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ABSTRACT
Containerization has revolutionized software development and de-
ployment. This study investigates the performance of Docker and
Podman containers on various ARM-based Single-Board Computers
(SBCs), including the ODROID-XU4, ODROID-N2+, and Raspberry
Pi 4 Model B (RPi 4B), for image processing tasks, in addition to ex-
ploring the impact of Distributed Denial of Service (DDoS) attacks
on these container technologies. The research assesses parameters
such as time, CPU utilization, and memory utilization during image
processing tasks. Moreover, the paper inspects the resilience of web
servers under DDoS attacks when varying the retrieved file sizes,
frequency of malignant traffic generated by the attackers, and web
server choices, emphasizing the need to implement adaptive secu-
rity measures. The ODROID-N2+ with 4 GB memory emerged as a
standout performer, navigating the challenges posed by DDoS at-
tacks while maintaining acceptable speeds, suggesting its potential
as a cost-effective Docker and Podman engine. At the level of the
container technologies, Docker and Podman performed similarly.
Overall, the insights gained from this research offer valuable guid-
ance for practitioners who are planning containerized deployments
on resource-constrained devices.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Networks → Network reliability.
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1 INTRODUCTION
In the ever-evolving domain of modern software development and
deployment, containerization has emerged as a transformative tech-
nology. It provides a lightweight and efficient means of packaging,
distributing, and executing applications, offering portability and
scalability. Containerization bumbles applications and their de-
pendencies into isolated units or containers, ensuring consistent
execution across various environments.

This study explores the performance of Docker [17, 20] and Pod-
man [3, 21] engines running on ARM-based Single-Board Comput-
ers (SBCs), including ODROID-XU4 [11], ODROID-N2+ [9, 10], and
Raspberry Pi 4 Model B [18] (RPi 4B). Docker has attained a de facto
standard status among leading containerization platforms, while
Podman emerges as a daemonless alternative emphasizing security
and compatibility. The applications and limitations of Docker and
Podman, highlighting their respective strengths in image process-
ing tasks and their resilience under Distributed Denial of Service
(DDoS) attacks, are examined in this paper.

Image processing, a fundamental computational task, encom-
passes manipulating and analyzing images for various applications.
It involves a wide range of techniques and algorithms for enhanc-
ing, restoring, transforming, or extracting information from images,
including rotation, blur, noise reduction, and shape analysis. This
paper evaluates the performance of Docker and Podman containers
in image rotation tasks with ImageMagick, a powerful open-source
application for image manipulation. The authors chose this soft-
ware as one of the benchmarking tools due to its versatility and
widespread use in image-processing workflows.

DDoS attacks bring a significant threat to networked systems,
aiming to flood servers with overwhelming traffic to deplete their
resources and disrupt services. This paper delves into the intri-
cacies of DDoS attacks, highlighting the importance of securing
containerized servers. In the DDoS experiments carried out for this
paper, hping3 (a versatile security tool) was employed to simulate
the illegitimate traffic with varying frequency, providing insights
into performance and CPU/memory utilization under adversarial
conditions.

The study shows that the ODROID-N2+ outperformed the other
two tested SBCs, at the price of a higher memory consumption. Re-
garding the container technologies, the differences between Docker
and Podman were insignificant. Other valuable suggestions are
provided in this study to guide practitioners in navigating the de-
ployment of containerized services in resource-constrained devices.

The structure of the rest of this paper is as follows: Section 2
reviews relevant literature in this research area. Section 3 details the
characteristics of the chosen SBCs and the testbed. Sections 4 and 5
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explore the performance of image processing tasks in containerized
environments, when varying the number of containers and the size
of the images, respectively. Network assessments (WiFi vs Ethernet)
are presented in Section 6. Section 7 discusses the response of
containerized web servers under various DDoS attack conditions.
Finally, Section 8 concludes the paper and suggests future avenues
for research in this area.

2 RELATEDWORK
On the one hand, there have been a lot of efforts to evaluate con-
tainerization technologies empirically, but essentially on testbeds
that use conventional computers based on the x86/x64 architec-
ture [5, 14, 15, 22] (e.g., Intel and AMD) or VMs running in the
cloud [6].

On the other hand, many research groups have benchmarked
applications that run natively on SBCs. As an illustration, Damas-
ceno, Dantas, Araujo [4] evaluated the transmission performance
of two routers at the edge network on the end-user side: (1) a Cisco
1905 and (2) an RPi 4B with OpenWrt. The authors concluded that
the SBC-based solution achieved similar performance to the com-
mercial one, but at a much lower price. Istifanos and Tekahun [13]
conducted a performance assessment of web servers (NGINX and
Apache) on an RPi 3B and a standard HP laptop. They reported
performance parameters such as CPU usage, response time, and
number of requests served per second.

According to the search of the specialized literature done by the
authors of this work, just a few efforts have been made in the area of
assessing the performance of container engines on SBCs. In [7], the
authors evaluated Docker on the RPi Zero W, RPi Zero 2 W, RPi 3B,
RPi 3B+, and RPi 4B. They did a timed computation of 𝜋 , and bench-
marked web and PostgreSQL servers, all running inside containers.
Morabito [16] contrasted native and containerized performance on
an RPi 2B, using tools such as Sysbench, mbw (Memory Bandwidth
Benchmark), Iperf, and ab (Apache HTTP server benchmarking
tool). The research team of this paper did not find any other study
with these characteristics. Unlike the present work, the authors
of [7, 16] considered just one container technology (Docker) and
focused on SBCs of the Raspberry Pi Foundation. Hence, the present
work brings practical recommendations to practitioners planning
to deploy containerized services, regarding the selection of Docker
or Podman, and the expected performance of commonly-used SBCs.

