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The complexity of manycore System-on-chips (SoCs) is growing faster than our ability to manage them to 

reduce the overall energy consumption. Further, as SoC design moves toward three-dimensional (3D) archi- 

tectures, the core’s power density increases leading to unacceptable high peak chip temperatures. In this 

article, we consider the optimization problem of dynamic power management (DPM) in manycore SoCs for 

an allowable performance penalty (say, 5%) and admissible peak chip temperature. We employ a machine 

learning– (ML) based DPM policy, which selects the voltage/frequency levels for different cluster of cores as 

a function of the application workload features such as core computation and inter-core traffic, and so on. 

We propose a novel learning-to-search (L2S) framework to automatically identify an optimized sequence of 

DPM decisions from a large combinatorial space for joint energy-thermal optimization for one or more given 

applications. The optimized DPM decisions are given to a supervised learning algorithm to train a DPM pol- 

icy, which mimics the corresponding decision-making behavior. Our experiments on two different manycore 

architectures designed using wireless interconnect and monolithic 3D demonstrate that principles behind the 

L2S framework are applicable for more than one configuration. Moreover, L2S-based DPM policies achieve 

up to 30 % energy-delay product savings and reduce the peak chip temperature by up to 17 °C compared to 

the state-of-the-art ML methods for an allowable performance overhead of only 5 % . 
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 INTRODUCTION 

arge-scale manycore systems are essential for executing compute and data-intensive applications
 1 ]. However, the design of high-performance manycore chips is dominated by power and thermal
onstraints. Higher on-chip temperature accelerates aging, thereby degrading the system reliabil-
ty [ 2 ]. Hence, we need to establish suitable power-performance-thermal tradeoffs while designing
 manycore system. In this regard, Voltage-Frequency Island (VFI) is an enabling methodology
o create energy-efficient and thermally optimized manycore architectures [ 3 ]. VFI works on the
remise that each core’s computation and communication patterns vary during the execution of
he application and similar cores and associated routers/links should be clustered together. The
oltage/frequency (V/F) of each cluster can be regulated dynamically depending on the work-

oad. VFI is a scalable dynamic power management (DPM) strategy for manycore chips. Devel-
ping a DPM strategy to control V/F knobs of VFI clusters in a manycore chip poses two key chal-
enges. First, the search space of DPM decisions is exponential in the number of VFIs, V/F levels,
nd decision epochs (i.e., number of decision intervals while executing given application work-
oads). Second, optimal DPM decisions change depending on the desired tradeoff among target
bjectives (e.g., optimize power subject to p% performance penalty and the thermal budget). In ad-
ition to power-performance optimization, controlling temperature is important for three key rea-
ons. First, thermal effect (unlike power/energy) is both spatial (heat transfer) and temporal (heat
apacity) [ 4 ]. As a result, on-chip temperature can have non-trivial impact on lifetime and reliabil-
ty of the chip, and higher on-chip temperatures can even lead to permanent chip failures [ 5 ]. Sec-
nd, even low but persistent power consumption can lead to hotspots (temporal thermal effects).
hird, power and performance depend on the instruction sequence, CPU microarchitecture, and
/F levels, whereas chip temperature depends on physical aspects of the chip as well such as power
ensity, floorplan, and cooling [ 6 ]. This article considers the general problem of creating DPM poli-
ies to make optimal decisions for any pre-specified power-performance-thermal tradeoff. 

Prior work has demonstrated the effectiveness of machine learning (ML) - based methods
o implement VFI control policies. Both reinforcement learning (RL) and imitation learning

IL) have been extensively studied for VFI control and other DPM policies for manycore chips
 7 –9 ]. Moreover, IL has been shown to outperform RL for implementing VFI control in manycore
ystems [ 6 , 10 ]. Unlike RL, which relies on exploratory learning guided by a hand-designed reward
unction, IL relies on supervised learning guided by an expert policy. However, the effectiveness of
L critically depends on the accuracy of the expert policy. Prior work on IL for DPM has used hand-
esigned expert policies, which are based on performing heuristic search in the combinatorial
pace of DPM decision sequence guided by power and performance models. These expert policies
an be sub-optimal for different target design objectives and tradeoffs [ 11 ]. Moreover, configuring
L and IL appropriately is even more challenging when considering more than two objectives as
e demonstrate by considering power-performance-thermal tradeoffs. 
In this article, we propose a novel learning-to-search (L2S) framework to automatically con-

truct high-quality expert DPM policies for any desired power-performance-thermal tradeoff. The
ey and significant advantage of L2S over prior ML methods including RL and IL is that it pro-
ides a design automation view for DPM: The designer specifies the available control knobs and
he target tradeoffs for a set of design objectives (what part), and L2S automatically creates DPM
olicies to achieve the specified tradeoffs (how part). L2S employs parameterized DPM policies,
hich consider workload-aware features of the system state as input and obtain power manage-
ent decisions in each epoch (DPM policy is executed at 1-ms interval). The key idea behind L2S

s to formulate an explicit search in the continuous space of DPM policy parameters and solve
his search problem using the principles of Bayesian optimization [ 12 ]. Specifically, the search is
uided by learned statistical models from the training data in the form of parameters (input) and the
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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orresponding power, performance, and thermal evaluations (output). In each iteration, L2S selects
ne candidate policy parameter and evaluates the corresponding power, performance, and peak
emperature by executing the application workload on the target manycore platform with the goal
f quickly finding highly optimized DPM decisions. L2S employs an information-theoretic princi-
le to select the parameters for DPM policy evaluation, one that maximizes information gain of the
onstrained optimal pareto front. The constraint, in this article, corresponds to p% performance
enalty and a user-specified thermal budget. The pareto front refers to the feasible solution in the
ower, performance, and the peak chip temperature space. 
The search space of DPM decisions is exponential in the number of VFIs, V/F levels, and decision

pochs (e.g., ( 8 4 ) 
1000 

candidate policies for a four VFI system with eight V/F levels running an
pplication with 1,000 epochs). Hence, the above search problem is extremely challenging, because
here will be a handful of policies that satisfy the p % performance constraint for various workloads
onsidered here. To overcome this challenge, we propose a refined policy evaluation approach, i.e.,
e prune such DPM decisions that do not satisfy the p % performance penalty constraint and select

he highest scoring DPM decision from the promising ones at each decision epoch. This modified
olicy evaluation scheme allows L2S to uncover high-quality DPM decisions that optimize power
nd meets the joint performance-thermal constraints in a small number of iterations. To the best of
ur knowledge, L2S is the first ML framework that allows designers to automate the construction
f ML-based joint performance-thermal constrained DPM policies without significant input from
he system designer (RL requires good hand-engineered reward function, and IL requires hand-
esigned expert policy). 
Contributions. The key contribution of this article is the development and evaluation of an

