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Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a
wide variety of problems arising in different domains of computer science. Developments in the two commu-
nities have mostly occurred independently and with little interaction between them. In this work, we seek to
investigate whether bridging the seeming communication gap between the two communities may pave the
way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for
CSP’s and computation of zeroth frequency moments (F0) for data streams.

Our investigations lead us to observe a striking similarity in the core techniques employed in the algorith-
mic frameworks that have evolved separately for model counting and F0 computation. We design a recipe for
translating algorithms developed for F0 estimation to model counting, resulting in new algorithms for model
counting. We also provide a recipe for transforming sampling algorithm over streams to constraint sampling
algorithms. We then observe that algorithms in the context of distributed streaming can be transformed into
distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens
of counting and show that framing F0 estimation as a special case of #DNF counting allows us to obtain a
general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in
prior works. In particular, our view yields an algorithm for multidimensional range efficient F0 estimation
with a simpler analysis.
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1 INTRODUCTION

Constraint Satisfaction Problems (CSPs) and the data stream model are two core themes in
computer science with a diverse set of applications, ranging from probabilistic reasoning, networks,
databases, verification, and the like. Model counting and computation of zeroth frequency moment

(F0) are fundamental problems for CSPs and the data stream model, respectively. This article is
motivated by our observation that despite the usage of similar algorithmic techniques for the two
problems, the developments in the two communities have, surprisingly, evolved separately, and
rarely has an article from one community been cited by the other.

Given a set of constraints φ over a set of variables in a finite domain D, the problem of model
counting is to estimate the number of solutions of φ. We are often interested when φ is restricted
to a special class of representations such as Conjunctive Normal Form (CNF) and Disjunctive

Normal Form (DNF). A data stream over a domain [N ] is represented by a = a1,a2, . . . ,am

wherein each item ai ⊆ [N ]. The zeroth frequency moment, denoted as F0, of a is the number of dis-
tinct elements appearing in a, i.e., |∪i ai | (traditionally, ai s are singletons; we will also be interested
in the case when ai s are sets). The fundamental nature of model counting and F0 computation over
data streams has led to intense interest from theoreticians and practitioners alike in the respective
communities for the past few decades.

The starting point of this work is the confluence of two viewpoints. The first viewpoint contends
that some of the algorithms for model counting can conceptually be thought of as operating on
the stream of the solutions of the constraints. The second viewpoint contends that a stream can
be viewed as a DNF formula, and the problem of F0 estimation is similar to model counting. These
viewpoints make it natural to believe that algorithms developed in the streaming setting can be
directly applied to model counting, and vice versa. We explore this connection and indeed, design
new algorithms for model counting inspired by algorithms for estimating F0 in data streams. By
exploring this connection further, we design new algorithms to estimate F0 for streaming sets that
are succinctly represented by constraints. To put our contributions in context, we briefly survey
the historical development of algorithmic frameworks in both model counting and F0 estimation
and point out the similarities.

Model Counting

The complexity-theoretic study of model counting was initiated by Valiant who showed that this
problem, in general, is #P-complete [66]. This motivated researchers to investigate approximate
model counting and in particular achieving (ε,δ )-approximation schemes. The complexity of ap-
proximate model counting depends on its representation. When the model φ is represented as a
CNF formula φ, designing an efficient (ε,δ )-approximation is NP-hard [62]. In contrast, when it
is represented as a DNF formula, model counting admits an FPRAS (fully polynomial-time ran-
domized approximation scheme) [43, 44]. We will use #CNF to refer to the case when φ is a CNF
formula while #DNF to refer to the case when φ is a DNF formula.

For #CNF, Stockmeyer [62] provided a hashing-based randomized procedure that can compute
(ε,δ )-approximation within time polynomial in |φ |, ε,δ , given access to an NP oracle. Building on
Stockmeyer’s approach and motivated by the unprecedented breakthroughs in the design of SAT
solvers, researchers have proposed a series of algorithmic improvements that have allowed the
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hashing-based techniques for approximate model counting to scale to formulas involving hundreds
of thousands of variables [2, 15, 16, 18, 26, 35, 39, 59, 60]. The practical implementations substitute
NP oracle with SAT solvers. In the context of model counting, we are primarily interested in time
complexity and therefore, the number of NP queries is of key importance. The emphasis on the
number of NP calls also stems from practice as the practical implementation of model counting
algorithms have shown to spend over 99% of their time in the underlying SAT calls [60].

Karp and Luby [43] proposed the first FPRAS scheme for #DNF, which was subsequently im-
proved in the follow-up works [25, 44]. Chakraborty, Meel, and Vardi [16] demonstrated that the
hashing-based framework can be extended to #DNF, hereby providing a unified framework for
both #CNF and #DNF. Meel, Shrotri, and Vardi [49–51] subsequently improved the complexity of
the hashing-based approach for #DNF and observed that hashing-based techniques achieve better
scalability than that of Monte Carlo techniques.

Zeroth Frequency Moment Estimation

Estimating (ε,δ )-approximation of the k th frequency moments (Fk ) is a central problem in the data
streaming model [3]. In particular, considerable work has been done in designing algorithms for
estimating the 0th frequency moment (F0), the number of distinct elements in the stream. While
designing streaming algorithms, the primary resource concerns are two-fold: space complexity
and processing time per element. For an algorithm to be considered efficient, these should be
poly(logN , 1/ϵ ) where N is the size of the universe.1

The first algorithm for computing F0 with a constant factor approximation was proposed by
Flajolet and Martin, who assumed the existence of hash functions with ideal properties result-
ing in an algorithm with undesirable space complexity [32]. In their seminal work, Alon, Ma-
tias, and Szegedy designed an O (logN ) space algorithm for F0 with a constant approximation
ratio that employs 2-universal hash functions [3]. Subsequent investigations into hashing-based
schemes by Gibbons and Tirthapura [34] and Bar–Yossef, Kumar, and Sivakumar [8] provided
(ε,δ )-approximation algorithms with space and time complexity logN · poly( 1

ε
). Subsequently,

Bar-Yossef et al. proposed three algorithms with improved space and time complexity [7]. While the
three algorithms employ hash functions, they differ conceptually in the usage of relevant random
variables for the estimation of F0. This line of work resulted in the development of an algorithm
with optimal space complexity O (logN + 1

ε2 ) and O (logN ) update time [42].
The above-mentioned works are in the setting where each data item ai is an element of the

universe. Subsequently, there has been a series of results of estimating F0 in rich scenarios with par-
ticular focus to handle the cases ai ⊆ [N ] such as a list or a multidimensional range [8, 53, 63, 65].

The Road to a Unifying Framework

As mentioned above, the algorithmic developments for model counting and F0 estimation have
largely relied on the usage of hashing-based techniques and yet these developments have, sur-
prisingly, been separate, and rarely has a work from one community been cited by the other. In
this context, we wonder whether it is possible to bridge this gap and if such an exercise would
contribute to new algorithms for model counting as well as for F0 estimation? The main concep-
tual contribution of this work is an affirmative answer to the above question. First, we point out
that the two well-known algorithms; Stockmeyer’s #CNF algorithm [62] that is further refined by
Chakraborty et al. [16] and Gibbons and Tirthapura’s F0 estimation algorithm [34], are essentially
the same.

1We ignore O (log 1
δ

) factor in this discussion.
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The core idea of the hashing-based technique of Stockmeyer’s and Chakraborty et al’s scheme is
to use pairwise independent hash functions to partition the solution space (satisfying assignments
of a CNF formula) into roughly equal and small cells, wherein a cell is small if the number of
solutions is less than a pre-computed threshold, denoted by Thresh. Then a good estimate for the
number of solutions is the number of solutions in an arbitrary cell × number of cells. To partition
the solution space, pairwise independent hash functions are used. To determine the appropriate
number of cells, the solution space is iteratively partitioned as follows. At the mth iteration, a
hash function with range {0, 1}m is considered resulting in cells h−1 (y) for each y ∈ {0, 1}m . An
NP oracle can be employed to check whether a particular cell (for example h−1 (0m )) is small by
enumerating solutions one by one until we have either obtained Thresh+1 number of solutions or
we have exhaustively enumerated all the solutions. If the cell h−1 (0m ) is small, then the algorithm
outputs t × 2m as an estimate where t is the number of solutions in the cell h−1 (0m ). If the cell
h−1 (0m ) is not small, then the algorithm moves on to the next iteration where a hash function with
range {0, 1}m+1 is considered.

We now describe Gibbons and Tirthapura’s algorithm for F0 estimation which we call the
Bucketing algorithm. We will assume the universe [N ] = {0, 1}n . The algorithm maintains a bucket
of size Thresh and starts by picking a hash function h : {0, 1}n → {0, 1}n . It iterates over sampling
levels. At levelm, when a data item x comes, if h(x ) starts with 0m , then x is added to the bucket. If
the bucket overflows, then the sampling level is increased tom+1 and all elements x in the bucket
other than the ones with h(x ) = 0m+1 are deleted. At the end of the stream, the value t × 2m is
output as the estimate where t is the number of elements in the bucket andm is the sampling level.

These two algorithms are conceptually the same. In the Bucketing algorithm, at the sampling
level m, it looks at only the first m bits of the hashed value; this is equivalent to considering a
hash function with range {0, 1}m . Thus the bucket is nothing but all the elements in the stream
that belong to the cell h−1 (0m ). The final estimate is the number of elements in the bucket times
the number of cells, identical to Chakraborty et. al’s algorithm. In both algorithms, to obtain an
(ε,δ ) approximation, the Thresh value is chosen asO ( 1

ε2 ) and the median ofO (log 1
δ

) independent
estimations is output.

Our Contributions

Motivated by the conceptual identity between the two algorithms, we further explore the connec-
tions between algorithms for model counting and F0 estimation.

(1) We formalize a recipe to transform streaming algorithms for F0 estimation to those for model
counting. Such a transformation yields new (ε,δ )-approximate algorithms for model count-
ing, which are different from currently known algorithms. We also establish a relationship
between the space complexity of the streaming algorithms and the query complexity of the
obtained model counting algorithms. Recent studies in the fields of automated reasoning
have highlighted the need for diverse approaches [69], and similar studies in the context of
#DNF provided strong evidence of the power of diversity of approaches [50]. In this context,
these newly obtained algorithms open up several new interesting directions of research rang-
ing from the development of MaxSAT solvers with native XOR support to open problems in
designing FPRAS schemes.

