
Programming B. Wegbreit
Languages Editor

Recursion Analysis for
Compiler Optimization
Kenneth G. Walter
Case Western Reserve University

A relatively simple method for the detection of
reeursive use of procedures is presented for use in
compiler optimization. Implementation considerations
are discussed, and a modification of the algorithm is
given to further improve optimization. This analysis
can also be used to determine what possibile subset
of values could be assumed by variables which can
only take on a relatively small discrete set of values.
The most common are parameters of variables
assuming values of label, procedure, or Pascal's
enumerated type.

Key Words and Phrases: recursion, compiler
optimization

CR Categories: 4.12

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Computing and Information Sciences De-
partment, Case Western Reserve University, Cleveland, OH 44106.

514

Introduction

Recursion analysis is a useful, though widely ig-
nored, technique for an optimizing compiler. In a
language which does not support recursion, like
Fortran, it is very difficult for a programmer to detect
inadvertent recursions. Recursion analysis can be used
to provide diagnostics. In a language permitting re-
cursion, like Algol 60, more efficient code can be gen-
erated for procedures known to be nonrecursive. In a
language requiring that the declaration specify whether
a procedure is recursive, mistakes can be detected.

One reason for the lack of recursion analysis in
languages which permit recursion is the separate com-
pliation of procedures. This can be remedied by the
use of a suitable database or by making worst-case
assumptions about external procedures. It will be as-
sumed that all procedures are available for this analysis
so that relations concerning them can be
constructed.

Relations

To determine what procedures are recursive, a re-
lation ~ ("calls") can be constructed where P ~ Q is
true iff P calls Q. The transitive closure ~+ then de-
termines whether any procedure can call itself and is
therefore recursive. The first step in constructing ~'
is to determine the direct call relations. In each pro=
cedure P, if a procedure Q is called, then P ~ Q is
true. An example is given in Figure 1. In P, Q is called,

Fig. 1.

procedure P;
be~n

procedure Q;
begin

P;
P;

end;

Q;

end;

thus P U Q is true, and in Q, P is caned, giving Q ~ P.
Computing ~7+ yields P ~+ P and Q £7+ Q. Both P and
Q are recursive.

A problem arises in recursion analysis where a
procedure can appear as a parameter to a procedure
(this includes call-by-name parameters). Any formal

Communications September 1976
of Volume 19
the ACM Number 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360336.360341&domain=pdf&date_stamp=1976-09-01

parameter which in implementation acts as a procedure
shall be called a formal procedure. The formal procedure
is included in the ff relation, but it is also necessary to
determine what values (actual procedures) the formal
procedure can assume.

To determine this correspondence of formal pro-
cedures to actual parameters, another relation _P ("has
parameter value") is constructed. If some procedure P
has formal parameter R, and a call P (A) occurs in the
program, then the relation R _P A is true. At this point,
notice that _P is similar to ff and can be interpreted as
R calls A iff R _P A. The transitive closure _P+ chains
parameter passing through several procedures together.
Using _P, it is then possible to determine that P calls
P in Figure 2 by seeing that P ff X and X _P P.

Fig. 2.

procedure A; begin --. end;
procedure P(X);
begin

x(~);

end;

P(P);

The construction of _P raises another problem. At a
call Q (X) where Q is a formal procedure, the formal
parameter of Q is unknown. This makes it difficult to
put something into the _P relation to X. Figure 3 is an
example where this occurs.

Fig. 3.

procedure A4(F4);
begin

F4(sin);

end;

procedure A3(F3);
begin

/73(3.14);

end;
A4(A3);

To solve this problem, dummy parameters
(dummy procedures) are created for each formal

procedure where needed. The P relation then holds
between the dummy procedure and the actual pa-
rameter, i.e. "dummy" _P X. It is then necessary to
identify formal procedures with their dummy pa-
rameters and actual procedures with their formal
parameters. This is done with another relation F
("has formal parameter").

At this point, we will assume procedures have only
one parameter of interest. If there were more than one
parameter, calls on formal procedures would be
processed as if all permutations of the actual parame-
ters had occurred. In some circumstances this would
mistakenly identify a procedure as recursive. The al-
ternative is to build relations

F1, . . . , Fn,

where Fi is the relation for the ith parameter position.
It is now possible to determine the correspondence

between dummy and formal procedures. Using the
example in Figure 3, F3 is in the _F t (transpose) relation
to A3; A3 is in the _pt relation to F4; and F4 is in the F
relation to D4 (its dummy procedure), giving F3 _P D4.
Computing _P+ then allows the conclusion that a call
of F3 can be a call on sin. This can be computed for all
procedures by constructing the compound relation as

_P ,-- #'_P+'_F V _P+.