2S framework with refined policy evaluation to create VFI-based DPM policies in manycore sys-
ems to achieve target power-performance-thermal tradeoffs. Specific contributions include the
ollowing: 

• We propose a scalable, automated L2S framework for constructing high-quality expert
DPM policies as a search process in the continuous space of policy parameters. Subse-
quently, we iteratively improve the accuracy of this search process guided by the predic-
tions and uncertainty of statistical models created from past policy evaluations. 

• We demonstrate the effectiveness of L2S framework via evaluation on two manycore
architectures designed using emerging technologies such as wireless interconnect and
monolithic 3D (M3D) . 

• Experimental results show that the DPM policies from the L2S framework reduce Energy-

Delay Product (EDP) by up to 26% and 30% and reduce the peak temperature by 13 °C
and 17 °C when compared to IL and RL, respectively. 

 RELATED WORK 

FI-based power management has become a mainstream solution to minimize the energy con-
umption of mobile and manycore systems [ 9 , 13 , 14 ]. Classical (i.e., non-ML) proactive [ 15 –18 ]
nd reactive [ 19 , 20 ] approaches have been proposed to either predict operating frequency such
hat temperature constraint is not violated in subsequent intervals (proactive) or throttle the cores
f certain threshold temperature is reached (reactive) to manage the temperature and power con-
umption. Reactive methods are not efficient due to the delay between the action (V/F tuning) and
esponse (temperature violation). Proactive methods such as in Reference [ 15 ] use core utilization
nd temperature to predict the operating frequency in the next decision epoch. However, simple
verage core utilization may not capture the information required to accommodate every core and
outer within a VFI with large intra-VFI workload variance. The dynamic thermal and power
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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anagement (DTPM) algorithm [ 16 , 17 ] regulates temperature with minimal performance im-
acts using gradient search algorithm (GSA) . A power budget is computed using predicted
emperature for a future decision epoch, and the number of active cores and their maximum fre-
uencies are computed using GSA to avoid temperature violations. However, GSA can become
ntractable for large decision spaces such as in the case of manycore systems. Furthermore, these

ethods do not formulate DPM as a multi-objective optimization problem (i.e., optimize all three
bjectives collectively: temperature, energy, and performance). 
ML methods such as RL and IL have successfully been deployed in various architectures start-

ng from manycore systems to mobile platforms [ 7 , 4 , 13 ] and shown to be better than classical
on-ML methods [ 9 , 10 ]. Boosting metric is proposed in Reference [ 21 ], which is based on V/F
ensitivities of performance, power, and temperature, and it maximizes performance under tem-
erature constraint. Their method utilizes a neural network (NN) - based model to estimate the
ensitivity of power and performance from applications’ performance counters at runtime. Their
rincipal focus was on minimizing the temperature violations while boosting the performance for
obile SoCs. Recent work used a Q -learning-based RL approach to solve the VFI control problem

 9 ]. However, the hardware overhead to store the VFI control policies increases for large state
paces and can become very high without a function approximator. To address this challenge, a
 -function can be approximated as a linear combination of a series of radial basis functions [ 22 ]
r a deep Q -learning method is used in which a NN acts as a function approximator [ 23 , 24 ]. How-
ver, none of these RL-based methods address the challenge of designing a good reward function,
hich is critical for an effective RL-based DPM policy. Prior RL-based work used a single objective

eward function comprisingonly thermal objective, and it was oblivious to energy minimization
 22 , 24 ]. Even the state model also comprisedonly the temperature values [ 22 ]. To better model
he system variance, the combination of each core’s frequency and utilization is used to model the
nvironmental state but most RL-based investigations either optimize temperature or save energy
 24 ]. However, a joint power-performance-thermal optimization in manycore system is necessary.
enerally, such DPM policy involves establishing suitable tradeoffs between multiple objectives.
 scalar parameter λ is associated with each objective in the reward function and tuning λ to
chieve the desired tradeoff also makes RL a computationally expensive method. In a recent work
 25 ], both energy and thermal savings are combined in a single reward function using a proximal

olicy approximation (PPO) -based RL technique, but the work is limited to objective of optimal
ask scheduling. Moreover, to avoid convergence and complexity arising from RL, feasible action
pace is limited to four V/F levels or less [ 5 ]. 

IL has addressed the challenges of RL and demonstrated its superiority over RL for VFI-based
ower management in large-scale manycore systems [ 9 , 10 , 26 ]. Besides the goal of power/energy
inimization, temperature optimization with performance constraint has been studied for mobile

latforms where IL has been shown to be a lightweight and optimal solution compared to RL [ 6 ].
L requires the construction of a high-quality expert policy for providing supervised training. Prior
ork has employed hand-designed heuristic search procedures over a large combinatorial space of
PM decision sequences guided by power and performance models to construct the expert policies

 4 , 9 ]. Expert policy is constructed by dividing the application into phases, and the best configura-
ion for energy minimization with p% performance penalty is searched for each phase. This applies
ell to the power and performance metric, since these models are phase independent and depend
n V/F configuration. However, such application window splitting cannot be accurately applied
o temperature models due to their spatial/temporal effects i.e., temperature in one phase depends
n the temperature values in all previous phases. As a result, expert policy is constructed for the
ask migration objective while per-cluster V/F tuning is not done using IL (but using a simpler
eedback control loop) [ 6 ]. Thus, creating expert policy for joint energy–performance–thermal
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 1. (a) Mapping from continuous DPM policy parameter space to discrete DPM configuration space. (b) 

DPM policy maps the system state s to produce a power-management decision. 
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ptimization is challenging. The generated expert policy can be sub-optimal for such complex
arget design objectives and tradeoffs, which means IL-based DPM policies can be sub-optimal. 

