable switches ranges from 32 up to 128 [24], this shows
that ConWeave requires only a fraction of the queues for reordering.

Fig. 16 shows the total buffermemory usage per switch for packet
reordering. In general, ConWeave in lossless RDMA consumesmore
buffer memory than IRN RDMA. This is because while the flow con-
trol (BDP-FC) in IRN limits the in-flight packets to one BDP, lossless
RDMA can keep sending packets of a flow during its packet reorder-
ing process and thus consuming more buffer memory. Specifically,
in lossless RDMA with 80% network load, the 99.9-percentile and
maximum queue overhead is 1.5MB and 2.4MB, respectively. Even
so, these numbers correspond to only a fraction of available buffer
space on commodity switching ASICs which typically have tens
of MBs [1, 5] of them. We discuss ConWeave’s scalability and its
alternative design options in §5.

0 50 100 150 200 250 300 350
Throughput Imbalance (MAX-MIN)/AVG (%)

0
0.2
0.4
0.6
0.8
1.0

CD
F ECMP

DRILL
Conga

Letflow
ConWeave

(a) 50% Avg.Load

0 25 50 75 100 125 150 175 200
Throughput Imbalance (MAX-MIN)/AVG (%)

0
0.2
0.4
0.6
0.8
1.0

CD
F ECMP

DRILL
Conga

Letflow
ConWeave

(b) 80% Avg.Load

Figure 14: Load imbalance between throughput of ToR up-
links for 50% and 80% Avg.Load in IRN RDMA.

4.1.4 Three-tier Topology. So far, the evaluations have been per-
formed with a two-tier (Clos) topology. In this section, we evaluate
ConWeave on a three-tier topology (i.e., more hops). A 3-tier topol-
ogy introduces more hops and thus potentially longer response
time and more cross-traffic variation. We use a fat-tree topology [8]
with its parameter 𝑘 = 8 and the over-subscription ratio of 2:1,
which involves 256 servers in total (8 servers for each rack), and
the average network load is 60%. In lossless RDMA, we use 8𝑢𝑠 for
\reply, 16𝑢𝑠 for \path_busy, and 1𝑚𝑠 for \inactive.

We depict the results in Fig. 17. We find that across the lossless
and IRN RDMA, ConWeave improves the average and 99-percentile
FCT slowdowns by at least 21.4%, 40.8% for short (<1BDP) flows,

824

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

30 40 50 60 70 80 90
Network Load (%)

0
1

10

100

Nu
m

be
r o

f Q
ue

ue
s #.Queue/port on Tofino2

Avg p99 p99.99 Max

(a) Lossless RDMA

30 40 50 60 70 80 90
Network Load (%)

0
1

10

100

Nu
m

be
r o

f Q
ue

ue
s #.Queue/port on Tofino2

Avg p99 p99.99 Max

(b) IRN RDMA

Figure 15: Number of queues usage per egress port. Note that
the y-axis is in log scale while the dashed line on the top
refers to the number of queues available per port.

0MB 0.5MB 1MB
Total Reorder Queue Size

0.00

0.25

0.50

0.75

1.00

CD
F

Lossless RDMA
IRN RDMA

(a) 50% Avg.Load

0MB 1MB 2MB 3MB
Total Reorder Queue Size

0.00

0.25

0.50

0.75

1.00

CD
F

Lossless RDMA
IRN RDMA

(b) 80% Avg.Load

Figure 16: Total queue memory overhead per switch.

Lossless
RDMA

IRN
RDMA

1

2

3

4

5

Av
g.

 F
CT

 S
lo

wd
ow

n ECMP
Conga
LetFlow
ConWeave

(a) Average

Lossless
RDMA

IRN
RDMA

10

20

30

p9
9

FC
T

Sl
ow

do
wn

(b) 99%-ile

Lossless
RDMA

IRN
RDMA

20

40

60

p9
9.

9
FC

T
Sl

ow
do

wn

(c) 99.9%-ile

Lossless
RDMA

IRN
RDMA

3

6

9

12

Av
g.

 F
CT

 S
lo

wd
ow

n

ECMP
Conga
LetFlow
ConWeave

(d) Average

Lossless
RDMA

IRN
RDMA

10

20

30

40

50

p9
9

FC
T

Sl
ow

do
wn

(e) 99%-ile

Lossless
RDMA

IRN
RDMA

20

40

60

80

p9
9.

9
FC

T
Sl

ow
do

wn

(f) 99.9%-ile

Figure 17: FCT slowdowns for short (a-c) and long (d-f) mes-
sages for fat-tree topology.

and 40.1%, 57.8% for long (>1BDP) flows, respectively. Overall, Con-
Weave outperforms the baseline load balancing mechanisms on the
3-tier topology.

4.2 Hardware Testbed Evaluations
Next, we evaluate our prototype for ConWeave on a hardware
testbed consisting of one Tofino1 and Tofino2 switch, respectively.
Network topologies: Our testbed topology comprises of two
leaves and four spine switches (see Fig. 18a). We realize the topol-
ogy by virtualizing the Tofino1 switch as four spine switches while

Client Group Server Group

8 clients

........
....
....