3 TESTBED FOR THE EXPERIMENTS
Single-Board Computers (SBCs) are complete and compact comput-
ers with all necessary components, including processor, memory,
storage, and connectivity, on a single circuit board. Their applica-
tion ranges from the Internet of Things (IoT) and embedded systems
to educational projects. These devices are widely employed due to
their small form factor, energy efficiency, affordability, and versatil-
ity. Table 1 details the key specifications for the SBCs selected for
this research. The ODROID-XU4 [11], ODROID-N2+ [9, 10], and
Raspberry Pi 4 Model B [18] (RPi 4B) were selected considering
their popularity and strong community support. It is worth clarify-
ing that the Raspberry Pi 5 was not considered in this study since
it was just recently released and is affected by the supply chain
backlog.

There are various storage options for these SBCs including mi-
croSD cards, thumb drives, and SSDs, where the latter two require
a USB connection. It is noteworthy to mention that the ODROID
SBCs also offer the option of eMMC storage. The experiments in
this paper utilized microSD cards, specifically the 64 GB SanDisk
Extreme PRO microSDXC UHS-I memory cards. Additionally, to
manage the heat generation of the RPi 4B, the tested SBCs were
enclosed in cases equipped with small fans. That was unnecessary
for the ODROID-XU4 and ODROID-N2+, since they natively have
a small fan and a metal-housing heat sink, respectively.

Regarding the operating system, the last version of Armbian [2]
was installed in the ODROID SBCs (Armbian armhf v23.11 in the
ODROID-XU4 and Armbian aarch64 v23.11 in the ODROID-N2+).
They are CLI versions of Debian 12.2 (Bookworm). For the RPi 4B,
the Raspberry Pi OS [19] was selected since it is the most popular
OS for this SBC. The latest 64-bit light version, released in October
2023, was chosen.

The testbed shown in Figure 1 was used for the ImageMagick
experiments. It consisted of one test computer that controlled the
operations performed on the images and one SBC (ODROID-XU4,
ODROID-N2+, or RPi 4B) as the container host. The computer was a
Dell OptiPlex 7090 SFF, with an octa-core Intel i7-10700 CPU@ 2.90
GHz, 32 GBDDR4 RAM, 512 GB PCIe NVMe SSD, 10/100/1000Mbps
Ethernet port, and Intel AX201WiFi NIC (IEEE 802.11a/b/g/n/ac/ax).
The last version of Debian amd64 (version 12.4) was installed on the
computer. The devices of the testbed were interconnected through
a 2.4 GHz WiFi network. A NETGEAR AC1750 Smart WiFi Router
R6400v2 (IEEE 802.11a/b/g/n/ac) was used as the WLAN router.
At the level of the ODROID-XU4 and ODROID-N2+, a Linksys
WUSB6300 WiFi NIC was connected through a USB 3.0 port, since
they only have Ethernet connectivity by default (see Table 1).

Docker/Podman
Containerized ImageMagick/SSH servers

Dell OptiPlex 7090 SFF 
Test computer

ODROID‐XU4
ODROID‐N2+

RPi 4BNETGEAR R6400v2

Figure 1: Testbed for the ImageMagick Experiments

For the DDoS attack experiments, the testbed depicted in Figure 2
was used. It consisted of up to six attacker computers, one computer
to generate the legitimate petitions, and one SBC (ODROID-N2+ or
RPi 4B) to run the containers. All the computers were Dell OptiPlex
7090 SFF, with the same specifications as those of the computer
used in the ImageMagick experiments. The interconnection of the
devices was done through either Ethernet or WiFi. For the wired
scenario, a Cisco SG355-10P Ethernet switch (eight 10/100/1000
PoE+ ports) was used. For the wireless scenario, the Ethernet switch
was replaced by the NETGEAR AC1750 Smart WiFi Router R6400v2.

4 IMAGE PROCESSING: VARIATION OF THE
NUMBER OF DOCKER CONTAINERS

The primary objective of this experiment was to evaluate the per-
formance of image manipulation within Docker containers running
on the SBCs under test, when varying the number of containers.

Image-Processing Workloads and DDoS Attack Resilience: Evaluating Docker and Podman Containers on Raspberry Pi and ODROID 
Gamess, Parajuli

139



 
 
 

Table 1: Specifications of the Chosen SBCs

ODROID-XU4 ODROID-N2+ RPi 4B
SoC Type Samsung Exynos5422 Amlogic S922X Broadcom BCM2711