In contrast, the proposed L2S framework is aimed at automating the construction of high-quality
xpert policies. L2S formulates a search process in a relatively small continuous space of policy
arameters and employs ML to automatically improve the accuracy of this search process. Fur-
hermore, L2S does not need to break the application into phases or windows, and it can very
ffectively consider temporal effects of temperature leading to more accurate search process. L2S
earns statistical models from training data in the form of evaluation of policy parameters to make
PM decisions and employs an information-theoretic principle to select the sequence of candidate
olicy parameters for evaluation to quickly uncover high-quality expert DPM policies. 

 PROBLEM SETUP 

e consider a manycore system with C cores (e.g., systems with 64 cores) divided into m VFIs.
e are given a set of target application workloads, which will be executed on the manycore sys-

em. Our target is to create a runtime power management policy to optimize power consumption
ubject to an allowable performance penalty and admissible peak chip temperature. The DPM pol-
cy takes the current system state (e.g., key performance indicators, temperature information and
orkload features) and produces a decision vector ( d 1 , d 2 , . . . , d m 

), where each decision variable
llocates the V/F for a single VFI. The system state is represented by the workload features such
s each VFI’s average and peak inter-VFI communication (or traffic), VFI’s average and peak core
omputation (measured by instructions per cycle or IPC), and VFI’s previous epoch V/F level. These
eatures capture the average computation and communication patterns of the VFI and variance of
he computation and communication patterns within the VFI and use the contextual knowledge
f the previous prediction. 
In this work, we consider DPM policies represented as functions of the system state with

ontinuous parameters Θ ∈ R 

m , where Θ represents the weights of a multi-layer perceptron

MLP) . Prior IL work [ 9 ] demonstrated that simple linear functions are very effective and regres-
ion tree based non-linear models provide small benefits. Therefore, we consider a simple MLP as
 non-linear function without adding too many weight parameters beyond the linear model. For
xample, the system state s is represented as input features Φ(s ), and the DPM policy π ( Φ( s ), Θ)
aps the system state s to produce a power-management decision vector as shown in Figure 1 (b).

uppose E ( Θ), T ( Θ), Q ( Θ) denote the energy consumption, execution time, and peak temperature
sing the policy π with parameters Θ over N decision epochs respectively, i.e., the cumulative
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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um of energy and execution time in each decision epoch with respect to the corresponding V/F
llocation decisions and the peak chip temperature when running the target application work-
oad. In other words, every candidate Θ corresponds to one candidate DPM sequence (trajectory)
 i j (red-colored path) as shown in Figure 1 (a), where the power management configuration

PMC) sequence space is a discrete space of size L 

N ( P MC 1 , , P MC 2 , . . . , P MC L are the L candidate
onfigurations). Total possible PMC in each epoch, i.e., L, is equal to ( numb e r o f V /F le ve ls ) m ,
here m is the number of VFIs. The effectiveness of the DPM policy π critically depends on

he parameters Θ. Given a manycore architecture, application workload AP P , and a maximum
llowed performance penalty ( p% ), our goal is to find the optimal parameters Θ∗ such that E (Θ) is
inimized with respect to the p% performance penalty constraint and peak temperature ( Q max )

or a given distribution of initial states, 

Θ∗ = arдmin ΘE (Θ) 
s ub je ct to : T (Θ)/T ( πn om in al ) ≤ p 
and Q (Θ) ≤ Q max , 

(1)

here πn om in al is the policy that selects the highest V/F (i.e., nominal V/F) for all decision
ariables. To aid in this process, we assume the availability of power and performance models
hat can be used to estimate the energy and execution time for any given sequence of power man-
gement decision vectors. L2S performs search in the continuous space of parameters Θ ∈ R 

m to
teratively improve the quality of power management configuration sequence. Finally, we perform

upervised learning to identify the parameters ˆ Θ that mimic the behavior of the best uncovered
ower management configuration sequence. We demonstrate that the principles behind the L2S
ramework are applicable for more than one configuration by experimenting with manycore
latforms integrated via two different emerging network-on-chip (NoC) architectures, viz.,
ireless NoC and M3D NoC. 
Wireless NoC: The achievable performance of VFI-based manycore platforms depends on the

verall communication backbone, which relies predominantly on NoCs. Traditionally mesh-based
oCs have been used in VFI-based systems. However, mesh-based NoCs have large latency and

nergy overheads due to their inherently long multihop paths. In a wireless NoC, where the long-
ange shortcuts are implemented through mm-wave wireless links operating in the 10- to 100-GHz
ange, is shown to improve the energy dissipation profile and latency characteristics of manycore
hips [ 27 ]. In a VFI-based system the wireless links are mainly used for inter-VFI data exchange
 28 ]. It has been shown to improve the energy dissipation profile and latency characteristics com-
ared to mesh NoC-enabled VFI systems [ 29 ]. 
Monolithic 3D NoC: Emergence of M3D integration has opened the possibility of designing the

ltra-low-power and high-performance circuits and systems. The smaller dimensions of mono-

ithic inter-tier vias (MIV) offer high-density integration, the flexibility of partitioning logic
locks across multiple tiers, and significantly reduced total wire-length [ 30 ]. However, NoC is
n enabling solution for integrating large numbers of embedded cores in a single die. M3D NoC
rchitectures combine the benefits of these two paradigms (M3D IC and NoC) to offer an un-
recedented performance gain even beyond the Moore’s law regime. By exploiting the MIV-based
ertical connections in M3D, the multi-hop long-range planar links can be placed along the shorter
 dimension, and hence, overall system performance is improved significantly [ 31 , 32 ]. 