25Gbps

8 servers

........
....
....

(a) Testbed topology.

4KB16KB

Connection 1

Connection 2
64KB8KB

...

...

R
N
IC

Traffic
Gen

Module

Round
Robin

Client

(b) Traffic generation.

Figure 18: Leaf-spine topology in the testbed and a traffic
generator at clients for each client-server pair.

the Tofino2 switch serves as the two leaf switches running Con-
Weave. All links operate at 25Gbps and the topology has an over-
subscription ratio of 2:1. Each leaf switch is connected to a client/
server group, where each group consists of 8 nodes that are con-
nected with a single 25Gbps Mellanox RNIC (both CX5 and CX6 [48,
49]) port.
Workload: Each client-server pair maintains 2 persistent connec-
tions and sends RDMA WRITE following the SolarRPC workload
(see Fig. 11).
Transport: We use DCQCN with the same parameters in NS3
simulation (§4.1).
Network flow control: We configure our testbed for lossless
RDMA. The switches and RNICs are configured with PFC enabled.
Loss-recovery-wise, we only use Go-Back-N on the RNICs and con-
figure the DCQCN ECN marking scheme using the parameters as
per the simulations (§4.1). Selective Repeat is not used as it is not
compatible with the CX5 RNICs.
Schemes compared: We compare ConWeave with ECMP and
Letflow (100us). Given the lack of available P4 implementations for
Conga and LetFlow, we only reimplement the more recent LetFlow
in P4 on the Intel Tofino2 given the similar performance trends of
Conga and LetFlow. We do not evaluate DRILL given its known
poor performance on RDMA (§4.1). For ConWeave, we accordingly
use 12𝑢𝑠 for \reply, 32𝑢𝑠 for \path_busy (100KB flush time with 25G
link), and 10𝑚𝑠 for \inactive as we run on lossless RDMA.
Performance metrics: We evaluate the performance using the
absolute FCTs measured in microseconds (𝑢𝑠).

4.2.1 Application performance. In Fig. 19, we evaluate the impact
of ConWeave on RDMA application performance by measuring
their average and tail FCTs. We observe that ConWeave completes
the flows at least 11%∼23% faster than other schemes for diverse net-
work loads between 40% to 80%. Specifically, we notice a significant
improvement of the 99.9-percentile FCTs, i.e., from 39.67% up to
52.96%, for ConWeave when compared to its counterparts. Thus, the
results prove that ConWeave effectively reroutes traffic by evading
congested links to improve RDMA application performance.

4.2.2 ConWeave bandwidth usage. In the forward direction, Con-
Weave adds a 4-byte header to each RDMA data packet (see §3.4). In
the reverse direction, the ConWeave DstToR sends control packets
(e.g., REPLY, FIN, FEEDBACK) to the SrcToR. In Table 4, we present
the bandwidth overhead of ConWeave in the reverse direction and

825

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

L = 40 L = 60 L = 80
Avg.Load (%)

0

50

100

150

Av
g.

 F
CT

 (u
s) ECMP

LetFlow
ConWeave

(a) Average FCT

L = 40 L = 60 L = 80
Avg.Load (%)

0

100

200

300

400

p9
5

FC
Ts

 (u
s)

(b) 95%-ile FCT

L = 40 L = 60 L = 80
Avg.Load (%)

0

200

400

600

800

p9
9

FC
Ts

 (u
s)

(c) 99%-ile FCT

L = 40 L = 60 L = 80
Avg.Load (%)

0

1000

2000

3000

4000
p9

9.
9

FC
Ts

 (u
s)

(d) 99.9%-ile FCT

Figure 19: FCTs comparison for Solar workload in Lossless
RDMA measured in the testbed.

Avg.
Load

Average Bandwidth
RDMA DATA RTT_REPLY CLEAR NOTIFY

20 22.01 Gbps 0.12 Gbps 0.01 Gbps ≈ 0.0 Gbps
50 55.44 Gbps 0.26 Gbps 0.04 Gbps 0.02 Gbps
80 84.67 Gbps 0.48 Gbps 0.16 Gbps 0.24 Gbps

Table 4: Bandwidth overhead of control packets compared to
RDMA data bandwidth (RDMA DATA).

compare it with the RDMA forwarding bandwidth (DATA field
in Table 4) measured at SrcToR uplinks of the client group. We
observe the additional bandwidth overhead of ConWeave is a small
fraction of the available bandwidth.

