
50

CoMeFa: Deploying Compute-in-Memory on FPGAs for

Deep Learning Acceleration

AMAN ARORA, University of Texas, USA

ATHARVA BHAMBURKAR, BITS Pilani Goa, India

AATMAN BORDA and TANMAY ANAND, BITS Pilani, India

RISHABH SEHGAL and BAGUS HANINDHITO, University of Texas, USA

PIERRE-EMMANUEL GAILLARDON, University of Utah, USA

JAYDEEP KULKARNI and LIZY K. JOHN, University of Texas, USA

Block random access memories (BRAMs) are the storage houses of FPGAs, providing extensive on-chip mem-

ory bandwidth to the compute units implemented using logic blocks and digital signal processing slices. We

propose modifying BRAMs to convert them to CoMeFa (Compute-in-Memory Blocks for FPGAs) random

access memories (RAMs). These RAMs provide highly parallel compute-in-memory by combining computa-

tion and storage capabilities in one block. CoMeFa RAMs utilize the true dual-port nature of FPGA BRAMs

and contain multiple configurable single-bit bit-serial processing elements. CoMeFa RAMs can be used to

compute with any precision, which is extremely important for applications like deep learning (DL). Adding

CoMeFa RAMs to FPGAs significantly increases their compute density while also reducing data movement.

We explore and propose two architectures of these RAMs: CoMeFa-D (optimized for delay) and CoMeFa-A (op-

timized for area). Compared to existing proposals, CoMeFa RAMs do not require changing the underlying

static RAM technology like simultaneously activating multiple wordlines on the same port, and are practi-

cal to implement. CoMeFa RAMs are especially suitable for parallel and compute-intensive applications like

DL, but these versatile blocks find applications in diverse applications like signal processing and databases,

among others. By augmenting an Intel Arria 10–like FPGA with CoMeFa-D (CoMeFa-A) RAMs at the cost of

3.8% (1.2%) area, and with algorithmic improvements and efficient mapping, we observe a geomean speedup

of 2.55× (1.85×) across microbenchmarks from various applications and a geomean speedup of up to 2.5×
across multiple deep neural networks. Replacing all or some BRAMs with CoMeFa RAMs in FPGAs can make

them better accelerators of DL workloads.

CCS Concepts: • Computer systems organization→ Reconfigurable computing; Neural networks; •

Hardware→ Static memory; Hardware accelerators; Reconfigurable logic and FPGAs;

Additional Key Words and Phrases: FPGA, Processing-In-Memory, Compute-In-Memory, Block RAM, Deep

Learning, Machine Learning

This research was supported by National Science Foundation (NSF) grant 1763848 and the Intel Rising Star Faculty award.

Authors’ addresses: A. Arora, R. Sehgal, B. Hanindhito, J. Kulkarni, and L. K. John, The University of Texas at Austin, Elec-

trical and Computer Engineering, 2501 Speedway, C0803, Austin, TX 78712; emails: {aman.kbm, sehgal.rish}@utexas.edu,

hanindhito@bagus.my.id, jaydeep@austin.utexas.edu, ljohn@ece.utexas.edu; A. Bhamburkar, Birla Institute of Technol-

ogy & Science, Pilani K K Birla Goa Campus, Department of Electrical and Electronics Engineering, NH - 17B, Zuarinagar,

Goa 403726, India; email: f20190456@goa.bits-pilani.ac.in; A. Borda and T. Anand, Birla Institute of Technology and Sci-

ence, VidyaVihar Campus, Department of Electrical and Electronics Engineering, Pilani, Rajasthan 333031, India; emails:

{borda.aatman, tanmay.anand29}@gmail.com; P.-E. Gaillardon, Department of Electrical and Computer Engineering, 50 S.

Central Campus Drive, Rm. 2110 MEB, Salt Lake City, UT 84112; email: pierre-emmanuel.gaillardon@utah.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1936-7406/2023/07-ART50 $15.00

https://doi.org/10.1145/3603504

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

https://orcid.org/0000-0003-2547-4424
https://orcid.org/0009-0001-5504-978X
https://orcid.org/0009-0007-4531-9671
https://orcid.org/0000-0002-5725-7048
https://orcid.org/0000-0003-3327-0595
https://orcid.org/0000-0002-8485-581X
https://orcid.org/0000-0003-3634-3999
https://orcid.org/0000-0002-0258-6776
https://orcid.org/0000-0002-8747-5214
https://doi.org/10.1145/3603504
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603504&domain=pdf&date_stamp=2023-07-27

50:2 A. Arora et al.

ACM Reference format:

Aman Arora, Atharva Bhamburkar, Aatman Borda, Tanmay Anand, Rishabh Sehgal, Bagus Hanindhito, Pierre-

Emmanuel Gaillardon, Jaydeep Kulkarni, and Lizy K. John. 2023. CoMeFa: Deploying Compute-in-Memory

on FPGAs for Deep Learning Acceleration. ACM Trans. Reconfig. Technol. Syst. 16, 3, Article 50 (July 2023),

34 pages.

https://doi.org/10.1145/3603504

1 INTRODUCTION

Deep Learning (DL) applications are commonplace in today’s world. The ever-increasing com-

putational demands of DL workloads have resulted in an explosion of hardware acceleration alter-

natives, ranging from ASICs to GPUs to FPGAs. FPGAs are well suited to the evolving needs of DL

applications because they provide customizable hardware with massive parallelism, low latency,

and high energy efficiency.

FPGAs contain fine-grained programmable Logic Blocks (LBs), fixed-function math units

(Digital Signal Processing (DSP) slices), and Block Random Access Memory (BRAM) struc-

tures that are connected via a highly configurable routing/interconnection fabric. BRAMs play a

vital role by storing operands and results on-chip, feeding the compute units with data at a very

high bandwidth.

The current usage paradigms of BRAMs, LBs, and DSPs pose limitations to the acceleration that

can be achieved using FPGAs. The separation of compute units (LBs and DSPs) from storage units

(BRAMs) implies data movement using the routing/interconnect to feed the compute units with

input data and to store the outputs back to the storage units. This significantly stresses the routing

resources and leads to increased power consumption.

FPGAs provide the ability to develop hardware for different precisions. This is especially impor-

tant for DL applications because the precision requirements change rapidly. DSP slices, however,

support a limited set of precisions. FPGA programmers end up implementing low-precision math

units on LBs instead of DSPs, reducing the number of LBs available for other purposes and leaving

DSPs unused.

In many large FPGAs deployed in cloud applications, hundreds of megabits of data can be stored

on-chip in BRAMs, enabling fully data-resident acceleration. However, in applications where on-

chip storage requirements are low (e.g., where data is streamed to the FPGA), BRAMs may be left

idle. Additionally, BRAMs on FPGAs support a limited set of heights and widths. This limits the

bandwidth available to the compute units because the data needs to be read out from the interface

of the BRAM to programmable routing (address and data buses). Typically, a larger number of bits

can be sensed per cycle inside the BRAM than can be brought out to the interface.

In this article, we solve the limitations mentioned previously by proposing to convert BRAMs

on an FPGA to CoMeFa Random Access Memories (RAMs). A CoMeFa RAM block enables

computation within the RAM array, without transferring the data in or out of it. One-bit bit-serial

configurable Processing Elements (PEs) are added to the output of the sense amplifiers. This

transforms the BRAM into a parallel Single Instruction Multiple Data (SIMD) computation unit.

The availability of true dual-port mode in FPGA BRAMs [24, 55] is exploited to read operands.

Computation in any precision can be easily performed in CoMeFa RAMs without any explicit

hardware because it uses bit-serial compute [14]. For performing a different operation or for using

a different precision, a different instruction sequence needs to be generated and applied to the

CoMeFa RAM. CoMeFa RAMs reduce the dependence on routing/interconnect and hence increases

the routability of the FPGA. Data movement is reduced because the computation is done in the

RAM itself, thereby saving power and reducing energy. Since the data is not moved in/out of

the RAM block, routing interface limitations do not restrict the available bandwidth. Instead, the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

https://doi.org/10.1145/3603504

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:3

internal physical geometry of the RAM, which is wider than the interface width, governs the

effective bandwidth. The compute throughput and compute density (GOPS/mm2) of the FPGA is

increased significantly owing to the massive parallelism that is unlocked because of the existence

of numerous RAM blocks on an FPGA. When not computing, CoMeFa RAMs can still function as

normal BRAMs to store data.

Although we focus on DL in this article, CoMeFa RAMs are versatile blocks that can be used in

many applications. The increased compute throughput of the FPGA by adding CoMeFa RAMs can

be utilized by any application that suits a SIMD execution paradigm. CoMeFa RAMs can be used in

diverse parallel applications like signal and image processing, databases, compression, encoding,

decoding, and so forth. Because of the bit-serial nature of the compute, CoMeFa RAMs are partic-

ularly suited for throughput-oriented latency-tolerant workloads. Workloads with low-precision

compute and bitwise operations are also well accelerated using CoMeFa RAMs.

Our contributions in this article are the following:

(1) We propose compute-enabled BRAM blocks called CoMeFa RAMs and describe their archi-

tecture and operation.

(2) We show the versatility of CoMeFa RAMs by mapping several applications with different

workload characteristics, with a special focus on DL applications.

(3) We present novel processing-in-memory hardware concepts: a configurable PE and exploit-

ing dual-portedness of RAMs to perform computation.

(4) We present novel processing-in-memory algorithmic concepts: One Operand Outside

RAM (OOOR) operations.

(5) We quantify the performance and energy benefits of using CoMeFa RAMs for multiple mi-

crobenchmarks and Deep Neural Networks (DNNs).

An earlier and less detailed version of this work appeared at the FCCM 2022 symposium [6].

We extend that work by describing the implementation options of CoMeFa RAMs in detail, in-

cluding new microbenchmarks and experiments, increasing the focus on DL, including evaluation

of end-to-end neural networks, and showcasing the integration of CoMeFa RAMs in an accelera-

tor framework. We also provide a solution for a challenge identified in the previous work—using

stored programs to enhance the programmability of CoMeFa RAMs.

2 RELATED WORK

2.1 Compute-in-Memory

Compute-in-Memory or Processing-in-Memory (PIM) [20] is the paradigm of bringing com-

putation closer to the data, instead of moving data to distant compute units. Many accelerators

using PIM have been proposed and deployed: ReRAM based [13, 21, 44], Dynamic Random Ac-

cess Memory (DRAM) based [18, 37, 43], and Static Random Access Memory (SRAM) based

[3, 30, 31, 52].

Computational RAM (or C-RAM) [16] is an architecture where a row of PEs is added to a memory

(DRAM or SRAM) to convert it into a SIMD processor, as shown in Figure 1(a). Each PE is pitch-

matched with a memory column (bitline). An instruction is received by the memory from the host,

operand rows (wordlines) are read and stored in the PEs, the operation is then performed, and the

results are stored back into a row. All PEs in a memory execute the same instruction in a cycle.

This is shown to achieve significant speedup for applications like image processing, databases, and

computer-aided design, among others.

Jeloka et al. [28] created a logic-in-memory SRAM prototype shown in Figure 1(b), where mul-

tiple wordlines are activated simultaneously and the shared bitlines can be sensed, effectively

performing logical AND and NOR operations on the data stored in the activated wordlines. This

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:4 A. Arora et al.

Fig. 1. Related approaches for compute-in-memory.

technology is deployed on CPU caches to transform them into parallel processing engines [2], lead-

ing to speedups in many applications involving operations like word count, string match, and so

forth. In Neural Cache, Eckert et al. [14] apply this technology to DL applications, adding PEs to the

sense amplifiers and deploy bit-serial compute to perform DL operations. Wang et al. [53] proposed

integrating the technology from Neural Cache into FPGA BRAMs to create Compute Capable

Block Random Access Memories (CCB). Speedup is shown for Recurrent Neural Networks

(vanilla RNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRN)), for int8

and 8-bit block floating-point precisions. To avoid data corruption because of multi-row access, the

wordline voltage (and hence the frequency of operation) has to be lowered significantly. An addi-

tional row decoder is required for multi-row access. Additionally, in this architecture, one sense

amplifier for each pair of bitlines (BL/BLB) is replaced with two sense amplifiers (one with BL/Vref

and another with BLB/Vref). The complexity associated with these changes to the memory array

makes this architecture not very practical to implement on a large scale.

In this article, we propose CoMeFa RAMs, which are compute-capable SRAMs, specifically tar-

geted for FPGAs. CoMeFa RAMs exploit the dual-portedness of FPGA BRAMs instead of activating

multiple wordlines.

2.2 DL-Optimized FPGAs

The FPGA industry has deployed many DL-specific modifications to the FPGA architecture in

recent years. Specialized vector processors for DL acceleration are integrated in the Xilinx Versal

family of FPGAs [54]. Intel’s Stratix 10 NX FPGAs have in-fabric AI tensor blocks [35]. Achronix

Speedster7t FPGAs [1] have embedded machine learning processor blocks that have an array of

multipliers, an adder tree, and accumulators.Recent FPGAs have also introduced native support

for the fp16 and bfloat16 data formats in DSP slices.

Several academic research ideas to enhance FPGA architecture for DL have also been proposed.

Eldafrawy et al. [15] proposed improvements to the LB architecture, including incorporating a

shadow multiplier in LBs. Boutros et al. [11] suggest strengthening DSP blocks by efficiently sup-

porting low-precision multiplications. DSP slice modifications such as including a register file for

data reuse are proposed by Rasoulinezhad et al. [42]. New blocks called Tensor slices were proposed

to be added to FPGAs by Arora et al. [5, 8].

In this article, we propose converting BRAMs on FPGAs to CoMeFa RAMs to enhance the com-

pute throughput of FPGAs while reducing the dependency on programmable routing, to make

them more efficient DL accelerators.

3 PROPOSAL: COMEFA RAMS

In this section, we describe the architecture and design of CoMeFa RAMs. We explain the changes

made to BRAMs to convert them to CoMeFa RAMs. We consider a BRAM size of 20 kilobits as in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:5

Fig. 2. High-level operation of CoMeFa

RAM shown for 4-bit operands and a 4-bit

result.