 LEARNING TO SEARCH FRAMEWORK 

n this section, we first provide a high-level overview of the proposed L2S framework to create
ptimized dynamic power management policies to achieve a target power–performance–thermal
radeoff. Subsequently, we describe the details of the key elements of the L2S framework. 
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Overview of L2S framework. The L2S approach has two key steps. First, L2S conducts search
n the continuous space of policy parameters Θ to identify the optimized sequence of power man-
gement decision vectors using the principles of Bayesian optimization [ 12 ]. Bayesian optimiza-
ion algorithms intelligently search the given input space to find optimized solutions using a small
umber of iterations or expensive-to-evaluate objective function calls (e.g., energy and execution
ime by running the target applications on the given manycore platform). These methods employ
 statistical model to guide the search process. The main advantage of this model-guided search
s that it helps in reducing the number of expensive objective function evaluations to solve opti-

ization problems over large search spaces. A key distinguishing feature of this step compared to
L is that L2S uses an information-theoretic reasoning principle to automatically guide the search
oward high-quality power management decisions. This contrasts with the existing sub-optimal
pproach of executing a hand-designed heuristic search procedure directly over the combinatorial
pace of power management decision sequences [ 9 , 10 ]. Second, L2S performs supervised learning

o estimate ˆ Θ to mimic the best power management decision-making behavior uncovered by the
earch process in the first step. 

To identify the best sequence of power management decisions, we learn statistical models for
nergy, execution time, and temperature over the parameter space Θ using the training data in
he form of policy evaluations E ( Θ), T ( Θ), and Q ( Θ) and use them to guide our search. These sur-
ogate statistical models allow L2S to make predictions with quantified uncertainty about energy,
xecution time, and peak temperature for policy parameters that are not yet evaluated. We perform
he following steps in each iteration: (1) We reason using the current statistical models to select
he next candidate policy parameters Θ that maximizes the information gain about optimal en-
rgy with the performance constraint and peak temperature constraint. (2) We evaluate the power
anagement policy π ( Φ( s ), Θ) by executing it on the manycore system running the target appli-

ations AP P to measure energy E ( Θ), execution-time T ( Θ), and on-chip peak temperature Q (Θ).
he next step is to use power/performance models to prune “bad” power management decisions
efore selecting the highest-scoring power management decisions by the DPM policy π ( Φ( s ), Θ).
his pruning step allows us to identify power management decision sequences, which satisfy the
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 2. High-level overview of the L2S framework, which is executed offline and the trained DPM policy is 

deployed for execution. 
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erformance penalty constraint. The fraction of feasible DPM decision sequences is significantly
maller than all possible decision sequences, which makes it a particularly challenging problem.
his step provides critical training data for the statistical models. We determine the peak tem-
erature by executing the application workload and prune such policies that do not satisfy the
eak temperature constraint. (3) We use the training data in the form of (input) policy parameters

and (output) policy evaluations E ( Θ), T ( Θ), and Q ( Θ) to update the statistical models. After
aximum iterations or convergence, we use the best uncovered sequence of power management

ecisions (minimum energy and meets the performance/peak temperature constraint) to perform

upervised learning to estimate the corresponding policy parameters ˆ Θ. Algorithm 1 provides the
seudo-code, and Figure 2 shows an overview of the L2S framework for power–performance–
hermal design objectives. Please note that the L2S framework is general for any user-defined
esign objectives. 

.1 Training Data and Learning Statistical Models 

n each iteration of the L2S framework, we collect one training example by evaluating a candidate
olicy parameter Θ (input variables) to get the corresponding energy E (Θ), execution time T (Θ),
nd temperature Q (Θ) (output variables) when running the given application workload APP on
he target manycore platform. At the end of t iterations, the aggregate training dataset consists of
training examples of input–output pairs. 
We want to learn statistical models from the aggregate training dataset after each iteration.

igure 3 depicts the evolution of the statistical model for an objective over t iterations. These
tatistical models are used for two purposes. First, to make fast predictions about the energy and
xecution time of (unknown) policy parameters Θ that are not evaluated yet, i.e., outside the train-
ng data. Second, to quantify uncertainty of predictions, which is a critical component that allows
s to reason about which candidate policy parameters to evaluate next to quickly uncover the
ptimal constrained pareto front. Note that power and performance models estimate the power
nd performance in each decision epoch, whereas statistical models map the policy parameters
o cumulative power, performance, and peak temperature over N decision epochs that is critical
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 3. Statistical model of the objective function O 1 ( Θ). For example, E (Θ) is a random GP model and 

looks like (a) prior to any optimization iteration (at t = 0). Over the iterations, training examples (shown 

as datapoints in (b)) give us more information about the objective function O 1 ( Θ) and guide the search 

toward promising candidate parameters for solving the optimization problem. Uncertainty is low for policy 

parameters Θ close to those in the training data and vice-versa as shown by the shaded region in (b). The 

thick line corresponds to the mean of the GP model and the shaded region corresponds to the variance in 

the prediction. 

Fig. 4. Effectiveness of policy-refinement algorithm (a) no refinement (b) refined policy evaluation. 
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o solve Equation ( 1 ). We employ Gaussian processes (GPs) [ 33 ] as our statistical models due
o their ability to approximate arbitrarily complex functions and principled uncertainty quantifi-
ation due to Bayesian interpretation. Intuitively, uncertainty will be low for policy parameters

close to those in the training data and vice versa. We learn three GP models M 1 , M 2 , and M 3

or execution time T (Θ), energy E (Θ), and peak chip temperature Q (Θ) objectives, respectively.
ote that GPs are typically used in the small training data settings, and since we are performing
ctive learning to automatically select new training examples, our approach is naturally designed
o be efficient in terms of the number of training examples required to solve the given optimiza-
ion problem. Importantly, the role of statistical models is not to mimic the true energy, execution
ime, and peak temperature functions uniformly over the entire policy parameter space but to only
uide the search toward efficiently solving the optimization problem at hand. 

.2 Policy Evaluation via Power and Performance Models 

he straightforward approach to perform policy evaluation is to select the highest scoring DPM
onfiguration from all the candidates using the policy parameters Θ at each decision epoch. How-
ver, the space of candidate policy parameters is very large and only a tiny fraction of the policy
arameters will meet the p% performance penalty constraint. Hence, the goal of L2S is to uncover
he optimal pareto set from this tiny set of feasible policy parameters. 

Each candidate policy Θ can be mapped to K-dimensional output space for the given K target
bjectives. Figure 4 shows such policies evaluated and mapped to two-dimensional space for two
bjectives, i.e., energy and performance when L2S is run for 1,000 iterations. Figure 4 (a) illustrates
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 5. Detailed description and illustration of policy evaluation step (Section 4.2 ) within the L2S framework. 

