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Non-intrusive, real-time analysis of the dynamics of the eye region allows us to monitor humans’ visual attention allocation
and estimate their mental state during the performance of real-world tasks, which can potentially benefit a wide range of
human-computer interaction (HCI) applications. While commercial eye-tracking devices have been frequently employed, the
difficulty of customizing these devices places unnecessary constraints on the exploration of more efficient, end-to-end models
of eye dynamics. In this work, we propose CLERA, a unified model for Cognitive Load and Eye Region Analysis, which
achieves precise keypoint detection and spatiotemporal tracking in a joint-learning framework. Our method demonstrates
significant efficiency and outperforms prior work on tasks including cognitive load estimation, eye landmark detection, and
blink estimation. We also introduce a large-scale dataset of 30k human faces with joint pupil, eye-openness, and landmark
annotation, which aims to support future HCI research on human factors and eye-related analysis.
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1 INTRODUCTION
Understanding the appearance and dynamics of the human eye has proven to be an essential component of various
human-centered research activities and applications, e.g., visual attention modeling [5, 80], gaze-based human-
computer interaction [11, 19, 48], virtual reality [9, 55], physical and psychological health monitoring [31, 43, 51],
usability evaluation [29, 38], and emotion recognition [4, 45]. However, in order to assess human cognitive load
or perform other visual attention modeling tasks in real-world situations, it is often required that the evaluation
approach should not interfere with the natural behavior of interest such that the mental state of the individual
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2 • Ding, Li et al.

Fig. 1. Overview of the proposed model CLERA, for joint cognitive load and eye region analysis. We first perform detection
of the eye on the frame-level deep feature map. Next, the architecture extends two heads: Localized Feature Tracking for
cognitive load estimation over time and Mask-Localized Regressor for eye landmark detection.

being measured is not influenced by the measurement approach itself. Moreover, these assessments should also
generalize to different environmental and individual-specific characteristics such as visual appearance, movement,
pose, scale, perspective, time of the day, etc. Thus, developing practical, non-contact approaches that are not
hindered by environmental and experimental constraints remains a challenging problem in HCI research.
Some advanced approaches [24, 25] have been proposed to take advantage of modern computer vision and

deep learning technologies to estimate human cognitive load from an “in the wild” perspective through modeling
pupil dynamics, which yields the potential of real-time applications such as driver attention monitoring. These
approaches often require efficient and precise detection of the eye region and its landmarks, which is often
achieved using out-of-the-box eye-tracking devices. However, these devices can be hard to customize and interact
with, putting unnecessary constraints on exploring more efficient, end-to-end modeling of eye dynamics. For
example, [24] needs either the pupil and eye landmark positions or the tracked eye-region image as the input
to the cognitive load estimation model. As a result, the current methods are still incapable of making online
predictions due to the latency introduced by the prerequisite of adding an eye tracker.

In this work, we focus on exploring computer-vision-based joint-learning frameworks for eye-region analysis
and downstream eye-dynamics modeling tasks. Our intuition is that since both eye tracking and eye-dynamics
modeling tasks can be viewed as learning tasks that take the camera image as input, they could likely share
some part of the modeling and be integrated into a joint-learning framework, potentially saving considerable
computation for efficiency. To validate this idea, we propose a unified deep learning model, termed CLERA, for
joint Cognitive Load and Eye Region Analysis, as shown in Fig. 1.
The proposed model aims to make improvements on prior research from two perspectives. First, we focus

on the architectural design of joint-learning deep neural networks. There is very likely to exist a large amount
of computation redundancy when the cognitive load estimation model takes image sequences of the eye as
input [24], because the detection of the eye region needs to be predicted by a separate system. As the tasks of
eye detection, pupil localization, and cognitive load estimation all rely on extracting visual representations of
the human eye region, well-learned representations could potentially be shared across these tasks. Moreover,
end-to-end learning of deep neural networks usually requires large-scale data for training. However, obtaining
ground truth cognitive load data is usually difficult and costly as it requires specific experimental setups, e.g.,
n-back tasks [62]. On the other hand, traditional computer vision tasks of eye region analysis, such as eye and
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landmark detection, are well constructed and easy to annotate at scale. Since cognitive load can be estimated by
modeling the physiological reactivity of the eye, successful estimation will need good visual representations of
the eye and its components. This fact indicates that eye/landmark detection may serve as side supervision for the
cognitive load task to improve the quality of learned representation. Based on these considerations, we propose
the Localized Feature Tracking technique, which utilizes shared visual features for high-level tasks in the temporal
domain, such as cognitive load estimation, within a joint-learning framework. With the detection tasks performed
on each frame, we use a temporal tracking algorithm to track each detected eye. For each successfully tracked
eye, we perform temporal modeling on the top of localized deep feature maps instead of the raw image. As a
result, the whole framework is able to learn general and robust feature representations for precise eye landmarks,
and blink detection, and use the same representations for cognitive load estimation, which outperforms existing
methods and can efficiently run in real-time to be useful for many real-world applications.
Second, we focus on adapting modern computer vision models to better facilitate real-world applications of

eye-region analysis. Existing methods for pupil and blink detection [7, 41, 47, 64] heavily rely on the assumption
of environmental conditions of the training data, and usually need to work under similar controlled environments.
For example, [7] requires an eye camera to bemounted on eyeglasses, which is not suitable for real-world situations.
Recent advancements in common object detection and human pose prediction show exciting performance on
large-scale datasets [46]. We leverage this success and frame the pupil and blink detection task as a joint instance
and keypoint detection problem. State-of-the-art methods [8, 32, 54] tend to use mask-based methods, where the
keypoints are predicted using heatmaps on either the whole image or particular regions of interest. The precision
of keypoint outputs is thus limited by the resolution of the heatmap. Such approaches are suitable for tasks where
the precision of keypoints is not highly demanding as the heatmap resolutions usually suffice, e.g., human pose
estimation. However, when it comes to eye landmarks, mask-based approaches lack the required precision for
eye-related tasks, such as capturing the micromovements of the pupil within the eye region. To handle such
problems, we propose a method, termed Mask-Localized Regressor, that extends mask-based approaches to handle
precise eye landmark detection that can provide sub-pixel predictions of coordinates.

