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Abstract
We present the design, implementation, evaluation, deployment
and production experiences of EBB (Express BackBone), a private
WAN (Wide Area Network) connecting Meta’s global data centers
(DCs). Initiated in 2015, EBB now carries 100% of DC-DC traffic,
witnessing remarkable growth over the years. A key design aspect
of EBB is its multi-plane architecture, facilitating seamless deploy-
ment of a new control plane while ensuring operational simplicity.
This architecture allows for efficient failure mitigation, standard
maintenance, and capacity expansion by draining one or two planes
without impacting service level objectives (SLOs). Another critical
design decision is the hybrid model, combining distributed control
agents and a central controller. EBB’s centralized traffic engineering
utilizes an MPLS-TE based solution to allocate paths periodically
for different traffic classes based on service requirements, while
its distributed control agents enable fast local failure recovery by
pre-installing pre-computed backup paths in the data plane. We
delve into our eight-year production experience, highlighting the
successful deployment of multiple generations of EBB.
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1 Introduction
Wide area networks (WANs) play a critical role in interconnecting
data centers (DCs), facilitating the smooth flow of network traffic
across these centers. With the increasing demand for supporting
cross-data center replication of rich content like photos and videos,
the need for bandwidth between data centers has surged signifi-
cantly. Additionally, WANs are tasked with handling traffic that
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varies greatly in terms of bandwidth, availability, and latency re-
quirements. The WAN network must cater to the diverse needs
of various service classes, such as user-facing traffic with low la-
tency and high availability demands, as well as bulk network traffic
requiring high throughput. Moreover, it must exhibit agility to
adapt to changes in configuration, control stack, and the addition of
new data centers, ensuring seamless operations in an ever-evolving
network landscape.

Meta’s WAN network boasts unique characteristics that set it
apart from more conventional WAN architectures. One such aspect
is the need for the centralized control plane to adapt continuously
to frequently changing traffic demands, the addition of new data
centers, and the inclusion of new links. To support this evolving
control plane, our architecture necessitates the ability to perform
live migration and updates of the control plane seamlessly. Another
distinguishing feature is the backbone network’s swift response
to potential link or intermediate node failures. In traditional ap-
proaches, the centralized control plane recomputes paths and in-
stalls new paths on the data plane to handle failures [14, 15, 30].
However, this approach may result in significant packet loss during
the response cycle. Operational simplicity and ease of deployment
are paramount in our design decisions. We prioritize the need to
maintain a straightforward operational setup while accommodating
the demands of multiple traffic classes and continuously evolving
the control plane. Recent events, like the large failure incident in
Oct 2021 [16], underscore the significance of striking a balance
between simplicity and adaptability in our network operations.

We deploy EBB that customizes traffic engineering algorithms
and programmable switches to these unique characteristics of the
WAN network [25]. As a result, EBB is an MPLS-based software
defined network (SDN) with the following unique features.

First, EBB leverages a multi-plane architecture, inspired by our
data center network design [5]. This innovative approach divides
the physical topology network into multiple parallel topologies,
or planes, with each plane receiving a proportion of traffic and
possessing a separate centralized control stack. The utilization of
parallel planes provides the flexibility to continually evolve our
traffic engineering algorithms in the controller. For instance, we
can undertake partial deployments of traffic engineering (TE) algo-
rithms in one plane by diverting traffic from that plane and then
deploying the new TE algorithm specifically in that plane. Addi-
tionally, this allows us to conduct A/B testing on one plane while
leaving other planes unaffected, making it easier to compare perfor-
mance and effectiveness. Moreover, this multi-plane architecture
facilitates a phased rollout of new configurations, one plane at a
time, to minimize disruption to live traffic.

346

https://doi.org/10.1145/3603269.3604860
https://doi.org/10.1145/3603269.3604860
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604860&domain=pdf&date_stamp=2023-09-01


ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Denis, et al.

Secondly, EBB’s control plane employs a hybrid model, combin-
ing both distributed control agents and a central controller. Each
plane features a centralized controller responsible for executing
traffic engineering algorithms, while distributed agents utilize an
in-house intradomain routing protocol to discover the network
topology. This hybrid approach enables us to efficiently manage
traffic flow centrally through traffic engineering path computa-
tion. The centralized controller deploys multiple traffic engineering
path allocation algorithms, tailored to address the unique charac-
teristics of each traffic class, ensuring optimal routing for diverse
service requirements. To enhance resilience, the centralized con-
troller proactively precomputes and pre-installs backup paths for
common failure scenarios, allowing for rapid response in the event
of link failures. Network failures are detected in a distributed man-
ner, and agents running on network devices are responsible for
promptly installing the pre-computed backup paths, ensuring seam-
less continuity of network services even in the face of disruptions.

Thirdly, our data plane architecture is programmable, going
beyond the conventional label switching approach. Notably, the
programmable label includes semantic information that indicates
the source and destination site, along with traffic classes. This se-
mantic labeling greatly simplifies debugging, monitoring, and mea-
surement activities across the backbone network. The data plane’s
programmability further allows for the seamless coexistence of pri-
mary and backup paths, facilitating rapid switching between these
paths in the event of failures. This feature enhances the network’s
fault tolerance and enables swift response to potential disruptions,
ensuring continuous and reliable service delivery.

EBB, with its deployment dating back to 2015, has witnessed
remarkable evolution across multiple generations. Currently, our
network boasts eight parallel planes, efficiently handling traffic
across more than 20 regions. EBB stands as the sole network linking
data center regions at Meta, and over the years, it has experienced
an impressive 100-fold growth in traffic volume. The network’s de-
sign prioritizes agility, enabling rapid deployment and iteration of
innovative control plane functionalities. EBB’s resilience is evident
in its capacity to accommodate various failure scenarios and rapidly
adapt to fluctuating network traffic demands. In this paper, we offer
valuable insights into our experience with the deployment of the
evolving centralized controller. Additionally, we share our opera-
tional experience accumulated over the years in managing EBB. It
is our hope that our experiences will inspire future research and
advancements in managing WAN backbone networks, contributing
to the continued growth of such critical infrastructures. 1

2 EBB Topology and Traffic Classes
In this section, we describe the Express Backbone (EBB) topology,
traffic characteristics, and deployment scenarios.

2.1 EBB Network Topology
The Express Backbone (EBB) is the wide-area (WAN) backbone
network that interconnects data center (DC) sites across the globe.
Started from 2015, EBB is built as a separate backbone to carry the
inter-region machine-to-machine traffic, in order to better scale
with the exponential growth of the inter-DC traffic demand. Indeed,
the inter-DC traffic demand has grown by more than 100 times
1This work does not raise any ethical issues.

Figure 1: Explanatory EBB topology with selected DCs and
circuits (geo-locations are approximate).

over the last 10 years. The data center-to-user traffic remains at the
original backbone called CBB, or Classic Backbone.

EBB contains multiple types of devices in different regions. As
illustrated in Figure 1, each node denotes a site, which could be a
DC, or mid-point connection node. EBB has over 20 DC nodes and
over 20 midpoint nodes. Links between the nodes are Layer 3 IP
connections. Each link represents a bundle of physical connectivity.
Over the last 8 years, EBB has grown to contain thousands of links.

A primary goal of EBB is to perform traffic engineering for inter-
DC traffic. As illustrated in Figure 1, the nodes are either data
centers, or midpoint sites that provide connectivity to DC nodes.
The TE problem in EBB is to find the paths to connect every pair of
source/destination DC sites so as to minimize latency, congestion,
and packet loss. Prior to EBB, we used RSVP-TE [3] for fully dis-
tributed routing, which caused tens of minutes of convergence time
in the worst case. Similar to other SDN efforts [14, 15], we switch
to the centralized control for better scalability and performance.

2.2 Traffic Service Classes

Application traffic is classified in a few infrastructure-wide Classes
of Service (CoS) - ICP (Infrastructure Control Plane), Gold, Silver
and Bronze. ICP class carries the most important network control
traffic. Gold class is for user-facing traffic and critical services that
are sensitive to latency and availability. Silver class is the default
CoS for most applications. The remaining is bronze class for heavy
and bulk network consumers. The latter three classes all account
for a significant portion of total traffic. Thus, each class deserves
dedicated attention from traffic management perspective.

Express backbone implements Strict priority queueing to miti-
gate network congestion. Higher priority class traffic has higher
availability SLOs. Under network congestion, these classes expe-
rience different levels of packet loss, with “higher priority” class
traffic having a higher preference to be forwarded than “lower pri-
ority” ones. Traffic is classified based on IPv6 header’s DSCP value,
and marked on a distributed host-based stack, based on the marking
policies and the entitlements [4]. Such distributed structure enables
flexible coordination and innovations between network centralized
control and host distributed signaling.