Policy parameters Θ are input to this block and corresponding objective evaluations are output. Target ap- 

plication(s) APP is run on the given manycore platform for N decision epochs. In each decision epoch, each 

VFI controller predicts V/F level by taking APP features into consideration. Pruning is done in this step to 

predict V/F that satisfies the given performance penalty constraint. Performance counters corresponding to 

pruned V/F level are given as input to power/performance models to predict power consumption and execu- 

tion time in each decision epoch. Next, temperature corresponding to this V/F trajectory is calculated using 

power and physical floorplan details of the manycore system using a temperature measurement tool. Finally, 

cumulative Energy E (Θ), execution time T (Θ), and temperature Q (Θ) are then calculated at the end of N 

decision epochs. 

Table 1. List of performance counters for power/performance predictors 

Performance counters recorded 

IPC Branch instructions Instruction fetch access Branch mispredictions 

Instructions retired Floating point instructions Memory access latency L2 cache requests 

Num cycles Number of load/stores L2 cache miss Data cache access 
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hat the naïve L2S approach is not able to uncover even a single policy in the desired “good” policies
pace (5% is the user-defined performance penalty constraint). From the sequence of DPM config-
rations, we observed that there are many DPM configurations, which do not satisfy the allowable
erformance penalty. One reason is that we do not have any training data about the feasible DPM
olicies yet, and we rely on exploration using the available (possibly incorrect) knowledge in the
orm of statistical models. This observation motivated us to refine the policy evaluation by avoiding
uch obvious bad DPM configurations. The key idea is to use power/performance models [ 34 ] and
he definition of DPM problem to prune undesired DPM configurations at each decision epoch and
ave the power management policy select the best scoring DPM configuration among the promis-

ng DPM configurations after pruning. As shown in Figure 4 (b), our refined policy evaluation with
runing allows us to quickly uncover policy parameters that meet the p% (e.g., 5%) performance
onstraint: The initial ones will serve as high-quality training examples for statistical models, and
he learned statistical models will allow us to further accelerate the search for feasible DPM poli-
ies and the optimal constrained pareto set of policy parameters. Figure 5 provides the detailed
escription and illustration of policy evaluation step within the L2S framework. 
To perform pruning, we use power/performance models that are parametric functions of the

erformance counters listed in Table 1 . These models are trained using a non-linear NN regressor
 35 ], and Table 2 shows the MLP configuration of the NN regressor used. Training these models
equires characterization of the applications while running at different configurations. Specifically,
e sweep the V/F levels from 0.65 to 1.0 V in steps of 0.05 V (and corresponding frequency levels
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Table 2. MLP Regressor Configuration for Power/performance Models (Section 4.2 ) 

Model 

Hyperparameters 

No. of hidden layers 2 
No. of Neurons 20 in each layer 

Activation ReLU 

Optimizer Adam 

Learning Rate 0.001 
Loss function Cross entropy 

Training parameters Batch size 200 
Epochs 500 
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entioned in Section 5.1 ). Next, we divide the aggregate set of training data into ten folds. We
eparate out three randomly selected folds for validation and use the remaining seven folds for
raining. Mean absolute percentage error (MAPE) , as shown in Equation ( 2 ), is typically used as

n error metric for the regression-based approach. Here Y e is the real value, and 

ˆ Y is the predicted
alue. MAPE error of the NN regressor remains within 3 % to 4 % for power/performance models
cross all applications. It may be noted that any other regression model such as support vector
egression, regression tree, and their ensemble variants can be employed to form the model and
nalysis of different regression models lie outside the scope of the article. 

Er r or = 

∑ N 

e= 0 (Y e − ˆ Y )/ Y e 

N 

× 100 . (2)

At each decision epoch, we prune the bad DPM configurations to identify the promising set us-
ng the power/performance models as follows. First, we check whether the predicted V/F levels by
he power management policy with parameters Θ satisfies the p % performance constraint using
he performance model. If not, then we iterate over the next best V/F configurations from the pol-
cy until we find a V/F configuration that meets the p % performance constraint. In other words, we
mprove the performance of m th VFI with highest performance penalty by iteratively increasing
he V/F level. Second, we iterate over the next best V/F configurations from the policy to find the
/F configuration that maximizes energy savings (via power model) while satisfying the p% per-

ormance constraint (via performance model). In other words, we reduce the power by iteratively
owering the V/F level of m th VFI such that the p% performance constraint holds true for the entire
ystem. These two steps are repeated for each VFI. Once we identify the performance constrained
areto frontier policies, we further constrain the DPM policy space by examining Q (Θ) trajectory
nd pruning the policies that do not satisfy the peak temperature constraint Q max . Pruning is done
n the order performance > energy > temperature to reduce the algorithmic computation and,
ence, L2S framework’s runtime to find an optimal policy. Performance pruning is executed be-
ore energy and temperature due to an observation that majority V/F configurations do not satisfy
he performance constraint. 

.3 Selecting Policy Parameters 

he effectiveness of the L2S framework also depends on the reasoning procedure to select the
andidate policy parameters Θ for evaluation in each iteration. Our goal is to use the predic-
ions and uncertainty estimates from the learned statistical models to quickly approximate the
onstrained optimal pareto front (i.e., the part of the optimal pareto front that meets the p% per-
ormance penalty constraint) in a small number of iterations. For the sake of completeness, we
lso define the notion of optimal pareto set and pareto front. The set of policy parameters X ∗ such
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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hat no other policy parameters Θ’ � X ∗ pareto-dominates a policy Θ in X ∗ is called the optimal

areto set of policies and the corresponding objective values ( � Y , execution time and energy for

ach policy Θ in X ∗) is called the optimal pareto front Y ∗. Generally, � Y is an output vector over K
esign objectives. 
Recall that we formulate the problem of finding DPM policy as an optimization problem in the

pace of policy parameters Θ. Our goal is to find policy parameters in the search space with op-
imal energy consumption subject to performance and temperature constraints. Intuitively, L2S
teratively selects candidate policy parameters Θ for evaluation that will take us closer to the
ptimal solution in a small number of iterations. We formalize this through the notion of maxi-
izing information gain about the constrained optimal pareto front Y ∗c . We propose to apply an

nformation-theoretic algorithm [ 36 ] that selects the next candidate policy parameters Θ, given
he aggregate training data of policy evaluation D: pairs of input (policy parameters) and output
energy, execution time, and peak temperature evaluation) as explained in Section 4.1 . Our utility
unction is given by the following mathematical expression: 