Fig. 3. Top-level logical diagram of an FPGA BRAM [57]

with added/modified blocks for CoMeFa RAM highlighted

in red.

the modern Intel FPGAs, with support for single-port, simple dual-port, and true dual-port modes,

with 512 × 40 being the shallowest and widest configuration. This BRAM has a physical geometry

of 128 rows × 160 columns with a column multiplexing factor of 4 [36, 49]. Even though we use

BRAM sizes, geometries, and modes from Intel FPGAs, our proposal is not specific to a vendor.

BRAMs from other vendors, such as Xilinx, may have slightly different sizes and geometries, but

our proposal will work as long as the BRAMs support dual-port modes.

3.1 High-Level Operation

At a high level, converting BRAMs into CoMeFa RAMs requires adding PEs to the sense amplifiers

inside the BRAM block, as shown in Figure 2. The architecture of a PE can vary depending on

the type of computations being targeted. The PEs are fed operands by reading multiple wordlines.

They perform the required computation, and the result is written back into another wordline.Note

that each PE requires 2 bits (one of each operand) in one cycle. All computation is done in a bitwise

manner, using a transposed data layout. Figure 2 shows how operands are stored, read, computed

on, and the result stored back. Consider an example of bitwise ANDing of the elements of two

arrays (array length = 160 and element width = 4 bits). Each element is stored in a column, 1 bit

in one row. This is called a transposed layout. Elements of array 1 are stored in rows i , i + 1, i + 2,

and i + 3. Elements of array 2 are stored in rows j, j + 1, j + 2, and j + 3. A total of eight rows

and 160 columns are required to store both arrays. In one cycle, rows i and j are read, each PE

computes the AND of 2 bits, and the result is stored in row k . This process is repeated four times

with increasing row addresses, and the final result is available, after four cycles, in rows k , k + 1,

k + 2, and k + 3. Note that 160 operations are done in parallel in each cycle.

3.2 Implementation Options and Changes to the BRAM

To achieve the high-level operation described previously, different aspects of the BRAM need to

be modified. For each aspect, there are multiple design options. Table 1 lists the implementation

options we consider. The following sections explain each aspect and our design decisions.

Our goal is to minimize the number of changes done to the BRAM to make the CoMeFa RAM de-

sign easily adoptable. Figure 3 shows a top-level diagram of an FPGA BRAM, with blocks mod-

ified/added for CoMeFa shown with a red outline. The sense amplifiers and write drivers are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:6 A. Arora et al.

Table 1. Implementation Options (the Option Used in This Work Is Presented in Bold Type)

Objective Options

Processing paradigm
• Bit-parallel

• Bit-serial

Obtaining two operands

• Activating one wordline and storing bits

• Storing operands in separate banks

• Activating two wordlines together

• Using dual-ported memory

Number of PEs and SAs

• # PEs = # SAs = Number of bitlines

• # PEs = # SAs = Number of datalines

• Or something in between

Distinguishing between data and

instructions

• Write to a special address

• Add a new signal on the interface

Transposing the data

• In soft logic

• In DRAM controller

• Use RAM with transposable cells

Programming the CoMeFa RAM
• Workload-specific state machine

• Stored program

SA, sense amplifier.

modified to add and connect the PEs. Sequencing logic that sequences the events of the read/write

operations (wordline activation, precharge, sense amp enable, etc.) in the memory is modified. This

is done to support reading and writing in one cycle. Some additional logic (comparator, mode con-

figuration bit, multiplexers in front of row decoders) is also added. The memory array itself stays

unmodified. The following sections explain each change in detail.

3.3 Processing Paradigm

There are two paradigms we can choose between to convert a BRAM into CoMeFa RAM: bit-

parallel and bit-serial. Bit-parallel computing is the conventional paradigm in which multiple bits

of one data element are processed every cycle. As an example, a conventional bit-parallel processor

will take 128 steps to perform an elementwise sum of two arrays with 128 16-bit elements, using 16-

bit PEs (adders). We could add bit-parallel PEs—for example, 16-bit fixed-point adders or floating-

point multipliers—in the RAM [19]. However, this means that the precisions supported by the

PE have to be pre-determined, thereby reducing the flexibility of the block. Additionally, using

bit-parallel PEs means restricting the location of data to be aligned to certain bitlines. Bit-growth

during addition and multiplication operations can cause additional challenges. This paradigm is

low in utility because it will not be very different from directly connecting a BRAM and a DSP

slice.

Bit-serial computing, however, is commonly used for DSP and has been used on FPGAs as well

[33, 34]. The main idea is to process 1 bit of multiple data elements every cycle. For the preceding

example, a bit-serial processor with 128 PEs would complete the operation of adding the two arrays

in 16 steps as it processes the arrays bit-by-bit instead of element-by-element. Adding bit-serial PEs

in the RAM makes the block a more generic computing unit. The PEs are agnostic to precision,

which is useful for evolving applications like DL. The data has to be laid out in a transposed manner

(bits of an operand located in a bitline instead of a wordline), to feed an operand into the PE 1 bit

at a time. Adding bit-serial PEs to a BRAM converts the BRAM into a SIMD engine with a high

vectorization width—up to 160 (in the case of Intel FPGA BRAMs that we consider) when one

PE is added for each bitline. The main disadvantage of the bit-serial is that each operation takes

many cycles, implying higher latency. However, this latency can be hidden/overlapped with other

operations in data-parallel applications like DL. We add bit-serial PEs in CoMeFa RAMs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:7

3.4 Obtaining Two Operands

To perform computation, each bit-serial PE needs 1 bit from each operand. There are multiple ways

to achieve this. The first method, based on Computational RAM [16], involves adding flip-flops in

the PE (see Figure 1(a)). The row (wordline) containing the first operand’s bits is read and the bits

are stored in the flip-flops in the PEs. The row containing the second operand’s bits is read in the

next cycle and the computation is then performed. The results are stored back in another row in

the third cycle. This increases the area of the PE, and also leads to a multi-cycle operation, reducing

the speedup that can be obtained for applications.

In the second method, data can be stored such that each operand exists in a different bank of the

RAM. The two banks can be accessed simultaneously. This requires the RAM to be implemented

using two banks and also places a restriction on the data layout—that the two operands cannot be

in the same bank.

The third method is based on logic-in-memory [28] (see Figure 1(b)). In this method, two word-

lines containing bits of the two operands are activated at the same time. This needs changing the

memory array, has robustness issues, and, as mentioned in Section 2, is not very practical on a

large scale.

The fourth method that we propose in this work uses dual-ported RAMs. Two bits, one from

each operand, are read by the two ports’ sense amplifiers and fed to the two operands to the PE.

This costs additional area for the second port, but FPGA BRAMs are already dual-ported, so this

does not add any additional area in the case of FPGAs. Although in the logical diagram of Figure 3

the peripheral circuitry of the two ports of the RAM (decoders, write drivers, sense amplifiers, etc.)

are shown in diagrammatically opposite parts of the figure, in a typical physical layout of a RAM

block they are adjacent to each other. This ensures the practicality of adding a set of PEs fed by

both sets of sense amplifiers.

3.5 Modes, Stages and Phases

As shown in Figure 3, a new configuration SRAM cell is added which decides the mode of operation

of a CoMeFa RAM block. A CoMeFa RAM can operate in two modes:

— Memory mode: In this mode, CoMeFa RAM behaves as a conventional BRAM with no change

in functionality. In this mode, the FPGA programmer can flexibly configure the number of

ports and the width/depth of the BRAM.

— Hybrid mode: If this mode is enabled at configuration time, the CoMeFa RAM can be used

for computation as well as storage. In this mode, the RAM is automatically configured to

its maximum width (512 × 40) to maximize the read/write throughput for populating the

memory array with input data and reading the results.

Operations on CoMeFa RAMs typically happen in three stages:

— Data loading stage: Input data is stored in a transposed format into the memory array in this

stage.

— Compute stage: In this stage, the CoMeFa RAM is instructed to read source operand rows,

perform computation in the PEs, and write the results to a destination row.

— Data unloading stage: Results can be read out in this stage by reading them from any address

in the memory array.

A clock cycle during computation has three phases. In the first phase, two rows containing

operand bits are read by activating the corresponding wordlines. In the second phase, the logic

gates in the PE compute the result. In the third phase, the result is stored back by activating a

wordline. This leads to a longer clock period, compared to typical BRAM.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:8 A. Arora et al.

3.6 Number of PEs and Sense Amplifiers

BRAMs typically employ column multiplexing [36, 49] for improving the detection and correction

of transient errors in memory cells, and also to reduce the number of signals or wires to the pro-

grammable routing in FPGAs. The memory array layout is roughly square (the number of bitcells

in the x-direction is similar to the number of bitcells in the y-direction). When reading, column

multiplexers select a smaller number of cells from those along a wordline, based on the address in-

put. When no column multiplexing is present, the number of sense amplifiers in the RAM is equal

to the number of bitlines. When column multiplexing is present, the number of sense amplifiers

in the RAM is equal to the number of datalines (i.e., number of data signals on the RAM interface).

When adding compute-in-memory capabilities into RAMs, the number of PEs and sense amplifiers

is an architectural design involving area-delay tradeoffs. For CoMeFa RAMs, we explore two ar-

chitectures at the ends of the area-delay design space (evaluating other candidates in this space is

future work) as discussed next.

CoMeFa-D. In this architecture, we add additional sense amplifiers and write drivers to enable

reading and writing a row in all columns (bitline pairs) together. A PE is added below each column.

This is similar to the architecture used in other works [2, 14, 53]. During physical design/implemen-

tation, PEs should be laid out so that they pitch-match with the SRAM cells (and sense amplifiers

and write drivers) for a bitline pair (BL and BLB), which can be challenging. There are 160 sense

amplifiers and write drivers per port and 160 PEs. This provides a parallelism of 160 operations

done in one clock cycle (slightly longer than the baseline BRAM’s clock period) at the cost of high

area overhead. This architecture is more practical than CCB because multiple wordlines are not

activated simultaneously on a port and voltage reduction is not required for robustness.

CoMeFa-A. In this architecture, the number of sense amplifiers and write drivers stays the same

as the baseline. A PE (different from the one in CoMeFa-D) is added below each multiplexed col-

umn (i.e., one PE for each dataline). An optimization technique called sense amp cycling [46] is

employed to sequentially sense multiplexed column bits in an extended clock cycle. There are 40

sense amplifiers and write drivers per port, and 40 PEs in the RAM. This provides a parallelism of

160 operations done in one extended clock cycle, thereby trading off delay for area. This extended

clock cycle is not a major concern though, since critical paths in most circuits usually include

routing and LBs, and very rarely include BRAMs that can run at much higher frequencies. This

architecture has the highest practicality among CCB and CoMeFa variations because it retains

column multiplexing.

3.7 PE Architecture

The next aspect of converting BRAMs to CoMeFa RAMs is to identify the architecture of the PE.

The PE can be a simple logic gate, in which case the CoMeFa RAM would be capable of only

performing logical operations, and hence would not be very useful for DL applications. Instead,

using a bit-serial adder (two inputs, 1-bit full-adder, one carry flip-flop, one output) as the PE

enables arithmetic operations like addition and multiplication (by repeated addition). This is the

core of the PE in the work of Eckert et al. [14] and Wang et al. [53]. Additional logic is provided

for predication to enable cases where operations in some columns (or bitlines) need to be masked.

The PE architecture used in CoMeFa RAM extends from this and adds additional features like

configurability and BRAM-to-BRAM connections.

Figure 4(a) shows the structure of PE added to each column of the memory in CoMeFa-D. On

the read path, A and B are the bits of the two operands read from the memory at sense amplifiers

SA1 and SA2 of the two ports. Multiplexer TR evaluates a logical function of A and B, depending

on the inputs TR0, TR1, TR2, TR3 (truth table). If a 2-bit addition is required, the truth table bits

will correspond to that of an XOR gate. The TR mux is basically like a two-input dynamic LUT that

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:9

Fig. 4. PE for CoMeFa-D. RWL, read wordline; SA, sense amplifier; WWL, write wordline; WD, write driver;

Rd, read; Wr, write.

can be configured every cycle. The output of TR goes through another XOR gate (X) to generate

the addition of the input bits (S), including the previous cycle’s carry. Gates to generate the carry

(CGEN) are also present. The carry is stored in the carry latch (C) and can be used in the following

cycle’s computation. If an addition operation is not required, the carry latch is reset with C_RST=1,

which enables X to pass the output of TR transparently to the S wire. C_EN=0 disables the latch

so it keeps the old value. The read outputs A and B are also sent to d_out1 and d_out2, which is

the normal read path.

On the write path, three-input multiplexers W1 and W2 are added before the write drivers of

the two ports. These multiplexers determine the sources for the write operation. W1 can select

between the S, the input data port d_in1 (normal write operation), and the value read from the

right neighboring PE (used during left shift operation). W2 can select between the carry, the input

data port d_in2 (normal write operation), and the value read from the left neighboring PE (used

during the right shift operation).

Figure 4(b) shows a waveform view of the sequence of operations in one clock cycle for CoMeFa-

D. After the bitlines are pre-charged, the read operation is performed by activating the read word-

line and asserting sense amplifier enable. The PEs compute on the values read by the sense ampli-

fier. The results are written by activating the write wordline and asserting write driver enable.

The output of multiplexer TR is also stored in a special latch called M and is called mask. Predi-

cation logic allows enabling/disabling the write drivers (WD1 and WD2). For this, a multiplexer (P)

is added to select the signal that will enable/disable the write drivers. The mask, carry, not-carry,

and VDD (logic 1; default) can be selected. This helps CoMeFa RAMs mask writing the results

based on various conditions, like the value of the mask or the carry bit, to support multiplications

and floating-point operations. The wps1/2 signals decide which port’s write path is activated for

a given cycle.

Figure 5(a) shows the structure of PE added to each multiplexed column of the memory in

CoMeFa-A. All the labels have the same meaning as the PE described previously. The number of

C and M latches changes to 4, and there are four additional latches for S. On each port, 4 column-

multiplexed bits are read and two results are written back in an extended clock cycle. In the read

phase of the cycle, the brown bitline pairs from each port are sensed first. The resulting S bit is

stored in latch S1, carry bit C is stored in the latch C1, and mask bit M is stored in latch M1. This

is repeated for red, green, and purple bitline pairs successively. All Sn, Cn, and Mn latches get up-

dated in this process. Then, in the write phase of the cycle, results for the brown and red bitlines

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:10 A. Arora et al.