3 EBB Design Overview
In this section, we describe the design principals of EBB, its multi-
plane architecture, and an overview of one plane.
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Figure 2: EBB Multiplane Architecture: An example of four
planes interconnecting three regions

3.1 Design Principals
EBB uses an MPLS-based SDN architecture with the following
design principles.
• Support constant evolvability of control plane: The software-
defined network (SDN) architecture enables a centralized con-
troller that determines path allocation, which is the key com-
ponent of the control plane. Yet, the controller algorithm is
constantly evolving due to the network upgrade and changing
traffic demand. Our multi-plane architecture can readily sup-
port the upgrade of the controller algorithm and the necessary
egress device drain during operation.
• Local failure recovery: The multi-plane architecture provides
redundancy among planes so that a plane-level failure such
as ingress/egress device drain or a controller failure can be
accommodated without bringing live traffic. However, link or
router level failure needs to be reacted quickly to with mini-
mum disruption to live traffic. Instead of relying on informing
and the reaction of the centralized controller, it is necessary to
establish backup paths and pre-installing these backup paths
to switches to facilitate local failure recovery. In the absence
of the programmed LSP mesh, the separation of centralized TE
control and IP routing allows for fallback to IP routing.
• Support multiclass traffic: The data center WAN backbone ac-
commodates various network traffic classes. This ranges from
critical service traffic with low latency and high availability
requirements to bulk best-effort network traffic. Further, traffic
demand from different traffic classes evolves over time and
might be shaped at ingress points. The path allocation algo-
rithm needs to accommodate these traffic classes based on their
requirements.

3.2 Multi-plane Architecture
Similar to our data center network design [5], EBB uses a multi-
plane architecture that splits the physical topology network into
multiple (in our case, eight) parallel topologies, referred to as planes.
Figure 2 shows the EBB network architecture with three sites in-
terconnected with four planes. Each plane receives a proportion
of traffic and has a separate control stack. The parallel planes al-
low us to continually evolve our TE algorithms in the controller
and perform fast upgrades/rollbacks with minimum disruption to
live traffic. Almost identical planes enable A/B testing between the
planes and help achieve rapid and safe evolution.

3.2.1 Splitting Traffic to Multiple Planes EBB inter-connects
data centers. We explain how the traffic from source regions get
onboarded to the eight planes throughmultiple routingmechanisms
below.

eBGP between DC and EB routers: The datacenter edge routers
(e.g., Fabric Aggregation (FA) routers ) establish eBGP sessions
with EB routers in all planes in the same region. FAs announce all
the prefixes within the DC through the eBGP sessions to all the
EB routers. As an example in Figure 2, a prefix 𝑝 in DC1 will be
announced from all four FAs. Thus, the traffic to 𝑝 will be carried
via ECMP across all planes.

iBGP mesh between EB routers: Within each plane, EBs form full-
mesh iBGP sessions. Each EB propagates all the DC prefixes in
its region to remote DCs. In the above example, 𝑒𝑏01.𝑑𝑐2 learns
𝑝’s route from 𝑒𝑏01.𝑑𝑐1 with the nexthop pointed to 𝑒𝑏01.𝑑𝑐1’s
loopback address. Similarly, DC2’s EBs in other planes learn 𝑝 from
the corresponding EBs in the same plane at DC1. With this route
installed, when 𝑒𝑏01.𝑑𝑐2 receives traffic destined to 𝑝 , it knows to
send it to 𝑒𝑏01.𝑑𝑐1.

Controller programs to route traffic into LSPs (Label Switched Path):
There are multiple LSPs established between any two EBs, for path
diversity and different traffic classes. Here we leverage EBB con-
troller to programs LSPs or the Nexthop Groups [2] on the source
router. In this example, the controller programs two lookup steps: 1)
a map of prefix 𝑝 and the loopback of eb01.dc1 to a nexthop group;
2) a map of nexthop group to the interface and label stacks of the
corresponding LSP.

Open/R for backup EB-EB reachability. Open/R is Meta’s in-house
IGP solution which computes the shortest paths for each site-
pair [12]. It means that Open/R also provides a route for 𝑒𝑏01.𝑑𝑐2
to reach 𝑒𝑏01.𝑑𝑐1. This serves as a backup purpose when the LSPs
are not programmed due to failures. Thus, this intra-domain path is
assigned with a lower preference. The MPLS-based path is used to
forward packets as long as it is configured, and Open/R’s shortest
path serves as a controller failover solution only.

3.2.2 Evolution of Generations The planar architecture was
in the Express backbone’s DNA since its inception and is EBB’s
multiplying factor for reliability. However, when the network’s
footprint was much smaller, the EBB had only 4 planes, later ex-
tended to 8. For a long time, EBB had only one instance of the
controller recomputing reprogramming LSP (Label Switched Path)
meshes for each separate plane. Even though the computation was
running independently, the business logic implemented in the con-
troller’s version was shared. That is, a bug unnoticed during the
pre-production testing, could surface in the production controller,
impacting the whole backbone at once.

To reduce the blast radius, the team improved the architecture of
the control stack. Each EBB plane has a dedicated replica of every
service, responsible for a single plane. It helps with the isolation of
bugs and incidents to a single plane, helps with feature canary, and
improves troubleshooting velocity.

In our release engineering pipeline, after rigorous local testing,
both in the lab and in pre-prod environment, our systems first
deploy a new version of the software on the EBB Plane1. Only after
the release is validated, push is continued to the remaining 7 planes.

348



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Denis, et al.

Figure 3 shows a real-world example of how traffic is shifted to
other planes when a plane is drained.

Figure 3: Timeline of plane-level maintenance. When a plane
is drained for maintenance, traffic is shifted to other planes.

3.3 Overview of a Plane
Each plane has a dedicated central controller and distributed agents
running on network devices, that use an in-house intradomain
routing protocol, Open/R, and a full-mesh iBGP. This allows us to
control some aspects of traffic flow centrally, e.g., running intelli-
gent path computations. At the same time, we still handle network
failures in a distributed fashion, relying on in-band signaling be-
tween Open/R key-value store agents deployed on the network
nodes. Such a hybrid approach allows the system to be nimble dur-
ing rapid topology change, for example link failures. As an effect,
local LspAgents can immediately reprogram FIBs on the routers to
redirect traffic from the LSP transiting through affected links to cor-
responding precomputed backup LSP, to ensure connectivity and
congestion free forwarding. The central controller then has time to
evaluate the new topology and compute optimal path allocation,
without the urgent need to react rapidly.

Each plane has assigned 6 replicas of the controller, deployed
across our data centers to provide geographical redundancy in
case of region outage. The replicas are operating in active/passive

EBB controller

State
Snapshot 

Traffic Engineering
Module

Path Programing
module

1) Topology

1)
Device
drain
state

2) Network Snapshot +
Traffic Matrix

3) LspMesh

RPC

Switch control stack

EBB Agent Open/R
Agent

1) Traffic Matrix (inter region demands)

Figure 4: EBB Controller and Switch Modules

mode, with only one active at a given time. Since the LSP mesh
programming is not atomic, and consists of multiple sequential
RPCs, it is very important to ensure mutually exclusive access to the
agents running on the network nodes. For that we use distributed
locks that ensure safe leader election. The controller is stateless
and operates in periodic, independent cycles, each lasting 50-60
seconds. This makes operations easier, as electing new primary
replica is as easy as stopping old and starting new process.

The path allocation algorithm can be changed to address the
different path requirements. For gold-class traffic, we provide the
lowest possible latency, and the provisioned bandwidth is only
limited by the physical capacity of the network. For silver-class and
bronze-class traffic, EBB provides the best effort service and tries to
balance the traffic load over diverse paths to avoid congestion and
hot spot as much as possible. We schedule higher-priority traffic
ahead of lower-priority traffic.

3.3.1 Controller architecture Figure 4 shows the details of the
EBB controller and switch modules. EBB Controller consists of
three main modules - (i) State Snapshotter, (ii) Traffic Engineering
(TE) module (iii) Path Programming module (often referred as EBB
Driver).

State Snapshotter collects requested demands in a form of Traf-
fic Matrix. It also collects real-time topology information from
Open/R’s key-value store[8]; whose agents run directly on the
routers. EBB controller has real-time information about the LAG
members that are up, down andwhat is their current capacity. It also
complements the original topology with the drained links, routers
or even planes, pulled from the external database. Especially the
latter impacts how the paths are computed, de-preferring links, or
completely excluding them from the topology graph.

Traffic Engineering module is a generic purpose module used to
compute paths with various Traffic Engineering algorithms. This
module, maintained as a library, can also be used as a simulation
service where Network Planning teams can estimate risk and test
various demands and topologies. Traffic Engineering module out-
puts a structure internally called LspMesh. It’s a representation of
the set of all computed paths between all the regions, across all
priorities. LspMesh is a graph-based model, representing paths.

