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reeursive use of procedures is presented for use in 
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enumerated type. 
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Introduction 

Recursion analysis is a useful, though widely ig- 
nored, technique for an optimizing compiler. In a 
language which does not support recursion, like 
Fortran,  it is very difficult for a programmer to detect 
inadvertent recursions. Recursion analysis can be used 
to provide diagnostics. In a language permitting re- 
cursion, like Algol 60, more efficient code can be gen- 
erated for procedures known to be nonrecursive. In a 
language requiring that the declaration specify whether 
a procedure is recursive, mistakes can be detected. 

One reason for the lack of recursion analysis in 
languages which permit recursion is the separate com- 
pliation of procedures. This can be remedied by the 
use of a suitable database or by making worst-case 
assumptions about external procedures. It  will be as- 
sumed that all procedures are available for this analysis 
so that relations concerning them can be 
constructed. 

Relations 

To determine what procedures are recursive, a re- 
lation ~ ("calls") can be constructed where P ~ Q is 
true iff P calls Q. The transitive closure ~+ then de- 
termines whether any procedure can call itself and is 
therefore recursive. The first step in constructing ~' 
is to determine the direct call relations. In each pro= 
cedure P, if a procedure Q is called, then P ~ Q is 
true. An example is given in Figure 1. In P, Q is called, 

Fig. 1. 

procedure P; 
be~n 

procedure Q; 
begin 

P; 
P; 

end; 

Q; 

end; 

thus P U Q is true, and in Q, P is caned, giving Q ~ P. 
Computing ~7+ yields P ~+ P and Q £7+ Q. Both P and 
Q are recursive. 

A problem arises in recursion analysis where a 
procedure can appear as a parameter to a procedure 
(this includes call-by-name parameters). Any formal 
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parameter which in implementation acts as a procedure 
shall be called a formal procedure. The formal procedure 
is included in the ff relation, but it is also necessary to 
determine what values (actual procedures) the formal 
procedure can assume. 

To determine this correspondence of formal pro- 
cedures to actual parameters, another relation _P ("has 
parameter value") is constructed. If  some procedure P 
has formal parameter R, and a call P ( A )  occurs in the 
program, then the relation R _P A is true. At this point, 
notice that _P is similar to ff and can be interpreted as 
R calls A iff R _P A. The transitive closure _P+ chains 
parameter passing through several procedures together. 
Using _P, it is then possible to determine that P calls 
P in Figure 2 by seeing that P ff X and X _P P. 

Fig. 2. 

procedure A; begin --. end; 
procedure P(X); 
begin 

x(~); 

end; 

P(P); 

The construction of _P raises another problem. At a 
call Q ( X )  where Q is a formal procedure, the formal 
parameter of Q is unknown. This makes it difficult to 
put  something into the _P relation to X. Figure 3 is an 
example where this occurs. 

Fig. 3. 

procedure A4(F4); 
begin 

F4(sin); 

end; 

procedure A3(F3); 
begin 

/73(3.14); 

end; 
A4(A3); 

To solve this problem, dummy parameters 
(dummy procedures) are created for each formal 

procedure where needed. The P relation then holds 
between the dummy procedure and the actual pa- 
rameter, i.e. "dummy"  _P X. It is then necessary to 
identify formal procedures with their dummy pa- 
rameters and actual procedures with their formal 
parameters. This is done with another relation F 
("has formal parameter").  

At this point, we will assume procedures have only 
one parameter of interest. If  there were more than one 
parameter, calls on formal procedures would be 
processed as if all permutations of the actual parame- 
ters had occurred. In some circumstances this would 
mistakenly identify a procedure as recursive. The al- 
ternative is to build relations 

F1,  . . . , Fn,  

where Fi  is the relation for the ith parameter position. 
It is now possible to determine the correspondence 

between dummy and formal procedures. Using the 
example in Figure 3, F3 is in the _F t (transpose) relation 
to A3; A3 is in the _pt relation to F4; and F4 is in the F 
relation to D4 (its dummy procedure), giving F3 _P D4. 
Computing _P+ then allows the conclusion that a call 
of F3 can be a call on sin. This can be computed for all 
procedures by constructing the compound relation as 

_P ,-- #'_P+'_F V _P+. 