Fig. 5. PE for CoMeFa-A. RWL, read wordline; SA, sense amplifier; WWL, write wordline; WD, write driver;

Rd, read; Wr, write.

Fig. 6. Instruction format for CoMeFa RAMs.

are written using the write drivers of the two ports, followed by the green and purple ones. This

is shown in Figure 5(b). Clocks in the PE are driven by signals derived from the sense amplifier

enable pulses. The paths in the PE do not add any additional delay to the extended clock from

sense amplifier cycling.

3.8 Instructions

An instruction is defined as a bit vector whose bits tell the CoMeFa RAM and the PE what to do

in each cycle. The CoMeFa RAM instruction is 40 bits, and the format is shown in Figure 6. The

field names in the instruction are self-explanatory. They directly drive the corresponding signals

in the PE (e.g., predicate bits are applied to the select lines of the multiplexer P). The src1_row,

src2_row, and dst_row bits are used for activating the first operand row on Port A, the second

operand row on Port B, and the row at which results will be stored, respectively. These addresses

are fed to the appropriate row decoders at the right time in the clock cycle by the sequencing logic

in the CoMeFa RAM using the multiplexers shown in Figure 3. Instructions are generated using

instruction generation logic and fed to the CoMeFa RAMs. Section 3.14 will discuss the various

ways of achieving this.

3.9 Distinguishing Between Data and Instructions

As mentioned in Section 3.5, in Hybrid mode, the CoMeFa RAM can be used for computation as

well as storage. So, in this mode, we need a way to distinguish between compute operations (send-

ing instructions to the RAM) and storage operations. We consider two options for this. In the first

option, a special address (0x1FF) is reserved to signal sending instructions to the RAM, similar to

the work of Wang et al. [53]. Data written to this address is treated as an instruction. Accessing

other addresses is done normally, used for storing operands and reading results. A comparator

is added to Port A’s address signal to check for this address (see Figure 3). One limitation of this

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:11

method is that the special address (0x1FF) cannot hold data anymore. This can be a problem espe-

cially when an application needs to store data on all addresses of the RAM. As a workaround, data

can be written to another address first and then copied or moved to the special address internally

in the BRAM using a compute instruction.

The second option we consider is to use a dedicated signal on the RAM interface that when

asserted indicates that the data written into the RAM be treated as an instruction. This does not

need adding an extra signal on the RAM interface because existing signals can be reused. In Hybrid

mode, the BRAM is configured into its widest mode (512 × 40). So, 9 address bits are required. In

other modes (like 1024 × 20 or 2048 × 10), there are more address bits (10 in 1024 × 20 and 11 in

2048 × 10), and those address bits are unused in the widest mode. We propose reusing one of these

bits to denote that the data bus contains instructions.

Both methods do not have any impact on the performance of the CoMeFa RAM. The results

from our evaluation are independent of which method is used.

3.10 RAM-to-RAM Chaining

CoMeFa RAMs provide the capability of performing left-shift and right-shift operations efficiently.

Shifts are single operand operations. For a left (right) shift operation, the source operand row is

read into the PEs, each PE’s W1 (W2) mux is configured to select the bit read from the right (left)

neighboring PE, and that bit is written into the destination row. For CoMeFa-A, shifting values

from a bitline pair to another bitline pair within the same column multiplexer is also supported,

by decoding the write_sel bits of the instructions and setting the select lines of W1 and W2

muxes appropriately. Direct links connecting top and bottom neighboring CoMeFa RAMs are pro-

vided to allow for shifting data between the corner PEs in each CoMeFa RAM. These connections

can provide a much easier way to perform inter-CoMeFa RAM communication and obtain even

more parallelism. Figure 7 shows the pins on a CoMeFa RAM required to provide these direct

connections between CoMeFa RAMs, along with the details of the shift operation support inside

each PE. These connections are similar to carry chains in LBs and cascade chains in DSP slices

in modern FPGAs. Xilinx FPGAs have direct BRAM-to-BRAM interconnections as well. If unidi-

rectional wiring is used, four additional pins would be required on the CoMeFa RAM to allow for

shifting in both directions. To minimize this overhead, we choose to provide bidirectional wires

controlled by tri-state switches, because at one time, shifting in only one direction is required. The

tri-state switches are controlled by a signal decoded from the write_sel* and wps* bits, because

they govern the shift direction.

3.11 Transposing the Data

As mentioned in Section 3.1, data has to be stored in a transposed layout in CoMeFa RAMs for

computation. There are multiple methods that can be used for transposing data. The first method

is to modify the memory array to use transposable bitcells, similar to that in the work of Wang et

al. [51]. This approach is also referred to as Transpose Memory Units in the work of Eckert et al.

[14]. This requires extensive modification to the RAM and also increases the area significantly, so

we do not pursue this approach.

Another method is to design logic to transpose data and implement it in soft logic. We refer to

this as a swizzle module (or swizzle logic) that can read data from DRAM, transpose it, and write

it a CoMeFa RAM on-the-fly. The architecture of the swizzle logic, shown in Figure 8, employs

a ping-pong buffer FIFO. Untransposed data read from DRAM is written in order into the ping

part of the FIFO (depth = 40 elements). When the ping part is full, a transposed word (a bit slice

from 40 elements) can be read and written into consecutive bitlines on the same wordline in a

CoMeFa RAM, and new data from DRAM is written into the pong part. After the pong part is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:12 A. Arora et al.

Fig. 7. CoMeFa RAM supports shifting within a

block and across blocks using chaining.

Fig. 8. Swizzle logic to load non-transposed data

from DRAM directly into CoMeFa RAM in a trans-

posed layout (N = 40).

full, transposed data is read from the pong part and written into a CoMeFa RAM, and new data

from DRAM is now written into the ping part again. This process continues until the required

data has been populated into CoMeFa RAMs. Similarly, transposed data can be read from CoMeFa

RAMs and stored into DRAM in untransposed form using swizzle logic. We use this method in our

evaluation.

The swizzle module is mapped to LBs. So, for an application that is already bound by LB us-

age, this can be a concern. There are multiple ways to reduce dependence on swizzle modules by

avoiding the need for transpose, such as OOOR operations (Section 3.13), popcount-based addition

[53], and storing pre-transposed values in CoMeFa RAMs for static data like weights of a neural

network during inference.

A third method is based on the realization that transposing data is only needed when read-

ing/writing from/to the DRAM. Modern FPGAs have hardened DRAM controllers integrated into

them. So, transpose logic (like the swizzle module) could be hardened into a DRAM controller.

We plan to explore this in the future. Our current baseline FPGA does not have a hard memory

controller.

3.12 Variable Precision Support

Hardware in CoMeFa RAM PEs is not specific to any numerical precision. A different sequence

of instructions is all that is required to compute in a different precision. The sequences for fixed-

point addition, multiplication, and in-RAM reduction are the same as those in the work of Eckert

et al. [14]. Addition for n-bit operands takes n + 1 cycles. Multiplication of n-bit operands takes

n2+3n−2 cycles. CoMeFa RAMs can natively support floating-point precisions as well, as opposed

to CCB [53]. We adopt the floating-point algorithms for addition and multiplication from FloatPIM

[21]. The CoMeFa RAM PE can perform all the steps in the sequences because (1) carry and not-

carry are used in the predication logic, (2) mask is populated from the output of the programmable

multiplexer TR instead of just A or B, and (3) operations like XOR can be performed easily using

TR and the truth_table fields in the instruction. The approximate number of cycles consumed

for floating-point multiplication and addition are M2+7M +3E+5 and 2ME+9M +7E+12, where

M = number of mantissa bits and E = number of exponent bits.

3.13 OOOR Operations

In Section 3.8, two operands were stored inside the RAM. However, in many cases, an optimization

can be applied—one of the operands can be outside the RAM (e.g., multiplying an array of numbers

(stored in the RAM) with a scalar operand (outside the RAM)). We call these OOOR operations. This

method saves space inside the RAM. Without OOOR, in the multiplication example, we would need

to replicate the scalar operand in each column. This method allows easy inspection of outside

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:13

Fig. 9. Steps to perform A×X

and B×Y.

ALGORITHM 1: Naive dot

product

Input: A, X , B, Y
Output: Z

PV = 0
PW = 0
for i = 0 to pr ecision do

Calculate Vi

PW + = (Vi << i)
end for
for i = 0 to pr ecision do

Calculate Wi

PW + = (Wi << i)
end for
Z = PV + PW

ALGORITHM 2: Intelligent dot

product

Input: A, X , B, Y
Output: Z

Calculate temp = A + B
for i = 0 to pr ecision do

if Xi , Yi == 2′b11 then
Z+ = (temp << i)

else if Xi , Yi == 2′b10 then
Z+ = (A << i)

else if Xi , Yi == 2′b10 then
Z+ = (B << i)

else N o Chanдe
end if

end for

operand’s bits, thereby enabling efficient algorithms. For example, in the normal shift-and-add-

based multiplication explained in the work of Eckert et al. [14], if a bit in the scalar operand is 0,

cycles are still consumed, which can be avoided by using OOOR. In the average case, half of the

bits will be 0, and therefore the number of cycles can be reduced by 50%. Efficient algorithms like

Booth multiplication can also be deployed. A simple way to perform OOOR operations is to have a

row of ones and a row of zeros in the RAM and use that as a proxy for bits in the operand outside

the RAM. Alternatively, we can send appropriate truth table (TR) bits to the PE in CoMeFa RAMs to

achieve the same goal. Overall, OOOR operations make the PEs more powerful by expressing two

(or three) operand operations as one (or two) operand operations.

We apply OOOR to design an efficient algorithm for dot product operations where one of the

vector’s elements is common to all columns. This is useful in many applications like matrix vec-

tor multiplication and Finite Impulse Response (FIR) filter. Consider the case where a weight

vector [X ,Y ,Z ,W] needs to be multiplied with multiple vectors [A,B,C,D], [E, F ,G,H], ... and

each vector is stored in a different column of the RAM. The weight vector does not need to be

stored in the RAM but can be outside the RAM and inspected in the instruction generation logic

to generate appropriate instructions. To simplify, let us see how AX + BY can be calculated as the

building block operation in one column. Figure 9 pictorially shows the evaluation of partial sums

PV and PW . In a naive algorithm, PV will be calculated first and then PW . So, now we have both

PV and PW in the same column in the RAM. They will be added to get the result. This algorithm

is shown in Algorithm 1 and can be done using OOOR with X and Y being outside the RAM, and

will provide a speedup of 2× on average assuming that half the bits are zeros.

In our intelligent algorithm (shown in Algorithm 2), we first calculate A + B (and call it temp).

So, now we have A, B, and A + B (temp) in the column. When X and Y are outside the RAM, we

can inspect bitsX [0] and Y [0] together. If they are 11, we addA+B (temp) to the result. If they are

10, we add X to the result. If they are 01, we add Y to the result. If they are 00, we do nothing. We

do this successively for all bit locations of X and Y . When adding to the partial result each time,

we add the correct rows to effectively do the shifts required during a normal multiplication. This

algorithm provides a speedup of 2× compared to Algorithm 1, and up to 4× compared to the naive

multiply-then-add algorithm.

For OOOR operations, the data outside the RAM does not need to be transposed, thereby saving

some swizzle logic. There are some disadvantages to using OOOR operations as well. The instruc-

tion generation logic becomes more complex. A lesser reduction in energy consumption should be

expected, because of additional control logic outside the RAM and because of higher dependency

on programmable routing. Since the instruction generation logic takes different paths based on

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:14 A. Arora et al.

Fig. 10. Programming CoMeFa RAMs.

the data, the opportunities of sharing it across many CoMeFa RAMs may drop depending on the

application.

3.14 Programming CoMeFa RAMs

Programming a CoMeFa RAM means sending it a sequence of instructions to perform a given

operation. We consider two methods for programming CoMeFa RAM. In both methods, multiple

CoMeFa RAMs can share instruction generation logic to amortize its cost. However, doing so can

increase the fanout and reduce frequency.

First, we use a Finite State Machine (FSM) implemented in soft logic to generate instructions,

similar to Wang et al. [53]. This is shown in Figure 10(a). This method leads to an efficient imple-

mentation because the FSM can be customized to (or hardcoded for) specific requirements of an

application. However, this method is tedious because designing an FSM to generate instructions

for bit-serial operations is not easy.

To improve programmer productivity, we also consider a stored program method, inspired by

Compute RAMs [9]. This is shown in Figure 10(b). For this method, we define macro-instructions

for the various operations supported by the CoMeFa RAMs. Table 2 shows the list of macro-

instructions (or opcodes) we support. The ram[x] notation refers to an operand stored in the

CoMeFa RAM at row x. The out[x] notation refers to an operand outside the RAM. The con-

troller currently supports selecting an operand from nine values outside the CoMeFa RAM using

multiplexing logic. A macro-instruction ending in _ooor means that at least one of the operands

is outside the RAM. Each operation is done for the precision specified in the macro-instruction

(using a field ending in _prec). The address specified in the instruction refers to the row number

of the least significant bit of the operand. The dot_prod operations performs a ∗ x + b ∗ y. Since

there are only 40 bits in a macro-instruction, and we need more than 40 bits to express all operands

of this instruction, we make an assumption that the x is laid out right after a and y is laid out right

after b. This is why we have ram[src3+prec] and ram[src1+prec] in the instruction description.

An assembler (written in Python) converts a program written using these macro-instructions

into a binary format. This binary data is loaded into a BRAM (either at configuration time or at

runtime). An instruction controller (implemented in soft logic) fetches macro-instructions from

the BRAM, decodes them, and sends instructions to the CoMeFa RAMs.

Not all applications need to use all the macro-instructions supported by CoMeFa RAMs. For ex-

ample, an application that performs elementwise operations may only need the add and mulmacro-

instructions. To support this, we create an instruction controller generator (written in Python). A

user can generate an instruction controller that only supports the macro-instructions they need.

This keeps the instruction controller lean and lowers the overhead.