(2) The problem of counting and sampling are closely related. In particular, the seminal work
of Jerrum, Valiant, and Vazirani [40] showed that the problem of approximate counting and
almost-uniform sampling are inter-reducible for self-reducible NP problems. Concurrent
to developments in approximate model counting, there has been a significant interest in
the design of efficient sampling algorithms. Building on the recipe to transform streaming
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algorithms to model counting algorithms, we obtain a recipe to transfer L0-sampling
algorithms into constrained sampling algorithms.

(3) Given the central importance of #DNF (and its weighted variant) due to a recent surge of
interest in scalable techniques for provenance in probabilistic databases [56, 57], a natural
question is whether one can design efficient techniques in the distributed setting. In this
work, we initiate the study of distributed #DNF. We then show that the transformation
recipe from F0 estimation to model counting allows us to view the problem of the design
of distributed #DNF algorithms through the lens of distributed functional monitoring that is
well studied in the data streaming literature.

(4) Building upon the connection between model counting and F0 estimation, we design new
algorithms to estimate F0 over structured set streams where each element of the stream
is a (succinct representation of a) subset of the universe. Thus, the stream is S1, S2, . . .
where each Si ⊆ [N ] and the goal is to estimate the F0 of the stream, i.e., size of ∪iSi .
In this scenario, a traditional F0 streaming algorithm that processes each element of the
set incurs high per-item processing time-complexity and is inefficient. Thus the goal is to
design algorithms whose per-item time (time to process each Si ) is poly-logarithmic in the
size of the universe. Structured set streams that are considered in the literature include
1-dimensional and multidimensional ranges [53, 65]. Several interesting problems such
as max-dominance norm [22], counting triangles in graphs [8], and distinct summation
problem [19] can be reduced to computing F0 over such ranges.

We observe that several structured sets can be represented as small DNF formulae and
thus F0 counting over these structured set data streams can be viewed as a special case of
#DNF. Using the hashing-based techniques for #DNF, we obtain a general recipe for a rich
class of structured sets that include multidimensional ranges, multidimensional arithmetic
progressions, and affine spaces. Prior work on single and multidimensional ranges2 had
to rely on involved analysis for each of the specific instances, while our work provides a
general recipe for both analysis and implementation.

Remark 1. This work is an extension of the work that appeared in PODS 2021 [54] and differs
from it in the following ways. First, we establish, in Section 3.5, a new relationship between the
space complexity of streaming algorithms and the query complexity of general model counting
algorithms. Second, building on the close relationship between counting and sampling, we pro-
vide a recipe for the transformation of L0 sampling techniques to constrained sampling, thereby
accomplishing the future direction stated in the conference version. Third, we provide detailed
algorithmic descriptions for distributed DNF counting which are described in Section 5.

Organization

We present notations and preliminaries in Section 2. We then present the transformation of F0 esti-
mation to model counting in Section 3. In Section 4, we provide a recipe to transform L0 sampling
algorithms into constrained sampling algorithms. We then focus on distributed #DNF in Section 5.
In Section 6, we present the transformation of model counting algorithms to structured set stream-
ing algorithms. We conclude in Section 7 with a discussion of future research directions.

We would like to emphasize that the primary objective of this work is to provide a unifying
framework for F0 estimation and model counting. Therefore, when designing new algorithms
based on the transformation recipes, we intentionally focus on conceptually cleaner algorithms
and leave potential improvements in time and space complexity for future work.

2Please refer to Remark 2 in Section 6 for a discussion on the earlier work on multidimensional ranges [65].
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2 NOTATION

We will assume that the universe is [N ] = {0, 1}n . We write Pr[Z : Ω] to denote the probability
of outcomeZ when sampling from a probability space Ω. For brevity, we omit Ω when it is clear
from the context.

F0 Estimation. A data stream a over domain [N ] can be represented as a = a1,a2, . . . am wherein
each item ai ∈ [N ]. Let au = ∪i {ai }. F0 of the stream a is |au |. We are often interested in a probably

approximately correct scheme that returns an (ε,δ )-estimate c , i.e.,

Pr

[
|au |

1 + ε
≤ c ≤ (1 + ε ) |au |

]
≥ 1 − δ .

Model Counting. Let {x1,x2, . . . ,xn } be a set of Boolean variables. For a Boolean formula φ,
let Vars(φ) denote the set of variables appearing in φ. Throughout the article, unless otherwise
stated, we will assume that the relationship n = |Vars(φ) | holds. We denote the set of all satisfying
assignments of φ by Sol(φ).

The propositional model counting problem is to compute |Sol(φ) | for a given formulaφ. A probably

approximately correct (or PAC) counter is a probabilistic algorithm ApproxCount(·, ·, ·) that takes as
inputs a formulaφ, a tolerance ε > 0, and a confidence δ ∈ (0, 1], and returns a (ε,δ )-estimate c , i.e.,

Pr
[ |Sol(φ) |

1 + ε
≤ c ≤ (1 + ε ) |Sol(φ) |

]
≥ 1 − δ .

PAC guarantees are also sometimes referred to as (ε,δ )-guarantees. We use #CNF (respectively,
#DNF) to refer to the model counting problem when φ is represented as CNF (respectively, DNF).

Given a formula φ, tolerance parameter ε > 0, confidence parameter δ > 0, a constrained
sampler UnifSampler returns σ ∈ Sol(φ) such that

∀σ ∈ Sol(φ),
(1 − ε )

|Sol(φ) | ≤ Pr[UnifSampler(φ, ε,δ ) = σ ] ≤ (1 + ε )

|Sol(φ) |
And the algorithm UnifSampler succeeds with probability 1 − δ .

k-wise independent hash functions. Let n,m ∈ N and H (n,m) � {h : {0, 1}n → {0, 1}m } be a

family of hash functions mapping {0, 1}n to {0, 1}m . We use h
R←− H (n,m) to denote the probability

space obtained by choosing a function h uniformly at random fromH (n,m).

Definition 1. A family of hash functions H (n,m) is k−wise independent if ∀α1,α2, . . . ,αk ∈
{0, 1}m , distinct x1,x2, . . . ,xk ∈ {0, 1}n ,h

R←− H (n,m),

Pr[(h(x1) = α1) ∧ (h(x2) = α2) . . . (h(xk ) = αk )] =
1

2km
(1)

We will use Hk−wise (n,m) to refer to a k−wise independent family of hash functions mapping
{0, 1}n to {0, 1}m .

Explicit Families. In this work, one hash family of particular interest is HToeplitz (n,m), which
is known to be 2-wise independent [12]. The family is defined as follows: HToeplitz (n,m) � {h :
{0, 1}n → {0, 1}m } is the family of functions of the form h(x ) = Ax + b with A is a Toeplitz matrix
in Fm×n

2 and b ∈ Fm×1
2 . A matrix is Toeplitz if for every diagonal (top-left to bottom-right) its

entries are the same. Another related hash family of interest is Hxor (n,m) wherein h(X ) is again
of the form Ax + b where A ∈ Fm×n

2 and b ∈ Fm×1
2 . BothHToeplitz andHxor are 2-wise independent

but it is worth noticing thatHToeplitz can be represented with Θ(n)-bits whileHxor requires Θ(mn)
bits of representation. We use both these families, as we use results from prior works that use both
these hash families.
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ALGORITHM 1: ComputeF0(n, ε,δ )

1: Thresh← 96/ε2

2: t ← 35 log(1/δ )
3: H ← ChooseHashFunctions(n, Thresh, t )
4: S ← {}
5: while true do

6: if EndStream then exit;

7: x ← input ()
8: ProcessUpdate(S,H ,x , Thresh)

9: Est ← ComputeEst(S, Thresh)
10: return Est

For every � ∈ {1, . . . ,n}, the �th prefix-slice of h, denoted h� , is a map from {0, 1}n to {0, 1}� ,
where h� (y) is the first � bits of h(y). Observe that when h(x ) = Ax + b, h� (x ) = A�x + b� ,
where A� denotes the submatrix formed by the first � rows of A and b� is the first � entries of the
vector b.

3 FROM F0 ESTIMATION TO COUNTING

As a first step, we present a unified view of the three hashing-based algorithms proposed in
Bar-Yossef et al. [7]. The first algorithm is the Bucketing algorithm discussed above with the
observation that instead of keeping the elements in the bucket, it suffices to keep their hashed
values. Since in the context of model counting, our primary concern is with time complexity,
we will focus on Gibbons and Tirthapura’s Bucketing algorithm in [34] rather than Bar–Yossef
et al.’s modification. The second algorithm, which we call Minimum, is based on the idea that if
we hash all the items of the stream, then the O (1/ε2)-th minimum of the hash values can be used
to compute a good estimate of F0. The third algorithm, which we call Estimation, chooses a set of
k functions, {h1,h2, . . .}, such that each hj is picked randomly from an O (log(1/ε ))-independent
hash family. For each hash function hj , we say that hj is not lonely if there exists ai ∈ a such that
hj (ai ) = 0. One can then estimate F0 of a by estimating the number of hash functions that are not
lonely.

Algorithm 1, called ComputeF0, presents the overarching architecture of the three proposed al-
gorithms. Each of these algorithms first picks an appropriate set of hash functionsH and initializes
the sketch S. The architecture of ComputeF0 is fairly simple: it chooses a collection of hash func-
tions using ChooseHashFunctions, calls the subroutine ProcessUpdate for every incoming element
of the stream, and invokes ComputeEst at the end of the stream to return the F0 approximation.

ChooseHashFunctions. As shown in Algorithm 2, the hash functions depend on the strategy
being implemented. The subroutine PickHashFunctions(H , t ) returns a collection of t indepen-
dent hash functions from the family H . We use H to denote the collection of hash functions re-
turned, this collection is viewed as either 1-dimensional array or as a 2-dimensional array. When
H is 1-dimensional array, H [i] denotes the ith hash function of the collection and when H is a
2-dimensional array H [i][j] is the [i, j]th hash functions.

