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ABSTRACT

Federated Learning is a novel paradigm allowing training of a global

machine-learning model on distributed devices. It shares model pa-

rameters instead of the private raw data during the entire model

training process. While Federated Learning enables machine learn-

ing processes to take place collaboratively on the Internet of Things

(IoT) devices, compared to data centers, IoT devices with limited

resource budgets typically have less security protection and are

more vulnerable to potential cyber-attacks. Current research on

the evaluation of Federated Learning is mainly based on simulation

of multi-clients/processes on a single machine/device. However,

there is a gap in understanding the performance of Federated Learn-

ing under cyber-attacks in real-world distributed low-power IoT

devices. In this paper, we are among the first to evaluate the perfor-

mance of Federated Learning under thermal stress on real-world

IoT-based distributed systems. We conducted comprehensive exper-

iments using the CIFAR-10 dataset and various performancemetrics

including training time, CPU and GPU utilization rate, temperature,

and power consumption. The experimental results demonstrate

that thermal stress is effective on IoT-based Federated Learning

systems as the entire global model and device performance degrade

when even a small ratio of IoT devices are being impacted.

CCS CONCEPTS

• Computing methodologies→ Distributed computing method-

ologies; • Hardware → Thermal issues; • Computer systems

organization → Embedded systems.
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1 INTRODUCTION

Training a machine learning model conventionally requires trans-

ferring the raw data to a central place for computation and analytics.

However, certain circumstances can limit the usage of the central-

ized training. Examples of that can be a too-big-to-centralize data

set, data that users prefer not to share, or certain regulations restrict-

ing the collection of data. Federated Learning was first initiated by

Google [18] in April 2017. Originally tested in Gboard on Android

phones, Federated Learning makes it possible to carry out machine

learning processes collaboratively on distributed entities such as

the Internet of Things (IoT) devices. In Federated Learning, machine

learning models are trained locally on clients and only the gradi-

ents/model parameters will be sent to the server for aggregation.

After years of real-world practice, Federated Learning is proven

to allow model training in distributed and heterogeneous devices.

In addition, the feature of sharing model parameters instead of

the raw data made Federated Learning a promising solution when

protecting user privacy during machine learning is becoming more

important recently. However, as Federated Learning is performed

in distributed systems with multiple potentially untrusted devices,

it is easier for the Federated Learning System (FLS) to be impacted

and influenced [11]. In particular, when clients in FLS are low-end

IoT devices with limited resources, impacts like thermal stress can

easily prevent clients from offering their best performance.

Computing devices consume energy and produce heat as side

effects during computation. However, if excessive heat is generated

and cannot be dissipated in time, then it can cause reductions in per-

formance or even physical damage to computing devices. Thermal

stress, is a sort of impact which has various ways of implementation

of creating excessive heat and using the heat to cause damage to the

performance or even construction of the impacteded system. When

it comes to Federated Learning, thermal stress will try to prevent

the FLS from performing normally, thus leading to adverse conse-

quences including dropping in CPU/GPU frequency, extended train-

ing time and increased power consumption, leading to reduction in

the system performance. In this paper, we constructed a real-world

FLS on IoT devices based on Flower framework [4]. We simulated

thermal stress on our FLS clients using Jetson Benchmarks [2]. We

evaluated the performance with various measurements and metrics

including Jetson-Stats [6], and analyzed the influence of thermal

stress on our FLS. Our prominent contributions in this paper are

summarized as follows.
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• To the best of our knowledge, the presenting work is among

the first to evaluate the performance of Federated Learning

under thermal stress on real-world IoT-based systems.

• We conducted experiments of various scenarios when Feder-

ated Learning clients are under thermal stress with measur-

ing metrics including CPU utilization rate, GPU utilization

rate, temperature, and power consumption.

• We varied the proportion of clients under stress in each

group of experiments and systematically quantified the ef-

fectiveness and real-world impact of thermal stress on the

low-end IoT-based Federated Learning System.

