arXiv:2302.02345v1 [cs.SE] 5 Feb 2023

VuLASTE: Long Sequence Model with Abstract
Syntax Tree Embedding for vulnerability Detection

Botong Zhu, Huobin Tan *
School of Software
Beihang University

Beijing, China
{zbtse, thbin} @buaa.edu.cn

Abstract—In this paper, we build a model named VuLASTE,
which regards vulnerability detection as a special text classifica-
tion task. To solve the vocabulary explosion problem, VuLASTE
uses a byte level BPE algorithm from natural language pro-
cessing. In VaLASTE, a new AST path embedding is added to
represent source code nesting information. We also use a combi-
nation of global and dilated window attention from Longformer
to extract long sequence semantic from source code. To solve
the data imbalance problem, which is a common problem in
vulnerability detection datasets, focal loss is used as loss function
to make model focus on poorly classified cases during training. To
test our model performance on real-world source code, we build
a cross-language and multi-repository vulnerability dataset from
Github Security Advisory Database. On this dataset, VaLASTE
achieved top 50, top 100, top 200, top 500 hits of 29, 51, 86, 228,
which are higher than state-of-art researches.

Index Terms—vulnerability detection, natural language pro-
cessing, deep learning, open source software

I. INTRODUCTION

Vulnerability detection is the process of identifying and
locating vulnerabilities, which are weaknesses or security
flaws in software that can be exploited by attackers to gain
unauthorized access or perform malicious actions. Automatic
vulnerability detection in software is the process of using
tools and techniques to automatically identify and locate
vulnerabilities in software systems.

The naturalness hypothesis of software provides a theoreti-
cal basis for applying natural language models to source code
downstream tasks. This suggests natural language models may
be an effective alternative to traditional vulnerability detection
methods, such as static detection.

Hindle et al. [1]] provided empirical evidence of program-
ming language naturalness, and their research suggests that
programming languages are even more regular than natural
languages. Basing on Hindle et al.’s [1] result, Allamanis et
al. [2] proposed the naturalness hypothesis.

The naturalness hypothesis of software suggests that soft-
ware is a form of human communication and that software
systems have similar statistical properties to natural language
corpora. This aspect of the hypothesis proposes that software
systems can be regraded as a type of human language.

The naturalness hypothesis suggests that software corpora
have similar statistical properties to natural language corpora.

* Huobin Tan is the corresponding author.

For example, just as natural language text exhibits certain
patterns of word usage, software systems may exhibit cer-
tain patterns of code usage. By analyzing these patterns,
deep learning models, especially attention models [3], can be
created to learn the structure and organization of software
systems. These model can be useful in multiple software
engineering areas, including vulnerability detection.

With natural language models, vulnerability detection in
source code can be regraded as a text classification task [4]
[S]. But existing researches have two main limitations [6].

Firstly, most existing researches focus on C/C++, but cur-
rently other languages are becoming increasingly popular, so a
cross language dataset may be needed. By training models on
a diverse set of code samples from multiple languages, models
are more likely to learn vulnerability patterns in a wide range
of real-world applications, rather than just those that happen to
occur in a specific language. And also, a considerable amount
of companies and organizations use multiple languages in their
software development process [7] [8]], so having a model that
can detect vulnerabilities in multiple languages can be more
efficient and cost-effective.

Another limitation in existing researches is the lack of
large, annotated datasets for training and evaluating models
on programming language tasks. While there are a number
of open-source code repositories and other sources of code
available, it can be difficult to obtain labeled data for tasks
such as vulnerability detection. This can make it difficult to
train and evaluate models on these tasks, and may limit the
performance of these models.

To solve these problems in existing researches, we proposed
VuLASTE (Vulnerability detection Long sequence model with
Abstract Syntax Tree Embedding), a deep-learning model for
vulnerability detection.

The contributions in this study include:

o Building a cross-language vulnerability dataset from
open-source software: This dataset is more representa-
tive of real software projects and encompasses multiple
languages and software domains.

e Designing an AST path embedding for the transformer
embedding layer: This enables the embedding to handle
nesting information in programming language text, which
is important for capturing the structural information of the
code.

o Adjusting the long sequence attention mechanism to meet
the characteristics of programming languages: long se-
quence mechanism allows the model to effectively handle
longer input sequences, which is important when dealing
with code written in different languages.

o Introducing focal loss to solve the data imbalance prob-
lem: We introduce focal loss from the image recognition
field to vulnerability detection. Focal loss is a technique
that is used to address class imbalance, which is a
common issue in vulnerability detection datasets.