Sketch Properties. For each of the three algorithms, their corresponding sketches can be viewed
as arrays of the size of 35 log(1/δ ). The parameter Thresh is set to 96/ε2.

Bucketing The element S[i] is a tuple 〈�i ,mi 〉 where �i is a list of size at most Thresh, where
�i = {x ∈ a | H [i]mi

(x ) = 0mi }. We use S[i](0) to denote �i and S[i](1) to denotemi .
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ALGORITHM 2: ChooseHashFunctions(n, Thresh, t )

1: switch AlgorithmType do

2: case AlgorithmType==Bucketing

3: H ← PickHashFunctions(HToeplitz (n,n), t )

4: case AlgorithmType==Minimum

5: H ← PickHashFunctions(HToeplitz (n, 3n), t )

6: case AlgorithmType==Estimation

7: s ← 10 log(1/ε )
8: H ← PickHashFunctions(Hs−wise (n,n), t × Thresh)

return H

Minimum The element S[i] holds a set of size Thresh. This set is the Thresh many lexicograph-
ically smallest elements of {H [i](x ) | x ∈ a}. This sketch is also known as K-Minimum

Value Sketch (KMV Sketch) [10].
Estimation The element S[i] holds a tuple of size Thresh. The j’th entry of this tuple is the largest

number of trailing zeros in any element of H [i, j](a).

ProcessUpdate. For a new item x , the update of S, as shown in Algorithm 3 is as follows:

Bucketing For a new item x , if H [i]mi
(x ) = 0mi , then we add it to S[i] if x is not already

present in S[i]. If the size of S[i] is greater than Thresh (which is set to be O (1/ε2)), then
we incrementmi as in line 8 of Algorithm 3.

Minimum For a new item x , if H [i](x ) is smaller than the maxS[i], then we replace maxS[i]
with H [i](x ).

Estimation For a new item x , compute z = TrailZero(H [i, j](x )), i.e, the number of trailing
zeros in H [i, j](x ), and replace S[i, j] with z if z is larger than S[i, j].

ComputeEst. Finally, for each of the algorithms, we estimate F0 based on the sketch S as de-
scribed in the subroutine ComputeEst presented as Algorithm 4. It is crucial to note that the esti-
mation of F0 is performed solely using the sketch S for the Bucketing and Minimum algorithms.
The Estimation algorithm requires an additional parameter r that depends on a loose estimate of
F0; we defer details to Section 3.4.

3.1 A Recipe For Transformation

Observe that for each of the algorithms, the final computation of F0 estimation depends on the
sketch S. Therefore, as long as for two streams a and â, if their corresponding sketches say S
and Ŝ, respectively, are equivalent, the three schemes presented above would return the same
estimates. The recipe for a transformation of streaming algorithms to model counting algorithms
is based on the following insight:

(1) Capture the relationship P (S,H , au ) between the sketch S, set of hash functions H , and set
au at the end of stream. Recall that au is the set of all distinct elements of the stream a.

(2) The formula φ is viewed as a symbolic representation of the unique set au represented by
the stream a such that Sol(φ) = au .

(3) Given a formula φ and set of hash functions H , design an algorithm to construct sketch S
such that P (S,H , Sol(φ)) holds. And now, we can estimate |Sol(φ) | from S.

In the rest of this section, we will apply the above recipe to the three types of F0 estimation algo-
rithms and derive corresponding model counting algorithms. In particular, we show how applying
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ALGORITHM 3: ProcessUpdate(S,H ,x , Thresh)

1: for i ∈ [1, |H |] do

2: switch AlgorithmType do

3: case Bucketing
4: mi = S[i](1)
5: if H [i]mi

(x ) == 0mi then

6: S[i](0) ← S[i](0) ∪ {x }
7: if size(S[i](0)) > Thresh then

8: S[i](1) ← S[i](1) + 1
9: for y ∈ S do

10: if H [i]mi+1 (y) � 0mi+1 then

11: Remove(S[i](0),y)

12: case Minimum
13: if size(S[i]) < Thresh then

14: S[i].Append(H [i](x ))
15: else

16: j ← arg max(S[i])
17: if S[i](j ) > H [i](x ) then

18: S[i](j ) ← H [i](x )

19: case Estimation
20: for j ∈ [1, Thresh] do

21: S[i, j]← max(S[i, j], TrailZero(H [i, j](x )))

22: return S

ALGORITHM 4: ComputeEst(S, Thresh)

1: switch AlgorithmType do

2: case Bucketing

3: return Median
({

size(S[i](0)) × 2S[i](1)
}

i

)
4: case Minimum
5: return Median

({
Thresh×2m

max{S[i]}

}
i

)
6: case Estimation(r )

7: return Median

({
ln

(
1− 1

Thresh

∑Thresh
j=1 �{S[i, j]≥r }

)
ln(1−2−r )

}
i

)

the above recipe to the Bucketing algorithm leads us to reproduce the state-of-the-art hashing-
based model counting algorithm, ApproxMC, proposed by Chakraborty et al. [16]. Applying the
above recipe to Minimum and Estimation allows us to obtain fundamentally different schemes. In
particular, we observe while model counting algorithms based on Bucketing and Minimum pro-
vide FPRAS’s when φ is DNF, such is not the case for the algorithm derived based on Estimation.

3.2 Bucketing-based Algorithm

The Bucketing algorithm chooses a set H of pairwise independent hash functions and maintains
a sketch S that we will describe. Here we useHToeplitz as our choice of pairwise independent hash
functions. The sketchS is an array where, eachS[i] is of the form 〈ci ,mi 〉. We say that the relation
P1 (S,H , au ) holds if
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(1) |au ∩ {x | H [i]mi−1 (x ) = 0mi−1}| ≥ 96
ε2

(2) ci = |au ∩ {x | H [i]mi
(x ) = 0mi }| < 96

ε2

The following lemma due to Bar–Yossef et al. [7] and Gibbons and Tirthapura [34] captures the
relationship among the sketch S, the relation P1 and the number of distinct elements of a multiset.

Lemma 1 ([7, 34]). Let a ⊆ {0, 1}n be a multiset and H ⊆ HToeplitz (n, 3n) where each H [i] is inde-

pendently drawn fromHToeplitz (n, 3n), and |H | = O (log 1/δ ) and let S be such that the P1 (S,H ,au )
holds. Let c = Median {ci × 2mi }i . Then

Pr

[
|au |

(1 + ε )
≤ c ≤ (1 + ε ) |au |

]
≥ 1 − δ .

To design an algorithm for model counting, based on the bucketing strategy, we turn to the
subroutine introduced by Chakraborty, Meel, and Vardi: BoundedSAT, whose properties are for-
malized as follows:

Proposition 1 ([15, 16]). There is an algorithm BoundedSAT that gets φ over n variables, a hash

function h ∈ HToeplitz (n,m), and a number p as inputs, returns min(p, |Sol(φ ∧ h(x ) = 0m ) |). If φ is

a CNF formula, then BoundedSAT makes O (p) calls to an NP oracle. If φ is a DNF formula with k
terms, then BoundedSAT takes O (n3 · k · p) time.

Equipped with Proposition 1, we now turn to designing an algorithm for model counting
based on the Bucketing strategy. The algorithm follows in a similar fashion to its streaming
counterpart where mi is iteratively incremented until the number of solutions of the formula
(φ∧H [i]mi

(x ) = 0mi ) is less than Thresh. Interestingly, an approximate model counting algorithm,
called ApproxMC, based on bucketing strategy was discovered independently by Chakraborty
et al. [15] in 2013. We reproduce an adaptation ApproxMC in Algorithm 5 to showcase how
ApproxMC can be viewed as a transformation of the Bucketing algorithm. In the spirit of
Bucketing, ApproxMC seeks to construct a sketch S of size t ∈ O (log(1/δ )). To this end, for
every iteration of the loop, we continue to increment the value of the loop until the conditions
specified by the relation P1 (S,H , Sol(φ)) are met. For every iteration i , the estimate of the model
count is ci × 2mi . Finally, the estimate of the model count is simply the median of the estimation
of all the iterations. Since in the context of model counting, we are concerned with time complex-
ity, wherein both HToeplitz and Hxor lead to the same time complexity. Furthermore, Chakraborty
et al. [14] observed no difference in empirical runtime behavior due toHToeplitz andHxor.

The following theorem establishes the correctness of ApproxMC, and the proof follows from
Lemma 1 and Proposition 1.

Theorem 2. Given a formula φ, ε , and δ , ApproxMC returns Est such that Pr[
|Sol(φ ) |

1+ε
≤ Est ≤

(1 + ε ) |Sol(φ) |] ≥ 1 − δ . If φ is a CNF formula, then this algorithm makes O (n · 1
ε2 log(1/δ )) calls to

NP oracle. If φ is a DNF formula then ApproxMC is an FPRAS. In particular, for a DNF formula with

k terms, ApproxMC takes O (n4 · k · 1
ε2 · log(1/δ )) time.

Further Optimizations. We now discuss how the setting of model counting allows for further
optimizations. Observe that for all i , Sol(φ ∧ (H [i]mi−1) (x ) = 0mi−1) ⊇ Sol(φ ∧ (H [i]mi

) (x ) =
0mi ). Note that we are interested in finding the value of mi such that |Sol(φ ∧ (H [i]mi−1) (x ) =
0mi−1) | ≥ 96

ε2 and |Sol(φ ∧ (H [i]mi
) (x ) = 0mi ) | < 96

ε2 , therefore, we can perform a binary search
for mi instead of a linear search performed in the loop 8–10. Indeed, this observation was at the
core of Chakraborty et al’s followup work [16], which proposed ApproxMC2, thereby reducing
the number of calls to NP oracle from O (n · 1

ε2 log(1/δ )) to O (logn · 1
ε2 log(1/δ )). Furthermore,

the reduction in NP oracle calls led to significant runtime improvement in practice. It is worth
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ALGORITHM 5: ApproxMC(φ, ε,δ )

1: t ← 35 log( 1
δ

)
2: H ← PickHashFunctions(HToeplitz (n,n), t )
3: S ← {};
4: Thresh← 96

ε2

5: for i ∈ [1, t] do

6: mi ← 0
7: ci ← BoundedSAT(φ,H [i]|mi

, Thresh)
8: while ci ≥ Thresh do

9: mi ←mi + 1
10: ci ← BoundedSAT(φ,H [i]|mi

(x ), Thresh)

11: S[i]← (ci ,mi )

12: Est ← Median({S[i](0) × 2S[i](1) }i )
13: return Est

commenting that the usage of ApproxMC2 as an FPRAS for DNF is shown to achieve runtime
efficiency over the alternatives based on Monte Carlo methods [49–51].