In addition, we recognize the need for large-scale datasets to facilitate human factors research usingmodern data-
driven approaches. These approaches often require diverse datasets to capture a variety of natural environments
for the task. To meet this need, we propose MIT Pupil Dataset, a large-scale dataset of 30k crowd-sourced web
images of human faces. The dataset includes joint annotations for pupil, eye-openness, and landmarks, and has an
even distribution of images of closed and open eyes. This dataset aims to serve as an open-source benchmark and
to help with the development of modern learning-based algorithms for understanding human eyes in real-world
applications. Both the dataset and the algorithm proposed in this work will be released open source to contribute
to the community for further research on this topic.
To summarize, the main contributions of this work are:

(1) CLERA: a unified joint-learning framework for cognitive load and eye region analysis, which consists of
two novel techniques:

(a) Localized Feature Tracking for using shared image features for cognitive load modeling
(b) Mask-Localized Regressor for precise eye landmark detection

(2) MIT Pupil Dataset: a large-scale, open-source1 dataset of around 30k images of human faces with joint
pupil, eye-openness, and landmark annotation.

1The dataset is not directly published online due to privacy and sensitivity concerns. For inquiries about using the dataset for research
purposes, please contact the corresponding author.
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2 RELATED WORK

2.1 Cognitive Load Estimation
The concept of cognitive load [52] is often used to refer to the amount of human working memory in use, and has
been shown to be an important variable impacting human performance on a variety of tasks, such as machine
operations, education, and driving, for which human operators are responsible for the major decision-making
and action execution. Early research [30, 50, 52, 68] proposed various physiological measures that are sensitive to
changes in cognitive load levels that can be characterized under controlled experimental conditions. There have
been numerous studies linking eye movements to variations in cognitive load levels, especially in the driving
area. Most studies use different approaches and methods on different datasets. As such, it has been hard to
directly compare results. A general finding supported by previous studies is that increased levels of cognitive
load often result in a narrowing of visual search space during driving, i.e., gaze concentration. [59] studies
the effects of mental workload on visual search and decision-making. [62] explores the impact of variations in
short-term memory demands on drivers’ visual attention and performance. [71] compares several methodologies
for computing changes in gaze dispersion, showing that horizontal eye movements show the greatest sensitivity
to variations in cognitive demand. [79] explores using machine learning methods in driver workload estimation.
[24] proposes two novel vision-based methods for cognitive load estimation, and evaluates them on a large-scale
dataset collected under real-world driving conditions [22]. Our work follows the direction of [24] and proposes
a more integrated deep learning framework for better efficiency and generalization. Based on these successful
attempts, our work steps further in this direction and integrates the task of cognitive load estimation into the
general computer vision task of object detection and video understanding. Such integration allows us to design
better deep learning frameworks that manage to improve both computational efficiency and generalization to
“wilder” real-world circumstances.

2.2 Pupil Detection and Blink Estimation
There have been various preliminary works on using image-based computer vision methods to enhance the safety
and experience of driving [12, 14, 17, 23], especially on the driver’s facial analysis including detection of human
eyes, eye landmarks, gaze, blink, or jointly detect some combination thereof. Traditional methods [7, 41, 47, 64]
either utilize hand-crafted visual features extracted by descriptors such as SIFT and HOG, or employ image/color
models based on the appearance of the human eye. These methods usually require controlled environments to
work, and thus cannot handle cases in real-world uncontrolled conditions [13, 15, 16, 22], including arbitrary
viewpoints, varying face appearances, and illuminance changes. In recent years, deep learning methods have
been used to form better representations in order to improve the accuracy and robustness of general object
detection [32, 60, 63] and keypoint detection [6, 8, 32, 54]. Some relevant papers [2, 10, 40, 65] explore using
existing deep learning architectures on the tasks of blink or gaze estimation. Our work takes a further step to
propose a method for precise keypoint detection and a unified framework designed specifically for joint eye,
pupil, and blink detection. The whole model is optimized for multiple aspects of this task and enables real-time
detection under real-world conditions.

2.3 Pupil and Blink Datasets
Table 1 shows an overview of open-source datasets that have pupil position and/or eye-openness annotated for
real-world images. In general, many existing datasets [26, 28, 39, 69, 70] for pupil detection and eye tracking
involve using head-mounted cameras or eye-tracking glasses, which are not applicable to many real-world
applications that require practical, non-contact approaches for pupil and blink detection, and which may also
involve localizing eyes of interest in the first place. It is worth noting [78] which proposes a larger-scale dataset
captured with laptop webcams for gaze estimation, which also provides pupil and landmark annotations on a
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subset. Although this subset has some variability in appearance and illumination, it still has many constraints
such as a limited number of subjects and camera perspectives. For annotated eye blinks or closed eyes, some
existing datasets [18, 21, 53, 67] are small in scale in terms of deep network training. [40] offers a larger dataset
of 5k samples of closed-eye images, but only with frontal faces. A more recent work [10] provides annotations
for a small subset of 480 images with semantic labels of pupil area, and 10k images of closed eyes. Our dataset
aims to address the shortcomings of using restricted devices, a limited number of subjects, etc., and provides
a large-scale, in-the-wild dataset of around 30k images with joint pupil and eye landmarks evenly distributed
across open and closed eyes.

3 METHODS
As shown in Fig. 1, we propose a unified architecture for eye bounding boxes, eye landmarks, blink, and
cognitive load estimation with sequential image input. We first extract a frame-level deep feature map using deep
convolutional neural networks, and perform bounding box detection and blink estimation (binary classification
of open/closed eye). We then locate the positive detection of eyes back onto the feature map and get the localized
visual feature representations to perform eye landmark detection. Finally, we track the localized feature through
time and use temporal modeling to perform cognitive load estimation.