2 RELATEDWORK

Federated Learning. Federated Learning was first initiated by

Google [18] in April 2017 and was applied on Gboard on Android

phones for test and training. IoT devices like mobile phones, pads,

and others tend to have data, especially privacy-related data, con-

tained in their memory. If such data is collected in one place for

traditional machine learning, not only will the collection process

be resource-consuming, but there is also the risk of privacy vulner-

ability to those data. Different from traditional machine learning,

Federated Learning trains the global model collaboratively on IoT

devices in which data are located, transferring only trained model

parameters and gradients instead of data to the server. Parame-

ters and gradients will then be processed at server using certain

algorithm. McManhan et al. [17] was the first to initiate the Feder-

ated Average algorithm (aka FedAVG), which later became a basic

and important method to aggregate updates received at the server.

Google proposed TFF [10] and Bonawitz et al. proposed Fedscale

[5], both frameworks support single-node simulation. Ryffel et al.

proposed PySyft [20] and Beutel et al. proposed Flower [4]. They

support more functions like multi-node execution and heteroge-

neous computation.

Central
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Client 4

Thermal t
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Figure 1: Schematic Diagram of Federated Learning System

Under Thermal Stress

Thermal Stress. Thermal stress can weaken the performance

or even damage the structure of the stressed system. Certain con-

sequences can be communication conversion, excessive energy

consumption, heat-led hardware damage, and so on. Previous re-

search has shown different unfavorable results that can be caused

by thermal stress from different perspectives. Masti et al. [16] per-

formed RSA decryption on specific CPU cores on edge devices, as

well as using thermal side channels for communication, showing

thermal stress and its possibility of influencing the work of edge de-

vices and communication between edge devices. Tian et al. [23] also

found out similar phenomenon that between users who are renting

the same FPGA over a period of time, certain thermal channels can

be manipulated to converted channels and lead to manipulation

in communication. Kong et al. [13] found that certain malicious

commands can lead to fine-grained and specified over-temperature

spots, thus causing certain physical damage in the instruction cache.

Gao et al. [8] used workloads that can cause excessive thermal to

rise temperature in data centers to a terribly high situation, con-

ducted measures on thermal and proposed effective thermal stress

vectors, all to reveal the vulnerability of data centers and likely

areas when facing thermal stress. In a follow-up work, Gao et al.

conducted additional testing on thermal stress under various sce-

narios and with thermal-related metrics measured [9]. Duchatellier

et al. [7] studied the effect of thermal stress on edge devices and the

vulnerability of cloud-edge systems. Jaspinder et al. [12] studied

RSPP and related thermal side-channel attacks and their influence.

In the literature, only a certain amount of work focuses on the

FLS which is deployed on real-world IoT devices, and even less

work has been done to evaluate the influence of thermal stress on

FLS so far. Our work is among the first attempts of carrying out

thermal stress on heterogeneous IoT-based FLS. We consider both

FLS and thermal stress aiming to understand the effect and impact

of thermal stress on real-world IoT-based FLS.

3 SYSTEM DESCRIPTION AND STRESS MODEL

In an FLS, clients train a global model collaboratively under the

coordination of a central server. Each client trains its local data for

a local model, and the central server carries out weighted aggrega-

tion of local models to formulate a global model. An iteration of

Federated Learning is as follows. (1) All clients download the global

model𝑊𝑡−1 from the central server. (2) Client 𝑘 trains its local data
to obtain a local model𝑊𝑡,𝑘 (local model for client k in the t-th

round of communication). (3) All clients upload updated local model

parameters and gradients to the central server. (4) After receiving

all data, the central server carries out a weighted aggregation us-

ing algorithms like FedAVG or FedBN to obtain the global model

named𝑊𝑡 (global model in the t-th round of communication). After

multiple rounds of iterations, a final model𝑊 will be produced,

which is close to the results of centralized machine learning under

the same model as the global model using the same dataset.