The hardware for executing some macro-instructions such as reduce can be complex. Providing

support for such macro-instructions in the controller will make it complicated. Instead, for such

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:15

Table 2. Macro-Instructions Supported by Our Assembler

Instruction Operands Semantics

add
dst, dst_prec, src2, src2_prec, src1,
src1_prec

ram[dst +: dst_prec]← ram[src2 +: src2_prec] + ram[src1 +: src1_prec]

add_ooor
dst, dst_prec, src2, src2_prec, src1,
src1_prec

ram[dst +: dst_prec]← out[src2 +: src2_prec] + ram[src1 +: src1_prec]

mul
dst, dst_prec, src2, src2_prec, src1,
src1_prec

ram[dst +: dst_prec]← ram[src2 +: src2_prec] × ram[src1 +: src1_prec]

mul_ooor
dst_prec, src2, src2_prec, src1,
src1_prec

ram[dst +: dst_prec]← out[src2 +: src2_prec] × ram[src1 +: src1_prec]

logical dst, src2, src1, prec, op ram[dst +: dst_prec]← ram[src2 +: src2_prec] op ram[src1 +: src1_prec]

logical_ooor dst, src2, src1, prec, op ram[dst +: dst_prec]← out[src2 +: src2_prec] op ram[src1 +: src1_prec]

shift dst, src, dir, shamt, prec ram[dst +: prec]← ram[src +: prec] left or right shifted by shamt

dot_prod
dst, dst_prec, src3, src3_prec, src1,
src1_prec

ram[dst +: dst_prec]← ram[src3+src3_prec +: src3_prec] × ram[src3 +:
src3_prec] + ram[src1+src1_prec +: src1_prec] × ram[src1 +: src1_prec]

dot_prod_ooor
dst, dst_prec, src4, src3, src2, src1,
src_prec

ram[dst +: dst_prec]← out[src4 +: src_prec] × ram[src3 +: src_prec] +
out[src2 +: src_prec] × ram[src1 +: src_prec]

reduce dst, src, levels, prec
internally reduce operands (each of precision prec) located across CoMeFa
RAM levels times

unload src, count unload data from ram[src] to ram[src+count] from the ram

init (set/reset) dst, pattern, count ram[dst+count] to ram[dst]← pattern

set_mask src mask register in PE← ram[src]

nop count No operation for count cycles

Note that +: has a meaning similar to Verilog’s index part-select operator. For example, data[24 +: 8] is the same as

data[31:24].

macro-instructions, we move the burden to the assembler. The assembler converts these complex

macro-instructions into a sequence of simple macro-instructions such as add and shift. So, the

controller only supports simple macro-instructions and stays lean.

In some applications, the program can be very small (a few macro-instructions). In such cases,

using a BRAM to store a few instructions is wasteful. A user can map the binary to distributed RAM

in LBs instead of a BRAM. However, in some cases, the program can be very long and may exceed

the number of instructions that can be stored in a BRAM. In the applications we evaluated, this was

never the case. But, in the future, to reduce the size of the program, we plan to support a macro-

instruction (repeat) that will implement hardware loops. Support for floating-point operations in

the controller is also planned.

To make adoption of CoMeFa RAMs even easier by users, a compiler could be developed that

would translate a DNN application (or a part of it) written in Python or C into macro-instructions.

Such a compiler would identify the best parallelism distribution across CoMeFa RAM blocks, per-

form data allocation in memory rows, keep track of the lifetime of each data, and eventually gener-

ate macro-instructions (add, mul, etc.). The assembler would then convert these macro-instructions

to the binary format, which will be then be decoded and executed by the instruction controller. We

leave the development of this compiler as future work.

4 EVALUATION

4.1 Tools and Methods Used

The Verilog-to-Routing (VTR) tool flow [38] is used to evaluate and compare FPGA architectures.

VTR synthesizes, places, and routes a given benchmark design on the given FPGA architecture and

generates resource usage, area, and timing reports. To obtain the area and delay values for the var-

ious components of the FPGA, including CoMeFa RAMs, to enter them in the FPGA architecture

model for VTR experiments, we use COFFE [56]. When running COFFE, we used a cost factor of

area ∗ delay2 as it reflects the greater emphasis on delay compared to area, which is typical of

modern high-performance FPGAs. COFFE-based SPICE simulations use 22-nm libraries from the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:16 A. Arora et al.

Table 3. Properties of the Baseline FPGA Architecture (Intel Arria 10 GX 900 Like)

Resource Count Percentage Area

Logic blocks 33,962 66

DSP slices 1,518 18

Block RAMs 2,423 15

DRAM bandwidth 2,048 bits/clock

Channel width 300

predictive technology model [50]. We also perform SPICE simulations using FreePDK45 [40] for a

circuit containing one bitline pair, two wordline circuits, and two memory cells, with other tran-

sistor and wire loads modeled. This is done to get more confidence that the read+compute+write

operation of CoMeFa RAMs works, and to validate the numbers obtained from COFFE.

We develop a cycle-accurate behavioral model of CoMeFa RAM to use in functional simulations.

This model is written in System Verilog and has the exact same interface (input and output signals)

as a CoMeFa RAM hard block in the FPGA architecture model for VTR experiments. Both the

storage and compute modes are modeled, by accurately capturing the functionality of the PE and

the RAM array. Synopsys VCS and Xilinx Vivado’s integrated simulator are used for functional

verification of all designs (e.g., designs for benchmarks) used during the evaluation.

We use an analytical model to estimate energy consumption. We add transistor energy and wire

energy. For transistor energy, we calculate the energy based on the number of transistors in each

block (obtained from the area consumed by the block from VTR). For wire energy, we use wire

energy numbers (fJ/mm) from Keckler et al. [32], scale them to 22-nm technology node using the

work of Stillmaker and Baas [45], and multiply that with the total routing wirelength from VTR.

We use an activity factor of 0.1.

4.2 Baseline vs. Proposed Architectures

We use an Intel Arria 10–like FPGA architecture as the baseline with the same resources as Arria

10 GX900 [25] (Table 3). Arria 10 FPGAs [24] use a technology node (20 nm) similar to our setup

(22 nm). Arria 10 GX900 has 96 transceiver channels that support up to 17.4 Gbps [26]. We assume

that a four-port full-width soft HMC (Hybrid Memory Cube) controller [22] is implemented on the

FPGA to provide a DRAM bandwidth of 2,048 bits/clock. Resources consumed by the controller

are not used to map the applications to the FPGA. FPGAs with a higher BRAM:DSP ratio will see

even more benefits by converting BRAMs to CoMeFa RAMs.

We use the VTR FPGA architecture used in previous work [7] to make a baseline architecture

model. We run COFFE simulations on an Arria 10–like DSP to identify its delay and area. We get

delay and areas of a 20 Kb BRAM from COFFE (by interpolating between 16K and 32K). We scale

these results based on the DSP and BRAM delays specified by Intel [23]. The DSP slice works at 630

MHz in fixed-point mode and 550 MHz in floating-point mode. The BRAM works at 735 MHz in

single-port, simple dual-port, and true dual-port modes. The proposed FPGA architecture models

(CoMeFa-D and CoMeFa-A) differ from the baseline in having CoMeFa RAMs instead of normal

BRAMs.

4.3 Benchmarks

We create Verilog designs for several diverse applications to use as microbenchmarks (Table 4).

These include DL (matrix vector multiplication (General Matrix Vector Multiplication

(GEMV)), matrix matrix multiplication (General Matrix Matrix Multiplication (GEMM)), 2D

convolution (Conv2D), reduction, elementwise multiplication (Elt Mul), Rectified Linear Unit

(ReLU) activation), signal processing (FIR filter or 1D convolution), and bitwise applications

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:17

Table 4. List of Microbenchmarks Used for Evaluation

Microbenchmark Domain
Scenario

Created
Storage Precision

GEMV DL CB DRAM 8-bit

GEMM DL CB DRAM 8-bit

Conv2D DL CB DRAM 8-bit

FIR Filter Signal Processing CB DRAM 16-bit

Elt Mult DL DBB DRAM HFP8

Bitwise-Search Databases OMB BRAM 16-bit

Bitwise-RAID Data Center OMB BRAM 20-bit

ReLU DL OMB BRAM 16-bit

Reduction DL OMB BRAM Multiple

CB, compute bound; OMB, on-chip memory-bandwidth bound; DBB, DRAM bandwidth bound.

(database search and RAID array data recovery). We manually map the applications to CoMeFa

RAMs and instantiate the CoMeFa RAM blocks in Verilog RTL. During functional verification, a

simulation model of CoMeFa RAM is used. We create different scenarios (compute bound, DRAM

bandwidth bound, and on-chip memory bound) in these applications. Additionally, we evaluate

the impact of adding CoMeFa RAMs on the performance of real-world DNNs from three common

types: fully connected networks (Multi-Level Perceptron (MLP)), RNNs (LSTM and GRU), and Con-

volutional Neural Networks (CNNs) (Tiny Darknet and ResNet).

GEMV and GEMM. GEMV and GEMM are fundamental operations in DL applications. They

are used in MLPs, LSTMs, and many other DNNs. We consider a GEMV workload where a weight

matrix of size 2048 × 512 is multiplied with an input vector of size 512 × 1, and a GEMM work-

load where a weight matrix of size 1536 × 512 is multiplied with an input matrix of size 512 × 32.

These are sizes from actual layers in DeepBench benchmarks [39]. Eight-bit integer precision with

27-bit accumulation is used. On the baseline FPGA, compute units are implemented using efficient

chaining of DSPs. On the proposed FPGA, compute units based on CoMeFa RAMs are additionally

deployed, because many RAM blocks are available after mapping the baseline design on the pro-

posed FPGA. The efficient OOOR-based dot product algorithm, described in Section 3.13, is used.

Partial sums are read out from the CoMeFa blocks and accumulated using a pipelined bit-serial

tree [34]. No online data transpose is required—the weight matrix is transposed offline and pinned

into CoMeFa RAM blocks; the input is streamed and does not need to be transposed because it is

outside the RAM. Since both DSP-based and CoMeFa-based compute units are used, a reduction

in data movement is not expected.

Convolution. The convolution operation forms the backbone of CNNs. We consider a convo-

lution layer with the following parameters: Input—Height = 72, Width = 72, Channels = 128; Fil-

ters—Height = 2, Width = 2, Number = 128; Output—Height = 71, Width = 71, Channels = 128. On

the baseline FPGA, dot product units are designed using DSP slices to perform multiplications and

additions along the channel dimension, then the results from the four filter locations are added.

The filters are stored in BRAMs, and the inputs are streamed. A compute unit on the baseline

FPGA is made of 64 DSPs and 8 BRAMs. On the proposed FPGAs, CoMeFa RAMs are additionally

deployed. Filters are pre-transposed and stored in the CoMeFa RAMs. A compute unit formed by

CoMeFa RAMs contains 128 CoMeFa RAMs, along with instruction generation logic. The columns

of a CoMeFa RAM are used to store different filters (vectorization across the output channel dimen-

sion), whereas the RAMs in a unit are used for vectorization across the input channel dimension.

OOOR operations are used to compute dot products. The input data is divided between the com-

pute units formed by DSPs and those formed by CoMeFa RAMs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:18 A. Arora et al.

FIR Filter. FIR filters are a common DSP application. We consider an FIR filter with 128 taps.

Input operands are streamed onto the FPGA through the DRAM interface. The baseline FPGA

uses an efficient implementation of the FIR filter using systolic DSP chaining [4]. The proposed

FPGA uses CoMeFa RAMs for computation along with DSP chains. LBs were used for control logic.

Operands are transposed on-the-fly and loaded into multiple CoMeFa RAMs in parallel. While

some CoMeFa RAMs are computing, other CoMeFa RAMs are loaded in a pipelined manner to

improve parallelism. When a CoMeFa RAM finishes computing, its results are unloaded and sent

to DRAM, and the process starts again until all inputs are processed. We refer to this as the LCU

(Load-Compute-Unload) pipeline. In this application, the CoMeFa RAM-to-CoMeFa RAM chaining

(Section 3.10) feature is used to share inputs between neighboring blocks.

Elementwise Multiplication. Elementwise multiplications (Elt Mult) are commonly used in

DL, for example, in normalization layers and Winograd-based convolution layers. We consider an

application involving elementwise multiplication of two arrays of 100K elements. Floating-point

data with a precision of HFP8 [47] is used. We showcase here that CoMeFa RAMs are adaptable to

any custom precision. The operands are read from DRAM, and the results are written to DRAM.

This is a DRAM bandwidth bound application because of low arithmetic intensity. We observed

that the number of LBs used was significantly higher (25×) than in the baseline FPGA. This is

because to saturate the DRAM bandwidth available on the chip, many swizzle logic instances

are required. However, if the swizzle logic is hardened into a DRAM controller, as discussed in

Section 3.11, then this overhead is entirely removed.

Bitwise Operations. Bitwise operations (AND, OR, XOR, XNOR, etc.) are commonly used in

databases, encryption, DNA sequence alignment, and so forth. They are also used in binary neural

networks. CoMeFa RAMs are very efficient at these massively parallel operations because of the

presence of mux-based fully configurable PEs. The operands are assumed to be available in BRAMs

in the right layout. The speedup seen in these applications is attributed to the effective increase

in on-chip memory bandwidth because 160 bits can be operated upon in one cycle in a CoMeFa

RAM, compared to only 40 bits from a BRAM in the baseline FPGA. We consider two applications

in this category:

(1) Database search: In this application, records matching a key are searched. If a record matches

the key, it is replaced with special marker data (like constant 0). Each operand is bitwise

XORed with the key. Bitwise OR reduction is performed on the result. And then a bitwise

ANDing operation is performed to zero out the operands that match the key. BRAMs are

used to store operands. Each row of a BRAM has two 16-bit elements. On the proposed

FPGA, elements are stored in 256 CoMeFa RAMs. Seven data elements are stored in each

column, and temporary results consume 16 rows in a CoMeFa RAM. The key is outside the

RAM.