α ( Θ) = I 
(
{ θ , � Y }, Y ∗c | D 

)
, (3)

= H 

(Y ∗c | D 

) − E Y 

[ 
H 

(
Y ∗c | D ∪ { Θ, � Y } 

)] 
, (4)

= H ( � Y | D, Θ) − E Y 

∗
c 

[ 
H 

(
� Y | D, Θ, Y ∗c 

)] 
. (5)

Information gain I (. ) is defined as the expected reduction in entropy H (. ) of the posterior dis-
ribution P ( Y ∗c | D ) over the optimal constrained pareto front Y ∗c as given in Equations ( 4 ) and ( 5 )
esulting from the symmetric property of information gain. The first term in the right-hand side of

quation ( 5 ), i.e., the entropy of a factorizable K-dimensional Gaussian distribution P ( � Y | D, Θ)
an be computed in closed form as shown in Equation ( 6 ): 

H ( � Y | D, Θ) = 
K ( 1 + ln ( 2 π ) ) 

2 
+

K ∑ 

i= 1 

ln ( σi ( Θ) ) , (6)

here σ 2 
i (Θ) is the predictive variance of the i th GP model at input Θ. Intuitively, it says that

he entropy is distributed over the K GP models by the sum of their log standard-deviations. The
econd term in the right-hand side of Equation ( 5 ) is an expectation over the optimal constrained
areto front Y ∗c . We can approximately compute this term via Monte Carlo sampling as shown in
quation ( 7 ), where S is the number of samples and Y ∗c s denotes a sample pareto front. The reader

s referred to Reference [ 36 ] for complete details of the derivation, 

E Y 

∗
c 

[ 
H 

(
� Y | D , θ , Y ∗

)] 
� 1 

S 

S ∑ 

s= 1 

[ 
H 

(
� Y | D, Θ, Y ∗c s 

)] 
. (7)

.4 Supervised Learning to Estimate 

ˆ Θ

nce we identify the constrained pareto front (or pareto set) from L2S, we perform full system
imulations using a cycle-accurate simulator to measure the EDP associated with the sequence
f DPM configurations selected by each candidate policy in the pareto set, i.e., policy evaluation
ith pruning. Next, we select the best policy Θopt with the lowest EDP and perform supervised

earning using the sequence of DPM configurations obtained by policy Θopt after pruning for a

ample of initial states to learn the parameters of the DPM policy function 

ˆ Θ. Recall that we get
ne single trajectory (sequence of DPM decisions for each epoch) for each initial state. Our goal

s to learn the parameters of policy function 

ˆ Θ to mimic the corresponding power management
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 6. Policy parameters Θopt with least EDP uncovers a V/F trajectory (selected configuration after pruning 

at each decision epoch). For each decision epoch, we add m regression/training examples (features such as 

IPC, inter-core traffic and the V/F of the VFI from the V/F trajectory), one for each VFI. Finally, DPM policy 

parameters ˆ Θ are learned for m VFIs using supervised learning via a MLP classifier. 

Table 3. MLP Classifier Configuration for Supervised Learning (Section 4.4 ) 

Model 

Hyperparameters 

No. of hidden layers 1 
No. of Neurons 5 

Activation ReLU 

Optimizer Adam 

Learning Rate 0.003 
Loss function Cross entropy 

Training parameters Batch size 20 
Epochs 200 
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ehavior without any pruning. In other words, if we use the policy function with parameters ˆ Θ to
ake DPM decision at each epoch using the input features of the application workload, then these

ecisions should match with the trajectory. This is done by collecting classification examples at
ach decision epoch (features of the system as input and V/F level from the trajectory as output)
nd the aggregate set of classification training examples over (different) application workloads

nd initial states are used to estimate the parameters ˆ Θ by minimizing the classification error as
hown in Figure 6 . A MLP classifier (parameters listed in Table 3 ) is used for supervised learning.
e divide the aggregate set of classification training examples into ten folds. We separate out three

andomly selected folds for validation and use the remaining seven folds for training. MAPE loss
Equation ( 2 )) of the MLP regressor is within 5 % on the validation set. 

 EXPERIMENTS AND RESULTS 

.1 Experimental Setup 

anycore platform and Benchmarks. We employ GEM5 [ 37 ], a full-system simulator, to ob-
ain detailed processor and network-level information. In all the experiments, we consider a system
ith 64 × 86 cores running Linux within the GEM5 platform in full-system mode, noting that L2S
rinciples are applicable to higher core count as well. Three SPLASH-2 [ 38 ] benchmarks (FFT, LU,
nd WATER) and four PARSEC [ 39 ] benchmarks: (CANNEAL, FLUIDANIMATE (FLUID), DEDUP,
nd VIPS) are considered for experimental evaluation noting that our findings are similar for the
ther benchmarks. These applications are selected, as they are representative of various charac-
eristics as follows: FFT (high IPC and high traffic), CANNEAL (memory intensive but low IPC),

ATER and LU (high IPC and low traffic), and FLUID (high off-chip bandwidth requirement). The
erformance counters generated by GEM5 simulations are given as input to McPAT [ 40 ] to deter-
ine the power values. Steady state on-chip temperature at each decision epoch is calculated by
otspot [ 41 ] using the power traces as input. 
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Table 4. VFI Cluster Sizes for Various Benchmarks 

Benchmark VFI 1 VFI 2 VFI 3 VFI 4 
CANNEAL 22 22 16 4 
FFT 29 23 7 5 
FLUID 40 16 4 4 
LU 32 24 4 4 
WATER 41 15 4 4 
DEDUP 40 16 4 4 
VIPS 30 26 4 4 
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VFI system. We consider four VFI clusters as shown in Table 4 , while imposing a minimum VFI
luster size of four cores. By using the k -means algorithm, we cluster the cores to minimize each
FI’s intra-cluster variation in the time-varying computation and traffic statistics [ 42 ]. It should
e noted that the analysis of VFI clustering methods is beyond the scope of this article and any
lustering approach could be used to similar effect. 