3.1 Image Feature Extraction and Eye Detection
We first use a pre-trained deep convolutional network (ResNet-50 [33]) as the image-level feature extractor.
ResNet-50 is a deep convolutional neural network architecture that consists of 50 layers, widely used for image
recognition tasks. By pre-training on large-scale datasets, it can extract meaningful features from the image to
be used for computer vision tasks. On the top of the feature map (down-scaled by 32 times from the original
resolution of the image), we first perform bounding box detection, which is to predict the bounding box location
(coordinates 𝑏𝑥 , 𝑏𝑦) and size (width 𝑏𝑤 , height 𝑏ℎ). Instead of following popular methods [61, 63] that utilize
multi-scale region proposals, we (similar to [60]) predict the bounding box confidence and its parameters using
an extra convolutional layer for better computation efficiency.

On the feature map, the convolutional layer predicts 5 variables on each cell: 𝑡𝑝 , 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ . The offset of the
cell from the top left corner of the image is denoted by (𝑐𝑥 ,𝑐𝑦), and the bounding box prior has width and height
of 𝑝𝑤 and 𝑝ℎ . The positive predictions (cells that 𝑡𝑝 > 0) finally correspond to:

𝑏𝑥 = 𝑡𝑎𝑛ℎ(𝑡𝑥 ) + 0.5 + 𝑐𝑥 (1)
𝑏𝑦 = 𝑡𝑎𝑛ℎ(𝑡𝑦) + 0.5 + 𝑐𝑦 (2)
𝑏𝑤 = 𝑝𝑤 · 𝑒𝑡𝑤 (3)
𝑏ℎ = 𝑝ℎ · 𝑒𝑡ℎ (4)

Note that our parameterization is different from [61] because in practice, we find the sigmoid used in [61] leads
to slower convergence and larger variation in prediction. It also does not allow predictions to be slightly out
of the corresponding cell, which causes accuracy to decrease when the bounding box happens to locate in the
middle of two cells. When a side cell has higher confidence than the center cell, the non-max suppression will
select the prediction of side cell but it can never predict the accurate location of the box. Our equation solves this
problem by letting each cell to predict the center of the box at most to the center of the neighboring cells (the
term (𝑡𝑎𝑛ℎ(𝑥) + 0.5) ranges from −0.5 to 1.5). We also perform a binary classification for each detected eye to
obtain its state (open/closed) for blink detection.

ACM Trans. Comput.-Hum. Interact.
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Fig. 2. Architecture of the Mask-Localized Regressor Head: We add another branch for keypoint offset regression following a
similar design as the mask branch in [32]. This branch predicts keypoint-agnostic offsets, which are then added to mask-
predicted indices to get precise keypoint coordinates.

3.2 Localized Feature Tracking for Cognitive Load Estimation
With the detection tasks performed on each frame, we use a temporal tracking method that sets a threshold 𝜃 for
the temporal displacement of each of the detected eye, and track it through time. Namely, given that a detected
eye (𝑏𝑥𝑡 , 𝑏𝑦𝑡 , 𝑏𝑤𝑡

, 𝑏ℎ𝑡 ) in frame 𝑡 and another detected eye (𝑏𝑥𝑡+1 , 𝑏𝑦𝑡+1 , 𝑏𝑤𝑡+1 , 𝑏ℎ𝑡+1 ) in frame 𝑡 + 1, we calculate the
Intersection over Unio (IoU) of them,

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑈𝑛𝑖𝑜𝑛
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(5)

Where TP is the number of true positives, FP is the number of false positives, and FN is the number of false
negatives. If IoU is greater than 𝜃 , they are treated as the same eye and tracking is thus established.

For successfully tracked eyes, we further extract the image feature representation from each frame, and perform
temporal modeling on the top of them. We get the localized feature by locating the feature vector on the feature
map by using the location of the eye. For example, for feature map 𝑙 that is 16x downsampled from the original
resolution, the feature vector of eye (𝑏𝑥𝑡 , 𝑏𝑦𝑡 , 𝑏𝑤𝑡

, 𝑏ℎ𝑡 ) will be 𝑙 [𝑏𝑥𝑡 /16, 𝑏𝑦𝑡 /16]. The localized feature vectors of
the eye tracked through all the frames are then used as the input for temporal modeling, which outputs estimation
of tracked properties such as cognitive load.

For temporal modeling, we use a VGG-like [66] architecture with blocks of 1D Convolution, BatchNorm [36],
and ReLU. Each block consists of 3 Conv-BN-ReLUwith the last one having a stride of 2 to perform down-sampling.
The dimension of features in each block is set to [32,64,128,256], and finally we use global average pooling and a
fully-connected layer for classification. One thing to notice is that the temporal modeling allows gradients to be
back-propagated back to the feature extractor model, which can further fine-tune the whole model for better
performance.

3.3 Mask-Localized Regressor for Precise Keypoint Detection
TheMask-Localized Regressor is designed to address the limitation of keypoint coordinate precision in mask-based
keypoint detection approaches [32]. Given a heatmap 𝑓 of mask coordinates of size ℎ′ ×𝑤 ′ corresponding to the
original image or image crop of size ℎ ×𝑤 , 𝑓 (𝑝𝑖 ) = 1 if a keypoint is located at position 𝑝𝑖 where 𝑖 ∈ {1, ..., 𝑁 },

ACM Trans. Comput.-Hum. Interact.
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𝑁 = ℎ′ ·𝑤 ′. 𝑝𝑖 is usually given as a tuple of (𝑐′𝑥 , 𝑐′𝑦) where 𝑐′𝑥 , 𝑐′𝑦 are rounded integer coordinates calculated as

(𝑐′𝑥 , 𝑐′𝑦)𝑇 = 𝑟𝑜𝑢𝑛𝑑

(
(𝑐𝑥 , 𝑐𝑦)𝑇 · (𝑤

′, ℎ′)𝑇
(𝑤,ℎ)𝑇

)
, (6)

where the real coordinates are given as 𝑐𝑥 , 𝑐𝑦 . We then calculate the coordinate offsets 𝑡𝑥 , 𝑡𝑦 as

(𝑡𝑥 , 𝑡𝑦)𝑇 =
(𝑐𝑥 , 𝑐𝑦)𝑇

(𝑤,ℎ)𝑇
−

(𝑐′𝑥 + 𝛼, 𝑐′𝑦 + 𝛼)𝑇

(𝑤 ′, ℎ′)𝑇
, (7)

where 𝛼 is a fixed offset to adjust index rounding to the grid center, e.g., 𝛼 = 0.5 for zero-based indexing and
𝛼 = −0.5 for one-based.