Figures 4 and 5 show that this is not a one-step
process. A formal procedure may be called with a
formal procedure as a parameter. To determine the
correspondence for one dummy procedure, the cor-
respondence with the other must first be determined.
The algorithm runs as follows:

1. Initialize _P and _F
2. __P e--_P+

3. P_ *-- F'P_'F V -1'

4. If_P was changed in step 3 then go to step 2.

When _P converges to the solution, it is combined
into ff

5. if*-- g V _P,

and if+ is computed.

Implementation

In Fortran, only subroutines or functions need to
considered as they are the only objects called. In Algol

Fig. 4.

procedure A4(F4); beffm . . . F4(sin) . . . end; ~ A4 F F4,
procedure A3(F3); begin --- A4(F3) . . . end; ~ A3 FF3,
procedure A2(F2); begin ..- F2(3.1) . . . end; ~ A2 FF2,
procedure AI(F1); begin .. . FI(A2) --- end; ~ A1 FFI,
AI(A3); ~ F1 PA3

515

~o~am

F4 E D4, D4 P_ sin
F4 P_ F3
F2 F D2
FI E D1, D1 P__ A2

Relations

Communications
of
the ACM

September 1976
Volume 19
Number 9

Fig. 5. Graph of relations in Figure 4.

A I

FI -hA3
!

_P [first iteration
A2+ D l*---

-Fl second iteration
F2

A4

F3 "--=-- F4

1:
--* D4 S I N

Fig. 6.

P Actual Formal Dummy
Actual 0 0 0
Formal P4 P5 P6
Dummy P7 P8 P9

F Actual Formal Dummy
Actual 0 F2 0
Formal 0 0 F6
Dummy 0 0 0

any call-by-name parameter is definitely a procedure,
and the " thunk" is an actual procedure. Since Algol 60
procedure parameters have incomplete parameter
specifications (call-by-value, call-by-name is not known
for formal procedures), all parameters are potentially
call-by-name, the valuing is done inside the procedure.
This means all formal parameters are considered formal
procedures and any actual parameter compiled as a
" thunk" is an actual procedure.

Each of the foregoing relations may be imple-
mented as a bit matrix. If the matrices are partitioned
by actual, formal, and dummy procedures, then most of
_F and some of _P have empty partitions (F_ and _P are
conveniently sparse). This can be used to optimize the
evaluation of P, saving space and time. The partitions
are numbered left to right, top down, as shown in
Figure 6. Step 3 of the algorithm then becomes:

3. P 6 ~ F 2 t P 4 t F 6 V P 6

P 9 ~ F 6 t p 5 t F 6 V P 9

Dummy procedures need not be included in the _C
relation so that the inclusion of_P in C becomes:

C4 +- C4 V P4
C5 ~ C5 V P5

Relative Nonrecursion

If a language permits nested procedure declarations,
better optimization results can be obtained by modi-
fying the construction of the ff relation. In Figure 1,

516

the storage for procedure Q can be allocated at the
same time P's storage is allocated. This is possible
because a call on P precedes every call on Q. We
then say that Q is "relatively nonrecursive." In the
previous construction of if, both P and Q woulFl be
recursive.

Notice that a call on a procedure directly from the
procedure in which it was declared cannot require
recursion. This call need not be included in ft. If the
called procedure is not declared in the calling procedure,
then every procedure in the nest of current procedures
out to but not including the procedure in which the
called procedure was declared must be placed in the

relation to the called procedure. This is because each
of these procedures in the nest must be called to per-
form the considered call and the procedure being
called could possibly cause any of them to be called
without them first being called. In Figure 7 only pro-
cedures X3 and X4 are recursive.

Fig. 7.

procedure X1;
begin

procedure X2;
begin

procedure X3;
be~n

X4;
end
procedure X4;
begin

procedure X5;
begin

X3:
end;
X5.

end;
X4;

end;
X2;
end

The information needed to construct the modified
_C relation is usually available in a compiler. There is a
stack of procedure declarations whose bodies have
been entered, but not existed. When a call is encoun-
tered, every procedure on the stack down to but not
including the procedure in which the called procedure
was declared is put in the C relation to the called
procedure. After recursion analysis is completed, a
nonrecursive procedure's storage is allocated with its
enclosing recursive procedure, or with the main pro-
gram if there is no enclosing recursive procedure.

Received May 1975; revised December 1975

Communications September 1976
of Volume 19
theACM Number 9