Design Objectives. We consider three primary design objectives, namely, performance, energy,
nd peak chip temperature, to test the effectiveness of different DPM algorithms. 

Decision space for DPM policies. We consider nominal range of operation in the 28-nm tech-
ology node. We use eight discrete V/F pairs for both the wireless- and the M3D NoC-enabled
rchitectures. Due to the difference in the physical layer characteristics of wireless and M3D ar-
hitectures, their V/F levels differ. The V/F levels for wireless architecture are (volts/GHz): 1.0/3.0,
.95/2.75, 0.9/2.5, 0.85/2.23, 0.8/1.94, 0.75/1.64, 0.7/1.33, and 0.65/1.02 and the corresponding lev-
ls for the M3D architecture are (volts/GHz): 1.0/3.5, 0.95/3.2, 0.9/2.9, 0.85/2.58, 0.8/2.25, 0.75/1.9,
.7/1.54, and 0.65/1.18. The DPM decision space is defined by the number of VFIs and their respec-
ive V/F values. As we have four VFIs and eight V/F pairs, there are 4,096 possible DPM decisions
or each system state. 

DPM policy representation. One function (e.g., MLP) is used for each VFI to predict V/F values
t each decision epoch using the following input features: each VFI’s average and peak traffic,
verage and peak computation, and previous epoch V/F level [ 9 ]. The MLP configuration used to
epresent each of the four VFI controllers is as follows: one input layer with the ReLU activation
nd an output layer with the softmax activation. The number of output layer neurons is equal to
umber of possible DPM decisions (e.g., eight for discrete V/F levels). 

.2 L2S Framework and Baseline DPM Algorithms 

2S method. We used initial 30 samples (consisting of policy parameter Θ and correspond-
ng energy E (Θ), execution time T (Θ), and temperature Q (Θ)) to bootstrap the statistical mod-
ls. L2S is an iterative method and high-quality pareto-optimized policies are generated within
00 iterations across all the benchmarks. We select the policy from the pareto front that minimizes
DP subject to p% (set to 5% in experiments) performance penalty and Q max (set to 85 °C) peak
emperature constraint for runtime execution. We compare the performance of our L2S framework
ith the existing ML methods such as RL and IL. 
Reinforcement Learning. We use the state-of-the-art RL method, namely, PPO, in our exper-

ments. PPO is shown to achieve high accuracy for the learned policy [ 43 , 44 ]. We employ the
ame policy representation as the L2S framework for actor–critic networks for PPO. Prior work
 9 , 11 ] has constructed a single reward function for two objectives, i.e., energy E ( s, a ) and perfor-
ance T ( s, a ) in Equation ( 8 ), where ( s, a ) represents state–action pair. In this work, we extend

he reward function to include the third objective, i.e., temperature Q ( s , a ) for peak temperature
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 7. Pareto-optimal policies uncovered by L2S method, illustrating energy-performance-thermal tradeoff

for (a) wireless, and (b) M3D-NoC architecture for various applications. 
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onstraint. The scalarization parameters λ1 , λ2 are varied in the range {1, 10, 100, 1000} to achieve
 desired tradeoff for each application workload. Although PPO is a sample-efficient method, over
,000 iterations were needed for convergence, 

R ( s, a ) = E ( s, a ) + λ1 ·T ( s, a ) + λ2 ·Q ( s, a ) . (8)

Imitation Learning. For VFI-enabled systems, an expert is defined as the policy that allocates
he best V/F levels for each VFI to minimize EDP while satisfying the p% performance constraint
nd peak temperature constraint. In our experiments, we consider 5% performance penalty and
5 °C peak temperature constraint to construct the hand-designed expert DPM policy from prior
ork [ 9 ]. Exact IL algorithm with regression tree learning combined with data aggregation tech-
ique (to avoid error propagation) is employed to mimic the expert DPM policy. 
DTPM. We adapt the algorithm proposed in Reference [ 16 ] to the VFI-enabled manycore plat-

orm for comparison with the proposed L2S framework. The DTPM algorithm starts from the
emperature constraint Q max (85 °C) and works backward to compute power budget and corre-
ponding maximum V/F values of the VFIs to maintain the temperature below Q max . The goal of
TPM is to prevent temperature violations while maximizing the performance. If the predicted

emperature of any VFI cluster exceeds the Q max constraint, then power budget is computed, and
/F is reduced to the level that satisfies the power budget. 

.3 Energy–Performance–Thermal Tradeoff

ne key advantage of L2S over IL- and RL-based methods is that pareto-optimized policies are
vailable to the designer with minimal effort, i.e., pareto-optimal policies are available to the de-
igner in one L2S run, whereas one needs to vary the scalarization parameters λ1 , λ2 to uncover
ultiple policies in IL- and RL-based methods. Figure 7 shows the pareto-optimal L2S policies

emonstrating energy–performance–thermal tradeoff for various applications for (a) wireless and
b) M3D NoC-enabled manycore systems. We show that L2S policies with 4% to 5 % performance
enalty dissipate less energy and have lower peak temperatures compared to policies with near-
ero performance penalty. L2S uncovers DPM policies that reduce energy by up to 20% for various
pplication workloads almost at zero performance penalty. These policies may appear attractive
o the designer if thermal constraints were not considered. However, such policies may not satisfy
eak temperature constraint and thereby reduce thermal reliability. For example, in M3D NoC-
nabled manycore systems, several L2S policies with low (near-zero) performance penalty do not
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atisfy the 85 °C peak temperature constraint and, hence, cannot be considered. We demonstrate
hat the joint performance-thermal-constrained pareto front is both workload and NoC architec-
ure dependent, and L2S automates the search process enabling the designer to choose a DPM
olicy along the pareto front that has desired thermal margin and performance penalty. 
Next, we compare the performance of the proposed L2S framework with respect to IL- and