Core Type Quad-core ARM Cortex-A15 @ 2.0 GHz Quad-core ARM Cortex-A73 @ 2.4 GHz Quad-core ARM Cortex-A72 @ 1.8 GHzQuad-core ARM Cortex-A7 @ 1.4 GHz Dual-core ARM Cortex-A53 @ 2.0 GHz
Core Architecture ARMv7-A (32-bit) ARMv8-A (64-bit) ARMv8-A (64-bit)
RAM 2 GB LPDDR3 2 or 4 GB DDR4 1, 2, 4, or 8 GB LPDDR4
Storage Type microSD, eMMC microSD, eMMC microSD
Ethernet 10/100/1000 Mbps 10/100/1000 Mbps 10/100/1000 Mbps
WiFi Not built-in (requires USB adapter) Not built-in (requires USB adapter) Dual-band IEEE 802.11b/g/n/ac
HDMI Port 1 x full-size HDMI 1.4a 1 x full-size HDMI 2.0 2 x micro HDMI (supporting up to 4K)
USB Ports 2 x USB 3.0, 1 x USB 2.0 4 x USB 3.0, 1 x Micro USB 2.0 OTG 2 x USB 3.0, 2 x USB 2.0
Price US$59 US$66 or US$83 US$35, US$45, US$55, or US$75

Attacker 1
hping3

scp
bombardier

Cisco SG355-10P

Attacker 6
hping3

Attacker 2
hping3

Legitimate
computer

RPi 4B
ODROID-N2+

Docker/Podman
Containerized SSH servers

Containerized web/SSH servers

Figure 2: Testbed for the DDoS Attack Experiments (Ethernet
Version)

The experiment was carried out in the testbed of Figure 1. It
involved concurrent rotations of a 200-KB image in the container-
ized ImageMagic/SSH servers that were running on the SBC. All
the SBC models available for the work were tested: ODROID-XU4,
ODROID-N2+ (2 and 4 GB), and RPi 4B (1, 2, 4, and 8 GB).

A “Dockerfile”, shown in Figure 3, was developed to create a
customized image for the containers running on the SBCs. The line
numbers were added to help reference them. Line 01 specifies the
base image to be used for the creation of the customized image,
which in this case is the latest Debian image (version 12.4) from
Docker Hub. Line 02 updates the package list inside the customized
image, while Line 03 installs two packages: ImageMagick and the
OpenSSH server. ImageMagick was used as an image-processing
benchmarking tool, and the OpenSSH server was installed for se-
curing the remote access. Lines 04-05 enable the usage of the SSH
services for the root user and set the password. Line 06 specifies the
default command to be executed when a container is instantiated,
while Line 07 exposes the SSH port.

Figure 4 depicts the script that was developed to run the Docker
containers. As shown in Lines 02-03, it is based on two arguments:
the number of containers to be instantiated and the base port for
the OpenSSH servers. In each iteration of the loop of Lines 04-06, a
container is created and started in the background with a specified
name and hostname, publishing incrementally assigned ports for
the OpenSSH servers.

The test was carried out as specified as follows: For each con-
tainerized ImageMagick/SSH server that was running on the SBC,

01: FROM debian
02: RUN apt-get update
03: RUN apt-get install --yes imagemagick openssh-server
04: RUN echo "PermitRootLogin yes" >> /etc/ssh/sshd_config
05: RUN echo "root:<password-root>" | chpasswd
06: CMD sh -c "/etc/init.d/ssh start; /bin/bash"
07: EXPOSE 22

Figure 3: Dockerfile to Create the ImageMagick/SSH Server
Image

01: #!/bin/bash

02: numContainer=$1
03: basePort=$2

04: for i in $(seq 0 $((numContainer‐1))); do
05:    docker container run ‐‐detach ‐‐tty ‐‐name $(printf "d%03d" $i) \

‐‐hostname $(printf "d%03d" $i) \
‐‐publish $(printf "%03d" $((basePort+i))):22 debian‐imagemagick

06: done

07: exit 0

Figure 4: Script to Run ImageMagick/SSH Docker Containers

a process was started on the test computer by executing the script
client-magick-script.sh (see Figure 5), forming a one-to-one
association between a client process and a container, where each
client controlled the rotation of a specified image several times
within its associated container, thereby enabling several parallel
image transformations simultaneously.

In Line 08 of Figure 5, the script client-magick-script.sh
starts by copying the input image (specified by inputImage) from
a client process to its associated Docker container running on the
SBC, using the scp utility. scp is a command-line utility that allows
the secure copying of files and directories between two locations
on a network, using the SSH protocol. Line 09 creates an initially
empty string (cmdStr) that should contain all the commands to be
executed in the containerized ImageMagick/SSH server. In each
iteration of the loop of Lines 10-12, a new command is appended
to cmdStr and consists of rotating the input image by 90 degrees,
using the convert utility of ImageMagick. Line 13 uses SSH to
open a connection with the container and execute the commands
stored in cmdStr. After performing all the rotations in the associ-
ated containerized ImageMagick/SSH server, Line 14 retrieves the
resulting image with scp. In Line 16, the transfer and processing

2024 ACM Southeast Conference – ACMSE 2024 – Session 1: Full Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

140



 
 
 

time (total time for the whole process) is calculated by subtract-
ing two timestamps recorded at the beginning (Line 07) and end
(Line 15) of the test.

During the assessment, in addition to recording the transfer and
processing time, the authors also monitored the CPU and total
memory usages with mpstat and free on the container host (SBC).
mpstat (Multiple Processor Statistics) is a command-line utility that
provides detailed information about the utilization of processors.
On the other hand, the free command is used to obtain information
about the system’s memory usage.

01: #!/bin/bash

02: sbcIPAddress=$1
03: portSSH=$2
04: inputImage=$3
05: rotationCount=$4
06: myID=$5

08: scp -q -P $portSSH $inputImage root@$sbcIPAddress:.