Figure 2: Our Federated Learning System Experiment Setup

Our thermal stress aim to produce excessive heat within the FLS

and use the heat or other side-effects of the heat to influence system
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performance or damage the system. In FLS, clients are typically

deployed on devices with more limited resources than the central

server, thus making clients more vulnerable than the server in terms

of stress. Heat is generated on IoT devices mainly when computing

is performed. On the same device and for the same length of time,

the more resources-demanded one program is, the more excessive

its thermal will be produced. To produce excessive heat, we choose

to use certain programs which are highly resource-demanded. Such

programs are loaded on IoT devices that serve as clients and run

on the clients at the same time the FLS is running. By doing so we

simulate thermal stress to our FLS. Considering the four steps in an

iteration of Federated Learning, the simulated thermal stress will

influence steps one to threementioned above. Figure 1 demonstrates

the general framework of our FLS and simulated thermal stress

on the system. Using the methods described above, we can have

thermal stress on FLS can be simulated and evaluated.

4 EXPERIMENTAL EVALUATION

4.1 Evaluation Methodology

To create a real-world multi-node FLS and see how it performs

under thermal stress, we choose to use the Flower framework. In

this paper, we chose four Jetson Nanos as clients and a Lambda

Laptop as the central server, using gRPC Protocol to conduct c-s

communication. We also chose another Windows laptop to run SSH

on the four Jetson Nanos for the convenience of our control. Figure

2 shows the real-world picture of our FLS clients, with each Nano

in the picture reflecting one of the clients.

As we can see from the figure, we name the four Jetson Nanos

as Nano1, Nano2, Nano3, and Nano4. We name the Lambda Laptop

as Lambda. The configurations of the five devices are as in Table 1.

Note that Nano1 and Nano2 share the same configuration, Nano3

and Nano4 also share the same configuration. We just list out Nano1

and Nano3 in the following list to remove duplicates. Also, consid-

ering the Windows laptop serves only for SSH, its configuration is

of no effect to our framework and thus won’t be mentioned.

Table 1: The Configuration of Devices Running Federated

Learning System

Lambda Nano1-2 Nano3-4

CPU Intel i7-12800H ARM A57 ARM A57

CPU Core Num 14 4 4

GPU RTX 3080 Max-Q Maxwell Maxwell

GPU Core Num 6144 128 128

FAN Yes Yes No

MEM 32GB 4GB 4GB

Disk 1TB 128GB 128GB

In this paper, we choose to use the "embedded-devices" example

on Flower’s GitHub official website [1] as our FLS example. For the

server, the only thing to do is get server files ready and have certain

environments installed properly as required in requirements.txt.

For an FLS client, the first thing to do is to install JetPack 4.6.1 on

the 128GB microSD card. Note that the storage of the micro SD

card should not be below 64 GB, or certain issues of not having

enough storage left will occur in later stages. Set the device follow-

ing system instructions step by step. Create a new user group in

the complimentary docker with NVIDIA jetson and add a new user

to it. After those, get the FLS client’s files ready and run them in

the terminal to create a docker image for FLS clients. Later, FLS

clients will be running in the docker images. Also, considering the

latest version of CUDA supported on our Jetson Nanos is outdated,

we chose to use CPU to run clients.

For this paper, we have clients training a MobileNet-v2/3 model

under Pytorch [19] framework. We also choose to use CIFAR-10

[14] as our dataset. Designed for image classification, the dataset

contains 60k images in 10 classes, with 50k of them as the training

set. The 50k image dataset is then evenly split into 50 partitions,

each assigned to a different client. The training rounds are assigned

at the server side and are set as 3, the training epoch in each round

is set to 2. Also, we set it on the server side to make sure all clients

connected to the server will be sampled.

4.2 Thermal Stress Simulation

Of all the parts in an IoT device, the CPU and GPU are technically

parts that carry out high-computing-resource-demanded programs,

thus making them the majority of parts to conduct excessive heat.

To simulate our thermal stress, we can choose to deploy high-

CPU-consuming or high-GPU-consuming programs while the FLS

is working. However, during our preliminary pilot experiments,

we found that high-CPU-consuming programs while the FLS is

working always lead to overload CPU and system breakdown for

our Jetson Nanos. A possible reason for that might be our FLS

clients and high-CPU-consuming programs all work on our CPU

and this led to insufficient computing resources left for the system

to operate normally.