Path Programming module is used to orchestrate programming
LspMesh object produced by TE module to routers in EBB. It first
translates LspMesh into objects specific to the network for the Seg-
ment Routing with Binding SID (Segment Identifier), represented
by NextHop groups, MPLS routes, mapping from prefixes to the
NextHop groups and Class-Based Forwarding rules. These objects
are sent to on-router Agents via RPC calls by a state machine in Path
Programming module to be programmed in hardware. Algorithms
in the state machine guarantee make-before-break that ensures no
traffic loss from programming.

3.3.2 Switch Modules As shown in Figure 4, each switch con-
tains two types of modules: Open/R agent and EBB agents.

Open/R AgentWe discover the live network topology by running
Open/R agents on the network devices. Open/R is the distributed
platform that provides both the interior routing and the message
bus for the Express Backbone network. The LspAgents learn of
topology changes in real-time via the Open/R message bus and
react locally to link failures. The central controller also interfaces
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with the Open/R agents for the purpose of the full network state
discovery. In addition to discovering the network topology, Open/R
performs RTT measurements and exports the information to the
central controller. Open/R leverages IPv6 link-local multicast for
neighbor discovery and RTT measurement.

EBB Agents EBB agents are Meta maintained binaries running on
each network device. They expose Thrift-based API, and provide an
abstraction layer between the EBB Control and Network Operating
System (NOS). Examples of agents are: (i) RouteAgent responsi-
ble for programming destination prefix matching configuration
and Class Based Forwarding rules, (ii) LspAgent responsible for
programming everything related toMPLS traffic forwarding, includ-
ing NextHop groups, MPLS routes, but also providing composited
traffic throughput to the Traffic Matrix Estimator service, (iii) KeyA-
gent responsible for programming MACSec profiles on circuits
(iv) FibAgent responsible for programming FIB based on Open/R’s
shortest path computation and (v) ConfigAgent responsible for
network device state configuration, yet exposing the structured
configuration to EBB control stack.

Out of all the EBB agents, LspAgent is one of the most “utilized”,
as LSP mesh is being reoptimised and reprogrammed periodically
to satisfy current demands, given current network topology. Should
the topology change occur (for instance due to link flap or fibercut),
LspAgents reprogram affected LSPs from primary to backup path.
Both paths are precomputed by EBB controller, and transmitted to
LspAgents. LspAgents trigger NextHop entry reprogramming after
it detects events affecting LSP.

4 Centralized TE Controller
In this section, we describe the centralized TE controller of the
Express Backbone (EBB).

4.1 Overview

Each plane runs a centralized traffic engineering controller that
collects EBB topology from Open/R, acquires traffic matrix from
LspAgents, and runs path assignment algorithms.

In order to discover topology, the TE controller polls the Open/R
agents on all routers in each plane for the adjacency lists and link
capacities. This results in a directed graph with RTT (round-trip
time) and capacity as edge properties.

To measure the traffic matrix among sites in EBB, a separate
service, called NHG TM (nexthop group traffic matrix), polls the
NHG byte counters from the LspAgent on each router. NHG TM
then calculates the demands of all site pairs forming a traffic matrix
(TM). Demands for all site pairs in a traffic class are grouped into
the demand for that class.

EBB performs traffic class based path allocation and it has three
types of LSP meshes: Gold Mesh, Silver Mesh, and Bronze Mesh.
We allow multiplexing many traffic classes into a single LSP mesh.
For example, both ICP and Gold traffic is mapped to Gold Mesh.

The centralized controller assigns paths for LSP meshes in the
order of priority: gold, silver, and bronze. After assigning paths for
higher priority classes, the remaining capacity from the previous
round forms a “new” topology for the next round.

An LSP mesh is a set of LSPs interconnecting all regions for serv-
ing one or two traffic classes and derived from the path allocation
algorithm. For each site pair currently, we allocate and program 16

LSPs within an LSP mesh, called an LSP bundle. Each programmed
LSP is a direct representation of the calculated path in the Path
Allocation module.

The TE controller in each plane can run different TE algorithms.
It is also possible to run different TE algorithms for different traffic
classes. The path allocation algorithms assign paths for each traffic
class separately. In addition to primary paths, the TE controller
computes a backup path for each primary path. The backup paths
will be installed in LspAgents for failure recovery. In this section, we
will describe primary path and backup path allocation algorithms.

4.2 Primary Path Allocation

We will describe the three primary path allocation algorithms and
discuss the deployment experience of these algorithms. To provide
the lowest possible latency given the bandwidth constraints, we use
the constrained shortest path (CSPF) algorithm. CSPF provisions
each flow with the required traffic demand considering the physical
capacity of the network. Furthermore, CSPF selects the shortest path
(in terms of round-trip time) among all paths that can accommodate
the traffic demand. In addition to CSPF, we can also run a multi-
commodity flow (MCF) based algorithm. It provides the best effort
service and tries to balance the traffic load over diverse paths to
avoid congestion and hot spot as much as possible. Additionally,
we explore a heuristic path allocation algorithm for the best-effort
traffic class.

4.2.1 Path Allocation Using CSPF For the gold LSP mesh, the
TE controller runs Constrained Shortest Path First (CSPF) algo-
rithm. The CSPF algorithm runs fast and considers both bandwidth
constraints and round-trip time.

For each site pair demand, dividing by LSP bundle size gives per-
LSP bandwidth. The CSPF algorithm finds the shortest (in Round
trip time, RTT) path between two site pairs subjected to link capac-
ity constraint for each LSP at a time across site pairs in a round-robin
fashion. That is, the algorithm goes through each site pair assigning
one LSP at a time for fairness. Currently, TE controller allocates 16
LSPs per site pair per traffic class. Note that bundle size determines
the granularity of the traffic path allocation.

The link weight in the CSPF algorithm is Open/R derived link
metric, RTT. It will find the shortest path and load up the shortest
path before moving to the next LSP.

In order to prevent drops in ICP and gold traffic, the path as-
signment algorithm leaves headroom to absorb bursts. For example,
suppose you have a 300G link and gold residual bandwidth is con-
figured to be 50%. Only 150G can be used for the ICP and gold
traffic. The remaining 150G serves as “headroom” to absorb bursts.
Note that the percentage refers to the remaining bandwidth after
the previous rounds of the path allocation, not the overall capacity.

The reserved headroom for each link is to reduce packet loss due
to bursts. reservedBwPercentage, configured for each traffic class,
limits the percentage of remaining link capacity that can be used
by LSPs. reservedBwPercentage is the percentage of free capacity
this traffic class can use. For example, the residual capacity of a
link for silve traffic is (totalCapacity - bw used by gold raffic) *
reservedBwPercentage for silver class. Due to limited space, we
show the pseudocode of CSPF in Algorithm 3 and the Round-Robin
CSPF in Algorithm 4 in Appendix.
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4.2.2 Path Allocation Using Multi-Commodity Flow (MCF)
and K-Shorest-Path MCF (KSP-MCF) In addition to the CSPF
algorithm, we evaluated arc-based Multi-Commodity Flow (MCF)
and K-Shortest-Path Multi-commodity Flow (KSP-MCF) algorithm
to allocate paths for the best effort service traffic classes. The goal
of MCF is to balance the traffic load over diverse paths to avoid
congestion and hot spot asmuch as possible. Unlike CSPF,MCF does
not guarantee the shortest available paths. That is, MCF may use
really long paths. KSP-MCF pre-computes a list of K shortest paths
connecting all site pairs, and uses only these K paths as possible
paths. It gives MCF-like behavior but also a control of maximum
“stretched” latency. We used KSP-MCF for silver and bronze-class
path allocation in the first few years primarily for the efficiency
gain that allowed us to deliver more low-priority traffic with only a
few seconds of extra computation time. Next, we will describe the
MCF algorithm and KSP-MCF algorithm.
Arc-based Multi-Commodity Flow (MCF). Our linear program-
ming (LP) formulation of arc-based MCF is similar to problem (2) of
[42], with the objective to load balance (minimizing maximum link
utilization) while preferring shorter paths (link utilization weighted
by the RTT of the link and a small constant, similar to [14]). We
group commodities with the same destination but different sources
into one commodity with multiple sources and a single destination,
which reduces the number of flow variables in the MCF formulation
thus reducing computation time greatly. We use CLP [1] to solve
the LP problem and the solution is a list of b/w (in floating-point
values) for each site pair traffic demand on a list of links. We then
convert those link traffic to LSP by quantizing link traffic to LSP
bandwidth.
K-Shortest-PathMulti-commodity Flow (KSP-MCF).KSP-MCF
precomputes 𝐾 shortest paths (shortest in terms of RTT) for each
router pair in EBB (within each plane) with Yen’s algorithm [43]
as candidate paths, then solves an LP problem to load balance
the traffic over all candidate paths while preferring shorter paths
(same objective as MCF and same constraints as SMORE [22]). Then
we quantize the optimal LP solution into LSPs that could be pro-
grammed on routers by greedily allocating LSPs to the candidate
paths with the maximum amount of remaining flows.