The structure of this paper is organized as follows. Section
IT discusses the related work about vulnerability detection
with natural language models. Section III explains the detailed
design of VULASTE. Section IV shows the extraction and
generation of training and testing data. Section V shows the
experiment results of vulnerability detection and ablation. In
section VI, the conclusion and summarization are offered.

II. RELATED WORK

There have been a number of researches in recent years that
have used deep learning techniques to improve the vulnerabil-
ity detection.

VulDeePecker [9] is a deep learning based vulnerability
detection model for software source code. It uses a combina-
tion of traditional static analysis techniques and deep learning
methods to identify vulnerabilities in the code.

The process of VulDeePecker starts with splitting the code
text into smaller pieces, and this procedure is called pro-
gramming slicing. Programming slicing is a traditional static
analysis technique that involves identifying and extracting
specific parts of a program that are relevant to a given goal or
concern.

Once the code is split into smaller pieces, VulDeePecker
uses word2vec [[10] to create embeddings for the code snippets.
Word2vec is a deep learning model that is commonly used
to generate embeddings for words in natural language text.
In VulDeePecker, word2vec is used to create embeddings for
code snippets, which can then be used as input to the next
step.

The next step in the process is to use a type of recurrent
neural network called Bi-LSTM (bidirectional long short-term
memory) [[11] to classify the code snippets as either vulnerable
or non-vulnerable. Bi-LSTM is a type of neural network that
can handle text before and after certain token. By using a Bi-
LSTM to classify the code snippets, VulDeePecker is able to
learn and identify patterns in the code that are indicative of
vulnerabilities.

SySeVR [12] is a research based on VulDeePecker. SySeVR
uses almost the identical data preprocessing to VulDeePecker.
In SySeVR, the input is split into Sy and Se pieces. Sy and
Se are short for ”syntactic” and “semantic” respectively, and
are used to refer to the two types of features that the SySeVR
model is designed to analyze.

SySeVR supports more machine learning and deep learning
models such as MLP and BiGRU (Bidirectional GRU) [13]].
SySeVR has been shown to achieve strong performance on

vulnerability detection task, making it a promising approach
to this problem.

CodeBERT [14] is a transformer-based language model de-
veloped by Microsoft Research that is specifically designed to
process programming language text. It was trained on a large
dataset of source code and natural language documentation,
with similar settings to that of multilingual BERT [15]. Like
BERT, CodeBERT uses a transformer architecture and learns
contextual representations of the input text by attending to the
relationships between the tokens in the input sequence.

One key feature of CodeBERT is its ability to handle
the specific syntactic and semantic features of programming
languages, such as variables, functions, and control structures.
This makes it well-suited for tasks that involve processing
programming language text, including vulnerability detection.

III. DESIGN OF MODEL

The general framework of VULASTE is shown in figure
[l VuLASTE receives source code in function level as in-
put, then tokenizes the text into words and generates AST
from text. Based on the tokens, word embeddings, position
embeddings, and token type embeddings are generated, and
these embeddings are similar with embedding layer of other
transformer models. AST path embeddings are generated from
the AST, which are used to represent the structural information
of the code. By adding these embeddings together, the feature
matrix is obtained. This matrix is then input into a long
sequence attention model, which is used to classify the code
into vulnerable or non-vulnerable cases. In training process,
focal loss is introduced to solve the class imbalance problem.

A. Tokenizing

One difference between tokenizing programming language
and natural language text is that there are a large number
of identifiers in source code. In programming language text,
identifiers are special words that are used to name variables,
functions, classes, etc. And if these identifiers are added
directly to the vocabulary list, it will cause the vocabulary
size to explode.

This is because in natural language text, vocabulary lists
usually contain only common words (e.g., nouns, verbs, ad-
jectives, etc.). In programming language text, identifiers may
occur in a wide variety of vocabularies with relatively low
frequency, so adding all these identifiers to the vocabulary
list will increase the size of the vocabulary list dramatically,
which may lead to vocabulary list explosion and OOV (Out-
Of-Vocabulary) problems [[16].