Figures 4 and 5 show that this is not a one-step 
process. A formal procedure may be called with a 
formal procedure as a parameter. To determine the 
correspondence for one dummy procedure, the cor- 
respondence with the other must first be determined. 
The algorithm runs as follows: 

1. Initialize _P and _F 
2. __P e--_P+ 

3. P_ *-- F'P_'F V -1' 

4. If_P was changed in step 3 then go to step 2. 

When _P converges to the solution, it is combined 
into ff 

5. if*-- g V _P, 

and if+ is computed. 

Implementation 

In Fortran,  only subroutines or functions need to 
considered as they are the only objects called. In Algol 

Fig. 4. 

procedure A4(F4); beffm . . .  F4(sin) . . .  end; ~ A4 F F4, 
procedure A3(F3); begin --- A4(F3) . . .  end; ~ A3 FF3, 
procedure A2(F2); begin ..- F2(3.1) . . .  end; ~ A2 FF2, 
procedure AI(F1); begin .. .  FI(A2) --- end; ~ A1 FFI, 
AI(A3); ~ F1 PA3 
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~o~am 

F4 E D4, D4 P_ sin 
F4 P_ F3 
F2 F D2 
FI E D1, D1 P__ A2 

Relations 
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Fig. 5. Graph of relations in Figure 4. 

A I  

FI . . . . . . . . . . . . . .  -hA3 
! 

_P [ first iteration 
A2+ . . . . . . .  D l*--- 

-Fl second iteration 
F2 

A4 

F3 "--=-- F4 

1: 
--* D4 . . . . . . .  S I N  

Fig. 6. 

P Actual Formal Dummy 
Actual 0 0 0 
Formal P4 P5 P6 
Dummy P7 P8 P9 

F Actual Formal Dummy 
Actual 0 F2 0 
Formal 0 0 F6 
Dummy 0 0 0 

any call-by-name parameter is definitely a procedure, 
and the " thunk"  is an actual procedure. Since Algol 60 
procedure parameters have incomplete parameter 
specifications (call-by-value, call-by-name is not known 
for formal procedures), all parameters are potentially 
call-by-name, the valuing is done inside the procedure. 
This means all formal parameters are considered formal 
procedures and any actual parameter compiled as a 
" thunk"  is an actual procedure. 

Each of the foregoing relations may be imple- 
mented as a bit matrix. If  the matrices are partitioned 
by actual, formal, and dummy procedures, then most of 
_F and some of _P have empty partitions (F_ and _P are 
conveniently sparse). This can be used to optimize the 
evaluation of P, saving space and time. The partitions 
are numbered left to right, top down, as shown in 
Figure 6. Step 3 of the algorithm then becomes: 

3. P 6  ~ F 2 t P 4 t F 6  V P 6  

P 9  ~ F 6 t p 5 t F 6  V P 9  

Dummy procedures need not be included in the _C 
relation so that the inclusion of_P in C becomes: 

C4 +- C4 V P4 
C5 ~ C5 V P5 

Relative Nonrecursion 

If a language permits nested procedure declarations, 
better optimization results can be obtained by modi- 
fying the construction of the ff relation. In Figure 1, 
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the storage for procedure Q can be allocated at the 
same time P's storage is allocated. This is possible 
because a call on P precedes every call on Q. We 
then say that Q is "relatively nonrecursive." In the 
previous construction of if, both P and Q woulFl be 
recursive. 

Notice that a call on a procedure directly from the 
procedure in which it was declared cannot require 
recursion. This call need not be included in ft. If  the 
called procedure is not declared in the calling procedure, 
then every procedure in the nest of current procedures 
out to but not including the procedure in which the 
called procedure was declared must be placed in the 

relation to the called procedure. This is because each 
of these procedures in the nest must be called to per- 
form the considered call and the procedure being 
called could possibly cause any of them to be called 
without them first being called. In Figure 7 only pro- 
cedures X3 and X4 are recursive. 

Fig. 7. 

procedure X1; 
begin 

procedure X2; 
begin 

procedure X3; 
be~n 

X4; 
end 
procedure X4; 
begin 

procedure X5; 
begin 

X3: 
end; 
X5. 

end; 
X4; 

end; 
X2; 
end 

The information needed to construct the modified 
_C relation is usually available in a compiler. There is a 
stack of procedure declarations whose bodies have 
been entered, but not  existed. When a call is encoun- 
tered, every procedure on the stack down to but  not  
including the procedure in which the called procedure 
was declared is put in the C relation to the called 
procedure. After recursion analysis is completed, a 
nonrecursive procedure's storage is allocated with its 
enclosing recursive procedure, or with the main pro- 
gram if there is no enclosing recursive procedure. 
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