4.2.3 Path Allocation Using a Heuristic Algorithm: HPRR
In addition to KSP-MCF, we explore a heuristic path allocation
algorithm for the best-effort service traffic classes. Motivated by
combinatorial approximation algorithms for the MCF problem in
[18, 32] that find a (1 + 𝜖) approximation through the IMPROVE-
PACKING procedure that iteratively reroutes a tiny fraction of the
commodity to a new min-cost solution (shortest path or min-cost
flow), where the link cost is an exponential penalty based on link
utilization (or width of constraint in their papers), we propose a
Heuristic Path ReRouting (HPRR) algorithm as shown in Algo-
rithm 1 that iteratively reroutes every path to a less congested path
that is computed with Dijkstra’s algorithm where the link cost is
exponential to link utilization.

HPRR is a local search algorithmworking as follows. (1) Calculate
initial paths that satisfy flow-conservation constraints but may
violate flow capacity constraints with any algorithm. (2) Iteratively
for each path, compute a new “shortest” path where the link cost is
exponential to post-allocation utilization (the link utilization after

Algorithm 1 Heuristic path rerouting (HPRR) algorithm to mini-
mize path utilization. (1𝑥 is an indicator function that equals to 1 if
𝑥 is true or 0 otherwise.)

Input: Network 𝐺 (𝑉 , 𝐸), initial paths 𝑃 = {𝑝𝑖 (𝑠𝑖 , 𝑡𝑖 , 𝑏𝑖 )},
metric parameter 𝛼 , optimization step size 𝜎 , number of epochs 𝑁

Output: Rerouted paths 𝑃
1: ∀𝑒 ∈ 𝐸, 𝑓 [𝑒] ← ∑

𝑝𝑖 ∈𝑃
1𝑒∈𝑝𝑖 · 𝑏𝑖 ⊲ Initial flow on edge.

2: for 𝑛 ← 1...𝑁 do ⊲ Reroute all paths in epochs.
3: for 𝑝𝑖 ∈ 𝑃 do
4: 𝑢𝑝𝑖 ← max

𝑒∈𝑝𝑖
𝑓 [𝑒 ]

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑒 ] ⊲ Utilization of 𝑝𝑖 .

5: if 𝑢𝑝𝑖 is low and 𝑏𝑖 is small then
6: Continue
7: end if
8: 𝑢★𝑝𝑖 ← 𝑢𝑝𝑖 · (1 − 𝜎) ⊲ Target path utilization.

9: ∀𝑒 ∈ 𝐸, 𝑢 ′𝑒 =
𝑓 [𝑒 ]+𝑏𝑖−1𝑒∈𝑝𝑖 ·𝑏𝑖

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑒 ] ⊲ Utilization if used.

10: ∀𝑒 ∈ 𝐸,𝑤 [𝑒] = 𝑒
𝛼 · ( 𝑢

′
𝑒

𝑢★𝑝𝑖

−1)
⊲ Exponential cost.

11: 𝑝 ′
𝑖
= 𝑑𝑖 𝑗𝑘𝑠𝑡𝑟𝑎(𝐺,𝑤, 𝑠𝑖 , 𝑡𝑖 )

12: 𝑢𝑝′
𝑖
← max

𝑒∈𝑝′
𝑖

𝑢 ′𝑒 ⊲ Utilization of 𝑝 ′
𝑖
.

13: if 𝑢𝑝′
𝑖
< 𝑢𝑝𝑖 then ⊲ Reroute the path.

14: 𝑃 ← 𝑃\{𝑝𝑖 } ∪ {𝑝 ′𝑖 }
15: ∀𝑒 ∈ 𝐸, 𝑓 [𝑒] ← 𝑓 [𝑒] + 1𝑒∈𝑝′

𝑖
· 𝑏𝑖 − 1𝑒∈𝑝𝑖 · 𝑏𝑖

16: end if
17: end for
18: end for
19: return 𝑃

routing the path through the link) and reroute the path if the new
path is less congested with a smaller path utilization (maximum
utilization of all links in the path). (3) Terminate the algorithm after
a specified number of epochs.

We explain the parameters used in the algorithm. 𝛼 is a link
cost parameter that is set as 1

𝜖 log𝐻 , where 𝜖 is the error bound of
path utilization at each path rerouting step and 𝐻 is the maximum
number of hops of most paths. This choice of 𝛼 ensures that the
shortest-path subroutine finds a (1 + 𝜖) approximation to the local
minimum path utilization in each iteration. We set 𝐻 to be the max-
imum hops in production. The step size 𝜎 should be large enough
to ensure optimization progression but not too large to avoid the
exponential explosion of edge cost. 𝑁 is a trade-off between com-
putation time and efficiency based on experimental results. In EBB,
we choose 𝜖 = 𝜎 = 0.05, 𝐻 = 10, 𝑁 = 3 and 𝛼 = 66.4 accordingly.

Though HPRR provides no guarantee on global optimality, it
achieves better efficiency at the cost of more computation time
and higher latency stretch in production (see 6.2). Thus HPRR is
a preferred algorithm for bronze traffic class which is sensitive to
congestion but not latency.

4.2.4 Deployment Experience: Continuous Adaption of TE
algorithms We fully take advantage of the flexibility of pluggable
TE algorithms for the centralized controller. Since March 2017 when
EBB had only 7 sites, we have been using CSPF for ICP and gold
traffic class for its simplicity, scalability, explainability and the low
latency of allocated paths, and KSP-MCF for silver and bronze
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traffic class for avoiding congestion. We continuously evolve our
TE algorithms in the controller based on traffic conditions.

We are running continuous simulation experiments that evaluate
the path allocation quality of different algorithms and parameter
settings. For example, the computation cost for KSP-MCF solution
has been increasing fast with the dramatic growth of network scale
over the last few years. In May 2021, experiments showed that it
required a “K” of larger than 1000 and more than 20 seconds of
extra computation time for KSP-MCF to achieve better efficiency
than CSPF. Thus, we decided to switch from KSP-MCF to CSPF for
silver and bronze traffic classes for much less computation time
with comparable efficiency. Parameters such as the number of LSPs
for each flow, reserved bandwidth percentage of CSPF, and the “K”
of KSP-MCF are continuously tuned based on the simulation results.
More recently, we have deployed HPRR for bronze traffic class in
order to improve load balance and avoid congestion.

4.3 Backup Path Allocation

Every primary path has a backup path. When the primary path
fails because one or more of its links fail, its backup path is used
to deliver its traffic before the next path allocation runs. After all
primary paths are allocated, TE controller calculates the backup
paths for each primary path with the objective of (1) Each primary
and its backup path do not share SRLG (Shared Risk Link Group).
(2) Reduce congestion when the primary paths are down.

We propose our backup path allocation algorithm, Reserved
Bandwidth Allocation (RBA) algorithm as described in Algorithm 2.
It is an improvement of FIR [26]. FIR aims to minimize the restora-
tion overbuild, which is the total extra capacity needed for failure
recovery. To this end, FIR sets the link weight value based on how
much extra reserved bandwidth is needed, and derives the backup
path using the shortest path given the link weight. In contrast,
RBA minimizes the post-failure link utilization to reduce network
congestion upon failure and leave more headroom for traffic with
lower priority.

Besides avoiding the same link or same SRLG as the primary path,
RBA considers that multiple backup paths share a link and takes
into account of the bandwidth required for each link failure. We set
the link weight based on howmuch the reserved bandwidth to cover
the primary path failure is related to the residual capacity of the
link, and compute the backup path with the shorest-path algorithm.
The idea is to set the link weight value large when the reserved
bandwidth for the primary path exceeds the residual capacity of
the link. We now describe how to compute the required bandwidth
and reserved bandwidth and set the link weights accordingly.
Required bandwidth (𝑟𝑒𝑞𝐵𝑤 ): 𝑟𝑒𝑞𝐵𝑤 is amatrixwhere 𝑟𝑒𝑞𝐵𝑤 [𝑎] [𝑏]
is the total bandwidth required at link 𝑏 to cover the traffic travers-
ing link 𝑎 if 𝑎 fails. Note that we assume that only one link in the
primary path fails at a time when assigning backup path. After
allocating the backup for a primary path, we add the required band-
width for each primary and backup link pair with the required
bandwidth of the primary path.
Reserved bandwidth (𝑟𝑠𝑣𝑑𝐵𝑤 ): 𝑟𝑠𝑣𝑑𝐵𝑤 is primary path specific
where 𝑟𝑠𝑣𝑑𝐵𝑤𝑝 [𝑏] is the amount of bandwidth that needs to be re-
served at link 𝑏 to cover any single-link failure of the primary path
𝑝 . To compute the reserved bandwidth, for every link in the net-
work, assume it would be used in the backup path for that primary

path being considered, and compute how much bandwidth this link
needs if any link on the primary path fails. This reserved band-
width consists of 1) required bandwidth to recover traffic loss from
previous primary paths (including higher-priority traffic classes)
with determined backup paths that use this link.; 2) the bandwidth
of the current primary path that we are computing its backup path
for. To compute 1), iterate every link on the primary path, and find
out how much bandwidth is required if each primary path’s link
fails. The required bandwidth in 1) is the maximum among them.
ReservedBwLimit (𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚): The 𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚 of a link is the
its residual capacity after primary path allocation of the correspond-
ing traffic class.