3.3 Minimum-based Algorithm

For a given multiset a ( eg: a data stream or solutions to a model), we now specify the property
P2 (S,H , au ). The sketchS is an array of sets indexed by members ofH that holds lexicographically
p minimum elements of H [i](au ) where p is min( 96

ε2 , |au |). P2 is the property that specifies this
relationship. More formally, the relationship P2 holds, if the following conditions are met.

(1) ∀i, |S[i]| = min( 96
ε2 , |au |)

(2) ∀i,∀y � S[i],∀y ′ ∈ S[i] it holds that H [i](y ′) � H [i](y)

Here, � is the natural lexicographic order among the strings. The following lemma due to Bar-
Yossef et al. [7] establishe the relationship between the property P2 and the number of distinct
elements of a multiset. Let max(Si ) denote the largest element of the set Si .

Lemma 2 ([7]). Let a ⊆ {0, 1}n be a multiset and H ⊆ HToeplitz (n,n), where each H [i] is indepen-

dently drawn from HToeplitz (n,n) such that |H | = O (log 1/δ ). Let S be such that the P2 (S,H ,au )

holds. Let c = Median { p ·2m

max(S[i]) }i . Then

Pr

[
|au |

(1 + ε )
≤ c ≤ (1 + ε ) |au |

]
≥ 1 − δ .

Therefore, we can transform the Minimum algorithm for F0 estimation to that of model counting
given access to a subroutine that can compute S such that P2 (S,H , Sol(φ)) holds true. The follow-
ing proposition establishes the existence and complexity of such a subroutine, called FindMin:

Proposition 2. There is an algorithm FindMin that, given φ over n variables, h ∈ HToeplitz (n,m),
and p as input, returns a set, B ⊆ h(Sol(φ)) so that if |h(Sol(φ)) | ≤ p, then B = h(Sol(φ)), otherwise

B is the p lexicographically minimum elements of h(Sol(φ)). Moreover, if φ is a CNF formula, then

FindMin makes O (p ·m) calls to an NP oracle, and if φ is a DNF formula with k terms, then FindMin

takes O (m3 · n · k · p) time.

Equipped with Proposition 2, we are now ready to present the algorithm for model counting,
which we call ApproxModelCountMin. Since the complexity of FindMin is PTIME when φ is in
DNF, we have ApproxModelCountMin as an FPRAS for DNF formulas.
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ALGORITHM 6: ApproxModelCountMin(φ, ε,δ )

1: t ← 35 log(1/δ )
2: H ← PickHashFunctions(HToeplitz (n, 3n), t )
3: S ← {}
4: Thresh← 96

ε2

5: for i ∈ [1, t] do

6: S[i]← FindMin(φ,H [i], Thresh)

7: Est ← Median
({

Thresh×23n

max{S[i]}

}
i

)
8: return Est

Theorem 3. Given φ, ε ,δ , ApproxModelCountMin returns c such that

Pr

(
|Sol(φ)

1 + ε
≤ Est ≤ (1 + ε ) |Sol(φ) |

)
≥ 1 − δ .

If φ is a CNF formula, then ApproxModelCountMin is a polynomial-time algorithm that makes

O ( 1
ε2n log( 1

δ
)) calls to NP oracle. If φ is a DNF formula, then ApproxModelCountMin is an FPRAS.

Implementing the Min-based Algorithm. We now give a proof of Proposition 2 by giving an im-
plementation of FindMin subroutine.

Proof. We first present the algorithm when the formula φ is a DNF formula. Adapting the
algorithm for the case of CNF can be done by using similar ideas.

Let ϕ = T1∨T2∨ · · ·∨Tk be a DNF formula over n variables whereTi is a term. Let h : {0, 1}n →
{0, 1}m be a linear hash function inHToeplitz (n,m) defined by am×n binary matrix A. Let C be the
set of hashed values of the satisfying assignments for φ: C = {h(x ) | x |= φ} ⊆ {0, 1}m . Let Cp be
the first p elements of C in the lexicographic order. Our goal is to compute Cp .

We will give an algorithm with running timeO (m3np) to compute Cp when the formula is just a
termT . Using this algorithm we can compute Cp for a formula with k terms by iteratively merging
Cp for each term. The time complexity increases by a factor of k , resulting in an O (m3nkp) time
algorithm.

LetT be a term with widthw (number of literals) and C = {Ax | x |= T }. By fixing the variables
inT we get a vector bT and an n× (n−w ) matrix AT so that C = {ATx +bT | x ∈ {0, 1}(n−w ) }. Both
AT and bT can be computed fromA andT in linear time. Let hT (x ) be the transformationATx +bT .

We will compute Cp (p lexicographically minimum elements in C) iteratively as follows:

assuming we have computed (q − 1)th minimum of C, we will compute qth minimum using a
prefix-searching strategy. We will use a subroutine to solve the following basic prefix-searching
primitive: Given any l bit string y1 . . .yl , is there an x ∈ {0, 1}n−w so that y1 . . .yl is a prefix
for some string in {hT (x )}? This task can be performed using Gaussian elimination over an
(l + 1) × (n −w ) binary matrix and can be implemented in time O (l2 (n −w )).

Let y = y1 . . .ym be the (q − 1)th minimum in C. Let r1 be the rightmost 0 of y. Then using
the above-mentioned procedure we can find the lexicographically smallest string in the range of
hT that extends y1 . . .y(r−1)1 if it exists. If no such string exists in C, find the index of the next

0 in y and repeat the procedure. In this manner the qth minimum can be computed using O (m)
calls to the prefix-searching primitive resulting in an O (m3n) time algorithm. Invoking the above
procedure p times results in an algorithm to compute Cp in O (m3np) time.

If φ is a CNF formula, we can employ the same prefix-searching strategy. Consider the following
NP oracle: O = {〈φ,h,y,y ′〉 | ∃x ,∃y ′′, so that x |= φ,y ′y ′′ > y,h(x ) = y ′y ′′}. With m calls to O ,
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we can compute the lexicographically smallest string in C that is greater than y. So with p · m
calls to O , we can compute Cp . �

Further Optimizations. As mentioned in Section 1, the problem of model counting has witnessed
a significant interest from practitioners owing to its practical usage. The recent developments have
been fueled by breakthrough progress in the design of SAT solvers. These developments enable re-
placing calls to NP oracles with SAT solvers in practice.Motivated by the progress in SAT solving,
there has been significant interest in the design of efficient algorithmic frameworks for related
problems such as MaxSAT and its variants. The state-of-the-art MaxSAT solvers are based on
sophisticated strategies such as implicit hitting sets. Such solvers are shown to significantly out-
perform algorithms based on merely invoking an SAT solver iteratively. Of particular interest to us
is the recent progress in the design of MaxSAT solvers to handle lexicographic objective functions.
In this context, it is worth remarking that we expect practical implementation of FindMin would
invoke a MaxSAT solver O (p) times as practical solvers also provide witness (i.e., assignment to
variables) that achieves the optimal value.

3.4 Estimation-based Algorithm

We now adapt the Estimation algorithm to model counting. For a given stream a and chosen hash
functions H , the sketch S corresponding to the estimation-based algorithm satisfies the following
relation P3 (S,H , au ):

P3 (S,H , au ) := (S[i, j] = max
x ∈au

TrailZero(H [i, j](x ))), (2)

where the procedure TrailZero(z) is the length of the longest all-zero suffix of z. Bar–Yossef et al. [7]
show the following relationship between the property P3 and F0.

Lemma 3 ([7]). Let a ⊆ {0, 1}n be a multiset. For i ∈ [T ] and j ∈ [M], suppose H [i, j] is drawn

independently from Hs−wise (n,n) where s = O (log(1/ε )), T = O (log(1/δ )), and M = O (1/ε2). Let

H denote the collection of these hash functions. Suppose S satisfies P3 (S,H , au ). For any integer r ,

define:

cr = Median
⎧⎪⎪⎨⎪⎪⎩

ln
(
1 − 1

M

∑M
j=1 �{S[i, j] ≥ r }

)
ln(1 − 2−r )

⎫⎪⎪⎬⎪⎪⎭i

.

Then, if 2F0 ≤ 2r ≤ 50F0:

Pr [(1 − ε )F0 ≤ cr ≤ (1 + ε )F0] ≥ 1 − δ .
Following the recipe outlined above, we can transform an F0 streaming algorithm to a model

counting algorithm by designing a subroutine that can compute the sketch for the set of all so-
lutions described by φ and a subroutine to find r . The following proposition achieves the first
objective for CNF formulas using a small number of calls to an NP oracle:

Proposition 3. There is an algorithm FindMaxRange that given φ over n variables and hash

function h ∈ Hs−wise (n,n), returns t such that

(1) ∃z, z |= φ and h(z) has t least significant bits equal to zero.

(2) ∀(z |= φ) =⇒ h(z) has ≤ t least significant bits equal to zero.

If φ is a CNF formula, then FindMaxRange makes O (logn) calls to an NP oracle.

Proof. Consider an NP oracle O = {〈φ,h, t〉 | ∃x ,∃y,x |= φ,h(x ) = y0t 〉}. Note that h can be
implemented as a degree-s polynomial h : F2n → F2n , so that h(x ) can be evaluated in polynomial
time. A binary search, requiringO (logn) calls toO , suffices to find the largest value of t for which
〈φ,h, t〉 belongs to O . �
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ALGORITHM 7: ApproxModelCountEst(φ, ε,δ , r )

1: Thresh← 96/ε2

2: t ← 35 log(1/δ )
3: H ← PickHashFunctions(Hs−wise (n,n), t × Thresh)
4: S ← {}
5: for i ∈ [1, t] do

6: for j ∈ [1, Thresh] do

7: S[i, j]← FindMaxRange(φ,H [i, j])

8: Est ← Median

{
ln

(
1− 1

Thresh

∑Thresh
j=1 �{S[i, j]≥r }

)
ln(1−2−r )

}
i

9: return Est

We note that unlike Propositions 1 and 2, we do not know whether FindMaxRange can be im-
plemented efficiently when φ is a DNF formula. For a degree-s polynomial h : F2n → F2n , we can
efficiently test whether h has a root by computing gcd(h(x ),x2n − x ), but it is not clear how to
simultaneously constrain some variables according to a DNF term.