Existing studies such as VulDeePecker, SySeVR, have re-
named identifiers as a solution. When tokenizing identifiers
including variable names, function names, they are simply
renamed to varl, funcl, etc. However, the problem of this
solution is that if the developer-defined words in identifier are
erased, it may lead to the loss of some information of text
semantics. Therefore splitting the identifier by word frequency
may be a better solution.

Tokenizing

Input word embeddings

position embeddings

token type embeddings

def my_func(x):
if x < 0: -
X += 3

|

|

_ [

feature matrix |
|

|

whether the code is
vulerable

return x

AST embeddings

Output

Generating AST

Embedding

Classification by long
sequence attention
network

Fig. 1. The general framework of VuLASTE

In our study, we used byte-level Byte-Pair-Encoding algo-
rithm to split identifiers into more common words.

Byte-Pair-Encoding (BPE) is a string partitioning algorithm
that can be used to common pair frequently occurring string
fragments in a string. Because it captures the phrase and
syntactic structure of the language, BPE algorithm is often
used for tokenization of language models. The BPE algorithm
starts by building a frequency table of all the bytes in the
input text, and then it starts merging the most frequent pair of
bytes into a new word. This process is repeated until a certain
stopping criterion is reached or all string fragments have been
merged. In VULASTE, the BPE algorithm is used to split the
input text into subword units, which can then be used as input
to the embedding layer.

B. AST generation

An Abstract Syntax Tree (AST) is a tree representation of
the source code of a program. It is an abstract representation
of the code that captures the hierarchical structure of the code
but abstracts away from some of the details such as the specific
characters used.

In our work, tree-sitter [I8]] is used to generate cross-
language ASTs in unified format. Tree-sitter is a parser
generator that can be used to create an Abstract Syntax Tree
(AST) from source code. This is because Tree-sitter uses a
grammar-based approach to parsing, where a custom grammar
is defined for each language. This grammar defines the syntax
and structure of the language, and is used to generate a parser
for that language. By using the unified grammar format for
multiple languages, Tree-sitter can generate ASTs in the same
format for those languages, allowing for easier comparison
and analysis of the code across different languages.

Once the AST is generated, it can be used in ast path em-
bedding to provide structural information about programming
language text.

C. Embedding

Traditional natural language models do not focus on the
multi-layered nested structure of programming language when
embedding. Compared with natural language text, program-
ming language text is more structured and the structural
information has a deeper influence on the semantics.

def my_func(x):
if x < 0:
X += 3
return x

G
G G G () Vo)
(O G (D) Cmmma> Covm i D
G o> () Co) G Comned
G () Come) oo

augmented_assignment

Fig. 2. Ast path of example code

For example, the same statement in different levels of
code blocks may represent different semantics. Based on this
characteristic of programming language, this paper adds ast
path embedding to the model. The basic concept of ast path
embedding is to provide a lightweight representation of ast
structure to encode the nested structural information of token
in programming language text.

The mathematical representation of ast path embedding is:

Define AST = (N, E,¢) as the abstract syntax tree of
given programming language piece. Define e, ,, as the edge
between node n; and n;.

¢(en7‘,7n]‘) =< ng,n; >
Define the path from node a to node z as W, .,
Wa,z =< €a,bs €b,cy -+ €y 2 >

Define vec(n) as the vectorized presentation of node n.

For token ¢ corresponding to leaf node [, the AST embed-

ding of t is:
Z vec(n;)
e€EWiroot,1
n;€gp(e)
And the whole embedding of token ¢ is the sum of AST path
embedding, transformer word embedding, position embedding,
and token type embedding:

ABE(t) =

Embedding(t) = WE(t) + PE(t) + TT(t) + AE(t)

An example is shown in fig 2] For the red boxed token vy,
the ast path embedding is the sum of vectors of red nodes.

D. Long Sequence Attention for vulnerability Detection

In source code, variables and functions defined previously
may have an influence on the semantics of the code that
appears later in the sequence, so capturing long dependencies
is necessary to accurately understand the meaning of the
code. Because of this, a model that only have relatively
short memory, such as BiLSTM, may not be sufficient for
understanding the code.

Therefore, Long sequence attention is needed to capture
long dependencies in source code. It allows the model to attend
to information that is farther away in the input sequence. This
can be particularly useful in vulnerability detection, where the
model needs to understand the relationships between different
parts of the code in order to identify patterns that are indicative
of vulnerabilities.