Once we have 𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚 and 𝑟𝑠𝑣𝑑𝐵𝑤 , we can assign a weight
for each link by considering two cases as follows.

1. 𝑟𝑠𝑣𝑑𝐵𝑤 < 𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚, the weight is 𝑟𝑠𝑣𝑑𝐵𝑤
𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚

· 𝑟𝑡𝑡 .
2. 𝑟𝑠𝑣𝑑𝐵𝑤 > 𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚, the weight is 𝑟𝑠𝑣𝑑𝐵𝑤−𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚

𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
· 𝑟𝑡𝑡 ·

𝑝𝑒𝑛𝑎𝑙𝑡𝑦.
This penalty is made in a way that the link weight value is

large when 𝑟𝑠𝑣𝑑𝐵𝑤 exceeds 𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚. And if the excess amount
(𝑟𝑠𝑣𝑑𝐵𝑤 −𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚) is the same for two links, then the link with
higher total capacity has less penalty than the other link.

Once the weight for each link is derived, we compute the backup
path by weighted shortest path using the new weight. Algorithm 2
shows the pseudocode of this algorithm.

Algorithm 2 Reserved Bandwidth Allocation (RBA) algorithm.

Input: Network 𝐺 (𝑉 , 𝐸), SRLGs 𝑆 , primary paths 𝑃
Output: Backup paths 𝑃 ′

1: 𝑃 ′ ← {}
2: ∀𝑎 ∈ 𝐸,∀𝑏 ∈ 𝐸, 𝑟𝑒𝑞𝐵𝑤 [𝑎] [𝑏] ← 0
3: for 𝑝𝑖 , 𝑏𝑤𝑝𝑖 ∈ 𝑃 do
4: for 𝑏 ∈ 𝐸 do
5: if 𝑏 ∈ 𝑝𝑖 then
6: 𝑤 [𝑏] = 𝐼𝑁 𝐹𝐼𝑁 𝐼𝑇𝑌
7: continue
8: else if 𝑠𝑟𝑙𝑔𝑠 (𝑏) ∩ 𝑠𝑟𝑙𝑔𝑠 (𝑝𝑖 ) ≠ ∅ then
9: 𝑤 [𝑏] = 𝐿𝐴𝑅𝐺𝐸
10: continue
11: end if
12: 𝑟𝑠𝑣𝑑𝐵𝑤𝑝𝑖 [𝑏] = 𝑏𝑤𝑝𝑖 +max

𝑎∈𝑝𝑖
𝑟𝑒𝑞𝐵𝑤 [𝑎] [𝑏])

13: if 𝑟𝑠𝑣𝑑𝐵𝑤𝑝𝑖 [𝑏] ≤ 𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚[𝑏] then
14: 𝑤 [𝑏] = 𝑟𝑠𝑣𝑑𝐵𝑤𝑝𝑖

[𝑏 ]
𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚 [𝑏 ] · 𝑟𝑡𝑡 [𝑏]

15: else
16: 𝑤 [𝑏] = 𝑟𝑠𝑣𝑑𝐵𝑤𝑝𝑖

[𝑏 ]−𝑟𝑠𝑣𝑑𝐵𝑤𝐿𝑖𝑚 [𝑏 ]
𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑏 ] ·𝑟𝑡𝑡 [𝑏] ·𝑝𝑒𝑛𝑎𝑙𝑡𝑦

17: end if
18: end for
19: 𝑝 ′

𝑖
← 𝑑𝑖 𝑗𝑘𝑠𝑡𝑟𝑎(𝐺,𝑤, 𝑠𝑟𝑐𝑝𝑖 , 𝑑𝑠𝑡𝑝𝑖 )

20: 𝑃 ′ ← 𝑃 ′ ∪ {𝑝 ′
𝑖
}

21: ∀𝑎 ∈ 𝑝𝑖 , ∀𝑏 ∈ 𝑝 ′𝑖 , 𝑟𝑒𝑞𝐵𝑤 [𝑎] [𝑏] ← 𝑟𝑒𝑞𝐵𝑤 [𝑎] [𝑏] + 𝑏𝑤𝑝𝑖

22: end for
23: return 𝑃 ′

We also extend algorithm 2 to SRLG-Reserved Bandwidth Allo-
cation (SRLG-RBA) by considering required bandwidth at an edge if
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any SRLG fails to improve the network resilience to SRLG failures,
where 𝑟𝑒𝑞𝐵𝑤 is a matrix and 𝑟𝑒𝑞𝐵𝑤 [𝑠] [𝑏] is the total bandwidth
required at link 𝑏 to cover the traffic traversing srlg 𝑠 if 𝑠 fails,
and 𝑟𝑠𝑣𝑑𝐵𝑤𝑝 [𝑏] is the reserved bandwidth at link b to cover any
single-SRLG failure that would impact the primary path 𝑝 .

5 LSP Meshes
At the network layer, we leverage parts of the MPLS protocol. Paths
computed during the Path Allocation are translated directly to a LSP
mesh. EBB control stack programs 3 main LSP meshes - gold, silver
and bronze mesh. Within a LSP mesh, EBB controller allocates and
computes multiple paths for each site-pair. EBB uses an in-house
variation of the classic Segment Routing algorithm, described in
section 5.2.

5.1 Priority Queues

Express backbone implements Strict Priority Queueing mechanism
configured to mitigate network congestion. Each router has a prede-
fined set of rules mapping ranges of DSCP values (denoting priority
of the traffic) to various queues. Whenever the network devices
buffers are overfilling the router starts dropping lower priority traf-
fic to protect higher priority traffic. In our case Bronze traffic is
dropped first to protect Silver, Gold and ICP traffic, however should
the congestion persist, such network device drops Silver traffic in
order to protect Gold and ICP traffic classes.

5.2 Segment Routing with Binding SID

EBB controller programs 3 LSP meshes independently and concur-
rently. A component of the EBB controller, the driver implements
the state machine and follows the algorithm step by step. Driver
programs each site-pair independently and opportunistically - pro-
gramming of siteA-siteB pair success is independent of success of
programming of siteM-siteN pair. Since the programming cycle is
periodic and executed in reasonably short intervals, we find this
simple model robust and easy to reason about.

Segment routing with Binding SID fully utilizes hardware ca-
pabilities (i.e maximum MPLS label stack depth supported by the
chipset generation), reduces network device forwarding state repro-
gramming pressure, effectively increasing LSP mesh programming
success ratio, and last but not least reduces shared state maintained
between routers and EBB control stack to the minimum. The last
principle in particular simplifies the overall EBB architecture.

5.2.1 Segment Routing with Static Interface Label Every
network device in Express Backbone has a set of MPLS routes pro-
grammed during bootstrap. These rules are immutable as long as
the device is operational. Each route defines the MPLS label value
to match to ingress packets, and the MPLS label action (POP, PUSH,
SWAP) and the next hop (expressed as next hop IP, or the identifier
of the local NextHop group programmed on a given device). By
design, every Port-Channel has a MPLS route associated. These
MPLS labels are local to a network device (two or more routers
may have label L configured), and are internally called static inter-
face labels. MPLS routes on every device have MPLS action set to
POP operation, and by default forward the remaining MPLS frame
through configured egress interface.

Each path computed during the Path Allocation phase is ex-
pressed as an ordered list of egress and ingress interfaces through

SRC A B C D DST

IPv6

Po1021
Po1014

Po1401
Po1021

Po1032

 1032 IPv60 1014  1401  1021 0

IPv610321401 1021 0

IPv610321021 0

IPv61032 0

POP 1014
FWD via Po1014 POP 1032

FWD via Po1032
POP 1021
FWD via Po1021

POP 1401
FWD via Po1401

Figure 5: Segment Routing with static interface labels

SRC A B C D DST

IPv6

Po1021

Po1014

Po1401

Po1021 Po1032

IPv60
1014 1401 19999

IPv61401 19999

IPv619999

IPv61032 0

POP 1014
FWD via 
Po1014

POP 1032
FWD via 
Po1032

POP 19999
Push label stack: 
[1032, 0]
FWD via Po1021

POP 1401
FWD via 
Po1401

Figure 6: Segment Routing with Binding SID

which the traffic is forwarded. Since the static MPLS labels are stat-
ically allocated and known a priori, EBB controller is able to map
egress interfaces of each segment, and translate into an ordered
list of {router, static MPLS label} pairs, and dynamically program
source router to encapsulate MPLS label stack on IP packets (see Fig-
ure 5). It offers reliable and simple forwarding state programming
solution, with only one idempotent RPC call to the source router
required. The solution is not feasible for EBB production use case
as the number of labels pushed on the label stack is proportional to
the length of the LSP. Hardware puts limitations on the maximum
labels pushed on the MPLS frame stack. In our case, the limitation
is set to maximum of 3 labels on the stack, which guarantees fair
hashing entropy based on the 5-tuple values.