07: start_time=$(date +%s%N)

09: cmdStr=""
10: for((i=0; i<rotationCount; i++)); do
11:    cmdStr=$cmdStr" convert /root/$inputImage \

-rotate 90 /root/outputImage.png;"
12: done
13: ssh -p $portSSH root@$sbcIPAddress "$(echo $cmdStr)"

14: scp -q -P $portSSH root@$sbcIPAddress:/root/outputImage.png \
outputImage$(printf %03d $myID).png

15: end_time=$(date +%s%N)

18: exit 0

16: time_taken=$(echo "scale=2; ($end_time - $start_time)/1000000000" | bc)
17: # Save the result in the container host

Figure 5: Script to Assess a Sequence of Rotations Using Im-
ageMagick (client-magick-script.sh)

For the experiment, the number of rotations was set to 4 (con-
trolled by rotationCount in client-magick-script.sh). The num-
ber of containerized ImageMagick/SSH servers was varied: 1, 2, 4,
8, 16, 32, 64, 128, and 256 containers. The results for the transfer
and processing time, the CPU usage, and the total memory usage in
the SBCs under test are shown in Tables 2, 3, and 4, respectively. An
N/A in the tables stands for “Not Applicable”, and means that the
associated experiment failed due to resource exhaustion. In Table 4,
the columns labeled “Prestart” correspond to the total memory
utilization in the SBCs after creating the containers, but before
starting them. In this way, it is possible to appreciate the additional
amount of memory required by the execution of the benchmark
itself (i.e., the execution of the script client-magick-script.sh
that performs rotations). An analysis of the results is done below.

Analysis of the Transfer and Processing Time
• The transfer and processing time degraded as the number of
containers increased across all the SBCs under test. That is,
as more containers were instantiated, the overall workload
increased, leading to resource contention and a subsequent
longer transfer and processing time.

• All the SBCs under test showed a similar transfer and pro-
cessing time while increasing the number of containers, up
to their number of cores. For example, the ODROID-XU4
demonstrated a transfer and processing time between 2.06
and 2.82 seconds, when going from 1 to 8 containers. That

is, almost the same value. However, when passing from 8 to
16 containers, the transfer and processing time went from
2.82 to 5.46 seconds (almost twice the time). The reason may
be the following. For up to 8 containers, each container was
assigned to its own core. With 16 containers, each core had
to take care of 2 containers, doubling the value of the trans-
fer and processing time. Similar results can be seen for the
ODROID-N2+ (6 cores) and the RPi 4B (4 cores).

• For the same model of SBC, having more memory increased
its performance, as more memory allows for better handling
of concurrent tasks. This is clearly demonstrated for the
two versions of the ODROID-N2+ (2 and 4 GB) and the four
versions of the RPi 4B (1, 2, 4, and 8 GB).

• The number of cores was important in this experiment. The
ODROID-N2+ excelled as the fastest, benefiting from six
cores and robust hardware with ample CPU power and mem-
ory. In contrast, the RPi 4B lagged behind due to having
just four cores, resulting in a higher number of containers
assigned to each core.

Analysis of the CPU Usage
• The CPU usage soared rapidly with the growing number of
containers, up to its limit (100%).

• The maximum usage of the CPU (100%) is reached as soon as
the number of containers is equal to or surpasses the number
of cores for the reasons explained in the previous analysis.
For example, the ODROID-XU4 with eight cores reached
99.75% of CPU usage with eight containers. The RPi 4B with
four cores reached more than 96.49% of CPU usage with four
containers.

• The chosen benchmark (rotations of images) is clearly CPU
intensive, since the maximum usage of the CPU is reached
as soon as the number of containers is equal to or exceeds
the number of cores.

Analysis of the Total Memory Usage
• Across all SBCs under test, an evident increase in memory
consumption is observed as the number of containers soars.

• For an equivalent setting, the ODROID-N2+ showed the high-
est total memory usage, especially the 4 GB configuration.

• Having more memory led to more scalability. For example,
the RPi 4B with 1, 2, 4, and 8 GB RAM could handle up to
32, 64, 128, and 256 containers, respectively. The ODROID-
N2+ with 2 and 4 GB RAM could manage up to 64 and 128
containers, respectively. This highlights the importance of
choosing SBCs with sufficient memory for tasks involving
containerization and scalability.

Based on these findings, this research team continued the rest of
the experiments with the best-performing devices for each model:
ODROID-XU4, ODROID-N2+ (4 GB), and RPi 4B (8 GB). This strate-
gic choice ensures a smart and effective continuation of the study
since most practitioners who are planning to implement a container
host will probably choose the version of the SBC that has more
memory.
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Table 2: Transfer and Processing Time in Seconds