The Longformer structure is used as our long sequence
attention model, and some adjustments are made to meet the
specific characteristics of programming language. Longformer
enables the model to attend to a fixed-size window of tokens
around the token being processed, which allows the model to
attend to longer text under limited memory and computational
costs.

Longformer uses a combination of global attention and
dilated window attention as the replacement of self-attention.
This attention mechanism can fit well with the nesting struc-
ture of programming language.

One way in which dilated window attention could be used
in processing programming language text is by defining a ma-
chine learning model that takes as input a sequence of tokens
representing the code or natural language documentation of a
software system, and produces a prediction or output based on
this input. It is similar to sliding window attention in that it
operates over a fixed-size window of tokens, but it allows the
model to attend to a wider range of tokens by skipping over
some tokens within the window.

For example, in the context of vulnerability detection, the
global attention may correspond to words that can influence
the semantic of entire code file, such as global variables and
functions, and local attention may correspond to words that
only influence semantic in certain code blocks. An example
is shown in figure [3] Then the model could use this attention
mechanism to attend to security-related keywords or API calls

Fig. 3. Example of how long sequence attention mechanism may work on
programming language

within the code, and use this information to predict whether
the system is vulnerable or non-vulnerable.

Usually when processing natural language, Longformer uses
a sliding window of 128. Iyer et al. [20] collected source code
pieces from StackOverflow []2;1'[], and their study shows the
average token length of code blocks varies from 38 to 46,
depending on the programming language. So we adjusted the
size of sliding window from 128 to 64, which is the smallest
power of 2 integer larger than the average length.

E. Class Imbalance

In the context of vulnerability detection, data imbalance can
be a common problem, as vulnerabilities may be rare com-
pared to non-vulnerabilities in a given dataset [22]. This can
make it difficult for a machine learning model to accurately
recognize vulnerabilities, as it may be overwhelmed by the
large number of non-vulnerabilities.

Commonly used methods, such as oversampling, can lead
to overfitting and also it can be computationally expensive.
Therefore, we introduced focal loss from image recogni-
tion. Focal loss down-weights the loss for well-classified cases
and places more emphasis on the loss for poorly classified
cases. This helps the model to focus more on the difficult
cases and improve its performance on these cases.

FL(p1) = —a(1 — pi)"log(p:)

As this formula shows, focal loss may be a better solution
to this problem because it allows the model to focus more on
the vulnerabilities and less on the non-vulnerabilities, which
can improve the model’s performance on the vulnerabilities.
This can be especially important in situations where the cost
of missing a vulnerability is high, as it can help the model to
identify as many vulnerabilities as possible, even if it means
that it may also produce some false positives.

IV. DATA

The two main options for existing vulnerability detection
datasets are manually generated datasets, and data from actual
projects. Both options have their own disadvantages, therefore
a new cross-language vulnerability dataset may be needed.

Manually generated datasets, such as Juliet [24] (used by
Russell et al.) and SARD [25] (used as part of dataset by
VulDeePecker [9] and SySeVR [12]), have the advantage of
having the equal number of positive and negative examples,
which can help to avoid data imbalance.

However, Chakraborty et al.’s research [26] shows that
[24]] and SARD [25]] differ significantly from actual software
projects. This can cause models trained on these datasets to
learn features that may not be applicable to actual software
projects.

On the other hand, actual software projects can provide a
more realistic representation of vulnerabilities in development.
The NVD database [27] is a widely used vulnerability database
of real-world software. Each vulnerability reported has a CVE
serial in NVD database, making the records easy to classify
and query.

Previous studies, such as VulDeePecker [9] and SySeVR
[12], have chosen to identify vulnerable code by scan-
ning GitHub commit messages containing string “cve”. This
method can be a way to find commits that may be related
to code vulnerabilities and extract the vulnerability code from
the corresponding commits. However, the disadvantage of this
method is that git commit messages are often confusingly and
inconsistently formatted between projects. And also, due to
the slicing tool VulDeePecker and SySeVR used, the dataset
they generated only contains C/C++ language.

A. Dataset Construction

We use GitHub Advisory Database(GHSA) [28|] as data
source. Items in GHSA are from open-source repositories
hosted on GitHub. Developers who fix vulnerabilities in their
projects have the option to publicly disclose their vulnerability
information and fix patches to the GitHub community. Since
the majority of current well-known open-source projects are
hosted on Github, the vulnerabilities included in the GHSA
database have a relatively high consistency with the NVD
database entries involving open-source software [29] [30].