5 DISCUSSION AND FUTUREWORK
ConWeave on SmartNICs: While ConWeave is designed to ex-
ploit the capabilities of commodity programmable switches, our key
insights can also be applied to recent SmartNICs. For instance, the
switch logic of ConWeave can be implemented on the Nvidia Blue-
Field DPUs [47] or the Intel E2000 IPUs [32], albeit with different
trade-offs in resource usage, deployment cost, and complexity. Nev-
ertheless, running ConWeave on ToR switches has the following
advantages. First, it incurs less redundancy in path state mainte-
nance as the ToR switch serves as a natural aggregation point for
path monitoring, selection, and switching. Second, since the re-
sources used for packet reordering on the ToR switch can be shared
by all servers in the rack, this can lead to reduced resource usage
due to statistical multiplexing.
Scaling to larger network: Switch hardware resource limitation
presents a scalability challenge for ConWeave when the network
expands to millions of servers. We note that hardware resource
usage, such as the number of queues and the amount of on-chip
memory, is proportional to the number of active flows that necessi-
tate packet reordering at the destination ToR. The number of such
flows, in turn, depends only on the number of servers per rack and

applications per server. Neither number grows significantly with
increasing network size. For example, in a fat-tree topology [8], the
size of the network increases cubic to the number of servers per
rack.

In the rare cases where switch hardware resources are exhausted,
unresolved out-of-order packets can lead to performance degra-
dation. To reduce the likelihood of resource exhaustion, one can
consider either using external switch memory [36] such as host
DRAM and SmartNICs to buffer packets temporarily, or applying
admission control so that destination ToRs permit source ToRs to
do rerouting only when there are spare resources. We leave these
investigations for future work.
Interaction with congestion control: The primary focus of this
work revolves around DCQCN, the de-facto standard transport
protocol in commodity RNICs. In ConWeave design, DCQCN’s
ECN-based congestion marking offers two distinct advantages.
Firstly, it ensures that the delay resulting from packet reordering
is not erroneously attributed to network congestion. Secondly, the
ECN threshold provides valuable insights into the minimal time
required to alleviate congestion within the queue. On the other
hand, ConWeave is also compatible with delay-based protocols
such as Swift [37]. However, it is essential that any delay incurred
due to packet reordering at the destination ToR switch should not
be interpreted as a congestion signal in these cases.
Integrating with rate control: In its current prototype, while
ConWeave takes the approach of avoiding congested paths by rapid
and frequent rerouting, it does not take into account the effect on
rate control. For instance, after it reroutes from a congested to an
idle path, the congestion feedback from the previous path can still
unnecessarily reduce the rate. It will be interesting to investigate
how a predictable and scheduled load balancing mechanism like
ConWeave can be co-designed with a rate control mechanism.
Incremental deployment:ConWeave’s design allows operators to
incrementally deploy ConWeave in data centers running alongside
non-ConWeave ToR switches. For inter-rack communications that
involve non-ConWeave ToR switches, the default ECMP is applied.
The optimum partial deployment strategy for maximum benefits
remains an area for further investigation in future research.

6 RELATEDWORK
RDMA load balancing in data centers: There has been plenty
of literature on addressing data center network load balancing in
various granularities from per-flow to per-packet. Apart from the
conventional Equal Cost Multi-Path (ECMP), existing works pre-
dominantly leverage flowlets [11, 35, 52, 59], a set of sub-streams of
a flow stream divided by the inactive time gap, to proactively avoid
out-of-order delivery. However, as highlighted previously, such an
opportunistic design turns out to be not effective on RDMA given
the fewer chances to reroute [42]. Per-packet rerouting (e.g., spray-
ing [18] or DRILL [23]) may provide near-optimal load balancing if
out-of-order delivery does not matter, but it incurs an enormous
performance impact on RDMA. On the contrary, ConWeave masks
the out-of-orders in the network while operating a load balancing
at a fine granularity. Table 5 summarizes the existing literature and
ConWeave in the context of RDMA.

826

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

Schemes Method of
congestion sensing

Minimum
reroute granularity

Rerouting frequency
in RDMA

Restoring packet orders
before the receiving ends

Adverse effects by
out-of-order pkts

Compatible
with RNICs

ECMP [29] Oblivious Flow Low No need Low Yes
Presto [27] Oblivious Flowcell High (for 64KB flowcells) Reordering buffer at end-hosts Low No
Conga [11] Global path utilization

Flowlet Low (to ensure
less out-of-order) No Low YesHula [35] Global path utilization

Letflow [59] Obllivious
DRILL [23] Local queue utilization Packet High No High Yes
Hermes [62] Global congestion signaling Packet Low (too cautious) No Low No
ConWeave Global congestion signaling RTT High In-network reordering Low Yes

Table 5: Summary of prior work for network load balancing.