(2) RAID data recovery: In RAID (Redundancy Array of Independent Disks) arrays, parity pro-

tection is used. If a drive in an array fails, the remaining data on other drives is combined

with the parity data (using XOR) to reconstruct the missing data. These numerous parallel

XOR operations with the parity data can be accelerated using an FPGA. Instead of storing

operands in a transposed format (bits of one operand in multiple rows), we use an untrans-

posed data layout where we store bits of one operand in one row and bits of the second

operand in another row. This works for logical operations like bitwise XOR where there is

no dependency/communication between consecutive bits and avoids the overhead of trans-

posing data. Performing an XOR operation between operands stored on two rows takes one

cycle. A total of 256 RAMs is used.

ReLU. ReLU is the most common activation function used in DNNs. Activations usually follow

a GEMM or GEMV or CONV operation. The operation involves zeroing out any negative input,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:19

but any positive input stays unchanged. We consider that the input data is available in a RAM

(e.g., computed by a prior kernel). The precision is 16-bit. In CoMeFa RAMs, the inverted most

significant bit (sign bit) of each input is copied into the mask latches in the PEs. The value 0 is

written to each row containing the input elements. In some columns, the operation is masked

(because the sign bit was 0), implying the values stay unchanged. But in other columns, the values

are zeroed out. In the baseline FPGA, values are read from the RAM, their most significant bit is

inspected, and the output is generated using simple multiplexing logic and written back into the

RAM.

Reduction. Reduction (or accumulation) is heavily used in DL and DSP applications. We design

this application to create a scenario of an on-chip memory bandwidth limited application. Data is

available in transposed format (e.g., computed in RAM by a prior kernel). The precision is varied

from 4-bit to 20-bit (accumulator size = 32-bit). In the baseline, operands stored in BRAMs are

read and successively accumulated using a pipelined adder tree (in LBs). On the proposed FPGA,

CoMeFa RAMs store the operands. The reduction algorithm from Eckert et al. [14] is used to

reduce the elements to 40 partial sums (1 partial sum in each multiplexed column of the RAM).

These intermediate results from multiple CoMeFa RAMs are then read out and accumulated using

a popcount-based adder [53] to obtain the result. A significantly smaller number of LBs (~2x–3.5x)

is required on the proposed FPGA.

DNNs. To evaluate full neural networks, we create a Microsoft Brainwave-like accelerator [17]

based on the work of Boutros et al. [10]. This accelerator consists of five pipeline stages: the Matrix

Unit (MU) for matrix-vector multiplication operations, the selector unit for skipping the MU when

necessary, two MFUs (multi-function units) for vector elementwise operations (e.g., activation,

addition, multiplication), and the LD (loader), which interfaces with the DRAM to load and unload

data. Register files (MRF and VRF) store the data locally. Similarly to CCB [53], we create two

versions of this accelerator: one for the baseline FPGA and another for the proposed FPGA. For the

baseline FPGA, the MU consists of Dot Product Engines (DPEs) that contain DSP slice cascade

chains. Each DPE generates one result. For the proposed FPGA, the MU additionally contains DPEs

that are mapped to CoMeFa RAMs (we call these CoMeFa-DPEs or C-DPEs). The CoMeFa RAMs in

C-DPEs receive instructions from instruction generation FSM (duplicated to reduce fanout). A

popcount-based bit-serial reduction tree [53] is used to combine the results from various CoMeFa

RAMs. Each C-DPE generates 40 results. Figure 11 shows the architecture of the accelerator for

the proposed FPGA.

We write an analytical model to explore the distribution of data and BRAMs between DPEs and

C-DPEs. There are two main knobs in our analytical model: f_data, which decides the fraction

of workload (in terms of rows of the matrix processed by the MU) processed by DPEs compared

to C-DPEs, and f_arch, which decides the fraction of BRAMs allocated to DPEs compared to C-

DPEs. Additionally, the analytical model also varies the number of DSPs per DPE and the number

of BRAMs per C-DPE over pre-specified ranges. The analytical model iterates over each layer for

each neural network and calculates the cycles consumed for each layer. Then we post-process the

results from the analytical model using Pandas to find out the best knob (or parameter) settings for

each neural network. This results in a different architecture for each neural network. So, instead

of having a one-size-fits-all overlay, there is a customized overlay for each neural network. We

write an RTL generator to generate the Verilog design for the accelerator with the best hardware

parameters identified by the analytical model. Through simulation, we perform sanity verification

of our Verilog design and also the analytical model’s results.

The Brainwave-like accelerator does not directly support convolutions. So, for CNNs, convolu-

tion is expressed as matrix multiplication using the im2col operation. We assume that the im2col
operation is performed in hardware. Although this can be optimized by designing an accelerator

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:20 A. Arora et al.

Fig. 11. Microsoft Brainwave-like accelerator used to evaluate DNN performance.

specifically for convolution, our goal here is to showcase the gains from in-memory computation

rather than designing the most efficient accelerator.

We consider five DNN benchmarks for this part of the evaluation from three common DNN

types: fully connected networks (Multi-Level Perceptron (MLP)), RNNs (LSTM and GRU), CNNs

(Tiny Darknet) and residual neural networks (ResNet)). The mlp network is a five-layer MLP with

each hidden layer having 1,024 neurons, with 4M parameters. The gru network has a hidden size =

512, embedding size = 512, and timesteps = 50. It has 1.5M parameters. The tdarknet network is

Tiny Darknet, a small image classification network for edge devices. It has 650K parameters. The

lstm network is an LSTM with hidden size = 1,024, embedding size = 1,024, and timesteps = 50.

It has 8.4M parameters. The resnet benchmark is the ResNet-50 variation of ResNet. It has 24M

parameters.

We consider two precisions (int8 and int4) and two batch sizes (1 and 8). We also evaluate the

speedup using the two dot product algorithms mentioned in Section 3.13. The FPGA used in our

evaluation (Intel Arria 10) is a mid-sized FPGA (47 megabits capacity). Some of the DNNs used for

evaluation have weights that do not fit on the FPGA. For int8, lstm and resnet do not fit. For int4,

only resnet does not fit. For those cases, we consider the overhead in loading the weights onto

the FPGA from DRAM as well.

4.4 Implementation Details

Area. Table 5 shows the area breakdown of both architectures of CoMeFa RAM. For CoMeFa-

D, the area overhead is 1,546.78 um2. This represents an increase of 25.4% in the BRAM tile area

compared to the baseline. This overhead is mainly attributed to the addition of 160 PEs and the

additional 120 sense amplifiers and write drivers. With BRAMs occupying 15% of the die size in

our baseline FPGA, this overhead corresponds to only 3.8% increase in the FPGA chip area. The

overhead for CoMeFa-A is 493.5 um2. Compared to the baseline, this represents an increase of 8.1%

in BRAM tile area and only 1.2% increase in FPGA chip area. This overhead is mainly attributed

to the addition of 40 PEs.

Frequency. We use COFFE to obtain the overhead in the frequency of operation of a CoMeFa

RAM in Hybrid mode, compared to a BRAM (735 MHz). For CoMeFa-D, the cycle duration in-

creases to 1.25× (588 MHz). This is mainly attributed to performing read, compute (PE circuitry

delay), and write in the same cycle. For CoMeFa-A, the cycle duration increases to 2.5× (294 MHz).

This is because four reads and two writes are done successively as described in Section 3.7. A lower

frequency of the CoMeFa RAM is not a concern because realistic FPGA designs typically are con-

strained by soft logic and routing delays, so designs do not achieve high frequencies like those of

individual BRAMs (735 MHz in this case). In Memory mode, the delay overhead is negligible; there

is only one additional mux in the write path, and the read path remains unchanged.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:21

Table 5. Area Breakdown of Various RAM Blocks

Component BRAM CoMeFa-D CoMeFa-A

Input and output crossbars 5.6 4.5 5.2

Decoders & wordline drivers 7.8 6.3 7.3

Write drivers & sense amps. 6.9 14.0 6.4

Memory cell array 53.4 43.0 49.6

Routing (conn. & switch) 26.0 20.9 24.1

Processing elements 0 11.1 7.1

Total (%) 100 100 100

Table 6. Differences Between CCB and CoMeFa

Property CCB CoMeFa-D CoMeFa-A

Activate two wordlines at the same time

on one port
Yes No No

Additional voltage source required Yes No No

Additional row decoder required Yes No No

Changes in sense amplifiers Yes No No

Additional sense amplifiers Yes Yes No

Sense amplifier cycling No No Yes

Compute uses dual-port behavior No Yes Yes

Generic/Flexible PE No Yes Yes

Shift between RAM blocks No Yes Yes

Floating-point support No Yes Yes

Flip-flops in PE to store operands No No Yes

Parallelism 128 160 160

Application(s) demonstrated DL Many Many

Clock duration overhead 60% 25% 125%

Area overhead (block) 16.8%* 25.4% 8.1%

Area overhead (chip) 2.5%* 3.8% 1.2%

Column multiplexing No No Yes

Practicality Low Medium High
∗Includes overhead of additional sense amplifiers and write drivers.

Routing. The interface of a CoMeFa RAM block to the programmable routing is not changed

compared to that of a BRAM. The only change is the addition of two pins, which are used for direct

connections between neighboring BRAMs. These do not impact the programmable interconnect

directly but do increase the pin density.

CCB. The implementation of CCB [53] is based on a BRAM with 128 x 128 geometry. The area

overhead for the CCB block evaluated in the work of Wang et al. [53] does not include the area of

the additional sense amplifiers and write drivers. In our re-implementation of CCB, the total area

overhead comes out to be 872.64 um2, which is a 16.8% increase at the block level and 2.5% at the

chip level in the Arria 10–like FPGA used in this study. The frequency of operation of the CCB

evaluated by Wang et al. [53] is 1.6× (469 MHz) compared to the baseline BRAM. Table 6 shows

the differences between CCB and CoMeFa.

5 RESULTS

5.1 BRAM+PE vs. CoMeFa RAMs

We perform a comparison of CoMeFa RAMs with a normal BRAM and single-bit bit-serial PEs

implemented in soft logic. We call the latter the BRAM+PE architecture. Figure 12 shows the block

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:22 A. Arora et al.

Fig. 12. Block diagram the BRAM+PE architecture.

Table 7. Comparison Between CoMeFa RAMs and

BRAM+PE

Parameter BRAM+PE CoMeFa

LBs 78 32

RAMs 10 10

Frequency 337.9 536.5

Cycles 64 8

Time (us) 0.19 0.015

diagram of the BRAM+PE architecture. The BRAM is used in true dual-port mode (1024 × 20)

so that each PE can be fed with two operands at the same time. Multiplexing logic is provided to

allow data to be loaded into the BRAM before the operation, and the results to be unloaded after the

operation has finished. When start is asserted, the instruction generation FSM (also implemented

in soft logic) starts generating instructions. The instruction specifies the BRAM addresses to read

to provide data to the PEs. It also specifies the operation to be performed by the PEs. The address

to write the results back to is also included in the instruction. After the operation is complete, the

done signal is asserted and results can be read out from the BRAM.

Qualitatively, the BRAM+PE architecture suffers from the following disadvantages compared to

CoMeFa RAMs:

(1) More cycles are required because separate cycles are required to read each operand and then

write the result, and also in each cycle only 40 bits can be read compared to 160 in CoMeFa

RAMs.

(2) It uses programmable routing/interconnect to transfer data from BRAM to PEs, resulting in

higher power consumption.

(3) It has low frequency of operation and higher area because of the PEs and complex control

logic being implemented in soft logic.

Quantitatively, to compare the BRAM+PE and CoMeFa RAMs, we perform a simple elementwise

addition operation on an array of two numbers (precision = 8 bits). Data is laid out inside the

RAMs in a transposed manner in both the cases. The results are shown in Table 7. We observe

that CoMeFa RAMs use approximately 60% less LBs than BRAM+PE. The BRAM+PE design has

the PEs, the multiplexing logic for each RAM interface signal, and the instruction generation logic

implemented in LBs. However, the CoMeFa RAM design does not have any PEs in LBs, and the

multiplexing logic and the instruction generation logic is much simpler. The frequency of operation

is higher in the CoMeFa RAM case for the same reasons. In the BRAM+PE case, the critical path

included routing wires to implement the multiplexing logic, whereas in the CoMeFa RAM case,

the critical path was inside an LB. There is a factor of 8 difference in the number of cycles between

the two cases. This includes a factor of 4 from the difference in available bandwidth (160 in the

CoMeFa RAM case vs. 40 in the BRAM+PE case) and a factor of 2 from the difference in the number

of cycles for each operation (one cycle to read+compute+write in the CoMeFa RAM case vs. two

cycles to read+compute+write in the BRAM+PE case). Overall, the time taken by CoMeFa RAMs is

an order of magnitude less compared to the time taken in the BRAM+PE case.

5.2 Throughput Comparison

To evaluate the peak throughput, we consider the MAC (multiply-accumulate) operation, which is

the most common operation in DSP and DL applications. We use common fixed-point precisions:

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:23

Fig. 13. Peak throughput for MAC operations for

the whole FPGA for various precisions.

Fig. 14. Speedups obtained for different FPGA archi-

tectures for various benchmarks. An asterisk (*) im-

plies no DRAM bandwidth limitation.

4 bit (accumulator = 16 bits), 8 bit (acc = 27 bits), and 16 bit (acc = 36 bits). Additionally, we use

floating-point precisions: HFP8 ({exp = 4, frac = 3} and acc = {exp = 6, frac = 9}) [47] and IEEE FP16

(acc = IEEE FP32). We compare the throughput of CoMeFa RAMs to the traditional compute units

(LBs and DSPs). For LBs, we synthesize, place, and route one MAC onto the FPGA and determine

the operating frequency and resource utilization. We then calculate the throughput by optimisti-

cally assuming that we can fill the FPGA at the same operating frequency. This serves the purpose

of evaluating peak throughput. For DSPs, MACs are created and taken through a similar process.

The DSPs do not natively support FP16 and HFP8 precisions, so MACs for these precisions are

designed using soft logic and DSPs. For CoMeFa RAMs, 160 MACs are implemented in parallel by

instantiating one CoMeFa RAM and an instruction generation FSM.