The Mask-Localized Regressor 𝑔models the coordinate offsets 𝑡𝑥 , 𝑡𝑦 as the lost information during the rounding
process, such that 𝑔(𝑝𝑖 ) = (𝑡𝑥 , 𝑡𝑦)𝑇 if 𝑓 (𝑝𝑖 ) = 1. The model predicts on every coordinate 𝑖 ∈ {1, ..., 𝑁 }, but only
calculates loss if 𝑓 (𝑝𝑖 ) = 1. So given a loss function 𝐶 (𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛), the loss is calculated as

𝑙𝑜𝑠𝑠 =

𝑁∑︁
𝑖=1

𝐶

(
𝑔(𝑝𝑖 ), (𝑡𝑥 , 𝑡𝑦)𝑇

)
· 𝑓 (𝑝𝑖 ). (8)

This method can be integrated into existing frameworks for keypoint detection. We design an architecture
that extends the Mask R-CNN keypoint head to a Mask-Localized Regressor head, as shown in Fig. 2. We keep
the mask branch as-is, and add a regressor branch with similar architecture for keypoint offsets. Finally, the two
branches are joined together to get precise keypoint predictions.
Specifically, we perform RoI-Align using the predicted bounding box (ground truth bounding box during

training) on the 8× scale. Both the mask branch and offset regressor branch have 𝑛 = 4, 𝐻 = 8,𝑊 = 16, and
𝐶 = 256.

4 MIT PUPIL DATASET
Our goal is to create a dataset suitable to train and evaluate a general-purpose eye detector with the capability to
also predict the corresponding attributes of the eye, including pupil, landmark position, and openness. Such a
dataset is subject to a few design decisions in order to ensure it covers a sufficiently general domain of scenarios
and environmental variations, and can be efficiently and accurately annotated at large-scale. We design a pipeline
where we first obtain large-scale images of human faces from different sources to ensure its variability. Then we
efficiently annotate the eye and landmarks by splitting the whole annotation process into subtasks: (1) determine
if there is a visible right eye present, (2) determine whether the right eye is open or closed, (3) draw a bounding
box around a person’s right eye, and (4) annotate the keypoints for the right eye. Examples of the dataset are
visualized in Figure 4.

4.1 Dataset Structure
Our dataset is comprised of 28, 039 images, each with the following attributes:
(1) state: a binary variable, 𝑠𝑡𝑎𝑡𝑒 ∈ {𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒𝑑}, which marks an eye as either open or closed.
(2) bounding_box: a quadruple (𝑥𝑏𝑏𝑜𝑥1, 𝑦𝑏𝑏𝑜𝑥1, 𝑥𝑏𝑏𝑜𝑥2, 𝑦𝑏𝑏𝑜𝑥2) denoting the upper left and lower right corners

of a bounding box encompassing an eye.
(3) lateral_canthus: a tuple (𝑥𝑙𝑎𝑡𝑒𝑟𝑎𝑙 , 𝑦𝑙𝑎𝑡𝑒𝑟𝑎𝑙 ) denoting the location of the lateral canthus (outside corner) of

the eye.
(4) medial_canthus: a tuple (𝑥𝑚𝑒𝑑𝑖𝑎𝑙 , 𝑦𝑚𝑒𝑑𝑖𝑎𝑙 ) denoting the location of the medial canthus (inner corner) of

the eye.
(5) pupil: a tuple (𝑥𝑝𝑢𝑝𝑖𝑙 , 𝑦𝑝𝑢𝑝𝑖𝑙 ) denoting the location of the center of the pupil.
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Table 1. Overview of open source datasets for annotated pupil and eye landmarks position as well as blink/eye-openness. (*:
the actual number released for open-source)

# of images annotated

subjects camera view pupil & landmarks blink / closed eye

Swirski et al. [69] 2 head-mounted 600 -
Fuhl et al. [26] 17 head-mounted 38,401 -
LPW [70] 22 head-mounted 130,856 -
MPIIGaze [77, 78] 15 frontal (laptop) 37,667 (10,848*) -
NVGaze [39] 3 head-mounted 7,128 -
OpenEDS [28] 152 head-mounted 12,759 -
ZJU [53] 20 frontal & upward - 255 / 1,016
Kim et al. [40] - frontal - - / 4,891
CEW [67] 2,423 wild (internet) - - / 1,192
Eyeblink8 [18] 4 frontal - 353 / -
Res. Night [21] 107 frontal (screen) - 1,849 / -
RT-BENE [10, 20] 15 free-viewing 480 - / 10,444

Ours >10,000 wild (internet) 24,391 - / 13,764

This dataset only includes annotations for the right eyes. By assuming that differences between the features
of the left and right sides of a face vanish at the population level, the horizontally flipped image of the dataset
includes only left eye annotations. This assumption allowed us to halve the effort needed to generate the dataset.
We describe how we design suitable mechanisms for working with this dataset for both training and evaluation
in Sec. 5.2.3.

4.2 Image Collection
We assemble a collection of approximately 30k images that consists of a wide variety of faces with equal instances
of closed and open eyes. We used several existing datasets to compile a preliminary set of around 7k images,
including Labeled Faces in theWild [35], CAS-PEAL [27], Caltech Faces 1999 [72] and Closed Eyes in theWild [67].
To collect more closed-eye images, we used search engines to locate open-source licensed real-world faces varying
in head pose, gaze, race, gender and lighting conditions. These provided 17k images. In order to capture the
intrinsic pupil movement of the human eye, we also gathered a set of high-resolution YouTube videos, and
captured 6k images from those videos.