The following procedures are used in generating the code
vulnerability dataset. And for each case, the codes are ex-
tracted at function level.

1) Determine the target programming language need to be

extracted, the programming languages can be various.

2) Download the full list of identified vulnerabilities from
the GHSA database, and exclude records that do not
have a fix patch or patch is not available.

3) For each git commit patch, filters the files involved in
the git commit to exclude non-code files or non-target
language files.

4) For each code file modified by a git commit, extracts
the unfixed version and the fixed version of the code
separately.

Length count

[0.0, 512.0) 6200

[512.0, 1024.0) 1616

[1024.0, 2048.0) 1560

[2048.0, 5096.0) 1180

[5096.0, inf) 516
TABLE I

LENGTH STATISTICS OF DATASET

5) Generates an AST (abstract syntax tree) of the unfixed
and the fixed versions of each code file separately, and
slices the code files at the function level according to the
structure of the AST, with each function as one piece of
data in the dataset.

6) The unfixed version is labeled as vulnerable, while
the fixed version is labeled as non-vulnerable. Some
unmodified functions are also present in both fixed and
unfixed versions, these functions are labeled as non-
vulnerable.

The dataset in this paper is generated in 2022 March.
The finally generated dataset contains a variety of popular
programming languages (C, C++, Java, Python, Go), and the
total size of dataset is 11072.

The code length statistics (with the number of characters as
data length) are shown in table [l As can be seen, the dataset
contains not only short code pieces, but also a large amount
of long code text, which is consistent with what is found in
software development.

In the extraction process, some unchanged code is also
included in the git diff messages, making size of the final
extracted negative cases (non-vulnerable codes) larger than
positive cases (vulnerable codes). As the result, negative cases
are 8601, positive cases are 2471.

V. EXPERIMENTS
A. Experiment Settings

1) Dataset: For all experiments, we use the dataset gen-
erated in the Data section. Same with common approach, we
randomly split the dataset into train, validation and test dataset,
with corresponding size ratio of 60%, 20%, 20%.

2) Environment: We run our experiments on a Ubuntu
Server 22.04 machine with i9-9820X CPU, 128G RAM, dual
Nvidia RTX 3090 GPU. The Python version is 3.8.

B. Vulnerability Detection Experiments

1) Baseline: We chose the following models as baseline.

SySeVR-BGRU is the best performance model in SySeVR
paper [12]]. VulDeePecker [9] has the same model archi-
tecture with SySeVR-BLSTM. SySeVR takes into account
both syntactic and semantic features of the code, which can
provide a more comprehensive view of the system and improve
the model’s performance, making it a good benchmark for
comparison.

CodeBERT [14] is a bimodal pre-trained model that has
been specifically designed for multiple downstream code-
related tasks, so it may be more effective at handling the

3
XP 4
int
(L8
ignoring -
4
char
public 4
tp 4
true
sef 4

d |

y 4

e |

mail
Type
irect 4
spec
service |
ORE

£

try J
ow
TEmp

Exception

il

is

ax

<<
fie!

theoreticall
store

@

[{H

—0.75 -0.50 -0.25

0.00

Fig. 4. Heat visualization of attention weights

characteristics of code (such as its syntax and vocabulary) than
more general-purpose models. CodeBERT has been trained
on a large and diverse dataset of code, so it may be able
to capture the complex patterns and relationships present in
code more effectively than models trained on smaller or more
homogeneous datasets.

VUDDY [31] is a representative research of traditional static
detection. VUDDY declares that by using clone detection
to find codes similar to previously found vulnerable codes,
vulnerable in new software projects can be identified. The
clone detection method of VUDDY is to calculate the AST
similarity of target code and codes in vulnerability database,
and target code is considered vulnerable if similarity is over
threshold.

2) Metrics: The purpose of the vulnerability detection
model is to select potentially vulnerable code from software
projects that need to be reviewed by human experts. Therefore
we use top-k hits as the main metric of evaluating the
performance of models, and recall as the second evaluation
method.

One reason to use top-k hits as a metric is that it can be more
forgiving of false negatives. In a vulnerability detection task, it
is often more important to identify as many vulnerabilities as
possible, even if this means that the model may also produce
some false positives.