5.2.2 Segment Routing with Binding SID In our current path
programming scheme, the LSP path is split into a set of segments
of 𝑁 (In our example, 𝑁 = 3) hops. Every 𝑁 ’th hop is programmed
by the EBB controller, and configured to route next segment along
the LSP.

To avoid MPLS label collision on the routers we define a new
type of label - dynamic label. The network device responsible for
encapsulating the next MPLS segment is called intermediate node.

Figure 6 helps visualize the programming configuration. Con-
sider label 19999 as the computed dynamic label for LSP between
SRC and DST. For a given LSP and maximum label stack depth
of 3, the EBB controller programs two nodes: intermediate hop C
and SRC. This has MPLS route programmed for label 19999 (dy-
namic label), and as action pushes another label stack. Compared
to original LSP (Figure 5), source node is reprogrammed with label
stack of depth 3, however the bottom label is set to label 19999.
Segment Routing with Binding SID allows for programming LSPs
of any length, regardless of the hardware imposed limitations. On
the other hand, maximizing its capabilities, we reduce programming
pressure on the nodes - to configure the following LSPs, only two
nodes (SRC and C) must be dynamically reprogrammed.

5.2.3 Network-wide Dynamic SID Dynamic SID labels are at-
tributed to the bundle of LSPs computed for each site-pair and at the
given class. While each LSP is split into segments independently,
there is always a chance a node becomes an intermediate node for
multiple LSPs from a site-pair bundle. Technically, each intermedi-
ate node is reprogrammed with an ingress dynamic MPLS label and
the egress NextHop group. This is because the SID-allocated label
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Figure 7: Dynamic Label Switching

encodes the set of LSPs between a given site-pair (and the priority),
not a single LSP.

Consider the 5 LSP bundle between SRC and DST in Figure 7
with the maximum label stack depth set to 3. As an effect of the
LSP mesh computation in the Path Allocation stage, there are parts
with <=3 hops (SRC, G, H, J, DST), but the remaining are longer.
For the purpose of the demonstration consider 3 LSPS - (i) (SRC, C,
D, M1, M2, J, DST), (ii) (SRC, X, Y, M1, M2 J, DST), (iii) (SRC, E, F,
M1, I, K, DST). In the path split phase, the driver finds that M1 an
intermediate hop for all 3 LSPs. It then programs an MPLS route for
ingress label 19999 and the egress NextHop group with 3 entries:
(a) (M2, J, DST), (b) (M2, J, DST) (c) (M1, I, K, DST). One can notice
entries (a) and (b) are identical, and they match with the subarray
of original LSPs (i) and (ii), while entry (c) matches the subarray of
the original LSP (iii).

Node M2 is an intermediate node for LSP (SRC, A, B, M2, J,
DST), hence the driver programs the MPLS route for ingress label
19999 and NextHop group with single egress entry. Note that traffic
admitted to LSPs (i), (ii) or (iii) does not depend on this forwarding
state. As per segment splitting traffic that ingress to M2 has a top
label with a value 4001.

5.2.4 Dynamic SID label In our model, dynamic labels are dy-
namically programmed on intermediate hops and have dynamically
computed and associatedMPLS action and label stack to encapsulate
on the packet. The numeric value of the SID label is symmetrically
encoded and decoded. We define bit ranges inside the MPLS bit
space, and each field encodes the following attributes as shown in
Figure 8: (i) label type (static vs dynamic) [1 bit](If the label type is
static, the following bits indicate the static label. If the label type is
dynamic, the following bits use the format as follows.) (ii) source
region [8 bits] (iii) destination region [8 bits] (iv) LSP mesh [2 bits]
(v) LSP mesh version [1 bit] (see 5.3).

Symmetric encoding eliminates the need for shared state be-
tween the EBB control stack, network device configuration, and
EBB agents. This reduces failure domain scope, simplifies the overall
failure model and minimizes the number of external dependencies,
for example, persistent storage. The solution introduces certain
limitations. However at our current scale, we are far away from
reaching them. For instance, the maximum number of regions sup-
ported in a current scheme is 28 = 256.

[1-bit label type] [8-bit source site] [8-bit destination site] [ 2-bit LSP mesh name] [1-bit version] 
1 means binding SID label, 0 static interface  label

Example: 536969 
10000011000110001001

lspgrp_dc1-dc2-bronze-class

Figure 8: Dynamic Label Format

src A dst Z

Match 100000, L0 
…
Push stack [100000, L1…]

Match 100000 
…
Push stack [0]

Match 100001 
…
Push stack [0]

MPLS route:
Push stack 
[100001, L0’]

SID 
Router M

SID 
Router N

SID 
Router 

I

SID 
Router J

Old path

New path

MPLS route:
Push stack 
[100000, L0]

Match 100001, L0’ 
…
Push stack [100001, L1’…]

Figure 9: Programming of the site-pair LSPs with make-
before-break

5.3 LSP Mesh Update after Path Assignment

Programming of the site-pair is a multi-step process and in order for
the operation deemed successful, all N (where N=16) LSPs must be
successfully programmed. We use an internally designed variation
of the Segment Routing with Binding SID to install routing states.
Segment Routing with Binding SID requires multiple nodes to be
successfully reprogrammed in a strict order, therefore we developed
a label allocation scheme allowing us to guarantee make-before-
break principles.

To ensure an end-to-end forwarding state EBB controller must
program not only the source router but also all intermediate hops.
Since MPLS routes and their corresponding NextHop groups are
programmed dynamically by the EBB controller, the lack of their
presence on the intermediate node would result in traffic blackhol-
ing. In other words, for each site pair, all intermediate nodes must
be reprogrammed before the source router is reprogrammed. Repro-
gramming of the site-pair mesh requires multiple RPCs and is not
an atomic operation. On the other hand, the traffic constantly being
forwarded through the EBB and the make-before-break guarantee
must be satisfied. To do so, dynamic SID labels have 1 bit allocated
to denote the version of the LSP mesh.

For each LSP bundle between two sites, in a given time, there is
a single SID MPLS label allocated, including its version. When the
forwarding state for the newLSP bundlemust be reprogrammed, the
controller allocates the SID label with unused version and programs
MPLS routes and their NextHop groups on the intermediate nodes,
and only after previous phase is concluded, reprograms source
device. With single bit allocated to a version of the site-pair LPS
bundle, allocated SID labels have different numeric values, which
avoids collision in the traffic forwarding.

Consider a 1-LSP site-pair bundle in figure 9. The programmed
LSP between A and Z is (𝑆𝑅𝐶,𝑀, 𝑁, 𝐷𝑆𝑇 ), and the new computed
path is (SRC,I,J,DST). The currently used SID label for such site
pair is 100000 (version bit is set to 0). EBB controller computes
intermediate nodes and assigns SID value 100001 (version bit is
flipped to 1). It then programs intermediate nodes I and J, and once
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this step is successful, reprograms source A to forward traffic to
I, and encapsulates with label 100001. Once the source node is
reprogrammed, the LSP between A an Z is (A,I,J,Z).

5.4 LSP Mesh Update during Failover

EBB controller computes two types of path - for each primary, there
is a corresponding backup. The backup path is activated during
topology changes and used until the next programming cycle, where
controller recomputes LSP mesh with the new topology state. Upon
topology change, for example link flap, the event is propagated via
Open/R’s key-value store. Upon receiving such event, an instance of
LspAgent inspects all currently dynamically programmed NextHop
groups, iterating over the Nexthop entries. LspAgent maintains an
in-memory cache with the whole path (as ordered array of router,
interface pairs) and inspects whether Nexthop entry currently for-
wards traffic through affected path. In such case, such entry is
removed from the FIB, symmetrically.

LspAgent maintains the NextHop entry along with both primary
and backup paths end to end in memory. Upon topology change,
LspAgent inspects if the reachability of the primary path is im-
pacted, and if so programs NextHop entry for the backup path.
Primary and backup paths are meant to be completely disjoint,
which means that intermediate nodes for primary and correspond-
ing backup paths are mutually exclusive. Hence, the operations of
deprogramming of primary and programming of backup paths are
happening on separate routers, often in parallel.

A source node is a special case: the same router always removes
NextHop entry from the FIB and installs its backup counterpart.
Since the SID label decimal value represents an LSP bundle between
two sites and for single LSP mesh, we do not distinguish between
primary and backup meshes. That’s also why intermediate hops
participate in the reprogramming of primary and backup paths
failover.