4.3 Annotation Process
For all annotation tasks, we employed professional in-house annotators and developed web-based custom
annotation tools in order to produce high-quality and efficient annotations. The annotators are trained with a
warm-up task of 100 or more images and required to pass the manual check by researchers to start annotation.

4.3.1 Bounding Box Annotator. The bounding box interface, shown in Fig. 3 on the left, shows the user one
candidate image at a time. First, the annotators are asked to tell how many pairs of eyes exist in the image. If
there is exactly one pair of eyes in the image (including occluded), the annotators go on to draw a bounding
box around the right eye and select whether the eye is open or closed. The interface allows annotators to zoom
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Fig. 3. The Bounding Box and Keypoint Annotation Interfaces

in, drag the box, or move it by small steps using the arrow keys in order to make annotation easier and more
accurate.

4.3.2 Keypoint Annotator. As shown in Fig. 3 on the right, the keypoint interface shows the annotator an image
that has been annotated with a bounding box of the right eye, and asks workers to click on the locations of eye
landmarks of interest. Annotators first annotate the lateral canthus, then the medial canthus, and lastly the pupil.
The annotated locations of these landmarks are shown with corresponding colors indicated in Fig. 3.

We found that by enforcing the order of landmarks to be annotated as prescribed by the interface helps to
improve efficiency and eliminates errors associated with missing the order of landmarks: an annotator merely
has to click their mouse three times to annotate an image as opposed to manually selecting a landmark type
before each click. Annotators are also able to adjust the location of annotated landmarks by either dragging or
using the arrow keys.
We also have annotators provide a redundant label for each eye state, which helps us verify the quality of

annotation. This is done by asking annotators to annotate the pupil only if they (1) believe the eye is open and (2)
the center of the pupil is visible or inferrable.

4.3.3 Two-pass Annotation. The annotation occurred in two passes, in which each image was annotated by two
different annotators. This allowed us to measure annotation integrity and accuracy by comparing the agreement
and disagreement between the two annotations. We then perform multiple experiments to determine suitable
filters for each of the tasks to programmatically remove either false or ambiguous annotations from the dataset
to improve the overall data quality, as described in the next section.

ACM Trans. Comput.-Hum. Interact.



10 • Ding, Li et al.

Table 2. Two-pass keypoint annotation statistics.

Euclidean distance (normalized by box width)

Keypoint < 0.05 [0.05, 0.1) [0.1, 0.2) ≥ 0.2

Pupil 82.8% 9.1% 1.0% 7.1%
Lateral Canthus 46.7% 30.2% 16.9% 6.2%
Medial Canthus 52.5% 23.2% 10.0% 5.3%

4.4 Data Validation
With the two-pass annotation, we measure the consistency in the annotations, i.e., the degree to which annotations
performed on the same image by two different workers agreed for bounding box, eye state, and keypoints.

4.4.1 Bounding Box. We first exclude all the images with less than two bounding box annotations. Then we use
a common similarity metric, Intersection over Union (IoU), to compare bounding box annotations from both
passes. The average IoU is 88.0%. We also observed that the bounding boxes have larger variations horizontally
than vertically. The ambiguity in height of the eye caused the majority of inconsistencies in annotations.

4.4.2 Eye State. After bounding box filtering, we compare the eye state labels from two workers. 93.5% of the
annotations agree with each other, and, for the rest, we labeled those as ambiguous cases and excluded them
from the current dataset.

4.4.3 Keypoints. We compare keypoint annotations bymeasuring the Euclidean distance between the coordinates
from two-pass annotations for each of the three keypoints: lateral canthus, medial canthus, and pupil. The keypoint
distance is measured in pixels and then scaled to the corresponding bounding box width, which is more consistent
than box height or area. The statistics are shown in Table 2. We observe that pupil annotations are more consistent
than those for lateral and medial canthus. Note that for distance ≥ 0.2, it also includes situations when one of the
workers did not annotate the keypoint, which happens more often in pupil annotation cases where one of the
workers rates the pupil as not visible.

4.4.4 Final Dataset. Finally, we also add filters to remove images that are out of the area of interest in this work.
For the final dataset, we applied the following filters to automatically clean up the dataset:
(1) bounding box: Removed all images where bounding box IoU < 0.3, which we consider as cases where

two annotators disagree with each other, e.g., they annotate different eyes in the image. We then take mean
box coordinate values.

(2) state: removed all images where eye state annotations disagree.
(3) keypoints: Removed all keypoint annotations where any of the three normalized keypoint distances ≥ 0.2,

which we consider as two annotators disagree. The box and state annotations are still kept if keypoint
annotation is removed. We take mean keypoint coordinate values for the rest.

(4) out-of-interest: Removed all cases where either the images have low resolution (width of the eye bounding
box less than 30 pixels) or rotated over 45 degrees (inferred from keypoint positions).

5 EXPERIMENTS
In this section, we describe the emprical studies that consist of multiple tasks including cognitive load estimation,
eye landmark detection, and blink detection. Since no prior work is evaluated on all these tasks, we evaluate our
model separately on each task for better comparison.
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Table 3. Results for the cognitive load classification task. Our proposed method outperforms previous work and shows the
significance of using the localized feature tracking.

Method Classification Accuracy

Eye Feature + SVM [44] 59.43%
Horizontal Pupil Position + HMM [24] 61.97%
CLERA (w/ Horizontal Pupil Position) 63.43%
CLERA (no fine-tune) 64.81%
CLERA 66.58%

5.1 Cognitive Load Estimation
Varied findings have been reported in the literature regarding the responsiveness of gaze concentration measures
to changes in cognitive demand. We hereby describe the experiments and results regarding the validation of the
proposed method on the cognitive load estimation task.