3) Experiment Results: The experiment results are shown
in table |m As the table shows, our model performs better than
state-of-art researches.

Since SySeVR is derived from VulDeePecker, SySeVR-
BLSTM has the same architecture with VulDeePecker. And
SySeVR-BGRU is an improved model basing on VulDeeP-
ecker. The results of these two models may suggest attention
mechanism can replace the difficult code slicing process in
SySeVR/VulDeePecker.

VUDDY classified all test cases as non-vulnerable, which
may indicate VUDDY meets challenge in detecting real-world
vulnerabilities.

To understand how the model is weighting different parts
of the input code when making a prediction, attention weights
are visualized in fig[d} As the picture shows, the model mainly
focus on high-risk operations that may cause vulnerabilities,
such as left shift and Exception handling. This result may
suggest that the VULASTE is able to identify these patterns
effectively and correctly. This is a great indication that the
model is working effectively and has learned to recognize the
characteristics of vulnerable code.

BEEEfEEERO B SO RLEr fFREESEEDS
E @ &zmﬁgz ﬂ%m gg'me FHEE T ESE§
025 050 075 I
Model hits@50 @100 @200 @500 recall fl
VuLaste 29 51 86 228 0.4820 0.4801
VulDeePecker 6 12 33 77 0.5404 0.1941
SySeVR-BGRU 5 15 37 85 0.3826 0.2410
CodeBERT 3 6 24 63 0.4463 0.4203
VUDDY 0 0 0 0 - 0.0000
TABLE II
THE METRICS OF DIFFERENT MODELS.

Model hits@50 @100 @200 @500 recall f1
VuLaste 29 51 86 228 0.4820 0.4801
no AST 3 15 27 66 0.4983 0.3582

self attention 4 15 28 81 0.5369 0.3794
cross entropy 0 0 0 0 - 0.0000
TABLE III

THE RESULTS OF ABLATION STUDY.

C. Ablation Study

The results of ablation study are shown in table [T}

The 'no AST’ experiment means model without AST path
embedding. This experiment shows that the AST path embed-
dings are important for capturing the structural information of
the code, which is useful for identifying patterns or anomalies
that may indicate vulnerabilities.

The ’self attention’ experiment replace the long sequence
attention mechanism with traditional transformer self attention.
This result shows that the long sequence attention mechanism
is effective at handling longer input sequences, which is im-
portant when dealing with identifiers in programming language
texts.

The ’cross entropy’ experiment removed focal loss from the
model, and used cross entropy instead. The result of removing
focal loss suggest the model may struggle to learn vulnerable
patterns if not deal with data imbalance problem.

In summary, the results of the ablation experiments demon-
strate that each part of the model is important and contribute
to the overall performance. The AST path embeddings, long
sequence attention mechanism and focal loss are all important
for the model to effectively identify vulnerabilities in the code.

VI. CONCLUSION

In this paper, we proposed VULASTE, a deep learning
model to detect vulnerable codes. To deal with vocabulary
explosion problem, our model use bpe algorithm from natural
language processing in tokenizing. This model also adds
AST path embedding to provide a lightweight representation
for programming language nesting structure. To replace the

program slicing method, we use a long sequence attention
mechanism from Longformer, combining global attention and
windowed attention, to capture long-term semantic in source
code. We also extracted a dataset from real-world open source
repositories from Github Security Advisory Database. Exper-
iment results show that comparing with existing researches,
VuLASTE can better select source code pieces that may be
vulnerable when candidate number is limited.

ACKNOWLEDGMENT

The authors would like to thank Zilie Wang, who provided
excellent idea with experiments design and helped maintain
our GPU server, Yufeng He, who implemented the software
to extract vulnerabilities from GitHub Advisory Database,
Tengqing Jiang, who fixed multiple fatal errors in SySeVR
data preprocessing code. We would also like to express our
gratitude to GitHub community for providing GHSA database
that was essential to this work.

The authors would also like to thank the anonymous re-
viewers for their helpful comments and suggestions, which
have greatly improved the quality of the paper.

REFERENCES

[1] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122-131, 2016.

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1-37, 2018.

[3] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu, “Vulsniper:
Focus your attention to shoot fine-grained vulnerabilities.” in IJCAI,
2019, pp. 4665-4671.

[4] Y. Pang, X. Xue, and A. S. Namin, “Predicting vulnerable software
components through n-gram analysis and statistical feature selection,”
in 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA). 1EEE, 2015, pp. 543-548.