6 Evaluation
In this section, we present our evaluation results for traffic engi-
neering with historic and synthetic topology and traffic.

6.1 Traffic Engineering Algorithm Computation Time
Experimental Setting. We evaluate different TE algorithms in-
cluding CSPF, MCF, HPRR, and KSP-MCF (K equal to 512 and 4096)
for primary path computation and Reserved Bandwidth Allocation
(RBA) for backup path computation on steady-state (no failure or
maintenance) topologies with traffic matrices over last 2 years. We
use the same algorithm for all traffic classes in each experiment. We
run the experiments on a 32-core KVM with Intel Xeon Processor
(Skylake) @ 1.60GHz with 50GB of RAM.

Evaluating TE algorithms in production. Figure 10 shows
the number of nodes, the number of edges, and LSPs over time.
Figure 11 shows the computation time of different algorithms over
time. At the current scale, CSPF is about 15x faster than KSP-MCF
and 5 times faster than MCF. The computation time of HPRR (in-
cluding path initialization with CSPF) is about 1.5 times of CSPF,
as many paths are skipped in later iterations when the network is
less congested. The computation time for backup path allocation is
2 times of the primary path allocation with CSPF.

During the deployment over the last two years, we dynamically
switch TE algorithms for each traffic class in the real network to

respond to different network conditions. Initially, we use CSPF for
the Gold traffic class and KSP-MCF for the Silver and Bronze traffic
class. Over time, we adapt the TE algorithm in the controller as
follows.
• We discovered a capacity risk related to the silver traffic class
in one region. Thus, we increase the value 𝑘 in the KSP-MCF
algorithm for the silver traffic.
• We monitored the runtime performance of the TE algorithm
and found it exceeded 30s with a large 𝐾 (1,000 to 4,000), we
decided to switch silver to CSPF for faster TE computation.
• We subsequently switched the TE algorithm for Bronze traffic
to CSPF for efficiency and then recently to HPRR.

6.2 Effectiveness of TE

We evaluate the effectiveness of TE with link utilization and la-
tency stretch by running simulations with hourly production-state
snapshots of EBB topology and traffic matrices over 2 weeks. We
use the same TE algorithm to allocate 16 equally sized paths for all
flows in each experiment. We also run the experiment (MCF-OPT)
to compute the optimal state with MCF and a large bundle size
(512) to reduce the quantization error in the LP solution to LSPs
conversion.

Link Utilization. Figure 12 shows the CDF of link utilization
percentage of all links at all times for different TE algorithms. We
compute link utilization based on the allocated paths and estimated
traffic matrix assuming that all traffic is routed. The utilization
of more than 100% on a link indicates congestion and excessive
traffic will be dropped by priority. At the current EBB network
scale, KSP-MCF (even with a large “K” of 4096) is less capacity
efficient than MCF and CSPF with more highly utilized links (with
utilization over 80%). This is primarily because the “K” is not large
enough to provide the needed path diversity for KSP-MCF to find a
near-optimal solution. The link utilization distribution is similar for
MCF and CSPF when utilization percentage is over 80%. Due to the
rounding error when converting the fractional solutions of MCF
and KSP-MCF to 16 equally sized paths per flow, the utilization of
a few links can be extremely high with MCF and KSP-MCF based
approach. A large percentage of links has utilization of 80% in CSPF
solution, as we reserved 80% of total link capacity for CSPF to leave
headroom for traffic bursts and CSPF would use up all the reserved
capacity on the shortest path before moving to a different path.
The maximum link utilization of HPRR is much less than CSPF,
MCF and KSP-MCF, with the percentage of highly-utilized links
close to the optimal state of MCF-OPT. Overall, our backbone link
utilization is high due to active control of traffic admission [4].

Latency Stretch. Latency stretch is the ratio of the RTT of the
allocated path (𝑅𝑇𝑇𝑝𝑖 ) over the shortest-path RTT (𝑅𝑇𝑇★𝑝𝑖 ) between
the source and destination. For each flow (identified by ingress site,
egress site and traffic class) at each time, we compute the average
latency stretch and maximum latency stretch of all paths in the LSP
bundle.

As the RTT of the shortest paths between some site pairs is so
small (only a few milliseconds) that any detour from the shortest
path would result in a large latency stretch even though the ab-
solute RTT value is still small enough for services, we normalize
latency stretch as max{1, 𝑅𝑇𝑇𝑝𝑖

max{𝑐,𝑅𝑇𝑇★
𝑝𝑖
} }, where 𝑐 is a constant RTT
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Figure 10: EBB topology size in past 2
years.

Figure 11: TE computation time (right y-
axis for KSP-MCF).

Figure 12: CDF of link utilization

Figure 13: CDF of avg/max la-
tency stretch of gold-class flows.

Figure 14: Recovery process from a
small SRLG failure.

Figure 15: Recovery process from a
large SRLG failure.

Figure 16: CDF of gold-class band-
width deficit percentage

that is small enough for any service. Figure 13 shows the CDF of
normalized (with 𝑐 being 40 ms) per-flow average and maximum
latency stretch of all gold-class flows between data centers for dif-
ferent TE algorithms. HPRR has the most latency stretch. CSPF
has the least average latency stretch. While the maximum latency
stretch of CSPF is similar to or larger than MCF and KSP-MCF, as
round-robin CSPF would have to allocate longer paths when there
isn’t enough capacity in the shorter paths. We use CSPF as the
primary path allocation for gold-class traffic for its low average
latency stretch and simplicity.

6.3 Failure Recovery
6.3.1 Loss during failure recovery. EBB recovers from network
topology failures in three phases.
1. At the beginning of the failure, all traffic on the failed links is

dropped due to a black hole.
2. LspAgents detect the failure and switch affected primary paths

to available backup paths in a few seconds. Depending on the
efficiency of the backup paths, traffic is still susceptible to con-
gestion loss.

3. At the next programming cycle, TE controller recomputes and
reprograms the paths and the network fully recovers.
Figure 14 shows the recovery process from a small SRLG failure.

It took 7.5 seconds for all routers to switch to backup paths after
receiving the link-down report. There was no congestion loss for
ICP, Gold and Silver classes after switching to backup paths. Fig-
ure 15 shows the recovery process from an impactful SRLG failure
when FIR was used as the backup path algorithm. All traffic classes
suffered adverse drops upon the SRLG failure. In 3 to 6 seconds,
LspAgents completed the backup path switching. The backup path
switch mitigated all the ICP drops within 5-7 seconds though Gold
and Silver showed prolonged congestion until Controller had the
chance to compute and program new meshes.

6.3.2 Efficiency of backup paths The efficiency of backup paths
determines the magnitude of prolonged congestion loss after the
backup path switch within the same programming cycle. Histor-
ically we used FIR, and then developed RBA and SRLG-RBA that
is more efficient for single-link failures and single-SRLG failures.
We compare the efficiency of FIR, RBA and SRLG-RBA under all
possible single-link and single-SRLG failures with simulation.

We run simulations with hourly topology snapshots and traffic
matrices over 2 weeks. First, we allocate primary paths (using CSPF)
and backup paths using different backup path algorithms. Then
we simulate for each possible single-link failure and single-SRLG
failure, and report the per-traffic class bandwidth deficit ratio (total
amount of traffic that cannot be accepted without congestion / total
amount of traffic) of each backup path algorithm upon each failure.
Figure 16 shows that RBA almost eliminates gold-class congestion
under single-link failures, and SRLG-RBA almost eliminates gold-
class congestion under both single-link and single-SRLG failures.

7 Operational Experiences
One fundamental philosophy of EBB’s design is for operational
optimization - the plane architecture which we adapt from our fab-
rics allowed for decoupled upgrades, experimentation, and testing;
the hybrid architecture provides safe controller fall-back, allowing
us to more quickly and confidently iterate and update controller
software and algorithms. Host-based marking and switch-based en-
forcement give fewer touch-points where traffic is impacted, which
is easier to debug. We highlight two key learning below.

7.1 Circular Dependency of other Core Infra Services

EBB Controller plays a critical role in the reliability of Meta’s entire
infrastructure. However, to build scalable services, the controller
unavoidably has to leverage other Meta’s distributed services. In
one such example, the controller leverages the pub/sub service
Scribe [19] to collect traffic statistics. In one outage, there was
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severe network congestion that caused Scribe service to fail. The
controller was supposed to recompute the path to alleviate the
congestion in the next TE cycle. However, it is blocked by the
step of writing additional data through the Scribe API. The circular
dependency caused the network and the Scribe service to be blocked
by each other. The mitigation solution was updating the controller
to temporarily bypass the Scribe call.