OD-XU4 RPi 4B
2 GB 2 GB1 GB

OD-N2+
2 GB 4 GB 8 GB

1
2
4
8

16
32
64

128
256

2.06 1.48

4 GB
1.45 2.04 1.98 1.96 1.91

2.09
2.33
2.82
5.46

10.90
22.39
N/A
N/A

1.51
1.72
2.64
4.49
8.93

17.81
N/A
N/A

1.49
1.54
2.24
4.24
8.19

15.95
32.36
N/A

2.24
2.47
4.24
8.46

17.14
N/A
N/A
N/A

2.07
2.45
4.21
8.43

16.63
33.72
N/A
N/A

1.99
2.31
4.15
8.17

16.39
32.38
66.71
N/A

1.97
2.19
4.09
8.17

16.18
32.21
65.16

126.67

Containers
Number of

Table 3: CPU Usage in Percents

OD-XU4 RPi 4B
2 GB 2 GB1 GB

OD-N2+
2 GB 4 GB 8 GB

1
2
4
8

16
32
64

128
256

13.32 13.92

4 GB
13.68 23.72 25.83 25.77 24.58

25.88
50.48
99.75

100.00
100.00
100.00

N/A
N/A

26.96
57.12
98.61

100.00
100.00
100.00

N/A
N/A

26.45
55.39
97.77

100.00
100.00
100.00
100.00

N/A

46.60
96.49

100.00
100.00
100.00

N/A
N/A
N/A

50.71
99.33

100.00
100.00
100.00
100.00

N/A
N/A

48.95
98.92

100.00
100.00
100.00
100.00
100.00

N/A

47.06
98.54

100.00
100.00
100.00
100.00
100.00
100.00

Containers
Number of

Table 4: Total Memory Usage in MB

ODROID-XU4
2 GB

ODROID-N2+

1
2
4
8

16
32
64

128
256

281
289
309
344
409
536
806

N/A
N/A

Containers
Number of

Prestart Docker

293
313
356
438
600
928

1528
N/A
N/A

2 GB

321
352
396
484
630
937

1548
N/A
N/A

Prestart Docker

345
384
454
590
841

1352
1766
N/A
N/A

4 GB

358
386
421
496
651
976

1544
2806
N/A

Prestart Docker

370
410
477
605
861

1390
2365
3625
N/A

Raspberry Pi 4 Model B
1 GB

230
244
267
301
379
552

N/A
N/A
N/A

Prestart Docker

242
263
316
402
576
820

N/A
N/A
N/A

2 GB

219
230
251
295
369
516
820

N/A
N/A

Prestart Docker

230
256
302
395
575
926

1573
N/A
N/A

4 GB

224
235
252
301
374
524
819

1403
N/A

Prestart Docker

234
257
302
398
568
920

1620
2988
N/A

8 GB

285
297
318
357
430
572
868

1450
2670

Prestart Docker

298
323
369
456
630
972

1666
3043
5774

5 IMAGE PROCESSING: VARIATION OF THE
SIZE OF THE PROCESSED IMAGES

The experiment discussed in Section 4 was extended to include
different sizes of the transferred image (200, 500, and 1000 KB) for
1, 8, and 16 containers. Additionally, Podman was incorporated
alongside Docker in this experiment. The transfer and processing
time for the experiment was recorded as well as the total memory
utilization for the SBCs under test. It is important to note that the
scripts done for Docker (e.g., the script of Figure 4) were adjusted
for Podman. In most cases, simply replacing the command docker
with the command podman worked fine as they share a similar
command-line interface.

The results for the transfer and processing time (in seconds) are
depicted in Figures 6, 7, and 8 for a 200-KB, 500-KB, and 1000-KB
image size, respectively. Similarly, the corresponding total memory
usage (in MB) is illustrated in Figures 9, 10, and 11. The main
findings and their analysis are discussed subsequently.

Analysis of the Transfer and Processing Time
• As the file size increased, the transfer and processing time
escalated. Larger images contain more data, requiring more
transmission and processing time, aligning with expecta-
tions.

• The observed increase in transfer and processing time with
a higher number of containers suggests potential resource
contention. As multiple containers compete for resources,

the overall performance is affected, leading to longer ex-
periment times. This finding highlights the importance of
resource management and allocation in a multi-container
environment.

• The ODROID-N2+ consistently outperformed the other two
tested devices. This can be attributed to superior hardware
capabilities, including the SoC and memory.

• The RPi 4B consistently exhibited the longest transfer and
processing time, especially as the number of containers in-
creased. This is probably due to fewer cores in its SoC, re-
sulting in poorer multi-container management.

• The similarity in performance between Docker and Podman
suggests that for this specific experiment, the choice between
these two container technologies had a marginal impact.

Analysis of the Total Memory Usage
• The observed increase in the total memory usage with both
larger file sizes and a higher number of containers under-
scores the demands on this resource during the test.

• The ODROID-N2+ consumed more memory resources than
the other two SBCs under test. As mentioned in the previous
analysis, this higher price came with the benefit of a faster
test.

• Podman consumed less memory than Docker across the
different scenarios. This could be due to differences in their
architecture or resource handling. Podman is known for
its lightweight design and the absence of a daemon, which
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might contribute to a lower total memory usage compared
to Docker.
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Figure 6: Transfer and Processing Time for a 200-KB Image
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Figure 7: Transfer and Processing Time for a 500-KB Image

0

5

10

15

20

25

30

35

40

1 container 8 containers 16 containers

Ti
m
e 
in
 S
ec
on

ds
 (l
ow

er
 is
 b
et
te
r)

OD‐XU4 Docker OD‐XU4 Podman OD‐N2+ Docker
OD‐N2+ Podman RPi 4B Docker RPi 4B Podman

Figure 8: Transfer and Processing Time for a 1000-KB Image
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Figure 9: Total Memory Usage for a 200-KB Image
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Figure 10: Total Memory Usage for a 500-KB Image
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Figure 11: Total Memory Usage for a 1000-KB Image

6 IMPORTANCE OF THE NETWORK
TECHNOLOGY IN DISTRIBUTED DENIAL OF
SERVICE ATTACKS

Several technologies (WiFi and Ethernet) may be used to connect
the container host (SBC) to the network. This section studies the
importance of the network technology in Distributed Denial of
Service (DDoS) attacks on containers. To do so, an experiment was
carried out. It consisted of analyzing the differences between a 2.4
GHz WiFi network and an Ethernet network when transferring
files with SSH, while a DDoS attack was taking place.