Equipped with Proposition 3, we obtain ApproxModelCountEst that takes in a formula φ and
a suitable value of r and returns |Sol(φ) |. The key idea of ApproxModelCountEst is to repeatedly
invoke FindMaxRange for each of the chosen hash functions and compute the estimate based
on the sketch S and the value of r . The following theorem summarizes the time complexity and
guarantees of ApproxModelCountEst for CNF formulas.

Theorem 4. Given a CNF formula φ, parameters ε and δ , and r such that 2F0 ≤ 2r ≤ 50F0, the

algorithm ApproxModelCountEst returns c satisfying

Pr

[
|Sol(φ)

1 + ε
≤ c ≤ (1 + ε ) |Sol(φ) |

]
≥ 1 − δ .

ApproxModelCountEst makes O ( 1
ε2 logn log( 1

δ
)) calls to an NP oracle.

In order to obtain r , we run in parallel another counting algorithm based on the simple F0-
estimation algorithm [3, 32] which we call FlajoletMartin. Given a stream a, the FlajoletMartin

algorithm chooses a random pairwise-independent hash function h ∈ Hxor (n,n), computes the
largest r so that for some x ∈ au , the r least significant bits of h(x ) are zero, and outputs r . Alon,
Matias and Szegedy [3] showed that 2r is a 5-factor approximation of F0 with probability 3/5.
Using our recipe, we can convert FlajoletMartin into an algorithm that approximates the number
of solutions to a CNF formula φ within a factor of 5 with probability 3/5. It is easy to check that
using the same idea as in Proposition 3, this algorithm requires O (logn) calls to an NP oracle.

3.5 Role of the Sketch Complexity

In the design of streaming algorithms reducing the space complexity is of primary concern whereas
in model counting algorithms the goal is to minimize the run time or the number of NP queries
made. Having established a recipe to transform sketch-based streaming algorithms into model
counting algorithms, a natural question that arises is the relationship between the space com-
plexity of the streaming algorithm and the number of NP queries made by the model counting
algorithm. In this section, we attempt to clarify this relationship. In the following, we will fold the
hash function h also in the sketch S . With this simplification, instead of writing P (S,h, Sol(φ)) we
write P (S, Sol(φ)).

We first introduce some complexity-theoretic notation. For a complexity class C, a language L
belongs to the complexity class ∃ · C if there is a polynomial q(·) and a language L′ ∈ C such that
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for every x

x ∈ L ⇔ ∃y, |y | ≤ q( |x |), 〈x ,y〉 ∈ L′.
Consider a streaming algorithm for F0 that constructs a sketch such that P (S,au ) holds for some

property P using which we can estimate |au |, where the size of S is poly-logarithmic in the size of
the universe and polynomial in 1/ε . Now consider the following Sketch-Language

Lsketch = {〈φ, S〉 | P (S, Sol(φ)) holds}.

Theorem 5. If Lsketch belongs to the complexity class C, then there exists a FP∃·C model counting

algorithm that estimates the number of satisfying assignments of a given formula φ. The number of

queries made by the algorithm is bounded by the sketch size.

Proof. The proof uses the standard prefix search. Consider the following prefix language

pre (Lsketch ) = {〈φ,u〉 | ∃ v such that P (uv, Sol(φ)) holds}.

It is easy to see that, using prefix search, there is an algorithm that makes queries to the language
pre (Lsketch ) and constructs a sketch S such that P (S, Sol(φ)) holds. In this algorithm since each
query reveals one bit of the sketch, the number of queries is bounded by the size of the sketch.
Recall that the size of the sketch is poly-logarithmic in the size of the universe, which is 2n (where
n is the number of variables of φ), and polynomial in 1/ε . Thus the number of calls made by the
algorithm is polynomial inn and 1/ε . Furthermore, note thatpre (Lsketch ) belongs to the complexity
class ∃ · C. �

The above theorem gives a general upper bound on the complexity of the model counting algo-
rithm based on the complexity of the language Lsketch . In the specific instances that we illustrate

(bucketing, minimum, and estimation), the sketch language is in coNP. This will lead to a FPΣP
2

algorithm for model counting. For example, consider the minimum-based algorithm. The sketch
language is the following:

{〈φ, 〈h,v1, . . . ,vt 〉〉 | {v1, . . . ,vt } is the set of t lex-smallest elements of h(Sol(φ))}.

The above language is in the class coNP: If 〈φ, 〈h,v1, . . . ,vt 〉〉 does not belong to the sketch
language, then there is a satisfying assignment a of φ such that there exists i , 0 ≤ i ≤ t − 1 and
vi < h(a) < vi+1 (wherev0 is the empty string). Thus an NP machine for the complement language
works by guessing an assignment a and verifying that a satisfies φ and h(a) lies between vi and
vi+1 for some i , 0 ≤ i ≤ t − 1. Thus the sketch language is in coNP. Since ∃ · coNP is same as the

class ΣP
2 , we obtain a FPΣP

2 algorithm. Since t = O (1/ε2) and h maps from n-bit strings to 3n-bit
strings, it follows that the size of the sketch is O (n/ε2). Thus the number of queries made by the
algorithm is O (n/ε2).

Note that in all three model counting algorithms that were obtained, are probabilistic
polynomial-time algorithms that make queries to languages in NP. The above generic transforma-
tion gives a deterministic polynomial-time algorithm that makes queries to a ΣP

2 oracle. Precisely
characterizing the properties of the sketch that lead to probabilistic algorithms making only NP
queries is an interesting direction to explore.

3.6 The Opportunities Ahead

As noted in Section 3.2, the algorithms based on Bucketing were already known and have witnessed
a detailed technical development from both applied and algorithmic perspectives. The model count-
ing algorithms based on Minimum and Estimation are new. We discuss some potential implications
of these new algorithms to SAT solvers and other aspects.
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MaxSAT solvers with native support for XOR constraints. When the input formulaφ is represented
as CNF, then ApproxMC, the model counting algorithm based on Bucketing strategy, invokes NP
oracle over CNF-XOR formulas, i.e., formulas expressed as a conjunction of CNF and XOR con-
straints. The XOR constraints appear due to the need to evaluate the hash functions which are
evaluations of XORs. The significant improvement in the runtime performance of ApproxMC owes
to the design of SAT solvers with native support for CNF-XOR formulas [59–61]. Such solvers have
now found applications in other domains such as cryptoanalysis. It is perhaps worth emphasizing
that the proposal of ApproxMC was crucial to renewed interest in the design of SAT solvers with
native support for CNF-XOR formulas. As observed in Section 3.3, the algorithm based on the Min-
imum strategy would ideally invoke a MaxSAT solver that can handle XOR constraints naively. We
believe that the Minimum-based algorithm will ignite interest in the design of MaxSAT solver with
native support for XOR constraints.

FPRAS for DNF based on Estimation. In Section 3.4, we were unable to show that the model
counting algorithm obtained based on Estimation is FPRAS when φ is represented as DNF. The
algorithms based on Estimation have been shown to achieve optimal space efficiency in the context
of F0 estimation. In this context, an open problem is to investigate whether the Estimation-based
strategy lends itself to FPRAS for DNF counting.

Empirical Study of FPRAS for DNF Based on Minimum. Meel et al. [50, 51] observed that FPRAS
for DNF based on Bucketing has superior performance, in terms of the number of instances solved,
to that of FPRAS schemes based on the Monte Carlo framework. In this context, a natural direction
of future work would be to conduct an empirical study to understand the behavior of FPRAS
scheme based on the Minimum strategy.

4 FROM L0 SAMPLING TO CONSTRAINED SAMPLING

There has been considerable work on sampling elements from data streams [20, 33, 41, 52]. In par-
ticular, for a data stream a, one would like to generate a uniform sample from au , the set of unique
elements of the stream a. This problem is known as L0 sampling. It is known that counting and sam-
pling are closely-related problems. In particular, Jerrum, Valiant, and Vazirani [40] demonstrated
that model counting and constrained sampling (for example generating uniform samples from
the set of satisfying assignments of a Boolean formula) are inter-reducible. Therefore, a natural
question is whether known L0 sampling algorithms can be similarly transformed into constrained
sampling algorithms. In this section, we answer this question affirmatively for a broad class of L0

sampling algorithms.
Our recipe for transformation is based on the following unifying framework presented by Cor-

mode and Firmani [20]. This framework involves three steps; sampling, recovery, and selection.

Sampling For a given stream a and its corresponding unique set au , the sampling process implic-
itly defines m subsets of a, say S[0],S[1],S[m − 1]. These subsets are not stored explicitly
but are summarized implicitly.

Recovery The recovery step seeks to recover every subset S[i], if the size of |S[i]| < s for an
appropriately chosen parameter s . We call such a set s-sparse.

Selection In order to draw a sample, the L0 sampler seeks to choose a level j ∈ [m] such that S[i]
is s-sparse but not empty. In such a case, the element y is chosen such that y ∈ S[i] and h(y)
is the smallest among all the elements recovered.

Based on the above framework, Cormode and Firmani synthesized the known samplers into the
algorithm presented in Algorithm 8.
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ALGORITHM 8: L0Sampler(n, ε,δ )

1: s = O (log 1/ε + log 1/δ )
2: k ← s

2
3: h ← PickHashFunctions(Hk−wise (n, 3n), 1)[0]
4: while true do

5: if EndStream then exit;

6: x ← input ()
7: for i ∈ [n] do

8: if TrailZero(h(x )) ≤ i then

9: S[i].Append (x ) � S[i] is implicitly maintained via sparse-recovery data structures

10: form ∈ [n] do

11: (CanRecover,L) ← Recover(S,h, s,m)
12: if CanRecover == Success then

13: return argminx ∈Lh(x )

14: return FAIL

4.1 A Recipe for Transformation

Our recipe for the transformation of L0 sampling algorithms captured by the unified framework
of Algorithm 8 to constrained sampling is based on two simple insights:

(1) Similar to the recipe for transformation of F0 estimation to model counting, for each i , we
capture the relationship P (S[i],h, au ) between the implicit subsets S[i], hash function h,
the set au at the end of the stream. Again, we can view a formula φ to be a symbolic repre-
sentation of some unique set au such that Sol(φ) = au .