Figure 13 shows the peak throughput for each precision obtained from each different comput-

ing resource in GigaMACs per second. We observe that the throughput of the FPGA increases by

2×, 1.7×, 1.3×, 1.7×, and 1.3× for int4, int8, int16, hfp8, and fp16, respectively, by adding CoMeFa-

D RAMs. Similarly, the throughput of the FPGA increases by 1.5×, 1.36×, 1.16×, 1.36×, and 1.15× for

int4, int8, int16, hfp8, and fp16, respectively, by adding CoMeFa-A RAMs. CoMeFa RAM through-

put reduces as the precision increases, due to the bit-serial nature of computation in CoMeFa

RAMs. CoMeFa RAMs can be used for computing in any precision, unlike DSPs. The frequency of

operation of CoMeFa RAMs does not change significantly with changing precision, unlike LBs.

Note that the compute throughput enhancement evaluated here is for MAC operations only and

does not use OOOR operations. The speedup we obtain for different benchmarks can vary from the

peak throughput enhancement calculated here because (1) non-MAC operations like reductions

may be needed, (2) clock frequency may be lower because of large designs, (3) cycles may be spent

in loading and unloading data to/from CoMeFa RAMs, (4) DRAM reads and writes may bound

certain parts of the application, (5) OOOR operations may be used to speed up the operation, and

(6) LBs may only be used for control logic and not for computation.

5.3 Resource Usage and Frequency

Table 8 shows the resource usage and frequency of operation for the various compute-bound and

DRAM-bound microbenchmarks obtained from the VTR flow (averaged over three seeds). The

table shows the data for the baseline FPGA and the three FPGA variations with compute-enabled

BRAMs (CCB, CoMeFa-D, and CoMeFa-A). The resource usage for each resource is in percentage of

the total resources of that type on the FPGA. We observe that the LB usage increases significantly

for all microbenchmarks. This is because of the control logic (instruction generation logic, data

loading/unloading logic, etc.) required for using the compute-enabled BRAMs. The DSP usage

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:24 A. Arora et al.

Table 8. Resource Usage (Percentage) and Frequency (F, in Megahertz) for Compute- and

DRAM-Bound Microbenchmarks

Baseline FPGA with Compute-Enabled BRAMs

Benchmark LB DSP BRAM F LB DSP BRAM F(CCB) F(CoMeFa-D) F(CoMeFa-A)

GEMV 1.6 90.1 43.4 253 27.9 90.1 91.8 231 242 242

GEMM 0.8 92.4 38.6 269 25.5 92.4 86.7 260 267 260

Conv2D 5.0 91.8 28.5 255 35.5 91.8 91.3 245 246 243

FIR 12.8 93.0 3.5 243 53.1 93.0 95.3 – 229 229

Elt Mult 25.8 49.8 38.1 300 21.7* 0 82.6 – 292 288

∗Does not include LB usage from swizzle modules to capture the infinite DRAM bandwidth case.

Table 9. Resource Usage (Absolute Values) and Frequency (F, in Megahertz) for

On-Chip Memory Bound Microbenchmarks

Baseline FPGA with Compute-Enabled BRAMs

Benchmark LB DSP BRAM F LB DSP BRAM F(CCB) F(CoMeFa-D) F(CoMeFa-A)

Search 2,242 0 280 600 1,206 0 256 451 465 294

RAID 1,538 0 256 702 578 0 256 459 588 294

ReLU 560 0 256 616 301 0 256 445 465 294

Reduction 4,072 0 256 445 1,184 0 256 453 469 294

remains the same as baseline, and the usage of RAMs significantly increases. Note that RAMs

are not used in place of DSPs but additionally, to maximize the usage of the FPGA to exploit the

higher compute throughput to obtain speedup. The FIR benchmark uses chaining of RAMs, which

is not supported by CCB. Similarly, CCB does not support floating-point operations. So, we do

not implement the FIR and Elementwise Multiplication benchmarks on the CCB architecture and

hence the frequency is marked with a dash (–). For the Elementwise Multiplication benchmark, we

construct a design with no swizzle modules so that the design fits on the FPGA by maximizing the

number of CoMeFa RAM for compute. This is done to obtain the theoretical speedup in the case

with unlimited DRAM bandwidth (see Section 5.4).

Table 9 shows the resource usage and frequency of operation of the various on-chip memory

bound microbenchmarks obtained from the VTR flow. The resource usage shown here is in ab-

solute numbers. This is because for these benchmarks, we create a small design that uses similar

FPGA RAM resources on the baseline FPGA and the FPGA with compute-enabled BRAMs. Bitwise-

Search uses more BRAMs in the baseline because of under-utilization of the RAM due to the data

layout. No DSPs are used for computation in these benchmarks on the baseline FPGA as well the

FPGA with compute-enabled BRAMs. A significantly lesser number of LBs are used in the FPGAs

with compute-enabled BRAMs because the computation is done internal to the BRAMs and LBs

are not used for computation. The frequency of operation is very high on the baseline FPGA be-

cause the control logic is much simpler compared to the control logic (instruction generation logic)

in the FPGAs with compute-enabled BRAMs. An interesting observation is that in the CoMeFa-A

case, the frequency of operation is always limited by the frequency of operation of the CoMeFa-A

RAM (294 MHz).

5.4 Speedup and Energy Benefits

Figure 14 shows the speedup obtained by using compute-enabled BRAMs across microbenchmarks.

We see significant speedups by using CoMeFa RAMs in the compute-bound applications because of

the augmented compute throughput provided by the FPGA. For the GEMV benchmark, speedups

of 47.5% are seen in CoMeFa-D and CoMeFa-A. With CCB, the max speedup was 40%. For GEMM,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:25

the speedup was 74.5% for CoMeFa-D and 69% for CoMeFa-A and CCB. A speedup of ~85% is seen

in the Convolution benchmark for all three architectures because the frequency of operation was

similar in all three, as seen in Table 8. A speedup of 59% is seen in the FIR benchmark for both

CoMeFa-D and CoMeFa-A. The FIR benchmark uses chaining of RAMs, which is not supported by

CCB. So, no speedup is considered compared to the baseline.

Since the Elementwise Multiplication benchmark is limited by DRAM bandwidth, no speedup is

seen by using CoMeFa RAMs. CoMeFa RAMs are targeted to improve the compute throughput of

the FPGA, not the DRAM bandwidth. If we remove the restriction of DRAM bandwidth and assume

that all compute units (CoMeFa RAMs as well as DSPs/LBs) can be fed with data, then speedups of

86% and 79% can be seen on CoMeFa-D and CoMeFa-A FPGAs, respectively. Since CCB does not

support floating-point operations, the speedup for this benchmark for CCB is shown as 0%.

The Search benchmark is sped up by 18% for CoMeFa-D. The design on baseline FPGA had the

highest frequency of operation because of very simple operations done in soft logic, as seen in

Table 9. No speedup is seen using CoMeFa-A RAMs because of the low frequency of operation.

This application is not sped up by using CCB either. CCB takes ~2× cycles compared to CoMeFa

RAM because of the inflexibility of the PEs that only support a few operations. For example, the

AND operation can be done in two cycles in CCB, compared to one cycle in CoMeFa RAM. The

RAID application is sped up by 6.7× in CoMeFa-D, 3.35× in CoMeFa-A, and 5.2× in CCB. The

baseline frequencies were very high in this case also, but the difference in number of cycles enabled

the significant speedups. In the ReLU benchmark, speedup of 2.7×, 2.85×, and 1.8× are seen in

CCB, CoMeFa-D, and CoMeFa-A, respectively. The speedups for the Reduction benchmark (4-bit

precision) were 5.3× in CoMeFa-D, 3.3× in CoMeFa-A, and 5.1× in CCB.

Results from our energy model are shown in Figure 15. We observe that the results are similar

for the various architectures—CCB, CoMeFa-D, and CoMeFa-A. FIR and Elt Mult benchmarks are

not run on the CCB architecture as mentioned earlier, so those results are omitted from the figure.

In compute-bound benchmarks (GEMV, GEMM, Conv2D, FIR), an increase in energy consump-

tion is observed. This is because the resource usage in these benchmarks is significantly higher

compared to the baseline, as seen in Section 5.3. For example, for GEMV, the baseline uses 1.6%

LBs, 90.1% DSPs, and 43.4% BRAMs, but with CoMeFa RAMs, 27.9% LBs, 90.1% DSPs, and 91.8%

CoMeFa RAMs are used. The additional LBs are required for control logic to program the CoMeFa

RAMs and also for reduction of partial results obtained from CoMeFa RAMs. To reduce fanout from

this logic to CoMeFa RAMs (to achieve high frequencies), this control logic had to be replicated

multiple times, increasing the LB usage significantly. This increased resource usage leads to a high

power consumption. The reduction in time for these benchmarks, compared to the baseline, is less

than 2×, as seen earlier in this section from the Speedup results (see Figure 14). For example, for

GEMV, the speedup is ~1.47. Since energy is evaluated by combining the power consumption and

the time taken, the energy consumption is higher when running these benchmarks on an FPGA

with CoMeFa RAMs. These results indicate that using lower precision (e.g., int4) in these bench-

marks could lead to an overall energy reduction because of increased speedup. To confirm this, we

implemented the GEMV benchmark for an FPGA with CoMeFa-A RAMs with the int4 precision.

We observed a speedup of 2.83 compared to the baseline. The baseline used 1.45% LBs, 91% DSPs,

and 23.8% BRAMs, but with CoMeFa RAMs, 28.8% LBs, 89.5% DSPs, and 89.7% CoMeFa RAMs were

used. A energy reduction of 24% was observed.

In the memory-bound benchmark (Elt Mult), an energy reduction of 40% is seen in both CoMeFa-

D and CoMeFa-A, but note that this excludes the impact from the LBs used for swizzle logic, to

showcase the infinite DRAM bandwidth case.

In the on-chip memory bandwidth bound microbenchmarks (Search, RAID, ReLU, Reduction),

up to 38% less LBs are used in CoMeFa compared to baseline. That is because no LBs are needed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:26 A. Arora et al.

Fig. 15. Energy consumption for all microbench-

marks. An asterisk (*) implies no DRAM bandwidth

limitation.

Fig. 16. Illustration of variation in speedup (based

on cycles) by partitioning the application between

DSPs and CoMeFa RAMs.

for computation when CoMeFa RAMs are used. Routing wirelength reduction of up to 68% is seen,

which directly correlates to reduction in data movement. This reduces power consumption by up

to 56% in CoMeFa-A and up to 52% in CoMeFa-D. With significant reduction in time obtained

by using CoMeFa RAMs for these benchmarks as seen in the Speedup results (see Figure 14), the

energy reduction of up to 95% can be seen.

5.5 Application Co-mapping

CoMeFa RAMs supplement DSPs and LBs as compute units, and enhance the FPGA’s compute

throughput. Appropriately dividing the data between CoMeFa RAMs and traditional compute units

is key. For the compute-bound applications (GEMV, GEMM, FIR, and Conv2D), we analytically ex-

plore the effect of varying data distribution between CoMeFa RAMs and DSPs/LBs on the proposed

FPGA. The results are shown in Figure 16. We see that as more work is given to CoMeFa RAMs,

more speedup can be obtained up to a limit, after which the overheads (loading, unloading, serial

compute) associated with CoMeFa RAMs can start dominating and reduce the overall speedup.

This sweet spot is different for each application. In some cases, mapping a majority of the applica-

tion onto CoMeFa RAMs can even cause an overall slowdown because of higher latency.

5.6 Adaptability to Precision

CoMeFa RAMs can be used for efficiently computing in any custom precision. Figure 17 shows

the results of sweeping the precision from 4- to 20 bits in the Reduction benchmark. We see

speedups ranging from 5.3× (3.3×) to 2.7× (1.7×) with CoMeFa-D (CoMeFa-A) as precision in-

creases. CoMeFa-D is 3% better than CCB owing to the improved frequency achieved by the design.

The baseline takes the same number of cycles for each precision because of the bit-parallel nature

of compute. But the number of cycles taken increases as the precision increases when CoMeFa

RAMs are used. This is because of bit-serial arithmetic and illustrates that applications using

smaller precisions are better suited for CoMeFa RAMs. Note that the frequency of operation stays

constant for CoMeFa RAMs because the hardware architecture stays the same. For the baseline,

the frequency decreases slightly as the precision increases.

5.7 Using Stored Programs Instead of Hardcoded FSM

For each microbenchmark, we create a design that uses the stored program method discussed in

Section 3.14. Table 10 shows the resource usage of benchmarks when the stored program method

is used. Comparing this to the resource usage in Table 8, we observe that the LB usage increases

significantly. This increase is attributed to the relatively more generic instruction controller logic,

compared to the hardcoded FSM logic that can be highly specialized and optimized for a specific

benchmark. The DSP usage remains exactly the same because the instruction controller logic does

not use any DSPs. The BRAM usage remains almost the same because of how the experiment is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:27

Fig. 17. Sweeping precision in the Reduction benchmark.

Table 10. Resource Usage When

Instruction Generation Logic Is

Implemented Using the Stored

Program Method

Benchmark LB DSP BRAM

GEMV 49.0 90.1 91.7

GEMM 53.5 92.4 86.7

Conv2D 55.2 91.8 91.4

FIR 63.0 93.0 95.7

Elt Mult 24.2 0 84.2

Table 11. Speedup Obtained When

Instruction Generation Logic Is

Implemented Using a Customized FSM

and Using the Stored Program Method

Benchmark
Customized

FSM
Stored

Program

GEMV 1.47 1.07

GEMM 1.69 1.22

Conv2D 1.85 1.45

FIR 1.59 1.41

Elt Mult 1.79 1.21

designed. Some BRAMs used for computation are instead re-purposed to be used for storing in-

structions. The minor differences arise because number of CoMeFa RAMs removed from compute

units (e.g., the dot product units in GEMM and GEMV microbenchmarks) in the benchmark and

the number of instruction RAMs required by the remaining compute units may differ.

We compare the speedup obtained by using the stored program method with the speedup ob-

tained using the hardcoded FSM-based method. The results are shown in Table 11. We observe a

~40% reduction in speedup on average. But there is a significant hard-to-quantify improvement in

programmability of the CoMeFa RAMs by using the stored program method. There are two main

reasons for reduction in the speedup. First, instruction storage in the stored program method can

consume a significant number of BRAMs, reducing the BRAMs available for compute. The hard-

coded FSM method does not use any BRAMs in the instruction generation logic. Second, when

using the stored program based method, a reduction in frequency of operation of the design was

observed. The critical path was in the instruction decoder of the controller.