Some works consider a multi-path transport design with end-
host modifications. MP-RDMA [42] proposes a multi-path RDMA
transport through custom-designed RNICs, or purely software-
based implementation [58]. Moreover, it may not be compatible
with the legacy RNICs and thus it cannot be easily deployed in data
centers. In contrast, ConWeave is complementary to existing rout-
ing protocols and operates on current commodity programmable
switches and RNICs.
Packet reordering on programmable switches: With the emer-
gence of data plane programmability, efforts have been made to
fully/partially offload functions at the end hosts to the switching
hardware for performance acceleration. The packet reordering (or,
sorting) function in the programmable switch has been explored
in the context of packet scheduling. For instance, many queue ab-
straction designs have been proposed to flexibly express a variety
of scheduling algorithms and to be efficiently implemented on pro-
grammable switches [10, 54–56, 61]. However, their primitives are
substantially more expensive to support as their requirements to
reorder packets for a per-flow basis on hardware are also more
complex. ConWeave’s requirement is simpler and is designed to
satisfy the packet reordering need in the context of load balancing.
Offloading packet reordering to application/transport layer:
Instead of avoiding packet out-of-order in the network, some works
[22, 26, 27, 45] implement a dedicated reordering buffer on the
transport or application layer. However, these approaches are either
too complex to be implemented on commodity RNIC hardware or
incur a significant overhead on the CPU negating the benefits of
using RDMA. Furthermore, they predominantly rely on congestion-
oblivious rerouting (i.e., packet spraying) whose susceptibility to
network asymmetry is well-known by previous studies [59, 62].
Load balancing inHPC:The emergence of AI/ML applications has
led to a strong emphasis within the high-performance computing
(HPC) community on achieving optimal (RDMA) network load
balancing. Concurrent with ConWeave, leading companies in the
field of HPC, including Cisco [3], NVIDIA [7], and Broadcom [2],
have developed proprietary systems that incorporate per-packet
rerouting and packet reordering capabilities in their proprietary
switches and/or DPUs integrated into SmartNICs. ConWeave shares
the same goal on RDMA load balancing with these systems and
closely aligns itself with this emerging industrial trend. ConWeave’s
design and its publicly available implementation can serve as a
possible benchmark for further research on RDMA load-balancing
using commodity programmable hardware.

7 CONCLUSION
In this paper, we show that existing load-balancing schemes do
not work for RDMA traffic because of the lack of sufficiently large
flowlet gaps and RDMA’s performance degradation in the face of
out-of-order packets. To tackle RDMA’s intolerance for out-of-order
packets, we first design an in-network packet reordering scheme
that resolves out-of-order packets before delivering them to an
RDMA receiver. We then present ConWeave, a load balancer design
that performs fine-grained load-balancing of RDMA flows such
that the out-of-order packets could be reordered by the in-network
reordering mechanism. Through software simulations and hard-
ware testbed evaluations, we show that ConWeave consistently
outperforms existing designs. By also highlighting the need for de-
veloping load balancing algorithms specifically designed for RDMA
traffic, we believe that ConWeave opens up a new chapter on load
balancing for RDMA in datacenter networks.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers and our shepherd Yu
Hua for their invaluable feedback. This research is supported by
the Singapore Ministry of Education Academic Research Fund Tier
2 (Grant Number: MOE2019-T2-2-134).
Ethics statement: This work does not raise any ethical issues.

REFERENCES
[1] 2017. Broadcom Trident 3. https://packetpushers.net/broadcom-trident3-

programmable-varied-volume/.
[2] 2023. Broadcom Jericho3-AI. https://www.broadcom.com/company/news/

product-releases/61156 [Accessed: May 2023].
[3] 2023. Cisco Silicon One. https://blogs.cisco.com/sp/building-ai-ml-networks-

with-cisco-silicon-one [Accessed: May 2023].
[4] 2023. ConWeave repository. https://github.com/conweave-project.
[5] 2023. Intel Tofino 2. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/tofino-2-series.html.
[6] 2023. Network Simulator 3 (NS-3). https://www.nsnam.org/.
[7] 2023. NVIDIA Spectrum X. https://nvdam.widen.net/s/6lmkmc8lqg/nvidia-

spectrum-x-whitepaper [Accessed: May 2023].
[8] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture. ACM SIGCOMM CCR (2008).
[9] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow scheduling for data
center networks.. In Proceedings of NSDI.

[10] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever. 2020. SP-PIFO:
Approximating Push-In First-Out Behaviors using Strict-Priority Queues. In
Proceedings of NSDI.

[11] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong
Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters. In Proceedings of SIGCOMM.

[12] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
Center Tcp (DCTCP). In Proceedings of SIGCOMM.

827

https://packetpushers.net/broadcom-trident3-programmable-varied-volume/
https://packetpushers.net/broadcom-trident3-programmable-varied-volume/
https://www.broadcom.com/company/news/product-releases/61156
https://www.broadcom.com/company/news/product-releases/61156
https://blogs.cisco.com/sp/building-ai-ml-networks-with-cisco-silicon-one
https://blogs.cisco.com/sp/building-ai-ml-networks-with-cisco-silicon-one
https://github.com/conweave-project
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.nsnam.org/
https://nvdam.widen.net/s/6lmkmc8lqg/nvidia-spectrum-x-whitepaper
https://nvdam.widen.net/s/6lmkmc8lqg/nvidia-spectrum-x-whitepaper

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

[13] Mark Allman, Hari Balakrishnan, and Sally Floyd. 2001. Enhancing TCP’s loss
recovery using limited transmit. Technical Report.

[14] InfiniBand Trade Association. 2020. InfiniBand Architecture Specification Release
1.4 Annex A17: RoCEv2.

[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
CCR (2014).