(2) The exact s-sparse recovery step can be simulated by a generalization of BoundedSAT, i.e.,
given φ, the hash function h, and a number i , we can reconstruct S[i] (if S[i] is small) such
that P (S[i],h, Sol(φ)) holds.

As an example, let us consider Algorithm 8 and we can formalize the property P4 (S[i],h, au )
as follows:

P4 (S[i],h, au ) := S[i] = {x | TrailZero(h(x )) ≤ i ∧ x ∈ au }.
We apply the above recipe to translate the unified algorithm presented in Algorithm 8 to one for

constrained sampling. To this end, we rely on the following generalization of BoundedSAT that
can simulate exact sparse recovery.

Proposition 4 (Lemma 3.7 of [9]). There is an algorithm GenBoundedSAT that gets φ over n
variables, a hash function h ∈ Hk-wise (n, 3n), and numbers m and p as inputs, returns L such that

L ⊆ Sol(φ ∧ TrailZero(h(x )) ≤ m) and |L| = min(p, |Sol(φ ∧ TrailZero(h(x )) ≤ m) |), and makes

O (p · n) calls to a NP oracle.

Equipped with GenBoundedSAT, we present the algorithm UnifSampler in Algorithm 9 that
takes in a formula φ, tolerance parameter ε , and confidence parameter δ , and returns a sample
σ ∈ Sol(φ). Since GenBoundedSAT implements exact sparse recovery, the algorithm UnifSampler

enjoys theoretical guarantees for the quality of its samples.

Theorem 6. For a given formula φ, tolerance parameter ε , and confidence parameter δ ,

UnifSampler succeeds (i.e., does not return FAIL) with probability at least 1 − δ , and conditioned

on success, outputs σ ∈ Sol(φ) with probability 1±ε
|Sol(φ ) | ± δ .
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ALGORITHM 9: UnifSampler(φ, ε,δ )

1: s = O (log 1/ε + log 1/δ )
2: k ← s

2
3: h ← PickHashFunctions(Hk−wise (n, 3n), 1)
4: form ∈ [n] do

5: L ← GenBoundedSAT(φ,h,m, s + 1)
6: if 1 ≤ |L| ≤ s then

7: return argminx ∈Lh(x )

8: return FAIL

5 DISTRIBUTED DNF COUNTING

Consider the problem of distributed DNF counting. In this setting, there are k sites that can each
communicate with a central coordinator. The input DNF formula φ is partitioned into k DNF sub-
formulas φ1, . . . ,φk , where each φi is a subset of the terms of the original φ, with the j’th site
receiving only φ j . The goal is for the coordinator to obtain an (ϵ,δ )-approximation of the number
of solutions to φ, while minimizing the total number of bits communicated between the sites and
the coordinator. Distributed algorithms for sampling and counting solutions to CSPs have been
studied recently in other models of distributed computation [28–31]. From a practical perspective,
given the centrality of #DNF in the context of probabilistic databases [55, 56], a distributed DNF
counting would entail applications in distributed probabilistic databases.

From our perspective, distributed DNF counting falls within the distributed functional monitoring

framework formalized by Cormode et al. [23]. Here, the input is a stream a which is partitioned
arbitrarily into sub-streams a1, . . . , ak that arrive at each of k sites. Each site can communicate
with the central coordinator, and the goal is for the coordinator to compute a function of the
joint stream a while minimizing the total communication. This general framework has several
direct applications and has been studied extensively [4, 6, 21, 24, 37, 45–47, 58, 67, 68, 70]. In
distributed DNF counting, each sub-stream ai corresponds to the set of satisfying assignments to
each subformula φi , while the function to be computed is F0.

The model counting algorithms discussed in Section 3 can be extended to the distributed set-
ting, using the mergeability of the underlying sketches. We describe next the distributed imple-
mentations for each of the three algorithms. As earlier, we set the parameters Thresh to O (1/ε2)
and t to O (log(1/δ )). We use a variant of BoundedSAT that takes in φ over n variables, a func-
tion h ∈ HToeplitz (n,m), and a threshold t as inputs, and returns a set U of solutions such that
|U | = min(t , |Sol(φ ∧ h(x ) = 0m ) |), instead of returning |U | itself.

Bucketing. Setting � = O (log(k/δε2)), the coordinator chooses H [1], . . . ,H [t] from
HToeplitz (n,n) and G from Hxor (n, �). It then sends them to the k sites, along with the values of t
and thresh. Letmi, j be the smallestm such that the size of the set BoundedSAT(φ j ,H [i]m , thresh)
is smaller than thresh. The j’th site sends to the coordinator the following tuples:

〈i,G (x ), TrailZero(H [i](x )),mi, j 〉
for each i ∈ [t] and for each x in BoundedSAT(φ j ,H [i]mi, j

, thresh).

Each of the k sites only sends tuples for at mostO (1/ε2) choices of x . By a standard union-bound
argument, G hashes these x to distinct values with probability 1 − δ/2. The coordinator can then
execute the rest of the algorithm, as shown in the coordinator part of ApproxMCDis. For each
i = 1, . . . , t , it merges the lists sent over by each of the k sites to get a final list consisting of the
hashes of at most Thresh elements that (i) have at least M[i] many trailing zeros when hashed
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by H [i] and (ii) satisfy the subformula for at least one of the sites. The communication cost is
Õ (k (n+1/ε2) · log(1/δ )), and the time complexity for each site is polynomial in n, ε−1, and log(δ−1).

Minimum. The coordinator chooses hash functions H [1], . . . ,H [t] from HToeplitz (n, 3n) and
sends it to the k sites. Each site runs the FindMin algorithm for each hash function and sends
the outputs to the coordinator. So, the coordinator receives sets S[i, j], consisting of the Thresh

lexicographically smallest hash values of the solutions to φ j . The coordinator then extracts S[i],
the Thresh lexicographically smallest elements of S[i, 1] ∪ · · · ∪ S[i,k] and proceeds with the rest
of algorithm ApproxModelCountMin. The communication cost is O (kn/ε2 · log(1/δ )) to account
for the k sites sending the outputs of their FindMin invocations. The time complexity for each site
is polynomial in n, ε−1, and log(δ−1).

ALGORITHM 10: ApproxMCDis(n,k, ε,δ )
for coordinator
Stage: Initialization

1: t ← 35 log( 1
δ

)

2: � ← 10 log( k

δ ε2 )

3: H ← PickHashFunctions(HToeplitz (n, n), t )
4: G ← PickHashFunctions(Hxor (n, �), 1)
5: Thresh← 96

ε2

6: Broadcast t, thresh, H and G to all sites.
7: M ← [0, . . . , 0] of length t
8: Elts ← [{ }, . . . , { }] of length t

Stage: Processing message 〈i, z, m0, m〉
1: if m < M[i] or 〈z, m0〉 ∈ Elts[i] then
2: return
3: M[i]←m
4: Add 〈z, m0〉 to Elts[i]
5: for each 〈z′, m′0〉 ∈ Elts[i] do

6: if m′0 < M[i] then

7: Remove 〈z′, m′0〉 from Elts[i]

8: while |Elts[i] | ≥ Thresh do
9: M[i]← M[i] + 1

10: for each 〈z′, m′0〉 ∈ Elts[i] do

11: if m′0 < M[i] then

12: Remove 〈z′, m′0〉 from Elts[i]

Stage: Output estimate

1: Est ← Median( {M[i] × 2|Elts[i]| }ti=1 )
2: return Est

ALGORITHM 11: ApproxMCDis(φ) for site

Stage: Initialization
1: Receive t, Thresh, and hash functions H [1], . . . , H [t ], G

from coordinator
2: S ← {};

Stage: Processing of input φ
1: for i ∈ [1, t ] do
2: mi ← 0
3: ci ← BoundedSAT(φ, H [i]mi

, Thresh)
4: while ci ≥ Thresh do
5: mi ←mi + 1
6: ci ← BoundedSAT(φ, H [i]mi

, Thresh)

7: for each x ∈ ci do
8: Send 〈i, G (x ), TrailZero(H [i](x )), mi 〉 to coordi-

nator

ALGORITHM 12: ApproxMCMinDis(n,k,
ε,δ ) for coordinator

Stage: Initialization
1: t ← 35 log(1/δ )
2: Thresh← 96

ε2

3: H ← PickHashFunctions(HToeplitz (n, 3n), t )
4: Broadcast t, thresh and H to all sites
5: S ′, Elts ← ∅

Stage: Processing of input S
1: for i ∈ [1, t ] do
2: S ′[i]← S ′[i] ∪ S[i]

Stage: Output estimate
1: for i ∈ [1, t ] do
2: Elts[i] ← the Thresh lexicographically smallest ele-

ments of S ′[i]

3: Est ← Median
({

Thresh×23n

max{S [i]}

}
i

)
4: return Est

ALGORITHM 13: ApproxMCMinDis(ϕ) for
site
Stage: Initialization
1: Receive t, thresh, H [1], . . . , H [t ] from coordinator
2: S ← {}

Stage: Processing of input φ
1: for i ∈ [1, t ] do
2: S[i]← FindMin(φ, H [i], Thresh)

3: Send S to coordinator
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Estimation. For each i ∈ [t], the coordinator chooses Thresh hash functions
H [i, 1], . . . ,H [i, Thresh], drawn pairwise independently from Hs−wise (n,n) (for s = O (log(1/ε )))
and sends it to the k sites. Each site runs the FindMaxRange algorithm for each hash function
and sends the output to the coordinator. Suppose the coordinator receives S[i, j, �] ∈ [n]
for each i ∈ [t], j ∈ [Thresh] and � ∈ [k]. It computes S[i, j] = max� S[i, j, �]. The rest
of ApproxModelCountEst is then executed by the coordinator. The communication cost is
Õ (k (n + 1/ε2) log(1/δ )).