In order to have thermal stress and our FLS running at the same

time for better evaluation, we decided to choose jetson-benchmarks

[2] as our high-GPU-consuming programs for simulation. Jetson

benchmarks are official benchmarks provided by Nvidia, including

Inception V4, ResNet-50, OpenPose, VGG-19, YOLO-V3, Resolu-

tion and Unet. All benchmarks work using GPU+2DLA and are

originally designed to test the extreme performance of Jetson de-

vices, which makes Jetson benchmarks the perfect choice for our

simulation. To execute these benchmarks, first, we have to get the

requirements for benchmarks to run ready. The next step is to down-

load models and a CSV file that contains all parameters for models.

The last step is to run the benchmark scripts using the terminal

and all is set. A typical running time for running all benchmarks on

Jetson Nano shall be no less than two hours. One more thing to note

is that those high-computation-resources consuming programs will

only be deployed on our clients of the FLS.

4.3 Measurements of Metrics

Several metrics of FLS Clients have been taken into consideration

and tools have been chosen to monitor these metrics. The goal of

such measurements is to find out the performance of FLS clients

running normally or the performance of FLS clients under thermal

stress to see the influence of thermal stress.

4.3.1 Training Time. As a complimentary FLS client function, FLS

clients will automatically print the training time of every epoch

and the evaluation time of every epoch on its training log. By
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(a) Jetson-Stats Grafana Dashboard on Jetson Nano1

(b) Jetson-Stats Grafana Dashboard on Federated Learning System Clients

Figure 3: Jetson-Stats Grafana Dashboards

documenting the training log, we can get the training time of every

client under or not under thermal stress and see the difference.

4.3.2 CPU and GPU Utilization Rate and Total Energy Consumption.

To find out the effect of the thermal stress, the utilization rate of

FLS clients can be documented and analyzed. As our FLS runs on

CPU and thermal stress runs on GPU, the utilization rate of CPU

and GPU can be key value to see how thermal stress will affect

our clients. Also, considering thermal stress is highly computing-

resources-demanded and thus might cost extra energy consumed,

total energy consumption (TOT) can be another key metric to see

the influence of thermal stress. All three can be documented by

jtop-logger provided by jetson-stats [6], which is a Python file and

automatically logs the condition of our FLS client’s system into a

CSV file on a one-second per log basis.

We also have another timely displayed Jetson-Stats-Grafana-

Dashboard [22] to show the real-time utilization rate of CPU, GPU,

TOT, and other metrics. The dashboard first collects Jtop gathered

data using certain API provided and uses certain scripts to regulate

data into certain forms that can be accepted and then transfers

those data to the host running Prometheus [3]. Then it has another

host running Grafana [15], which is the platform for our dashboard.

By importing certain dashboard distribution files and pulling data

from Prometheus, Grafana can offer a timely display of utilization

rate in certain metrics. We also have modified the Jetson-Stats-

Grafana-Dashboard for it to fit our Jetson Nano clients. Figure 3 is

our Jetson-Stats-Grafana-Dashboard on Jetson Nano1 without any

other program running, and Figure 4 is the dashboard of our FLS

clients while training local model.

4.3.3 Temperature. As we are conducting thermal stress, tempera-

ture plays a vital part in all the metrics. By evaluating the tempera-

ture of FLS clients under or not under thermal stress, we can easily

get to know how FLS clients are influenced under thermal stress

from this perspective. We also choose to use Jtop to log temperature-

related data and use Jetson-Stats-Grafana-Dashboard for real-time

display.