In the future, we plan to improve the speedup obtained with the stored program method by (1)

adding pipeline stages in the controller to improve frequency and (2) mapping macro-instructions

to distributed RAMs in LBs to keep the number of BRAMs available for compute the same.

We only evaluate the reduction in speedup for compute-bound and DRAM-bound microbench-

marks here. For the on-chip memory bandwidth microbenchmarks, the experimental setup is such

that a small number of BRAMs is used in both baseline and proposed cases. A few extra BRAMs

can be used to store instructions and obtain the same speedup as the case with hardcoded FSM.

5.8 DNN Evaluation

Figure 18 shows the speedup obtained by using the accelerator shown in Figure 11, for five DNNs

along with the geometric mean. The baseline uses an accelerator without C-DPEs, on an FPGA

without CoMeFa RAMs. Three knobs or parameters are varied: precision, batch size, and dot prod-

uct algorithm. The frequency of operation of the accelerator was the same for both cases—using

CoMeFa-D and using CoMeFa-A—because the critical path of the design was not in the MU of the

accelerator. So, these speedups apply to both cases.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:28 A. Arora et al.

Fig. 18. Variation of speedup for DNNs with precision,

batch size, and dot product algorithm.

Fig. 19. Variation of cycles consumed for DNNs

with changing f_arch and f_data.

In Figure 18(a), we see a geomean speedup of 1.26× with int8 precision, and that increases

to 2.49× with int4 precision. Because of the bit-serial computation in CoMeFa RAMs, smaller

precision exhibit low latencies and higher speedups compared to the baseline. These speedups

are for a batch size of 8 using Algorithm 2. In Figure 18(b), we compare the speedup for batch

size of 4 and batch size of 8, for int4 precision and Algorithm 2. The speedup increases with

batch size because of improved utilization, higher reuse, and amortization of weight loading

(when needed). In Figure 18(c), we compare the speedups obtained by using Algorithm 1 and

Algorithm 2, for a batch size of 8 and precision of int4. Algorithm 1 is slower than Algorithm 2

because in Algorithm 2, we take advantage of inspecting 1 bit each from two operands outside

the RAM, and reduce cycles by up to 2×.

In Figure 19, we observe the trends of varying the knobs f_arch and f_data (discussed in

Section 4.3) in our analytical model. We plot the number of cycles consumed (normalized) for each

DNN, along the y-axis. In the top chart, f_data is kept constant at 0.5, implying that 50% of the

workload (matrix rows) is assigned to the DPEs and the remaining 50% is assigned to the C-DPEs.

For higher values of f_arch, the number of cycles consumed is high because we do not have

enough BRAMs available for the 50% of the workload assigned to C-DPEs. As we move left along

the x-axis, f_arch reduces, and more BRAMs become mapped to C-DPEs, which in turn means the

part of the workload assigned to C-DPEs can be executed efficiently, reducing the overall cycles

consumed.

In the bottom chart in Figure 19, f_arch is kept constant at 0.5, implying that 50% of the BRAMs

are assigned to DPEs and 50% are assigned to C-DPEs. When f_data is low (on the left of the x-

axis), only a small amount of the workload is assigned to C-DPEs, so we do not get much speedup.

But as we move right along the x-axis, more of the workload is assigned to C-DPEs, achieving a

lower number of cycles. But as we move farther right, the cycles start to increase again because

the latency of the C-DPEs starts to dominate. Medium values of f_data give the highest speedup.

6 DISCUSSION

6.1 Comparison with Other FPGA Blocks

CoMeFa RAMs are universal blocks and can be used for accelerating any application. CoMeFa

RAMs are not replacements of DSPs or LBs but can work together and complement them. In some

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:29

ways, CoMeFa RAMs can be thought of as blocks that fuse together LBs and BRAMs. They pro-

vide a more structured way of computation compared to LBs, along with the storage capability of

BRAMs. Compared to DSPs, CoMeFa RAMs provide infinite flexibility in terms of precision (be-

cause of their bit-serial nature) even after the chip has been designed. DSPs can support multiple

precisions too, but the precisions have to be hardened at the time of designing the FPGA, and

adding more precisions increases DSP area. CoMeFa RAMs support more operations than DSPs

(which mainly just support multiplication and addition) because of the configurable PE in them.

They also allow flexibility in which algorithm to use for multiplication and addition, through bit-

serial and OOOR operations. With DSPs, a user is forced to use the multiplier or adder architecture

that was designed into it.

6.2 Applications

Applications that are well suited for deploying CoMeFa RAMs include the following:

(1) Applications that have significant SIMD parallelism (e.g., DL and signal, image, and video

processing).

(2) Applications that do not require a lot of communication between PEs (e.g., elementwise and

bitwise operations).

(3) Applications that use reduced and/or custom numerical precisions (e.g., DL).

6.3 Organizing Data for Computation

When performing computation using CoMeFa RAMs, data is laid out in a transposed manner (i.e.,

bits of an element are stored along a bitline). In addition to operands and results, intermediate

results need to be stored in the same column. If the intermediate results are not required at a later

stage, they can be overwritten to improve RAM utilization. For example, consider the case where

four operands a, b, c , d are stored in a column and the operation required is e = a ∗ b + c ∗ d . The

intermediate results a ∗ b and c ∗ d are calculated bit-serially and then added. The final result can

reuse the same rows as those storing the intermediate results by overwriting them.

In some cases, complex operations can be split over multiple columns and the final results can

be obtained by reducing intermediate results from different columns. For example, in the example

of calculating e = a ∗b+c ∗d , if the precision of operands is 18-bit fixed point, we would run out of

rows (total available = 128) to store the operands, intermediate results, and the final result. Splitting

independent operations over multiple columns exposes more parallelism and can achieve better

speedups. However, reducing intermediate results stored in different columns involves serializa-

tion and can reduce the obtained speedup. Bit-slicing [53] is another method in which individual

elements are split over multiple columns. For example, a 16-bit number can be sliced into two 8-bit

chunks and stored in eight rows in two columns. Operations can be performed independently on

the two bit-slices and then concatenated and reduced appropriately to get the final result.

There are tradeoffs in RAM utilization, data reuse, and latency. Having a smaller number of

operands in one column (bitline) means reduced utilization but low latency, because it will take

fewer cycles to perform the operation (because there is only one PE per column). However, if

we store more operands in a column, the RAM will have higher utilization but the latency will

be higher. Additionally, more operands in a column allow for more reuse. Consider an example

where one operand needs to be multiplied by two other operands and then the partial products

need to be added. Having all three operands in one column allows this operation to happen locally.

Otherwise, two multiplications will need to be done in separate columns (or separate BRAMs) and

then reduced. Smaller precisions allow for more elements to co-exist in a column.

Consider an operation where elements stored in all 160 columns of a CoMeFa RAM need to

be reduced to get one final result. Performing in-CoMeFa RAM reductions will proceed in a tree

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

50:30 A. Arora et al.

fashion, where after the first reduction step, 80 columns will have the new partial results. Then,

these will be reduced further into 40 columns. At some stage, performing further in-CoMeFa

RAM reductions can significantly degrade the compute throughput, as only a successively smaller

portion of the CoMeFa RAM columns are actively performing compute during each reduction it-

eration. To avoid this, reduction can be performed in soft logic outside the CoMeFa RAMs. Forty

partial results can be read out one bit-slice at a time (bit 0 of 40 partial results in one cycle, bit

1 of these partial results in the next cycle, and so on) and reduced externally. A popcount-based

external reduction [53] can be used for this addition/accumulation.

6.4 Parallelism

The parallelism CoMeFa RAMs provide (SIMD) is different from the pipeline parallelism that is

commonly used with LBs and DSP slices. Although SIMD parallelism can be achieved with LBs and

DSP slices as well, CoMeFa RAMs provide it in a more efficient and compact form. In applications

where SIMD parallelism from CoMeFa RAMs is used to obtain speedup (e.g., the on-chip memory

boundary bound applications in Section 4), reduced data movement will typically be observed

leading to a significant reduction in energy.

In addition to SIMD parallelism, data parallelism (splitting the data to be processed between

traditional DSP and LB-based compute units, and CoMeFa RAM based compute units) is used

to exploit the additional compute throughput provided by CoMeFa RAMs. Let us consider the

case where time T was spent on processing D chunks of data on a baseline FPGA (using only

traditional compute units like LBs and DSPs). However, if a part of the data (e.g., D/3 chunks) is

processed by CoMeFa RAMs and if the rest of the data (2D/3) is processed by traditional compute

units in parallel, then the total time taken would be less thanT (say 2T /3). This achieved speedup

depends on the distribution of work between traditional units and CoMeFa RAM based units, and

the best case would be when both types of units finish in an approximately equal amount of time. In

applications where data parallelism is used to obtain speedup (e.g., compute-bound applications

in Section 4), energy consumption may not reduce because more hardware is used to solve the

problem.

Different applications may need different types of parallelism. Even parts of one application may

be suited for different types of parallelism. So, adding CoMeFa RAMs to FPGAs opens the door to

new ways to exploit parallelism efficiently.

6.5 Integration into an Open Acceleration Framework

To demonstrate using CoMeFa RAMs with already existing acceleration frameworks, we integrate

a CoMeFa RAM based acceleration unit into CFU Playground [41] from Google and Harvard.

Figure 20 shows the overall architecture of our system. CFU stands for Custom Functional Unit.

CFU Playground is a collection of software and hardware to make it easy for everyone, including

software engineers, to accelerate machine learning/DL inferencing. Overall, the system provides

a soft RISC-V-based SoC that can be mapped to any FPGA, with a simple C-based programming

interface, along with the capability to design a CFU that is easily hooked up to the CPU. In the

original CFU Playground framework, the CFU is tightly coupled to the pipeline of the CPU. Both

commands and data to the accelerator are sent from the CPU interface. This limits the acceleration

that can be achieved because of the large amount of data to be transferred using a narrow inter-

face. We enhance the framework by adding a direct memory access path from the accelerator unit

shown using red arrows in the figure (currently only using a simulation model).

We write a C program to first populate the instruction RAM in the accelerator. Then the acceler-

ator is triggered by writing into a control register. This trigger initiates the instruction controller

in the accelerator to fetch data into the CoMeFa RAMs using the direct memory access path via the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:31

Fig. 20. Integrating a CoMeFa RAM based unit into an SoC using an open source accelerator framework

(CFU Playground).

swizzle logic. A status register is read to ensure that the data transfer has been completed. Then

another command is sent by writing to a control register in the accelerator. This command initiates

the controller to fetch the instructions from the instruction RAM in the accelerator, and decode

and execute them on CoMeFa RAMs. After the execution has finished, another status register is set.

The CPU busy-waits on this status register until the execution is finished (there are no interrupts

currently).

We deploy kernels to perform elementwise addition and multiplication on large arrays of data,

using this framework. With the C-based interface of the RISC-V CPU and the instruction-based

interface of the CoMeFa RAMs, it was very easy to develop and use this accelerator. We compare

the cycles to perform the same kernels using DSP-based accelerators, and the speedup obtained

was similar to that in Section 5.

7 CONCLUSION

In this article, we proposed augmenting the compute density of FPGAs by modifying BRAMs into

new blocks called CoMeFa RAMs, which are ideal for enhancing applications with inherent paral-

lelism like DL. To the best of our knowledge, this is the first work that (1) utilizes the dual-port

nature of BRAMs to achieve in-BRAM compute, (2) deploys configurable 1-bit PEs inside an FPGA

BRAM, (3) uses OOOR operations, and (4) applies in-BRAM compute to DL and non-DL applica-

tions on FPGAs. With improvement in compute density and reduction in energy consumption, con-

verting some or all BRAMs on FPGAs to CoMeFa RAMs can be a significant step toward closing the

performance gap between FPGAs and ASICs. Non-SRAM technologies like ReRAM or STT-MRAM

have been proposed to be used for FPGA BRAMs instead of SRAMs [12, 29, 48]. Simultaneously,

compute-in-memory has been explored with these technologies as well [21, 27]. In the future, we

plan to work on adding compute-in-memory capabilities to FPGA BRAMs based on these tech-

nologies. Most of the concepts in CoMeFa RAMs are agnostic to the underlying technology.

REFERENCES

[1] Achronix. 2019. Speedster7t FPGAs. Retrieved June 9, 2023 from https://www.achronix.com/product/speedster7t-

fpgas.

[2] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetuparna Das. 2017.

Compute caches. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture

(HPCA’17). 481–492. https://doi.org/10.1109/HPCA.2017.21

[3] Amogh Agrawal, Akhilesh Jaiswal, Chankyu Lee, and Kaushik Roy. 2018. X-SRAM: Enabling in-memory Boolean

computations in CMOS static random access memories. IEEE Transactions on Circuits and Systems I: Regular Papers

65, 12 (2018), 4219–4232.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

https://www.achronix.com/product/speedster7t-fpgas
https://doi.org/10.1109/HPCA.2017.21

50:32 A. Arora et al.

[4] Altera. 2015. Designing Filters for High Performance. Retrieved June 9, 2023 from https://www.intel.cn/content/dam/

www/programmable/us/en/pdfs/literature/wp/wp-01260-stratix10-designing-filters-for-high-performance.pdf.

[5] Aman Arora, Samidh Mehta, Vaughn Betz, and Lizy K. John. 2021. Tensor slices to the rescue: Supercharging ML

acceleration on FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA’21).

23–33.

[6] Aman Arora, Tanmay Anand, Aatman Borda, Rishabh Sehgal, Bagus Hanindhito, Jaydeep Kulkarni, and Lizy K. John.

2022. CoMeFa: Compute-in-memory blocks for FPGAs. In Proceedings of the 2022 IEEE 30th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM’22). 1–9. https://doi.org/10.1109/FCCM53951.2022.