ALGORITHM 14: ApproxMCEstDis(n,k,
ε,δ , r ) for coordinator

Require: Initialization
1: t ← 35 log(1/δ )
2: Thresh← 96/ε2

3: H ← PickHashFunc(Hs−wise (n, n), t × Thresh)
4: Broadcast t, thresh, H to all sites
5: S′ ← ∅

Require: Processing message S
1: for i ∈ [1, t ] do
2: for j ∈ [1, Thresh] do
3: S′[i, j]← max(S ′[i, j], S[i, j])

Require: Output estimate

1: Est ← Median
⎧⎪⎨⎪⎩

ln
(
1− 1

Thresh

∑Thresh
j=1 �{S′[i, j]≥r }

)
ln(1−2−r )

⎫⎪⎬⎪⎭i
2: return Est

ALGORITHM 15: ApproxMCEstDis(φ) for
site
Require: Initialization
1: Receive t, thresh, H from coordinator
2: S ← {}

Require: Processing of input φ
1: for i ∈ [1, t ] do
2: for j ∈ [1, Thresh] do
3: S[i, j]← FindMaxRange(φ, H [i, j])

4: Send S to coordinator

Lower Bound

The communication cost for the Bucketing and Estimation-based algorithms is nearly optimal in
their dependence on k and ε . Woodruff and Zhang [67] showed that the randomized communi-
cation complexity of estimating F0 up to a 1 + ε factor in the distributed functional monitoring
setting is Ω(k/ε2). We can reduce F0 estimation problem to distributed DNF counting. Namely,
if for the F0 estimation problem, the j’th site receives items a1, . . . ,am ∈ [N ], then for the dis-
tributed DNF counting problem, φ j is a DNF formula on �log2 N � variables whose solutions are
exactly a1, . . . ,am in their binary encoding. Thus, we immediately get an Ω(k/ε2) lower bound for
the distributed DNF counting problem. Finding the optimal dependence on N for k > 1 remains
an interesting open question.3

6 FROM COUNTING TO STREAMING: STRUCTURED SET STREAMING

In this section we consider structured set streaming model where each item Si of the stream is
a succinct representation of a set over the universe U = {0, 1}n . Our goal is to design efficient
algorithms (both in terms of memory and processing time per item) for computing |∪i Si |—number
of distinct elements in the union of all the sets in the stream. We call this problem F0 computation
over structured set streams.

DNF Sets

A particular representation we are interested in is where each set is presented as the set of satis-
fying assignments to a DNF formula. Let φ be a DNF formula over n variables. Then the DNF Set

corresponding to φ is the set of satisfying assignments of φ. The size of this representation is the
number of terms in the formula φ.

3Note that if k = 1, then log(n/ε ) bits suffices, as the site can solve the problem on its own and send to the coordinator

the binary encoding of a (1 + ε )-approximation of F0.
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A stream over DNF sets is a stream of DNF formulas φ1,φ2, . . .. Given such a DNF stream, the
goal is to estimate |⋃i Si | where Si the DNF set represented by φi . This quantity is same as the
number of satisfying assignments of the formula ∨iφi . We show that the algorithms described in
the previous section carry over to obtain (ϵ,δ ) estimation algorithms for this problem with space
and per-item time poly(1/ϵ,n,k, log(1/δ )) where k is the size of the formula.

Notice that this model generalizes the traditional streaming model where each item of the stream
is an element x ∈ U as it can be represented as single term DNF formula ϕx whose only satisfying
assignment is x . This model also generalizes certain other models considered in the streaming
literature that we discuss later.

Theorem 7. There is a streaming algorithm to compute an (ϵ,δ ) approximation of F0 over DNF

sets. This algorithm takes spaceO ( n
ε2 · log 1

δ
) and processing timeO (n4 ·k · 1

ε2 · log 1
δ

) per item where

k is the size (number of terms) of the corresponding DNF formula.

Proof. We show how to adapt Minimum-value based algorithm from Section 3.3 to this setting.
The algorithm picks a hash function h ∈ HToeplitz (n, 3n) and maintains the set B consisting of t
lexicographically minimum elements of the set {h(Sol(φ1∨· · ·∨φi−1))} after processing i−1 items.
When φi arrives, it computes the set B′ consisting of the t lexicographically minimum values of
the set {h(Sol(φi ))} and subsequently updates B by computing the t lexicographically smallest
elements from B ∪ B′. By Proposition 2, computation of B′ can be done in time O (n4 · k · t )
where k is the number of terms in φi . Updating B can be done in O (t · n) time. Thus update
time for the item φi is O (n4 · k · t ). For obtaining an (ε,δ ) approximations we set t = O ( 1

ε2 ) and

repeat the procedure O (log 1
δ

) times and take the median value. Thus the update time for item φ

is O (n4 · k · 1
ε2 · log 1

δ
). For analyzing sapce, each hash function uses O (n) bits and to store O ( 1

ϵ 2 )

minimums, we require O ( n
ϵ 2 ) space resulting in overall space usage of O ( n

ε2 · log 1
δ

). The proof of
correctness follows from Lemma 2. �

Instead of using Minimum-value based algorithm, we could adapt Bucketing-based algorithm
to obtain an algorithm with similar space and time complexities. As noted earlier, some of the set
streaming models considered in the literature can be reduced the DNF set streaming. We discuss
them next.

Multidimensional Ranges

A d dimensional range over an universe U = {0, . . . , 2n − 1} is defined as [a1,b1] × [a2,b2] ×
· · · × [ad ,bd ]. Such a range represents the set of tuples (x1, . . . ,xd ) where ai ≤ xi ≤ bi and xi

is an integer. Note that every d-dimensional range can be succinctly represented by the tuple
〈a1,b1, . . . ,ad ,bd 〉. A multi-dimensional stream is a stream where each item is a d-dimensional
range. The goal is to compute F0 of the union of the d-dimensional ranges efficiently. We will show
that F0 computation over multi-dimensional ranges can be reduced to F0 computation over DNF
sets. Using this reduction we arrive at a simple algorithm to compute F0 over multi-dimensional
ranges.

Lemma 4. Any d-dimensional range R over U can be represented as a DNF formula φR over nd
variables whose size is at most (2n)d . There is an algorithm that takes R as input and outputs the ith

term of φR using O (nd ) space, for 1 ≤ i ≤ (2n)d .

Proof. Let R = [a1,b1]× [a2,b2]× · · · × [ad ,bd ] be a d-dimensional range overU d . We will first
describe the formula to represent the multi-dimensional range as a conjunction of d DNF formulae
ϕ1, . . . ,ϕd each with at most 2n terms, where ϕi represents [ai ,bi ], the range in the ith dimension.
Converting this into a DNF formula will result in the formula ϕR with (2n)d terms.
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For any � bit number c , 1 ≤ c ≤ 2n , it is straightforward to write a DNF formula φ≤c , of size at
most �, that represents the range [0, c] (or equivalently the set {x | 0 ≤ x ≤ c}). Similarly we can
write a DNF formula φ≥c , of size at most � for the range [c, 2�−1]. Now we construct a formula to
represent the range [a,b] overU as follows. Let a1a2 . . . an and b1b2 . . .bn be the binary represen-
tations of a and b, respectively. Let � be the largest integer such that a1a2 . . . al = b1b2 . . .bl . Hence
a�+1 = 0 and b�+1 = 1. Let a′ and b ′ denote the integers represented by al+2 . . . an and bl+2 . . .bn .
Also, letψ denote the formula (a single term) that represents the string a1 . . . a� . Then the formula
representing [a,b] isψ ∧ (x�+1φ≥a′ ∨x�+1φ≤b′ ). This can be written as a DNF formula by distribut-
ingψ and the number of terms in the resulting formula is at most 2n, and has n variables. Note that
each φi can be constructed usingO (n) space. To obtain the final DNF representing the range R, we
need to convert φ1 ∧ · · ·φd into a DNF formula. It is easy to see that for any i , then ith term of this
DNF can be computed using space O (nd ). Note that this formula has nd variables, n variables per
each dimension. �

Using the above reduction and Theorem 7, we obtain an algorithm for estimating F0 over mul-
tidimensional ranges in a range-efficient manner.

Theorem 8. There is a streaming algorithm to compute an (ϵ,δ ) approximation of F0 over d-

dimensional ranges that takes spaceO ( nd
ε2 · log(1/δ )) and processing timeO ((nd )4 ·nd · 1

ε2 ) log(1/δ ))
per item.

Remark 2. Tirthapura and Woodruff [65] studied the problem of range efficient estimation
of Fk (kth frequency moments) over d-dimensional ranges. They claimed an algorithm to esti-
mate F0 with space and per-item time complexity poly(n,d, 1/ϵ, log 1/δ ). However, they have re-
tracted their claim (Woodruff, Personal Communication, June 16, 2020). Their method only yields
poly(nd , 1/ϵ, log 1/δ ) time per item. Their proof is based on recursive sketches [11, 38] as well as
a range-efficient implementation of count sketch algorithm [17]. We obtain the same complexity
bounds with much simpler analysis and a practically efficient algorithm that can use of-the-shelf
available implementations [50].

Remark 3. Subsequent to the present work, an improved algorithm for F0 over structured
sets is presented in [64]. In particular, the article presents an F0 estimation algorithm, called
APS-Estimator, for streams over Delphic sets. A set S ⊆ {0, 1}n belongs to the Delphic family if
the following queries can be done in O (n) time: (1) know the size of the set S , (2) draw a uni-
form random sample from S , and (3) given any x check if x ∈ S . The authors design a stream-
ing algorithm that given a stream S = 〈S1, S2, . . . , SM 〉 wherein each Si ⊆ {0, 1}n belongs to
Delphic family, computes an (ε,δ )-approximation of |⋃M

i=1 Si | with worst-case space complexity

O (n · log(M/δ ) · ε−2) and per-item time is Õ (n · log(M/δ ) · ε−2). The algorithm APS-Estimator,
when applied to d-dimensional ranges, gives per-item time and space complexity bounds that are
poly(n,d, logM, 1/ε, log 1/δ ). While APS-Estimator brings down the dependency on d from expo-
nential to polynomial, it works under the assumption that the length of the stream M is known.
The general setup presented in [64], however, can be applied to other structured sets considered
in this article including multidimensional arithmetic progressions.