5.1.1 Dataset. In this experiment, we use an unpublished dataset (obtained and extended from [62]) of 212
30-second video clips of driver faces, each under one of two different cognitive load levels (104 low and 108
high), across 81 different subjects. The subjects needed to meet the criteria of being proficient and regular drivers,
which was defined as having a valid driver’s license for at least three years and driving a minimum of three
times per week. The data were collected with a Volvo XC90 vehicle, which was equipped with synchronized
data collection capabilities from a range of built-in sensors including vehicle’s controller area network (CAN),
cameras for recording driver behavior and the surrounding environment, and audio captured from within the
vehicle cabin. The study utilized a delayed digit-recall task, known as the n-back task, with three distinct levels
of difficulty to impose varying degrees of secondary cognitive workload on the drivers. In this work, we use the
data from low and high levels to form a binary classification task.
Previous research on cognitive load estimation has primarily utilized synthetic or controlled environments,

such as driving simulator [44, 56], tele-surgical robotic simulation [73], and simulation games [3], limiting their
applicability to real-world situations. However, our work is focused on addressing this limitation by investigating
the estimation of cognitive load in real-world settings. While recent work [24] has explored using real-world
testing cases, we take one step further and use a significantly more challenging dataset with varying lighting
conditions and camera placements. By conducting our research in naturalistic environments, we aim to capture
the complexity and variability of real-world cognitive load scenarios, which could provide valuable insights for
enhancing the development of cognitive load estimation models that can be applied in practical settings.

5.1.2 Comparison Methods. We use the same experimental settings as in Fridman et al. [24] that average
the results over 10 random training/testing splits (80% for training and 20% for testing) across subjects. For
comparisons, we first implement the SVM approach in Liang et al. [44] to serve as the baseline method. We also
implement the HMM approach in [24], which is one of the state-of-the-art approach using pupil position to
estimate driver’s cognitive load.

5.1.3 Results. The results are shown in Tab. 3. First, we implement the HMM model with horizontal pupil
position from [24] as a baseline. To validate the effectiveness of each component in CLERA, we implement
two variants of CLERA: CLERA (w/ Horizontal Pupil Position) is using horizontal pupil position as input to
the temporal modeling, and CLERA (no fine-tuning) is using the proposed localized feature tracking without
fine-tuning the feature extractor for temporal modeling.
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We can first observe that CLERA (w/ Horizontal Pupil Position) outperforms the HMM when using the same
horizontal pupil position as the input. This result aligns well with the observation in prior work [24] where
the 3D-CNN model outperforms the HMM. Secondly, CLERA using the proposed localized feature tracking
outperforms the one using horizontal pupil position. This indicates that there is information loss when abstracting
eye movement to the change in normalized pupil position, and the localized feature can be used as a better feature
with minimal extra computation cost. Thirdly, since CLERA allows end-to-end gradient learning, the full CLERA
model gets a large performance gain, which suggests that the cognitive load task needs some specific visual
representation that can not be learned from other vision tasks such as eye landmark detection.
In general, all the CLERA variants are able to outperform prior work, and the full model has a significant

improvement. It is worth noting that while the absolute accuracy values obtained for differentiating the two
cognitive load states was moderate, the test dataset consisted of data collected in a moving environment (a vehicle),
with individuals having variable positioning relative to the camera and under variable lighting conditions - a very
challenging real-world dataset as oppressed to data collected under controlled laboratory conditions [3, 44, 56, 73].
For example, [44] claims to have over 80% accuracy in detecting driver cognitive distraction, but only have below
60% accuracy in our evaluation, which indicates that there exists a considerable difference between simulated
and real-world environments, and more future efforts are required to address this issue.
Nevertheless, the primary interest for this work is to show the increase in performance across the proposed

methods. We evaluate some of the broader capabilities of our methods in the next sub-section.

5.2 Eye State and Landmark Detection
5.2.1 Metrics. We adopt the Average Precision (AP) metrics for the eye localization task, which is an evaluation
metric commonly used in machine learning to measure the accuracy of object detection or segmentation models.
It is calculated by computing the area under the Precision-Recall curve (AP-PR) for a given set of predictions and
ground truth labels. The formula for calculating AP is as follows:

𝐴𝑃 =

∑
𝑛 (𝑅𝑛 − 𝑅𝑛−1) · 𝑃𝑛

𝑅𝑡𝑜𝑡
(9)

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the 𝑛th threshold, 𝑅𝑡𝑜𝑡 is the total number of positive examples,
and 𝑅𝑛−1 is the recall at the previous threshold.
As we observe evident variation in bounding box annotations, we mainly focus on keypoint metrics for

evaluation, but use box metrics for ablation experiments on the detection backbone. For blink/eye-openness
prediction, we simply calculate the accuracy, since the MIT Pupil Dataset is well-balanced for both cases. In terms
of keypoint detection, we follow a similar principle as the existing OKS metric [46], and propose a specific metric
for eye landmarks. We first measure the Euclidean distance between ground truth and predicted eye landmarks,
normalized by the width of corresponding bounding boxes, which is the same metric as we used in Table 2. To
calculate the AP on this distance for a range of levels, we choose to use more standard and interpretable level
definitions as simply .01 : .01 : .1. To address the problem that lateral and medial canthus have a larger variance
than the pupil (approximately 2×), we add a factor of 0.5 to the two and calculate the weighted mean for all three
landmarks (two if closed eye) for AP calculation, meaning all the keypoints are jointly evaluated together for
each detection.
In order to work with single-eye annotation, we add the following rule to the AP calculation process: ignore

the first detection if it has no overlap with ground truth (for bounding box), or the weighted distance is greater
than 0.5 (for keypoints). This is because we do not want to count for potentially correct detection for the other
eye. For the training and testing split, we perform a random 8:2 split and use the same dataset split for all the
experiments.
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Table 4. Eye state and landmark detection results on MIT Pupil Dataset.