Implication After this incident, we changed to use all async calls
to read and write to Scribes. In addition, we systematically study
the circular dependency on other infrastructure services. We con-
ducted the dependency failure testing and integrated it into our
release pipeline. In addition, for other services, if possible, we build
a separate binary and run a local copy on the same machine as the
controller to minimize dependency on the network communication.
Besides these engineering practices, this example also calls for new
failure modeling and automatic analysis for circular dependency in
large-scale network systems such as backbone networks. Instead
of discovering circular dependency based on occurred outages, we
argue that it is essential to build an automatic analysis of circular
dependency in the release pipeline.

7.2 Failure Recovery

Although EBB’s planar design is targeted for strong reliability,
unexpected mistakes and catastrophic failure can still happen. Thus,
we develop a series of mitigation and automated recovery process
from the worst-case failures. Such mitigation has helped rescue
the network and all Meta’s services from severe outages. In one
outage, a minor configuration change to enable a security feature
was pushed to all eight planes. Note that we only do staging on one
plane for major disruptive configuration changes and this specific
change has passed the normal canary phase. However, this security
feature caused unexpected link flaps on all EBB links, leading to
high packet loss and bringing all our services down. The high loss
was detected around 5 minutes after the configuration rollout by
our monitoring services and a rollback was triggered automatically.
The outage was recovered within 10 minutes.

Implication This incident reveals the importance of auto-recovery
system design. The auto-recovery system needs to consider the
worst-case scenarios and is able to be activated automatically. Fur-
ther, when designing the auto-recovery system, we need to model
the mean time to recovery in order to respond to failures in a timely
manner.

However, the recovery is more challenging when the connec-
tivity is completely lost. In a recent well-known outage [16], a
misconfiguration caused all eight planes of EBB to be drained, i.e.,
completely offline. It effectively disconnected all data centers, where
the controller resides. Even remote access to the EBB routers was
hindered because the authentication services in the data centers
were not accessible. Such an outage was extremely rare but once
it happened it required manual or even physical access to recover.
Even worse, when the backbone is recovered, all data center ser-
vices initiate the communications simultaneously, which could
overwhelm the network again. Thanks to Meta’s continuous disas-
ter recovery drills [40], all services gradually recovered smoothly
after EBB became available again.

Implication This incident reinforces that such large-scale net-
work configuration changes necessarily bring out the worst-case

scenarios. Dependency among different services needs to be mod-
eled before deploying configuration changes. Further, necessary
recovery mechanisms during disaster scenarios need to be built
considering the unique perspective of software-defined networks.

8 Related Work
Software Defined Networking: In the past decade, the SDN based
centralized control for backbone networks has been studied ex-
tensively both in academia and industry [11, 14, 15, 35]. B4 [15]
introduces the SDN network in Google WAN, and SWAN [14] re-
veals the SDN solution in Microsoft backbone. The distinction of
EBB is its multi-plane architecture that allows continuous evolution
of the centralized controller and provides seamless deployment of
new centralized control.

Traffic engineering: Traffic engineering in the WAN has been
studied in various settings including datacenter WANs and ISP
networks[7, 10, 13–15, 21, 23, 24, 27, 27, 31, 36, 37, 41]. Similar
traffic control is done at the edge networks [34]. Instead of just
focusing on TE algorithms, this paper points out the necessity
of evolving TE algorithms as the network scenario changes, and
shares our experience of how we select specific TE algorithms in
production.

Network Management: A number of studies have focused on
addressing the management of SDN networks. In particular, man-
aging route update is the key to avoid congestion and loss in SDN
networks [9, 17, 28, 29, 38]. [17] proposes a two-phase commit
method to ensure network-wide consistency in SDN networks. Oth-
ers have focused on verification of routing correctness in SDN
networks [6, 20, 33]. The management systems from Meta have
been introduced in [4, 39, 44]. These systems are closely integrated
with EBB for management and bandwidth control.

9 Conclusion
The wide-area Backbone network plays a crucial role in the reliabil-
ity and performance of large-scale Internet services. In this paper,
we introduce Express Backbone (EBB), an SDN-like network control
stack with a hybrid design to ensure fast fault recovery. We share
EBB’s TE solutions and the philosophy behind its transformation
through generations. Further, we present a uniqueMPLS-based data
plane design that tackles existing hardware’s limitations. We share
eight years of operational experiences with EBB and hope to inspire
future research for hybrid network control, failure modeling, and
evolvable traffic engineering.
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A TE Algorithms in Detail

CSPF.Algorithm 3 shows the pseudocode for CSPF. The complexity
of CSPF algorithm is𝑂 ( |𝑃 | · ( |𝑉 |+ |𝐸 |) · log |𝑉 |, where |𝑃 |, |𝑉 |, |𝐸 | are
the number of LSPs, vertices and edges respectively. This allocation
runs once the last round of running is complete. Algorithm 4 shows
the round robin path allocation procedure using CSPF.
HPRR.The time complexity of HPRR is𝑂 (𝑁 · |𝑃 | · ( |𝑉 | + |𝐸 |) · log |𝑉 |
as it is running Dijkastra’s algorithm in 𝑁 epochs. The algorithm is
pseudo-polynomial in nature, allowing for an undetermined num-
ber of path rerouting epochs. In the context of EBB, we have de-
termined that rerouting path for three epochs yields satisfactory
results.
RBA. The time complexity of RBA is 𝑂 ( |𝑃 | · ( |𝑉 | + |𝐸 |) · log |𝑉 |).
Assuming average number of hops of the paths is 𝐻 , the time to
compute 𝑟𝑠𝑣𝑑𝐵𝑤 and 𝑟𝑒𝑞𝐵𝑤 is |𝑃 | · |𝐸 | ·𝐻 and |𝑃 | ·𝐻2 respectively.
Considering that 𝐻 is relatively small in a well-connected graph
when compared with |𝐸 |, |𝑉 | and log |𝑉 |, the time to compute the
metrics and update the tables is at a smaller order of magnitude
than the the computation time of shortest paths.

Algorithm 3 CSPF

Input: Network 𝐺 (𝑉 , 𝐸), flow 𝑓 (𝑠, 𝑡, 𝑏𝑤), constraint 𝐶
Output: A path 𝑝 from 𝑠 to 𝑡

1: 𝑄 ← (𝑠, 0)
2: ∀𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠, 𝑑𝑖𝑠𝑡 [𝑣] ← 𝐼𝑁 𝐹𝐼𝑁 𝐼𝑇𝑌

3: 𝑑𝑖𝑠𝑡 [𝑠] ← 0
4: ∀𝑣 ∈ 𝑉 , 𝑝𝑟𝑒𝑣 [𝑣] ← 𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷

5: while 𝑄 is not empty do
6: 𝑢 ← 𝑄.𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛()
7: for 𝑣 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑢) do
8: if 𝐶 (𝑓 , 𝑒𝑢,𝑣) and 𝑏𝑤 ≤ 𝑒𝑢,𝑣 .𝑓 𝑟𝑒𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 then
9: 𝑑𝑖𝑠𝑡𝑣,𝑢 ← 𝑑𝑖𝑠𝑡 [𝑢] + 𝑒𝑢,𝑣 .𝑚𝑒𝑡𝑟𝑖𝑐
10: if 𝑑𝑖𝑠𝑡𝑣,𝑢 < 𝑑𝑖𝑠𝑡 [𝑣] then
11: 𝑑𝑖𝑠𝑡 [𝑣] ← 𝑑𝑖𝑠𝑡𝑣,𝑣
12: 𝑝𝑟𝑒𝑣 [𝑣] ← 𝑢

13: 𝑄.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑣, 𝑑𝑖𝑠𝑡𝑣,𝑢 )
14: end if
15: end if
16: end for
17: end while
18: if 𝑝𝑟𝑒𝑣 [𝑡] is UNDEFINED then
19: return ∅
20: end if
21: 𝑝 ← {}, 𝑣 ← 𝑡

22: while 𝑝𝑟𝑒𝑣 [𝑣] is not UNDEFINED do
23: 𝑝 ← 𝑝 ∪ {𝑒𝑝𝑟𝑒𝑣 [𝑣 ],𝑣}
24: 𝑣 = 𝑝𝑟𝑒𝑣 [𝑣]
25: end while
26: return 𝑝

Algorithm 4 Round-robin CSPF

Input: Network 𝐺 (𝑉 , 𝐸), Flows 𝐹 , constraint 𝐶 , bundle size 𝐵
Output: Allocated paths 𝑃

1: 𝑃 ← {}
2: for 𝑛 ∈ {0, 1, ..., 𝐵} do
3: for 𝑓𝑖 ∈ 𝐹 do
4: 𝑝𝑛

𝑖
← 𝐶𝑆𝑃𝐹 (𝐺, 𝑓𝑖 ,𝐶)

5: 𝑃 ← 𝑃 ∪ {𝑝𝑛
𝑖
}

6: for 𝑒 ∈ 𝑝𝑛
𝑖
do

7: 𝑒.𝑓 𝑟𝑒𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ← 𝑒.𝑓 𝑟𝑒𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑏𝑤
8: end for
9: end for
10: end for
11: return 𝑃
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