Representing Multidimensional Ranges as CNF Formulas. Since the algorithm, APS-Estimator,
presented in [64], employs a sampling-based technique, a natural question is whether there ex-
ists a hashing-based technique that achieves per-item time polynomial in n and d . We note that
the above approach of representing a multi-dimensional range as DNF formula does not yield such
an algorithm. This is because there exist d-dimensional ranges whose DNF representation requires
Ω(nd ) size.
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Observation 1. There exist d-dimensional ranges whose DNF representation has size ≥ nd .

Proof. The observation follows by considering the rangeR = [1, 2n−1]d (only 0 is missing from
the interval in each dimension). We will argue that any DNF formulaφ for this range has size (num-

ber of terms) ≥ nd . For any 1 ≤ j ≤ d , we use the set of variablesX j = {x j
1,x

j
2, . . . ,x

j
n } for represent-

ing the jth coordinate of R. Then R can be represented as the formulaφR = ∨(i1,i2, ...,id )x
1
i1
x2

i2
. . . xd

id
,

where 1 ≤ i j ≤ n. This formula has nd terms. Let φ be any other DNF formula representing R. The
main observation is that any term T of φ is completely contained (in terms of the set of solutions)
in one of the terms of φR . This implies that φ should have nd terms. Now we argue that T is con-
tained in one of the terms of φR . T should have at least one variable as positive literal from each
of X j . Suppose T does not have any variable from X j for some j. Then T contains a solution with

all the variables in X j set to 0 and hence not in R. Now let x j
i j

be a variable from X j that is in T .

Then clearly T is in the term x1
i1
x2

i2
. . . xd

id
of R. �

This leads to the question of whether we can obtain a super-polynomial lower bound on the
time per item. We observe that such a lower bound would imply P � NP. For this, we note the
following.

Observation 2. Any d-dimensional range R can be represented as a CNF formula of size O (nd )
over nd variables.

This is because a single dimensional range [a,b] can also be represented as a CNF formula of
size O (n) [13] and thus the CNF formula for R is a conjunction of formulas along each dimension.
Thus the problem of computing F0 over d-dimensional ranges reduces to computing F0 over a
stream where each item of the stream is a CNF formula. As in the proof of Theorem 7, we can
adapt Minimum-value based algorithm for CNF streams. When a CNF formula φi arrive, we need
to compute the t lexicographically smallest elements of h(Sol(φi )) where h ∈ HToeplitz (n, 3n). By
Proposition 2, this can be done in polynomial-time by makingO (tnd ) calls to an NP oracle since φi

is a CNF formula overnd variables. Thus if P equals NP, then the time taken per range is polynomial
in n, d , and 1/ε2. Thus a super polynomial time lower bound on time per item implies that P differs
from NP.

From Weighted #DNF to d-Dimensional Ranges. Designing a hashing-based streaming algorithm
with a per-item update time of polynomial in n and d is a very interesting open problem with
implications on weighted DNF counting. Consider a formula φ defined on the set of variables
x = {x1,x2, . . . ,xn }. Let a weight function ρ : x �→ (0, 1) be such that weight of an assignment σ
can be defined as follows:

W (σ ) =
∏

xi :σ (xi )=1

ρ (xi )
∏

xi :σ (xi )=0

(1 − ρ (xi )).

Furthermore, we define the weight of a formula φ as

W (φ) =
∑
σ |=φ

W (σ ).

Given φ and ρ, the problem of weighted counting is to compute W (φ). We consider the case

where for each xi , ρ (xi ) is represented using mi bits in binary representation, i.e., ρ (xi ) = ki

2mi
.

Inspired by the key idea of weighted to unweighted reduction due to Chakraborty et al. [13], we
show how the problem of weighted DNF counting can be reduced to that of estimation of F0 over
n-dimensional ranges. The reduction is as follows: we transform every term of φ into a product
of multi-dimension ranges where every variable xi is replaced with interval [1,ki ] while ¬xi is
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replaced with [ki + 1, 2mi ] and every ∧ is replaced with ×. For example, a term (x1 ∧ ¬x2 ∧ ¬x3)
is replaced with [1,k1] × [k2 + 1, 2m2 ] × [k3 + 1, 2m3 ]. Given F0 of the resulting stream, we can

compute the weight of φ simply asW (φ) = F0

2
∑

i mi
. Thus a hashing-based streaming algorithm that

has poly (n,d ) time per item, yields a hashing-based FPRAS for weighted DNF counting, solving
an open problem from [1].

Multidimensional Dyadic Arithmetic Progressions. We will now generalize Theorem 8 to handle
arithmetic progressions instead of ranges. Let [a,b, c] represent the arithmetic progression with
common difference c in the range [a,b], i.e., a,a + c,a + 2c,a + id , where i is the largest integer
such that a + id ≤ b. Here, we consider d-dimensional arithmetic progressions R = [a1,b1, c1] ×
· · ·×[ad ,bd , cd ] where each ci is a power two. We first observe that the set represented by [a,b, 2�]
can be expressed as a DNF formula as follows: Let φ be the DNF formula representing the range
[a,b] and let a1, . . . ,a� are the least significant bits of a. Let ψ be the term that represents the
bit sequence a1 . . . a� . Now the formula to represent the arithmetic progression [a,b, 2�] is ϕ ∧ψ
which can be converted to a DNF formula of size O (n). Thus, the multi-dimensional arithmetic
progression R can be represented as a DNF formula of size O (n)d . Note that the time and space
required to convert R into a DNF formula are as before, i.e,O (nd ) time andO (nd ) space. This leads
us to the following corollary.

Corollary 1. There is a streaming algorithm to compute an (ϵ,δ ) approximation of F0 over d-

dimensional arithmetic progressions, whose common differences are powers of two, that takes space

O (nd/ε2 · log 1/δ ) and processing time O ((nd )4 · nd · 1
ε2 ) log(1/δ )) per item.

Affine Spaces

Another example of a structured stream is where each item of the stream is an affine space repre-
sented byAx = B whereA is a boolean matrix and B is a zero-one vector. Without loss of generality,
we may assume thatA is an×n matrix. Thus an affine stream consists of 〈A1,B〉, 〈A2,B2〉 . . ., where
each 〈Ai ,Bi 〉 is succinctly represents a set {x ∈ {0, 1}n | Aix = Bi }.

For a n × n Boolean matrix A and a zero-one vector B, let Sol(〈A,B〉) denote the set of all x that
satisfy Ax = B.

Proposition 5. Given (A,B), h ∈ HToeplitz (n, 3n), and t as input, there is an algorithm,

AffineFindMin, that returns a set, B ⊆ h(Sol(〈A,B〉)) so that if |h(Sol(〈A,B〉)) | ≤ t , then B =
h(Sol(〈A,B〉)), otherwiseB is the t lexicographically minimum elements ofh(Sol(〈A,B〉)). Time taken

by this algorithm is O (n4t ) and the space taken by the algorithm is O (tn).

Proof. Let D be the matrix that specifies the hash function h. Let C = {Dx | Ax = B}, and the
goal is to compute the t smallest element of C. Note that if y ∈ C, then it must be the case that
D |Ax = y |B where D |A is the matrix obtained by appending rows of A to the rows of D (at the
end), and y |B is the vector obtained by appending B to y. Note that D |A is a matrix with 4n rows.
Now the proof is very similar to the proof of Proposition 2. We can do a prefix search as before
and this involves doing Gaussian elimination using sub matrices of D |A. �

Theorem 9. There is a streaming algorithms computes (ϵ,δ ) approximation of F0 over affine spaces.

This algorithm takes space O ( n
ϵ 2 · log(1/δ )) and processing time of O (n4 1

ϵ 2 log(1/δ )) per item.

7 CONCLUSION AND FUTURE OUTLOOK

To summarize, our investigation led to a diverse set of results that unify over two decades of
work in model counting and F0 estimation. We believe that the viewpoint presented in this work
has the potential to spur several new interesting research directions. We sketch some of these
directions below:

ACM Transactions on Database Systems, Vol. 48, No. 3, Article 7. Publication date: August 2023.



Model Counting Meets F0 Estimation 7:25

Faster Model Counting Algorithms. In this article, we considered three F0 estimation algorithms
and showed that they can be transformed into model counting algorithms. An exciting research
direction is to explore the possibility of transforming other F0 estimation algorithms into model
counting algorithms. For example, can we transform the optimal (in terms of space and time) F0

estimation algorithm due to Kane, Nelson, and Woodruff [42] into a model counting algorithm
with better runtime than the currently known algorithms? Another F0 estimation algorithm that
is of interest is the HyperLogLog algorithm. In practice, the HyperLogLog is shown to be one of
the most efficient F0 estimation algorithms. Thus, transforming this algorithm could potentially
yield a new model counting algorithm that is faster in practice.

Higher Moments. There has been a long line of work on the estimation of higher moments, i.e.,
Fk in the streaming context. A natural direction of future research is to adapt the notion of Fk in
the context of CSP. For example, in the context of DNF, one can view F1 be simply a sum of the
size of clauses but it remains to be seen to understand the relevance and potential applications
of higher moments such as F2 in the context of CSP. Given the similarity of the core algorithmic
frameworks for higher moments, we expect an extension of the framework and recipe presented
in the article to derive algorithms for higher moments in the context of CSP.

Sparse XORs. In the context of model counting, the performance of underlying SAT solvers
strongly depends on the size of XORs. The standard construction of HToeplitz and Hxor lead to
XORs of size Θ(n/2) and an interesting line of research has focused on the design of sparse XOR-
based hash functions [2, 5, 27, 36, 39] culminating in showing that one can use hash functions of

form h(x ) = Ax + b wherein each entry of mth row of A is 1 with probability O (
log m

m
) [48]. Such

XORs were shown to improve runtime efficiency. In this context, a natural direction would be to
explore the usage of sparse XORs in the context of F0 estimation.
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