Methods mAP AP.1 AP.04 AP.02 State Acc. FPS

Baseline-Regressor 53.7 76.2 55.7 7.5 98.6 38.7
Baseline-Mask 69.1 87.5 77.4 28.5 98.7 38.5

CLERA (mask-only) 70.8 90.7 79.5 28.9 98.7 38.5
CLERA 71.1 90.7 79.8 30.4 98.7 38.3

5.2.2 Baseline Methods. Since no prior work has been done on the proposed dataset, we also propose three
methods for the benchmark and ablation study. In order to make fair comparisons, we use the same detection head
as in Sec. 3.3 and focus on validating keypoint detection performance. The first method, called Baseline-Regressor,
adds another regressor subnet along with two subnets in the RetinaNet detection head, which has the same subnet
architecture and directly predicts the offsets of each keypoint for each anchor box. The second method, called
Baseline-Mask, simply uses the mask branch in the mask-localized regressor head, which can be viewed as an
implementation of Mask R-CNN [32] with our specific backbone. This method is only optimized on mask loss. The
third method for comparison, CLERA (Mask-only), uses the proposed Mask-Localized Regressor jointly trained
on mask loss and offset regression loss, but only uses the mask predictions without adding offset predictions.
This is intended to show the direct performance of offset prediction. With the above three methods, we can more
clearly separate and show the improvement gained from using the proposed Mask-Localized Regressor.

5.2.3 Working with Single-Eye Annotation. Since the proposed MIT Pupil Dataset only contains annotation of
the right eye, in order to make the detector also capable of detecting the left eye, we use a training strategy
with horizontal flipping and inferred gradient masking. During the training process, we first infer the region
where potentially the other eye exists by using the position of the known eye, and generating a mask for that
region. During training, that region is ignored for loss calculation in eye localization, as we do not have enough
information to evaluate or penalize the detections in that region. As we add the horizontally-flipped version
of the input image and corresponding annotations to generate left-eye samples, the model finally converges to
detect both right eyes and left eyes at the same time. We visualize the prediction of CLERA on the training set in
Figure 4, which demonstrates that the model learns to predict both eyes using this training strategy.

5.2.4 Results. Table 4 shows the experimental results for eye state and landmark detection. Since the models are
jointly trained for multiple tasks, we increase the number of training iterations to 80k and the batch size to 32 for
better convergence. We compare the proposed method to the comparison methods as described in Sec. 5.2.2. The
overall results show that while the eye state accuracy stays similar, our method significantly outperforms the
other methods on the landmark prediction task.
To dive deeper into the results, first, by comparing Baseline-Mask with CLERA (mask-only), it shows that

adding the offset prediction branch helps the joint model to learn better mask predictions; secondly, by comparing
the full CLERA model with CLERA (mask-only), while the loose metrics (AP.1) stay the same, we observe
consistent improvements on strict metrics (AP.04 and more significantly AP.02), and also on overall performance
(mAP). This result aligns well with our intuition in proposing the Mask-Localized Regressor for more precise
keypoint predictions, which can be better evaluated with strict metrics.

The proposed model is also efficient and runs in real time. The FPS is calculated over the whole testing set. We
benchmark all of the runtime results using the same desktop machine with Nvidia 1080Ti GPU, and the inference
is carried out with one image per batch, with max dimension rescaled to 512.

ACM Trans. Comput.-Hum. Interact.



14 • Ding, Li et al.

Fig. 4. Sample visualization of pairs of ground truth annotations (on the left) and predictions of CLERA (on the right) on the
training set of MIT Pupil Dataset. The color of bounding boxes indicates the eye state (white for open and black for closed).
The eye landmarks are visualized as colored dots (blue for lateral canthus, green for medial canthus, and red for pupil). The
shadowed area indicates the gradient masking we applied during training with single-eye annotation, which is the potential
area of the center of the left eye (or right eye if horizontally flipped) that we do not annotate.
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Table 5. Eye landmark detection results on the MPIIGaze dataset.

Methods mAP AP.1 AP.04 AP.02

Baseline-Regressor 58.5 86.6 54.0 11.1
Baseline-Mask 64.0 94.7 56.2 11.4

CLERA (mask-only) 65.1 98.3 57.7 11.2
CLERA 65.5 98.4 58.9 11.7

5.3 Cross-dataset Evaluation
5.3.1 Eye Landmark Detection. While there are no similar open-source datasets for real-world non-contact eye
landmark detection in unconstrained environments (Table 1), we adopt the MPIIGaze [77, 78] dataset, which also
features eye landmark annotation but with a limited set of subjects and environments, and create an external
testing set for eye landmark detection. More specifically, we jointly use the face images provided in [77] and
the eye landmark annotation provided in [78], resulting in a dataset of 3,877 face images with annotated eye
landmarks for pupil, lateral and medial canthus for both eyes.
We perform similar experiments as described in Sec. 5.2, using the same models trained on the MIT Pupil

Dataset training set and evaluate on this subset of MPIIGaze dataset. Since there is no bounding box annotation
provided, we normalize the errors with the distance between the corners by a factor of 1.3 as an alternative to
box width. The results are shown in Table 5.

First, we observe similar overall results showing that the proposed model consistently outperforms the other
methods on the landmark prediction task. However, the improvements on strict metrics (AP.04 and AP.02) are not
as significant compared to the results in Table 4. In addition, while the same models perform markedly better on
MPIIGaze under loose metrics (AP.1) than on the MIT Pupil Dataset, suggesting that MPII is an easier benchmark
because of its constraints, the results for strict metrics are actually the opposite. After further investigation,
we conclude that this is because the MPIIGaze dataset is of a lower resolution and the landmark annotations
are rounded to integer. As a result, MPIIGaze is not sufficient for evaluating keypoints at high precision. We
suggest future work adopt the MIT Pupil Dataset for better evaluation of eye landmark detection in terms of
both precision and robustness.

5.3.2 Blink Detection. We also evaluate the performance of the proposed method on the RT-BENE dataset [10]
as the testing set, which has large-scale blink annotation but with a limited set of subjects, and compare the
results to existing methods. We directly use the face images provided in [20] instead of the cropped eye images in
[10]. Since the images are of lower-resolution at 224×224, we apply rescaling to 448×448.
The blink prediction is obtained as the predicted state of one detected eye with the highest confidence on

each image. We use the whole RT-BENE dataset with 114,490 images. The blink evaluation is only performed on
images with at least one detected eye, which corresponds to 99.8% of all the samples. The results are shown in
Table 6.