The experiment involved concurrent transfers of a 10,000-byte
file from the legitimate computer to containerized SSH servers
running on the SBC, while simultaneously carrying out a DDoS
attack using “hping3” from the attacker computers (see Figure 2).

A customized image was created and built on the SBC using the
“Dockerfile” shown in Figure 3 (without ImageMagick). A basic
script named client-scp-script.sh (see Figure 12) was also de-
veloped to assess the transfer of a binary file from the legitimate
computer to a remote container running on the SBC through scp
(Secure Copy). For a better evaluation, the transfer was repeated sev-
eral times (controlled by transferCount) and the average transfer
time was reported. Lines 02-06 accept five command-line parame-
ters: the SBC’s IP address, the published port number of the SSH
server, the name of the binary file to be transferred, the number
of transfers to be performed, and a process identifier to retrieve
the results. Line 07 obtains a timestamp before the beginning of
the transfers. In the loop of Lines 08-10, the scp command is used
to copy the binary file securely into the specified containerized
SSH server using the provided published port number. Once all the
transfers are done, a second timestamp is captured in Line 11, and
the average transfer time is computed in Line 12.
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01: #!/bin/bash

02: sbcIPAddress=$1
03: portSSH=$2
04: binFile=$3
05: transferCount=$4
06: myID=$5

07: start_time=$(date +%s%N)

14: exit 0

11: end_time=$(date +%s%N)

08: for((i=0; i<transferCount; i++)); do
09:    scp -q -P $portSSH $binFile \

root@$sbcIPAddress:outputFile$(printf %03d $i).bin
10: done

12: avg_time=$(echo "scale=2; ($end_time - $start_time) \
/1000000000/$transferCount" | bc)

13: # Save the result in the container host

Figure 12: Script to Assess a File Transfer Using scp
(client-scp-script.sh)

The legitimate transfer traffic was created as specified: for each
containerized SSH server that was in execution in the SBC, a
process was started in the legitimate computer by executing the
script client-scp-script.sh (see Figure 12), forming a one-to-
one association between a client process and a container, where
each client copied the specified file several times (controlled by
transferCount) into its associated container, resulting in several
parallel transfers at a time.

To start a DDoS attack against the containerized SSH servers
using the hping3 tool before the transfers of the file, a script named
start-attack-ssh.shwaswritten (see Figure 13). The script takes
five command-line parameters: the SBC’s IP address, the number of
containers to be attacked, the base published port number for the
containers, the hping3 attack frequency, and the attack duration.
The loop of Lines 07-09 creates several instances of hping3 so
that the process that executes this script will be flooding all the
containerized SSH servers. This is a TCP SYN flood attack on the
SSH port of the containers as stated by option “-S”.

01: #!/bin/bash

02: sbcIPAddress=$1
03: numContainer=$2
04: basePort=$3
05: hping3Freq=$4
06: duration=$5

10: exit 0

07: for((i=0; i<numContainer; i++)); do
08:    hping3 ‐q ‐S ‐p $((basePort+i)) ‐V \

‐i u$(echo "1.0/$hping3Freq*1000000" | bc ‐l) \
‐c $((hping3Freq*duration)) $sbcIPAddress &

09: done

Figure 13: Script to Perform a DDoS Attack Using hping3
(start-attack-ssh.sh)

The script start-attack-ssh.sh (see Figure 13) was executed
in each attacker computer (see Figure 2) at the same time, with
the same parameters. That is, when having three attackers, each
containerized SSH server received malicious SYN segments from
the three attackers. When having six attackers, each containerized
SSH server received malicious SYN segments from the six attackers.

The experiment was conducted with the ODROID-N2+ (4 GB
RAM), using the Docker technology, with four containerized SSH

servers, for both 2.4 GHz WiFi and Ethernet networks, when the
numbers of attackers varied (0 to 6). The hping3 attack frequency
was set to 500 (i.e., each attacker sent 500 SYN segments to each
containerized SSH server, every second), and the duration of the
attack was determined in such a way that it ended after the transfers
of the file.

Results and Analysis
Figure 14 shows the average time in seconds to transfer a 10,000-
byte file for 2.4 GHz WiFi and Ethernet. The results were reported
for several numbers of attackers, starting with zero (no attackers)
up to six. The findings are discussed below:

• The consistently higher transfer times for WiFi, especially
as the number of attackers increased, highlight the inher-
ent limitations of WiFi compared to Ethernet (i.e., a lower
bandwidth and just one transmission at a time).

• For this experiment, Ethernet exhibited consistent transfer
times regardless of the number of attackers, indicating the
hping3 attack frequency was too low to carry out a DDoS
attack with Ethernet.
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Figure 14: Average Transfer Time for the ODROID-N2+ with
a 10,000-Byte File During a DDoS Attack (Docker)

This study underscores that the network capability was the lim-
iting factor in the DDoS attack with the 2.4 GHz WiFi network
scenario. That is, the resources of the ODROID-N2+ were not ex-
hausted at any point, limiting the viability of doing additional exper-
iments to try to overload the CPU or deplete the RAM of this SBC,
when using this network technology. Therefore, all the subsequent
DDoS experiments were done with the Ethernet network.