[16] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
The RACK-TLP Loss Detection Algorithm for TCP. RFC 8985 (2021).

[17] Alibaba Cloud. 2023. Shared Memory Communications over RDMA (SMC-R).
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/smc-r.

[18] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella. 2013.
On the impact of packet spraying in data center networks. In Proceedings of
INFOCOM.

[19] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene, Stephane
Litkowski, and Rob Shakir. 2018. Segment routing architecture. Technical Report.

[20] Doug Freimuth, Elbert Hu, Jason LaVoie, Ronald Mraz, Erich Nahum, and John
Tracey. 2006. Evaluating Batching for TCP Offload. Technical Report. Technical
report, IBM, IBM TJ Watson Research Center.

[21] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021. When Cloud Storage
Meets RDMA. In Proceedings of NSDI.

[22] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.
2016. Juggler: a practical reordering resilient network stack for datacenters. In
Proceedings of EuroSys.

[23] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro load balancing for low-latency data center
networks. In Proceedings of SIGCOMM.

[24] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-
izadeh, and Thomas E Anderson. 2022. Backpressure Flow Control. In Proceedings
of NSDI.

[25] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of SIGCOMM.

[26] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of
SIGCOMM.

[27] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based load balancing for fast datacenter networks.
ACM SIGCOMM CCR (2015).

[28] Torsten Hoefler, Duncan Roweth, Keith Underwood, Robert Alverson, Mark
Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyuan Shen,
Moray McLaren, et al. 2023. Data Center Ethernet and Remote Direct Memory
Access: Issues at Hyperscale. Computer (2023).

[29] Christian Hopps. 2000. Analysis of an equal-cost multi-path algorithm. Technical
Report.

[30] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,
and Kai Chen. 2016. Deadlocks in datacenter networks: Why do they form, and
how to avoid them. In Proceedings of HotNets.

[31] Intel. 2023. Intel Ethernet 800 Series. https://www.intel.sg/content/www/xa/en/
design/products-and-solutions/networking-and-io/ethernet-800-series/data-
transfer-with-rdma-video.html.

[32] Intel. 2023. Intel® Infrastructure Processing Unit (Intel® IPU) ASIC
E2000. https://www.intel.sg/content/www/xa/en/products/details/network-
io/ipu/e2000-asic.html.

[33] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of SOSP.

[34] Rishi Kapoor, Alex C Snoeren, GeoffreyMVoelker, and George Porter. 2013. Bullet
trains: a study of NIC burst behavior at microsecond timescales. In Proceedings
of CoNEXT.

[35] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of SOSR.

[36] Daehyeok Kim, Yibo Zhu, ChanghoonKim, Jeongkeun Lee, and Srinivasan Seshan.
2018. Generic external memory for switch data planes. In Proceedings of HotNets.

[37] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu,
Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, et al. 2020. Swift: Delay is simple and effective for congestion
control in the datacenter. In Proceedings of SIGCOMM.

[38] Petr Lapukhov, Ariff Premji, and Jon Mitchell. 2016. Use of BGP for routing in
large-scale data centers (RFC7938). Technical Report.

[39] Jeongkeun Lee. 2020. Advanced Congestion & Flow Control with Programmable
Switches. https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-
Slide-Deck.pdf.

[40] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In Proceedings of SIGCOMM.

[41] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021. To-
wards timeout-less transport in commodity datacenter networks. In Proceedings
of EuroSys.

[42] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path Transport
for RDMA in Datacenters. In Proceedings of NSDI.

[43] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, et al. 2022. From luna to
solar: the evolutions of the compute-to-storage networks in Alibaba cloud. In
Proceedings of SIGCOMM.

[44] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting network support
for RDMA. In Proceedings of SIGCOMM.

[45] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A receiver-driven low-latency transport protocol using network priorities.
In Proceedings of SIGCOMM.

[46] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo
Park. 2020. AccelTCP: Accelerating Network Applications with Stateful TCP
Offloading.. In Proceedings of NSDI.

[47] NVIDIA. 2023. Mellanox BlueField2 DPU SmartNICs. https://store.mellanox.
com/categories/dpu.html [Accessed: Jan 2023].

[48] NVIDIA. 2023. Mellanox Connect X-5. https://www.nvidia.com/en-sg/
networking/ethernet/connectx-5.

[49] NVIDIA. 2023. Mellanox Connect X-6. https://www.nvidia.com/en-sg/
networking/ethernet/connectx-6.

[50] NVIDIA. 2023. Mellanox Firmware XX.35.2000. https://network.nvidia.com/
support/firmware/mlxup-mft/.

[51] Gregory F Pfister. 2001. An introduction to the infiniband architecture. High
performance mass storage and parallel I/O (2001).

[52] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: congestion signals are simple and effective for network load
balancing. In Proceedings of NSDI.

[53] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015.
Inside the social network’s datacenter network. In Proceedings of SIGCOMM.

[54] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating fair queueing on reconfigurable switches. In Proceedings of NSDI.

[55] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable
calendar queues for high-speed packet scheduling. In Proceedings of NSDI.