9786179

[7] Aman Arora, Andrew Boutros, Daniel Rauch, Aishwarya Rajen, Aatman Borda, Seyed Alireza Damghani, Samidh

Mehta, et al. 2021. Koios: A deep learning benchmark suite for FPGA architecture and CAD research. In Proceedings

of the 2021 31st International Conference on Field-Programmable Logic and Applications (FPL’21). https://doi.org/10.1109/

FPL53798.2021.00068

[8] Aman Arora, Moinak Ghosh, Samidh Mehta, Vaughn Betz, and Lizy K. John. 2022. Tensor slices: FPGA building

blocks for the deep learning era. ACM Transactions on Reconfigurable Technology and Systems 15, 4 (Dec. 2022), 1–34.

https://doi.org/10.1145/3529650

[9] Aman Arora, Bagus Hanindhito, and Lizy K. John. 2021. Compute RAMs: Adaptable compute and storage blocks for

DL-optimized FPGAs. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers. 1156–

1163. https://doi.org/10.1109/IEEECONF53345.2021.9723277

[10] Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng Zhao, James C. Hoe, Vaughn Betz, and Martin

Langhammer. 2020. Beyond peak performance: Comparing the real performance of AI-optimized FPGAs and GPUs.

In Proceedings of the International Conference on Field Programmable Technology (FPT’20).

[11] A. Boutros, S. Yazdanshenas, and V. Betz. 2018. Embracing diversity: Enhanced DSP blocks for low-precision deep

learning on FPGAs. In Proceedings of the 2018 28th International Conference on Field Programmable Logic and Applica-

tions (FPL’18). 35–357.

[12] Yi-Chung Chen, Wenhua Wang, Hai Li, and Wei Zhang. 2012. Non-volatile 3D stacking RRAM-based FPGA. In

Proceedings of the 22nd International Conference on Field Programmable Logic and Applications (FPL’12). 367–372.

https://doi.org/10.1109/FPL.2012.6339206

[13] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME:

A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In

Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA’16). 27–39.

https://doi.org/10.1109/ISCA.2016.13

[14] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis Sylvester, David Blaauw,

and Reetuparna Das. 2018. Neural cache: Bit-serial in-cache acceleration of deep neural networks. In Proceedings

of the 45th Annual International Symposium on Computer Architecture (ISCA’18). IEEE, Los Alamitos, CA, 383–396.

https://doi.org/10.1109/ISCA.2018.00040

[15] Mohamed Eldafrawy, Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz. 2020. FPGA logic block architectures

for efficient deep learning inference. ACM Transactions on Reconfigurable Technology and Systems 13, 3 (June 2020),

Article 12, 34 pages. https://doi.org/10.1145/3393668

[16] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie. 1999. Computational RAM: Implementing

processors in memory. IEEE Design Test of Computers 16, 1 (1999), 32–41. https://doi.org/10.1109/54.748803

[17] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, et al.

2018. A configurable cloud-scale DNN processor for real-time AI. In Proceedings of the 45th Annual International Sym-

posium on Computer Architecture (ISCA’18). IEEE, Los Alamitos, CA, 1–14. https://doi.org/10.1109/ISCA.2018.00012

[18] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. ComputeDRAM: In-memory compute using off-the-shelf

DRAMs. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’19). ACM,

New York, NY, 100–113. https://doi.org/10.1145/3352460.3358260

[19] R. Gauchi, V. Egloff, M. Kooli, J.-P. Noel, B. Giraud, P. Vivet, S. Mitra, and H.-P. Charles. 2020. Reconfigurable tiles of

computing-in-memory SRAM architecture for scalable vectorization. In Proceedings of the ACM/IEEE International

Symposium on Low Power Electronics and Design. ACM, New York, NY, 121–126. https://doi.org/10.1145/3370748.

3406550

[20] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu. 2019. Processing-in-memory: A workload-driven

perspective. IBM Journal of Research and Development 63, 6 (2019), Article 3, 19 pages. https://doi.org/10.1147/JRD.

2019.2934048

[21] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. FloatPIM: In-memory acceleration of deep neu-

ral network training with high precision. In Proceedings of the 46th International Symposium on Computer Architecture.

802–815. https://doi.org/10.1145/3307650.3322237

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01260-stratix10-designing-filters-for-high-performance.pdf
https://doi.org/10.1109/FCCM53951.2022.9786179
https://doi.org/10.1109/FPL53798.2021.00068
https://doi.org/10.1145/3529650
https://doi.org/10.1109/IEEECONF53345.2021.9723277
https://doi.org/10.1109/FPL.2012.6339206
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1145/3393668
https://doi.org/10.1109/54.748803
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1147/JRD.2019.2934048
https://doi.org/10.1145/3307650.3322237

CoMeFa: Deploying Compute-in-Memory on FPGAs for Deep Learning Acceleration 50:33

[22] Intel. 2016. Hybrid Memory Cube Controller IP Core User Guide v16.0. Retrieved June 9, 2023 from https://www.intel.

com/content/www/us/en/docs/programmable/683854/16-0/introduction.html.

[23] Intel. 2020. Intel Arria 10 Device Datasheet. Retrieved June 9, 2023 from https://www.intel.com.tw/content/dam/www/

programmable/us/en/pdfs/literature/hb/arria-10/a10_datasheet.pdf.

[24] Intel. 2021. Intel Arria 10 Device Overview. Retrieved June 9, 2023 from https://www.intel.com/content/www/us/en/

docs/programmable/683332/current/device-overview.html.

[25] Intel. 2021. Intel Arria 10 Product Table. Retrieved June 9, 2023 from. https://www.intel.cn/content/dam/www/

programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf.

[26] Intel. 2021. Intel Arria 10 Transceiver PHY User Guide. Retrieved June 9, 2023 from https://www.intel.cn/content/

dam/www/programmable/us/en/pdfs/literature/hb/arria-10/ug_arria10_xcvr_phy.pdf.

[27] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2018. Computing in memory with spin-transfer

torque magnetic RAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 3 (March 2018), 470–483.

https://doi.org/10.1109/TVLSI.2017.2776954

[28] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David Blaauw. 2016. A 28 nm configurable memory

(TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory. IEEE Journal of Solid-State Circuits 51,

4 (2016), 1009–1021. https://doi.org/10.1109/JSSC.2016.2515510

[29] Lei Ju, Xiaojin Sui, Shiqing Li, Mengying Zhao, Chun Jason Xue, Jingtong Hu, and Zhiping Jia. 2018. NVM-based FPGA

block RAM with adaptive SLC-MLC conversion. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 37, 11 (Nov. 2018), 2661–2672. https://doi.org/10.1109/TCAD.2018.2857261

[30] Mingu Kang, Sujan K. Gonugondla, and Naresh R. Shanbhag. 2020. Deep in-memory architectures in SRAM: An analog

approach to approximate computing. Proceedings of the IEEE 108, 12 (2020), 2251–2275. https://doi.org/10.1109/JPROC.

2020.3034117

[31] Mingu Kang, Min-Sun Keel, Naresh R. Shanbhag, Sean Eilert, and Ken Curewitz. 2014. An energy-efficient VLSI archi-

tecture for pattern recognition via deep embedding of computation in SRAM. In Proceedings of the 2014 IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP’14). 8326–8330. https://doi.org/10.1109/ICASSP.

2014.6855225

[32] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and David Glasco. 2011. GPUs and the future

of parallel computing. IEEE Micro 31, 5 (2011), 7–17. https://doi.org/10.1109/MM.2011.89

[33] Aaron Landy and Greg Stitt. 2015. Revisiting serial arithmetic: A performance and tradeoff analysis for parallel appli-

cations on modern FPGAs. In Proceedings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable

Custom Computing Machines. 9–16. https://doi.org/10.1109/FCCM.2015.53

[34] Aaron Landy and Greg Stitt. 2017. Serial arithmetic strategies for improving FPGA throughput. ACM Transactions on

Embedded Computing Systems 16, 3 (July 2017), Article 84, 25 pages. https://doi.org/10.1145/2996459

[35] Martin Langhammer, Eriko Nurvitadhi, Bogdan Pasca, and Sergey Gribok. 2021. Stratix 10 NX Architecture and Ap-

plications. In Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA’21). 57–67

[36] David Lewis, David Cashman, Mark Chan, Jeffery Chromczak, Gary Lai, Andy Lee, Tim Vanderhoek, and Haiming

Yu. 2013. Architectural enhancements in Stratix V. In Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA’13). ACM, New York, NY, 147–156. https://doi.org/10.1145/2435264.2435292

[37] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. 2017. DRISA: A DRAM-

based reconfigurable in-situ accelerator. In Proceedings of the 2017 50th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’17). 288–301.

[38] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jai Min Wang, Mohamed ElDafrawy, Jean-Philippe Legault, Eugene

Sha, et al. 2020. VTR 8: High performance CAD and customizable FPGA architecture modelling. ACM Transactions on

Reconfigurable Technology and Systems 13, 2 (2020), Article 9, 55 pages.

[39] Sharan Narang. 2016. Baidu DeepBench. Retrieved June 9, 2023 from https://svail.github.io/DeepBench/.

[40] NCSU. 2018. FreePDK45. Retrieved June 9, 2023 from https://eda.ncsu.edu/freepdk45/.

[41] Shvetank Prakash, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan V. Green, Pete Warden, Tim Ansell, and

Vijay Janapa Reddi. 2022. CFU playground: Full-stack open-source framework for tiny machine learning (tinyML)

acceleration on FPGAs. arXiv:2201.01863 [cs] (2022). http://arxiv.org/abs/2201.01863.

[42] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. W. Leong. 2019. PIR-DSP: An FPGA DSP block architecture for

multi-precision deep neural networks. In Proceedings of the 2019 IEEE 27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM’19). 35–44.

[43] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch,

Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations

using commodity DRAM technology. In Proceedings of the 2017 50th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’17). 273–287.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

https://www.intel.com/content/www/us/en/docs/programmable/683854/16-0/introduction.html
https://www.intel.com.tw/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_datasheet.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683332/current/device-overview.html
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/ug_arria10_xcvr_phy.pdf
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/TCAD.2018.2857261
https://doi.org/10.1109/JPROC.2020.3034117
https://doi.org/10.1109/ICASSP.2014.6855225
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/FCCM.2015.53
https://doi.org/10.1145/2996459
https://doi.org/10.1145/2435264.2435292
https://svail.github.io/DeepBench/
https://eda.ncsu.edu/freepdk45/
http://arxiv.org/abs/2201.01863

50:34 A. Arora et al.

[44] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao Hu, R. Stanley

Williams, and Vivek Srikumar. 2016. ISAAC: A convolutional neural network accelerator with in-situ analog arith-

metic in crossbars. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA’16). 14–26. https://doi.org/10.1109/ISCA.2016.12

[45] A. Stillmaker and B. Baas. 2017. Scaling equations for the accurate prediction of CMOS device performance from 180

nm to 7 nm. Integration, the VLSI Journal 58 (2017), 74–81. http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.

TechScale/.

[46] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian, David Blaauw, Dennis Sylvester, and Reetuparna

Das. 2017. Cache automaton. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’17). ACM, New York, NY, 259–272. https://doi.org/10.1145/3123939.3123986

[47] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Srinivasan, Xi-

aodong Cui, Wei Zhang, and Kailash Gopalakrishnan. 2019. Hybrid 8-bit floating point (HFP8) training and infer-

ence for deep neural networks. In Advances in Neural Information Processing Systems, Vol. 32. Curran Associates.

https://proceedings.neurips.cc/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf.

[48] Kosuke Tatsumura, Sadegh Yazdanshenas, and Vaughn Betz. 2018. Enhancing FPGAs with magnetic tunnel junction-

based block RAMs. ACM Transactions on Reconfigurable Technology and Systems 11, 1 (March 2018), 1–22. https://doi.

org/10.1145/3154425

[49] Jeffrey Tyhach, Mike Hutton, Sean Atsatt, Arifur Rahman, Brad Vest, David Lewis, Martin Langhammer, et al. 2015.

Arria 10 Device Architecture. In Proceedings of the 2015 IEEE Custom Integrated Circuits Conference (CICC’15). 1–8.

[50] Arizona State University. 2012. Predictive Technology Model. Retrieved June 9, 2023 from http://ptm.asu.edu/.

[51] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna Das, David Blaauw, and Dennis

Sylvester. 2020. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vec-

tor computing. IEEE Journal of Solid-State Circuits 55, 1 (Jan. 2020), 76–86. https://doi.org/10.1109/JSSC.2019.2939682

[52] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna Das, David Blaauw, and Dennis

Sylvester. 2020. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory

vector computing. IEEE Journal of Solid-State Circuits 55, 1 (2020), 76–86. https://doi.org/10.1109/JSSC.2019.2939682

[53] Xiaowei Wang, Vidushi Goyal, Jiecao Yu, Valeria Bertacco, Andrew Boutros, Eriko Nurvitadhi, Charles Augustine,

Ravi Iyer, and Reetuparna Das. 2021. Compute-capable block RAMs for efficient deep learning acceleration on FP-

GAs. In Proceedings of the 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM’21). 88–96. https://doi.org/10.1109/FCCM51124.2021.00018

[54] Xilinx. 2018. AI Engines and Their Applications. Retrieved June 9, 2023 from https://www.xilinx.com/support/

documentation/white_papers/wp506-ai-engine.pdf.

[55] Xilinx. 2021. UltraScale Architecture Memory Resources. Retrieved June 9, 2023 from https://www.xilinx.com/

support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf.

[56] Sadegh Yazdanshenas and Vaughn Betz. 2019. COFFE2: Automatic modelling and optimization of complex and het-

erogeneous FPGA architectures. ACM Transactions on Reconfigurable Technology and Systems 12, 1 (Jan. 2019), Article

3, 27 pages.

[57] Sadegh Yazdanshenas, Kosuke Tatsumura, and Vaughn Betz. 2017. Don’t forget the memory: Automatic block RAM

modelling, optimization, and architecture exploration. In Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA’17). ACM, New York, NY, 115–124. https://doi.org/10.1145/3020078.3021731

Received 30 January 2023; revised 17 May 2023; accepted 1 June 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 50. Pub. date: July 2023.

https://doi.org/10.1109/ISCA.2016.12
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
https://doi.org/10.1145/3123939.3123986
https://proceedings.neurips.cc/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf
https://doi.org/10.1145/3154425
http://ptm.asu.edu/
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/FCCM51124.2021.00018
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://doi.org/10.1145/3020078.3021731