7 DISTRIBUTED DENIAL OF SERVICE
ATTACKS ON CONTAINERIZEDWEB
SERVERS

This section details the experimental setup and methodology em-
ployed to investigate the performance and resilience of container-
ized web servers under a DDoS attack. The testbed was based on
Figure 2, using Ethernet (as recommended in Section 6) and with a
maximum of three attacker computers. The legitimate computer
generated the normal/authorized HTTP petitions, and the con-
tainerized web/SSH servers were running in the SBC (ODROID-N2+
with 4 GB RAM or RPi 4Bwith 8 GB RAM). To create a consistent en-
vironment for the containerizedweb/SSH servers, the “Dockerfile”
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shown in Figure 15 was developed. This file specifies the instruc-
tions for building a new container image based on the latest Apache
web server [12] (version 2.4.58 in this case). Four different HTML
test files of varying sizes (1024, 4096, 8192, and 16384 bytes) and a
customized configuration file (httpd.conf) were copied into the
image. The “httpd.conf” file was adjusted to access the containers’
logs effectively. The default port for web servers was exposed.

01: FROM httpd
02: COPY test1024.html /usr/local/apache2/htdocs
03: COPY test4096.html /usr/local/apache2/htdocs
04: COPY test8192.html /usr/local/apache2/htdocs
05: COPY test16384.html /usr/local/apache2/htdocs
06: COPY httpd.conf /usr/local/apache2/conf
07: EXPOSE 80

Figure 15: Dockerfile to Create the Web/SSH Server Image

Figure 16 depicts the deployment script responsible for instanti-
ating multiple Docker containers based on the previously created
customized image, from parameters such as the number of contain-
ers and a base port. The script assigns container names, hostnames,
and domain names to each instance, publishing incrementally as-
signed ports for the web servers. It is worth mentioning that a
similar script was written for Podman.

01: #!/bin/bash

02: numContainer=$2
03: basePort=$3 

04: for((i=0; i<numContainer; i++)); do
05:    docker container run ‐d ‐‐name $(printf "a%02d" $i) \

‐h $(printf "a%02d" $i) ‐‐domainname jsu.edu \
‐p $(printf "%02d" $((basePort+i))):80 apache2‐img \
/usr/local/apache2/bin/httpd ‐D FOREGROUND

06: done

07: exit 0

Figure 16: Script to Run Web/SSH Docker Containers
(Apache)

To generate the legitimate HTTP traffic and simulate a DDoS
attack on the containers, the script of Figure 17 was written. Ini-
tially (see Lines 11-15), several instances of bombardier [1] (a
high-performance HTTP benchmarking tool) were started to gen-
erate legitimate HTTP petitions toward the web servers. A one-to-
one correspondence existed between the instances of bombardier
and the web servers. Each bombardier process sent concurrent
HTTP requests (controlled by bombardNumConcurrent) to its asso-
ciated web server for the duration of the experiment (specified by
bombardTime). Subsequently, the script orchestrated DDoS attacks
against the web servers in the loop of Lines 16-21. As shown, in
each iteration of the loop, a hping3-based malignant process is
periodically started on one of the attacker computers (the period is
controlled by atkGapTime).

7.1 Variation of the hping3 Attack Frequency
In this experiment, the hping3 attack frequency was varied. The
experiment was conducted using the parameters shown in Table 5.

Figures 18, 19, and 20 present the results obtained from the
experiment. The outcome showcases the average HTTP throughput

01: #!/bin/bash

02: sbcIPAddress=$1
03: numContainer=$2
04: basePort=$3 
05: fileName=$4
06: bombardNumConcurrent=$5
07: bombardTime=$6
08: atkGapTime=$7
09: hping3Freq=$8
10: numAttacker=$(($#‐8))

16: for((i=0; i<numAttacker; i++)); do
17:   sleep $atkGapTime
18:   index=$((9+i))
19:   atkIPAddr=${!index}
20:   ssh root@$atkIPAddr "bash /root/start‐client‐hping3.sh $sbcIPAddress \

$numContainer $basePort $hping3Freq" &
21: done

11: lstPid=()
12: for((i=0; i<numContainer; i++)); do
13:    ./bombardier‐linux‐amd64 ‐c $bombardNumConcurrent –d ${bombardTime}s \

http://${sbcIPAddress}:$((basePort+i))/${fileName} &
14:     lstPid+=($!)
15: done

23: exit 0

22: wait ${lstPid[@]}

Figure 17: Script for Bombardment and DDoS Attack

Table 5: Parameters for the Web Experiments

Number of Containerized Web/SSH Servers: 4

Retrieved File Size: 4096 bytes
Bombardier Concurrent Connections: 10

Bombardier Runtime: 45 seconds

Number of Attackers: 3 (maximum)

Attack Gap Time: 10 seconds

hping3 Attack Frequency: 1200, 1400, and 1600

in requests per second (i.e., successful HTTP requests achieved by
bombardier per second) for each combination of SBC (ODROID-
N2+ and RPi 4B), container technology (Docker and Podman), and
attack frequency (1200, 1400, and 1600 TCP SYN segments sent by
hping3 per second). In the three figures, the interval 0:10 seconds
(0 to 10 seconds) had no attackers, 10:20 seconds had one attacker,
20:30 seconds had two attackers, and there were three attackers
after 30 seconds. Findings and implications are discussed below:

• It is evident how each additional attacker created stress on
the system.