[56] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable packet scheduling at line rate. In
Proceedings of SIGCOMM.

[57] Cha Hwan Song, Xin Zhe Khooi, Dinil Mon Divakaran, and Mun Choon Chan.
2023. DySO: Enhancing application offload efficiency on programmable switches.
Computer Networks (2023).

[58] Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu, and Zhi-Li Zhang. 2021.
Accelerating Distributed Deep Learning using Multi-Path RDMA in Data Center
Networks. In Proceedings of SOSR.

[59] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching. In
Proceedings of NSDI.

[60] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al. 2023. SRNIC: A Scalable
Architecture for RDMA NICs. In Proceedings of NSDI.

[61] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,
Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Programmable packet
scheduling with a single queue. In Proceedings of SIGCOMM.

[62] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.
Resilient datacenter load balancing in the wild. In Proceedings of SIGCOMM.

[63] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM CCR (2015).

828

https://www.alibabacloud.com/help/en/elastic-compute-service/latest/smc-r
https://www.intel.sg/content/www/xa/en/design/products-and-solutions/networking-and-io/ethernet-800-series/data-transfer-with-rdma-video.html
https://www.intel.sg/content/www/xa/en/design/products-and-solutions/networking-and-io/ethernet-800-series/data-transfer-with-rdma-video.html
https://www.intel.sg/content/www/xa/en/design/products-and-solutions/networking-and-io/ethernet-800-series/data-transfer-with-rdma-video.html
https://www.intel.sg/content/www/xa/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.sg/content/www/xa/en/products/details/network-io/ipu/e2000-asic.html
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://store.mellanox.com/categories/dpu.html
https://store.mellanox.com/categories/dpu.html
https://www.nvidia.com/en-sg/networking/ethernet/connectx-5
https://www.nvidia.com/en-sg/networking/ethernet/connectx-5
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://network.nvidia.com/support/firmware/mlxup-mft/
https://network.nvidia.com/support/firmware/mlxup-mft/

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

Note: Appendices are supportingmaterial that has
not been peer-reviewed.

A QUEUE RESUME TIMER, 𝑇resume
Recall that the TAIL demarcates the packets that are before and
after rerouting at the SrcToR (see §3). A paused queue is used to
hold out-of-order packets and the arrival of the TAIL packet flushes
it. However, if the TAIL is lost, the out-of-order packets would be
stuck indefinitely. To solve this, we employ a timer, 𝑇resume, that
flushes the paused queue in the event of TAIL losses.

Intuitively, 𝑇resume should be set as the expected arrival time of
the TAIL which can be inferred from the OLD path’s delay, i.e., the
departure time of TAIL plus the estimated path delay. Unfortunately,
exactly predicting the path delay is challenging given the ever-
changing network conditions, e.g., due to congestion. To address
this challenge, we continuously update the estimation of 𝑇resume
using up-to-date telemetry (i.e., path delay) extracted from every
packets (sent before the TAIL) arriving from the OLD path. The
fields, TX_TSTAMP and TAIL_TX_TSTAMP (see §3.4), carried by the
packets are used to perform the estimation of 𝑇resume.

Using Fig. 20, we illustrate how 𝑇resume is derived in the event
of packets arriving out-of-order. Here, 1○ packet A and 2○ packet
B are sent through a congested path. As no RTT_REPLY arrives
back at the SrcToR within the cutoff time, the rerouting mechanism
is thus triggered. A 3○ TAIL packet is sent through the OLD path
before rerouting the 4○ subsequent packets (marked as REROUTED)
through the NEW path. Note that our method requires no time-
synchronization between the ToR switches.
Initializing 𝑇resume when the first REROUTED packet arrives:
The DstToR keeps track of the most recent packet’s departure time
from the SrcToR and the arrival time at the DstToR. For the case of
5○ packet A, we denote the time of transmission at SrcToR as 𝑡𝑇𝑋

𝐴

and the arrival time at SrcToR as 𝑡𝑅𝑋
𝐴

. This information will be used
in the estimation of 𝑇resume. If 6○ REROUTED packets arrive earlier
than TAIL, they are out-of-order and a paused queue is allocated to
buffer the packets. For the first out-of-order packet, we initialize the
queue resume timer𝑇resume. The estimation of𝑇resume comes in two
steps. First, we calculate the time difference, 𝑡𝐷𝐼𝐹𝐹 , between when
packet A and the TAIL is transmitted, i.e., 𝑡𝐷𝐼𝐹𝐹 = 𝑡𝑇𝑋

𝑇𝐴𝐼𝐿
− 𝑡𝑇𝑋

𝐴
.