[5] Y. Pang, X. Xue, and H. Wang, “Predicting vulnerable software com-
ponents through deep neural network,” in Proceedings of the 2017
International Conference on Deep Learning Technologies, 2017, pp. 6—
10.

[6] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, “A comparative
study of deep learning-based vulnerability detection system,” [EEE
Access, vol. 7, pp. 103 184-103 197, 2019.

[7]1 B. D. Burow, “Mixed language programming,” in Computing in High
Energy Physics’ 95: CHEP’95. World Scientific, 1996, pp. 610-614.

[8] P.S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. 1EEE, 2016, pp. 563-573.

[9] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,

“Vuldeepecker: A deep learning-based system for vulnerability detec-

tion,” in Proceedings of the 25th Annual Network and Distributed System

Security Symposium (NDSS). The Internet Society, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” in /st International Conference on

Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May

2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds.,

2013.

P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-

based bidirectional long short-term memory networks for relation clas-

sification,” in Proceedings of the 54th annual meeting of the association

for computational linguistics (volume 2: Short papers), 2016, pp. 207—

212.

Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A

framework for using deep learning to detect software vulnerabilities,”

IEEE Transactions on Dependable and Secure Computing, 2021.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

K. Cho, B. van Merriénboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder—decoder approaches,”
in 8th Workshop on Syntax, Semantics and Structure in Statistical
Translation, SSST 2014. Association for Computational Linguistics
(ACL), 2014, pp. 103-111.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536-1547.

F. Petroni, T. Rocktidschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu,
and A. Miller, “Language models as knowledge bases?” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-1JCNLP), 2019, pp. 2463-2473.

I. Bazzi, “Modelling out-of-vocabulary words for robust speech recog-
nition,” Ph.D. dissertation, Massachusetts Institute of Technology, 2002.
P. Gage, “A new algorithm for data compression,” The C Users Journal,
vol. 12, no. 2, pp. 23-38, 1994.

“Tree-sitter — introduction,” Accesssed:
Available: https://tree-sitter.github.i0/

I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in 54th Annual Meeting
of the Association for Computational Linguistics 2016. Association for
Computational Linguistics, 2016, pp. 2073-2083.

“Stack overflow,” 2008 Accesssed: 2022-12-26. [Online]. Available:
https://stackoverflow.com/

Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, “A comparative
study of deep learning-based vulnerability detection system,” IEEE
Access, vol. 7, pp. 103 184-103 197, 2019.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980-2988.

V. Okun, A. Delaitre, P. E. Black et al., “Report on the static analysis
tool exposition (sate) iv,” NIST Special Publication, vol. 500, p. 297,
2013.

P. E. Black, “A software assurance reference dataset: Thousands of
programs with known bugs,” Journal of research of the National Institute
of Standards and Technology, vol. 123, p. 1, 2018.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

H. Booth, D. Rike, G. A. Witte et al., “The national vulnerability
database (nvd): Overview,” National Institute of Standards and Tech-
nology, Tech. Rep., 2013.

“Github advisory database,” Accesssed: 2022-03-01. [Online]. Available:
https://github.com/advisories

N. Biihlmann and M. Ghafari, “How do developers deal with security
issue reports on github?” in Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, 2022, pp. 1580-1589.

S. Horawalavithana, A. Bhattacharjee, R. Liu, N. Choudhury, L. O. Hall,
and A. Iamnitchi, “Mentions of security vulnerabilities on reddit, twit-
ter and github,” in IEEE/WIC/ACM International Conference on Web
Intelligence, 2019, pp. 200-207.

S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2017, pp. 595-614.

2023-01-17. [Online].

https://tree-sitter.github.io/
https://stackoverflow.com/
https://github.com/advisories

	I Introduction
	II Related Work
	III Design of Model
	III-A Tokenizing
	III-B AST generation
	III-C Embedding
	III-D Long Sequence Attention for vulnerability Detection
	III-E Class Imbalance

	IV Data
	IV-A Dataset Construction

	V Experiments
	V-A Experiment Settings
	V-A1 Dataset
	V-A2 Environment

	V-B Vulnerability Detection Experiments
	V-B1 Baseline
	V-B2 Metrics
	V-B3 Experiment Results

	V-C Ablation Study

	VI Conclusion
	References