4.4 Experiment Process and Outcomes

In this paper, we set four groups of experiments to see how thermal

stress influence the FLS and if changes in the number of clients

under stress have any influence on the FLS. Each group has four

clients connected to the server, running three rounds of training

and two epochs in each. After every epoch, an evaluation will

be processed. The dataset we chose is CIFAR-10 [14], set and dis-

tributed evenly into 50 shares and have one share distributed to

one client as described above. For the first group, all clients are

running Federated Learning without thermal stress. For the second

group, one client (Nano1) is running Federated Learning under

thermal stress while the other three clients are running Federated

Learning without thermal stress. For the third group, two clients

(Nano1 and Nano2) are running Federated Learning under thermal

stress while the other two clients are running Federated Learning

without thermal stress. For the fourth group, three clients (Nano1,

Nano2, and Nano4) are running Federated Learning under thermal

stress while the other client is running Federated Learning without

thermal stress. Another group of experiments was also planned,

in which all clients are running Federated Learning under thermal

stress. However owing to the vulnerability of edge devices, the ex-

periment failed to execute under thermal stress. Have jtop-logger

and Jetson-Stats-Grafana-Dashboardand ready for every device to

log and display real-time data of metrics of clients, and we are all

set for our experiments. One more thing to mention is that we need

to download the log of each client in their terminal for the running

time after every group of experiments has ended. We also have a

5V 4A powerline for every client.

From the first to the fourth group of experiments, all experi-

ments were carried out successfully. However, we failed in running

Grafana dashboard on any client under thermal stress, with any

attempt ending in stuck and crash condition. For utilization rates

and temperate, we selected the results from the first two epochs in

the first round and listed them in a group of figures from Figure 4

to Figure 7. For training time and accuracy, we have detail training

and evaluation time of epoch 1 and 2 from round 1 listed in Table

2, and have general time and accuracy data listed in Table 3.

5 DISCUSSION AND ANALYSIS

5.1 Impact On CPU and GPU Utilization Rate

Figure 4 shows that as long as Federated Learning System clients

are running their training rounds, their CPU utilization rates, with

or without thermal stress, are all nearly 100%. If clients are not

under thermal stress, then typically they will have a much lower

CPU utilization rate while running the evaluation round.

Figure 4: CPU Utilization Rate of Round 1
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Figure 5: GPU Utilization Rate of Round 1

Note that clients without thermal stress have to wait for clients

under thermal stress to finish their training, so during the waiting

time, clients without thermal stress will also have less CPU utiliza-

tion rate. If a client is under thermal stress, then most of the time

its CPU utilization rate will be around 100%, no matter whether it

is running training rounds or evaluation.

As shown in Figure 5, clients without thermal stress typically

have very little GPU utilization rate, with only a short period of

time utilization rate peaks appearing. Clients under thermal stress

tend to have up-and-downs in the GPU utilization rate, but most of

the time the utilization rate is in high condition.

5.2 Temperature and Power Consumption

When it comes to temperature, as is in Figure 6, some normal FLS

clients without thermal stress, like Clients 1 and 2 in Experiment

1, have a stable temperature of around 40 Celsius. However, other

normal FLS clients like Clients 3 and 4 have trends to fluctuate

between 40 Celsius and 70 Celsius.We can also see from Experiment

4 that while Clients 1 and 2 are under thermal stress, they tend

to have temperatures around 50 Celsius and are less stable when

they are not under stress. Client 4 can have 80 to 100 Celsius while

under thermal stress. The possible reason could be Clients 1 and 2

are with fans while Clients 3 and 4 don’t. Also, we can note that

as the case shown in CPU utilization rate, while there are clients

in an FLS under thermal stress, other clients without stress tend to

have temperature drops while waiting for the under-stress clients

to finish their training rounds and while running evaluations.

Figure 6: Temperature Trend of Round 1

For power consumption (see Figure 7), normal clients running

Federated Learning Syetem training rounds tend to be around 5000

Figure 7: Power Consumption of Round 1

mW power while working. Power consumption can go down to

2000 mW if normal clients are running evaluations or are waiting

for other under-stress clients to finish their training. Clients under

thermal stress, however, tend to have a power consumption of more

than 5000 mW, fluctuate between 5000 and 9000 mW typically, and

sometimes it can go to 10000 mW and even 12000 mW. We can also

see from Experiment 4 that while under the same thermal stress,

Client 4 consumes more power than Clients 1 or 2, and the possible

reason could be Clients 1 and 2 are with fans while Client 4 doesn’t.