Assuming both packets A and TAIL experienced the same path
delay, TAIL should arrive in 𝑡𝐷𝐼𝐹𝐹 after 𝑡𝑅𝑋

𝐴
. Thus, 𝑇resume can be

estimated using the packet before REROUTED, in this case packet
A’s 𝑡𝑅𝑋

𝐴
, as reference, in the following manner:

𝑇resume ≈ 𝑡𝑅𝑋𝐴︸︷︷︸
pkt A’s arrival time

+ (𝑡𝑇𝑋𝑇𝐴𝐼𝐿 − 𝑡𝑇𝑋𝐴)︸ ︷︷ ︸
𝑡𝐷𝐼𝐹𝐹 between TAIL and pkt A

In the case where there are no prior packets that arrive before
REROUTED, we initialize 𝑇resume as follows:

𝑇resume ≈ 𝑡𝑅𝑋𝑅𝑅︸︷︷︸
first REROUTED’s arrival time

+ \resume_default

Note that \resume_default must be long enough to wait for the
following packets through the old path (e.g., ∼ 200𝑢𝑠 for leaf-spine
topology with IRN RDMA and ∼ 600𝑢𝑠 for PFC-enabled fat-tree
topology in §4.1).

SrcToR DstToR

REROUTED

TAIL

1

3
4

2

5

6
7

Update

 Timeout

Reply Timeout -->

Pkt A

Pkt B

Initialize

Packet Lost

Figure 20: Estimation of queue resume time𝑇resume. We high-
light no need for time-synchronization between switches.

-40 -20 -10 -5 -1 0 1 5 10 20 40
TAIL's Estimated Arrival Time - Actual Arrival Time (µs)

0.00

0.25

0.50

0.75

1.00

CD
F Leaf-Spine, Lossless

Leaf-Spine, IRN
Fat-Tree, Lossless
Fat-Tree, IRN

Figure 21: CDF of 𝑇resume estimation error before introduc-
ing \resume_extra for different topologies and network flow
controls.Weuse 60% average network load. The plus value im-
plies a haste queue flush. The arrows indicate 99-percentile.

Updating𝑇resume estimations using packets arriving from the
OLD path:When 7○ subsequent packets from the OLD path arrive
at DstToR after the first REROUTED packet, 𝑇resume is re-estimated.
We denote packet B’s transmission time at SrcToR and arrival time
at DstToR as 𝑡𝑇𝑋

𝐵
and 𝑡𝑅𝑋

𝐵
, respectively. Similar to initialization, we

update𝑇resume using the latest information of packet B. For instance,
when packet B arrives at 𝑡𝑅𝑋

𝐵
, 𝑇resume is updated as follows:

𝑇resume ≈ 𝑡𝑅𝑋𝐵 + (𝑡𝑇𝑋𝑇𝐴𝐼𝐿 − 𝑡𝑇𝑋𝐵)
Note that this procedure applies to packets from the OLD path

that arrives after the first REROUTED packet until TAIL arrives, or
when 𝑇resume expires.
Extra term to deal with network uncertainty: However, given
the dynamic network conditions due to the wild variation of net-
work uncertainty by congestion or PFC at small timescales, the path
delay experienced by packet B and TAIL can hardly be exactly the
same. This can potentially lead to pre-mature queue flushes prior
to the arrival of the TAIL. Therefore, we add a small extra term,
\resume_extra, to 𝑇resume. Finally, the revised 𝑇resume estimation at
𝑡𝑅𝑋
𝐵

can be denoted as:

𝑇resume ≈ 𝑡𝑅𝑋𝐵 + (𝑡𝑇𝑋𝑇𝐴𝐼𝐿 − 𝑡𝑇𝑋𝐵) + \resume_extra

Setting the “right” value for \resume_extra: Through simula-
tions, we study how 𝑇resume (without \resume_extra) differs from
the actual arrival time of the TAIL. Empirically, we find that set-
ting \resume_extra to 3.0𝑢𝑠 Leaf-Spine (Lossless), 2.7𝑢𝑠 Leaf-Spine

829

ConWeave ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

5 6 8 12 20 36 68
θreply (us)

0

50

100

150

200

Qu
eu

e
Us

ag
e

(K
B)

Queue FCT (short) FCT (long)

0

5

10

15

20

p9
9

FC
T

Sl
ow

do
wn

(a) 50% Avg.Load

5 6 8 12 20 36 68
θreply (us)

0

100

200

300

400

Qu
eu

e
Us

ag
e

(K
B)

Queue FCT (short) FCT (long)

0

10

20

30

40

p9
9

FC
T

Sl
ow

do
wn

(b) 80% Avg.Load

Figure 22: Avg/99%-ile per-switch reorder queue usage and
99%-ile FCT slowdowns for diverse \reply in IRN RDMA. The
smaller parameter makes a finer-grained rerouting.

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.2K49K

118K
10.0M

Flow Size (Bytes)

1

2

3
4

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(a) 50% Avg.Load (avg)

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.2K49K

118K
10.0M

Flow Size (Bytes)

1

5
10
152025

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(b) 50% Avg.Load (99%-ile)

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.3K49K

120K
10.0M

Flow Size (Bytes)

1

2
3
5

10

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(c) 80% Avg.Load (avg)

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.3K49K

120K
10.0M

Flow Size (Bytes)

5

10

20
30
4050

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(d) 80% Avg.Load (99%-ile)

Figure 23: Avg. and 99% tail FCT slowdown for Meta Hadoop
in Lossless RDMA (50% and 80% avg.load).