• The ODROID-N2+ consistently outperformed the RPi 4B
across all configurations, highlighting the superior capabili-
ties of the ODROID-N2+ in handling web server workloads,
even under DDoS attacks.

• As the attack frequency increased from 1200 to 1600, there
was a noticeable decrease in throughput for all configura-
tions. This aligns with the expected behavior, demonstrating
the sensitivity of web servers to higher attack rates.

• Docker and Podman exhibited similar performances, sug-
gesting both container technologies handled the attack load
similarly.

Choosing the appropriate SBC is critical for containerized web
server deployments. The ODROID-N2+ demonstrated superior per-
formance, making it a preferred choice for resource-intensive tasks.
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Figure 18: HTTP Throughput during a DDoS Attack with an
hping3 Frequency of 1200 TCP SYN Segments per Second
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Figure 19: HTTP Throughput during a DDoS Attack with an
hping3 Frequency of 1400 TCP SYN Segments per Second
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Figure 20: HTTP Throughput during a DDoS Attack with an
hping3 Frequency of 1600 TCP SYN Segments per Second

The experiment also underscores the importance of detecting and re-
inforcing security measures to mitigate the impact of DDoS attacks
on web servers, especially in resource-constrained environments.

7.2 Variation of the Retrieved File Size
This section delves into and analyzes the results of an experiment
where the retrieved file size was varied while keeping all other
experimental parameters constant. That is, the experiment parame-
ters were the same as in Table 5, where the hping3 attack frequency
was set to 1200, and the file size was varied (1024, 4096, 8192, and
16384 bytes). The focus is on understanding the impact of the re-
trieved file size on the performance and resilience of containerized
web servers under a DDoS attack.
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Figure 21: HTTP Throughput during a DDoS Attack with
an hping3 Frequency of 1200 TCP SYN Segments per Second
when Varying the Retrieved File Size (Docker)

The experiment results, showcasing the average HTTP through-
put in requests per second for each file size, are presented in Fig-
ure 21. For reasons of space, only the results of the ODROID-N2+
for Docker are shown. This experiment provides valuable insights
into the nuanced relationship between file size and web server re-
silience under DDoS attacks. Smaller file sizes demonstrate better
throughput, highlighting the importance of optimizing file size in
web server deployments.

7.3 Variation of the Web Server
This section explores and investigates the results of an experiment
where two different web servers were tested, while maintaining all
other parameters constant. That is, the experiment parameters were
the same as in Table 5, where the hping3 attack frequency was set
to 1200, and the web servers were Apache [12] and NGINX [8]. The
aim was to understand the impact of the choice of the web server
on the performance and resilience of containerized web servers
under DDoS attacks.

Figure 22 presents the results of the experiment with Docker,
showcasing the average throughput in requests per second for
Apache and NGINX, on the ODROID-N2+ and RPi 4B.

The main findings of this experiment are presented and analyzed
below:

• In this experiment, NGINX consistently outperformedApache
across both SBCs, showcasing its efficiency in handling con-
current requests, including when under DDoS attacks.

• As in previous experiments, the ODROID-N2+ demonstrated
a significantly better performance than the RPi 4B, for both
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Figure 22: HTTP Throughput during a DDoS Attack with
an hping3 Frequency of 1200 TCP SYN Segments per Second
when Varying the Web Server (Docker)

Apache and NGINX, indicating that its hardware specifi-
cations (SoC, memory, and network capabilities) are more
suited for handling the increased load associated with DDoS
attacks.

The experiment highlights the significant impact of the choice of
web servers on the performance and resilience of containerized web
servers, when under DDoS attacks. For this test, NGINX emerged as
the preferred choice, consistently outperforming Apache in terms
of throughput and stability, when deployed under the same condi-
tions. The findings emphasize the need for practitioners to carefully
consider web servers’ characteristics when designing containerized
solutions, especially in resource-constrained environments.

8 CONCLUSIONS AND FUTUREWORK
This research thoroughly investigated the performance dynamics of
Docker and Podman containers on multiple ARM-based SBCs. The
experiments were mainly focused on image-processing workloads
and the resilience of these containerized systems against potential
DDoS attacks.

The findings seem to indicate that at the level of the container
technologies, Docker and Podman demonstrated similar perfor-
mance. The ODROID-N2+ with 4 GB RAM emerged as a standout
performer. For example, it showcased its prowess by efficiently
handling up to 128 containerized ImageMagick/SSH servers simul-
taneously. This research also sheds light on the significant impact
of DDoS attacks on containerized services, encouraging the imple-
mentation of security policies to mitigate them.

It is worth clarifying that the SBCs of the Raspberry Pi Foun-
dation are well supported by the community, and obstacles are
quickly resolved by searching in specialized forums. This is not
the case for the SBCs of Hardkernel, and the authors had a hard
time solving the issues they encountered due to the limited support.
So practitioners should consider this parameter in their selection,
especially if they plan to connect numerous additional components
to the SBCs, that may not be supported by the different models of
ODROID (due to, for example, the lack of drivers).

Future work could delve deeper into adaptive security measures
to mitigate DDoS attacks in containerized deployments and assess
their effectiveness on SBCs. Additionally, incorporating other SBCs
into forthcoming studies could result in further valuable guidance
for practitioners, especially after the recent release of the Raspberry
Pi 5.
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