Table 2: Training and Evaluating Time for Round 1 Clients

E1 TRN E1 EVA E2 TRN E2 EVA

EXP1Nano1 11:30 00:12 11:21 00:11

EXP1Nano2 12:20 00:13 12:19 00:13

EXP1Nano3 12:57 00:14 13:03 00:13

EXP1Nano4 12:10 00:12 12:03 00:12

EXP2Nano1 21:11 00:19 18:16 00:23

EXP2Nano2 12:06 00:13 12:08 00:12

EXP2Nano3 11:36 00:11 11:34 00:12

EXP2Nano4 11:59 00:14 12:00 00:14

EXP3Nano1 21:10 00:20 18:11 00:20

EXP3Nano2 19:37 00:19 19:25 00:20

EXP3Nano3 11:39 00:12 11:29 00:12

EXP3Nano4 11:43 00:12 12:07 00:13

EXP4Nano1 22:05 00:26 18:47 00:20

EXP4Nano2 19:43 00:23 18:50 00:23

EXP4Nano3 11:15 00:12 11:27 00:12

EXP4Nano4 19:16 00:18 20:56 00:19

Table 3: Running Time and Accuracy for Experiments

Running Time Acc RND1 Acc RND2 Acc RND3

EXP1 1:09:17 0.2735 0.2950 0.3255

EXP2 2:01:41 0.2675 0.2765 0.3025

EXP3 2:06:32 0.2455 0.2555 0.2835

EXP4 2:08:28 0.2165 0.2315 0.2565

5.3 Impact On Training Time and Accuracy

We observe from Tables 2 and 3 that as long as there is any client

under thermal stress in the system, the running time of each round

and in general is almost doubled. We can further conclude from
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Table 3 that the more ratio of clients are under thermal stress, the

longer the training time is and the less accuracy the trained models

have. Last but not least, while processing the data, we also found

out that sometimes the log of system status on clients under thermal

stress is missing for a few tiny periods. After looking into the logs

of jtop-loggers, we found that it is most likely because thermal

stress took too many resources in those tiny periods of time and

there is so little left for jtop-loggers to function normally.

5.4 Analysis and Insights

From the experimental results, we found that thermal stress will

cause nodes in FLS to have considerably unnecessary CPU and

GPU utilization rates like 100%. They also cause the temperature

of nodes in the FLS to rise around 80% on average and even rise to

as high as 100 Celcius. Moreover, thermal stress and the excessive

heat conducted could lead to a rise in node’s power consumption

from 60% to even 140%. Also, nodes without fans tend to have a

higher temperature and power consumption compared with nodes

with fans while they are all under the same thermal stress.

When any node is under stress, all other clients have to wait for

the specific client to finish its training before moving to the next

round, which increases training time. However, if just the ratio of

clients under stress rises when clients are already under stress, the

increase in time is not obvious. When only one node is under stress,

in the aspect of accuracy, the performance of Federated Learning

is decreased by about 8%. When the ratio of clients under stress

increases to 50% or 75%, the performance will go down by 13% and

even 21%. When all the clients are under stress, some nodes stop,

causing our FLS to fail to work normally. We find out that thermal

stress can seriously influence our FLS, thus leading to higher uti-

lization of CPU and GPU and temperature, more consumed power,

exceeding of training time, decreases in model accuracy, and even

preventing FLS from performing normally and influencing the sys-

tem robustness.

Based on the experimental results, we suggest adding a data-

driven anomaly detection system [21] to Federated Learning Sys-

tems. It should focus on abnormal utilization rates, temperature,

and power consumption to detect thermal stress.

6 CONCLUSION

In this paper, we are among the first to evaluate the performance of

Federated Learning on real-world IoT-based systems under thermal

stress. We used high GPU-consuming programs to simulate thermal

stress and varied ratios of clients under stress in the system to see

the influence of thermal stress. Extensive experiments results have

shown that thermal stress can cause low-end IoT-based Federated

Learning Systems to have nearly doubled training time, as much

as 80% higher in temperature, more exceeded heat conducted, an

average of 167% more power consumption made, and even threats

to system robustness. Future work includes evaluations on larger

networks and the performance under non-IID data distributions

among IoT devices.
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