(IRN), 13.7𝑢𝑠 Fat-Tree (Lossless), 7.2𝑢𝑠 Fat-Tree (IRN) is sufficient
for 99% of the time. In our evaluation, we used a small value (e.g.,
16𝑢𝑠) in IRN RDMA for a fast loss recovery. Since networks become
dynamic by PFC pausing in Lossless RDMA, a large value is used
(e.g., 64𝑢𝑠) owing to extremely rare packet loss.

B SUPPLEMENTARY OF EVALUATIONS
In this section, we supplement the evaluation results. In §B.1, we
present how we tune the parameter \reply. After that, we present
the simulation results usingMeta Hadoop workload in §B.2. We use
the same evaluation setup as in §4.1.

B.1 ConWeave parameter tuning
ConWeave’s rerouting granularity is proportional to the parameter
\reply, i.e., a smaller value produces more frequent rerouting. A
finer-grained rerouting would improve the performance, but it also
increases the reordering overhead such as queue consumption. In
Figure 22, we show the average/99-percentile queue memory usage
for reordering and 99-percentile FCT slowdown by varying \reply
from 5𝑢𝑠 to 68𝑢𝑠 , where the ToR-to-ToR basis propagation delay
is 4𝑢𝑠 (4 hops and 1𝑢𝑠 delay per link). We observe that a smaller

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.2K49K

118K
10.0M

Flow Size (Bytes)

1

2

3
4

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(a) 50% Avg.Load (avg)

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.2K49K

118K
10.0M

Flow Size (Bytes)

1

3
5

10
1520

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(b) 50% Avg.Load (99%-ile)

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.3K49K

120K
10.0M

Flow Size (Bytes)

1

2
3
5

10

Av
g

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(c) 80% Avg.Load (avg)

0
0.3K

0.4K
0.5K

0.6K
0.7K

1.0K
6.3K49K

120K
10.0M

Flow Size (Bytes)

5

10

20
30
4050

p9
9

FC
T

Sl
ow

do
wn

ECMP
DRILL

Conga
LetFlow

ConWeave

(d) 80% Avg.Load (99%-ile)

Figure 24: Avg. and 99% tail FCT slowdown for Meta Hadoop
in IRN RDMA (50% and 80% avg.load).

30 40 50 60 70 80 90
Network Load (%)

0
1

10

100

Nu
m

be
r o

f Q
ue

ue
s #.Queue/port on Tofino2

Avg p99 p99.99 Max

(a) Lossless RDMA

30 40 50 60 70 80 90
Network Load (%)

0
1

10

100

Nu
m

be
r o

f Q
ue

ue
s #.Queue/port on Tofino2

Avg p99 p99.99 Max

(b) IRN RDMA

0MB 0.5MB 1MB
Total Reorder Queue Size

0.00

0.25

0.50

0.75

1.00

CD
F

Lossless RDMA
IRN RDMA

(c) 50% Avg.Load

0MB 1MB 2MB 3MB
Total Reorder Queue Size

0.00

0.25

0.50

0.75

1.00

CD
F

Lossless RDMA
IRN RDMA

(d) 80% Avg.Load

Figure 25: Per-port number of queues (a-b) and per-switch
queue memory usage (c-d) for Meta Hadoop workload.

\reply provides a lower FCT slowdown with more queue memory
usage for reordering, but the performance starts to decrease when
\reply is over 8𝑢𝑠 . This explains our choice of \reply, 8𝑢𝑠 .

B.2 FCT slowdowns using Meta Hadoop
workload

From Figure 23 to 24, we present the NS3 simulation results for
Meta Hadoop workload. Similar to the Alibaba cloud workload,
ConWeave significantly improves the FCT slowdowns. Specifically,
when the traffic load is 80% on average, ConWeave achieves 40.7%
and 59.4% improvement in lossless RDMA and 28.6% and 56.3%
improvement in IRN RDMA for the average and 99-percentile FCT
slowdown to all other schemes.

830

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA CH Song et al.

B.3 Queue usage
Figure 25 shows the queue usage of ConWeave for Meta Hadoop
workload. Similar to our observation from the AliCloud workload,

we see that the number of queue usage is always less than 12 and
the queue memory usage per switch is under 2MB for both lossless
and IRN RDMA.

831

	Abstract
	1 Introduction
	2 Reordering out-of-order packets in the network: A primer
	2.1 Reordering on a Programmable Switch
	2.2 Practical Considerations

	3 ConWeave
	3.1 Overview of ConWeave
	3.2 ``Cautious'' Rerouting Decisions
	3.3 Masking Packet Reordering
	3.4 Implementation

	4 Evaluation
	4.1 blackSoftware Simulations
	4.2 Hardware Testbed Evaluations

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Queue Resume Timer, Tresume
	B Supplementary of Evaluations
	B.1 ConWeave parameter tuning
	B.2 FCT slowdowns using Meta Hadoop workload
	B.3 Queue usage