L-based methods. All the results are normalized with respect to a system without VFI (NVFI).
ince EDP is a metric that captures both energy and execution time in one parameter, we use
t as the relevant measure to evaluate the quality of L2S, IL, and RL methods. Figure 8 (a) and (b)
hows the EDP and peak temperature comparison for L2S, IL, and RL for the wireless NoC-enabled
anycore architecture. The optimized DPM policy uncovered by the proposed L2S reduces the
DP over IL and RL by up to 10% and 22%, respectively. Furthermore, these application-specific
2S policies reduce the peak temperature by up to 3 ◦C and 12 °C over IL- and RL-based methods,
espectively. Similarly, Figure 8 (c) and (d) show the EDP and peak temperature results for the
3D NoC-enabled architecture, where L2S policy reduces EDP (peak temperature) by up to 26%

nd 30% (5 ◦C and 17 °C) compared to IL and RL, respectively. L2S performs better compared to
L and RL due to its effective search process in the continuous space of parameters guided by
earned statistical models, thereby reducing the EDP and peak temperature by highest margin.
igure 9 illustrates the V/F sequence and corresponding temperatures for L2S-, IL-, and RL-based
PM policies considering the FFT application on the wireless NoC-based system as an example. It

s evident that throughout the application lifetime, the predicted V/F values are lower for L2S than
oth IL and RL policies, reducing the power consumption and peak temperature while satisfying
he user-defined p% performance penalty constraint. For brevity, we do not show the V/F sequence
or all other applications. However, similar results are observed across all the benchmarks on both
ireless and M3D architectures. Overall, our results demonstrate that the L2S policy performs

qually well irrespective of the physical layer of the NoC architecture. Hence, we can conclude
hat the proposed L2S methodology is effective for wireless- and M3D-NoC enabled architectures.

.4 Comparison with DTPM 

n this section, we compare the performance of the L2S policy with the DTPM (non-ML state-of-
he-art) method in terms of the EDP and peak temperature. As shown in Figure 10 (a), EDP achieved
ia DTPM policy is up to 45 % higher than the L2S policy for the LU benchmark. Moreover, the
emperature in case of DTPM method remains closer to the 85 °C peak temperature constraint in
our of the benchmarks and is higher than L2S policies across all the benchmarks, as shown in
igure 10 (b). There are two key reasons behind these sub-optimal results of DTPM policy. First,
TPM utilizes a default frequency governor, such as Ondemand [ 45 ], which takes only CPU uti-

ization into consideration to predict frequency. Second, the goal of DTPM is to reduce frequencies
nly if the temperature is violated. In case temperature is less than the 85 °C peak temperature con-
traint, it tries to increase the frequency to the highest V/F level of the system without considering
ower consumption. In other words, it does not solve the multi-objective problem of optimizing
ower, performance, and temperature and is sub-optimal. 

.5 Application-agnostic Policy 

n this section, we discuss that an application-agnostic L2S policy can show similar performance
s an application-specific L2S policy. To design an application-agnostic L2S-based DPM policy
termed as AVG), we consider a set of training applications and learn policy parameters from the
ggregate training data from expert DPM policies for those applications. For each of the W ap-
lications, we create a different AVG policy using the set of remaining W − 1 applications (leave-
ne-out). Each AVG configuration executes the aggregate DPM policy (trained using the aggregate
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 84. Pub. date: September 2023. 
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Fig. 8. EDP (normalized with respect to NVFI) and peak temperature comparison of RL, IL, and L2S policies 

for wireless (a and b), and M3D (c and d) NoC architectures. 

s  

l  

l  

e  

p  
upervised data from expert policy for each of the W − 1 applications) on the application that was
eft out during policy optimization (otherwise unknown to the optimization). As an example, we
earned an AVG policy using CANNEAL, WATER, LU, and FLUID and left out FFT. Next, we ex-
cute FFT using this AVG policy. Figure 11 shows the normalized EDP and temperature of AVG
olicy on the wireless NoC-based architecture for all the applications under consideration. From
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Fig. 9. VFI 1’s predicted voltage for RL, IL and L2S policy running FFT on the wireless NoC architecture. 

Fig. 10. (a) EDP (normalized with respect to L2S) and (b) peak temperature comparison of L2S and DTPM 

(state-of-the-art non-ML) policies on the wireless NoC architecture. 

Fig. 11. (a) EDP comparison and (b) temperature of application-specific policies vs AVG policy. 
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igure 11 (a), we note that, on average, only 3.6% degradation in EDP is observed for all applications
hen compared to application-specific policies with worst case reaching only up to 5%. We see

he same trend for the M3D-based architecture, too. Similarly, temperature of AVG policy has vari-
nce of 1.7 °C on an average with respect to application-specific policies, as shown in Figure 11 (b).
y learning from aggregate training data of multiple applications, application-agnostic policy can
etter generalize to the unseen application. Therefore, an application-agnostic policy optimized
or a subset of applications can be reused for a new application of the suite without significant
enalty in EDP. 

.6 Implementation Overhead 

he VFI controller is represented by the same MLP function for all three ML-based methods (L2S,
L, and RL). Hence, the storage cost and decision-making time for each method is the same. The
emory required to store the DPM policy is 4 Kb, which is negligible. Area overhead of the VFI

ontroller is 0.03% for a 20 × 20 m m 

2 die. Energy consumed per decision is 62.4 pJ, and per-decision
xecution of a DPM policy takes 0.24% of the decision epoch interval. Note that all ML-based
ethods (L2S, IL, and RL) are executed offline to create DPM policies that are executed at runtime

i.e., no training at runtime). Therefore, we do not report training overhead details noting that L2S
as relatively less overhead. 

 CONCLUSION 

PM is a common strategy to reduce energy consumption of a manycore system without intro-
ucing unnecessary performance overhead. We proposed a L2S framework for creating optimized
PM policies for manycore systems, where the search is intelligently guided by learned statistical
odels. We considered a VFI-based DPM to show the effectiveness of L2S with respect to existing
achine learning-based methods. Our experiments demonstrate that DPM policy uncovered by

he proposed L2S framework reduces energy–delay–product (peak temperature) overIL and RL
olicies by up to 26% and 30% (13 ◦C and 17 °C), respectively, for two qualitatively different many-
ore architectures. Furthermore, we demonstrate the application-agnostic nature of the L2S pol-
cy. An application-agnostic policy achieves equally good performance as the application-specific
ounterpart. 
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