Comparing the RT-BENE models that require cropping of the eye region beforehand and are computationally
heavy for only the blink classification task, our model (with ResNet-101 backbone) not only shows competitive
performance on blink detection, but more importantly, it is a single model that handles joint eye, blink, and
landmark detection in real-time with input at a 2X higher resolution. The results suggest that the proposed model
successfully utilizes the shared deep features for multiple tasks. It also shows the generalization of models trained
on MIT Pupil Dataset that can be applied on other datasets directly with promising performance.
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Table 6. Blink detection results on the RT-BENE dataset. (The FPS of CLERA is calculated for running the full model for joint
eye, blink, and landmark detection on a single Nvidia 1080Ti GPU.)

Method Precision Recall AP F1 FPS

Google ML-Kit [10] 0.172 0.946 0.439 0.290 –
Anas et al. [2] 0.533 0.537 0.486 0.529 408.3

RT-BENE - MobileNetV2 [10] 0.579 0.604 0.642 0.588 42.2
RT-BENE - ResNet [10] 0.595 0.610 0.649 0.598 41.8

CLERA - ResNet 0.571 0.750 0.653 0.648 42.6

Fig. 5. Sample visualization of predictions on MPIIGaze dataset.

5.3.3 Qualitative Results. We provide example visualizations of predictions of the proposed model on the three
testing datasets: MPIIGaze (Fig. 5), RT-BENE (Fig. 6), and MIT Pupil Dataset testing set (Fig. 7). The color of
bounding boxes indicates the eye state (white for open and black for closed). The eye landmarks are visualized as
color dots (blue for lateral canthus, green for medial canthus, and red for pupil).

6 DISCUSSION
Vision-based characterization of human attention allocation has been receiving increasing attention in recent HCI
research, especially modeling related to eye dynamics, which shows great potential in real-world applications
such as human-system engagement studies and applied driver monitoring. The main question we explore in
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Fig. 6. Sample visualization of predictions on RT-BENE dataset.

Fig. 7. Sample visualization of predictions on the testing set of MIT Pupil Dataset. Last column shows some failure cases.
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this work is whether it’s possible to develop a unified, end-to-end model for multiple eye-region analysis and
eye-dynamics modeling tasks. Taking cognitive load estimation as an example, current approaches [24, 25] use
either eye landmark positions or cropped eye images as input for an eye-dynamics modeling system, both of
which require a high-accuracy eye and/or eye landmark detector to be run beforehand.

In our approach, instead of modeling eye dynamics through cropped eye images, we employ a shared deep
neural network to extract image features. These are then used with different network heads to perform multiple
eye-related tasks, including both low-level tasks like landmark detection and high-level tasks like cognitive load
estimation. Multiple experiments show that by using a unified model, we can perform all tasks at almost no
additional computational cost compared to a standard eye tracker, while also outperforming prior task-specific
models in all tasks, including eye landmark detection, blink detection, and cognitive load estimation.

In the broader context of HCI research, we hope our work will inspire further investigations into more unified
modeling of HCI and human factors tasks, rather than focusing solely on specific individual tasks. Our work
demonstrates that by utilizing advanced deep learning techniques, the joint modeling of different yet correlated
tasks can not only reduce computational cost but also improve the performance of each task. Our proposed
CLERA model can support a multitude of HCI research activities involving human attention monitoring. The
richness of its output and its capability for real-time monitoring can aid applications ranging from theoretical
investigations of human attentional characteristics under various conditions of cognitive load or other states,
to assessing the quality of engagement with different human-machine interface conceptual designs and actual
implementations [37]. Furthermore, it can increase the practicality and relative cost-effectiveness of operator
monitoring systems in aviation [80], air traffic control [1, 75], and power plant systems [74, 76]. It can also address
the increasing safety needs of drivers as they shift from primarily active driving to roles involving more system
monitoring [34, 49, 57, 58]. In summary, the CLERA model can facilitate the development of adaptive systems
which account for variations in cognitive load, thus enhancing the viability of real-time operator support and
fostering the improvement of human-centered systems. The large-scale dataset proposed in this work also offers
a new source and benchmark for eye-region analysis, a need that has been highlighted in the literature [42], and
can be employed to support other research problems related to unified modeling.

7 LIMITATIONS
Previous research on cognitive load estimation has primarily utilized synthetic or controlled environments, such
as driving simulators [44, 56], tele-surgical robotic simulations [73], and simulation games [3]. Although these
environments offer a controlled and safe way to experiment with cognitive load, their results may not always be
generalizable to real-world situations. Our work addresses this issue by focusing on the estimation of cognitive
load in real-world settings, which are more complex and variable than controlled environments.

Our study has several limitations that should be considered. Firstly, our dataset for cognitive load estimation
includes varying lighting conditions and camera placements, which may impact the accuracy of the methods used.
We implemented two comparison methods from [24, 44] and found that both experienced a decrease in accuracy
from above 80% to around 60% for the cognitive load level classification task. While our proposed method for
cognitive load estimation shows a significant improvement over previous work, it may not be appropriate to use
our model directly in its current form for real-world HCI applications due to performance and safety concerns.
Additionally, our study focuses solely on a specific type of cognitive load estimation method that uses computer
vision models with eye-dynamics input and does not explore other possible approaches such as glance detection
and physiological signals like heart rates. However, we believe that our method could work well in simple and
controlled environments without specific tuning or modifications, given its superior performance in our more
challenging testing circumstances.
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Nonetheless, our work provides valuable insights into the challenges of estimating cognitive load in naturalistic
environments and aims to inform the development of more robust models that can be applied in practical settings.
Specifically, the MIT Pupil Dataset proposed in this work could assist in the development of more accurate and
robust models for eye-related analysis tasks, given that it is the largest open-source dataset in the field. The
method proposed in this work can be extended to other HCI tasks such as facial analysis and emotion estimation
and can be improved by using better deep learning architectures from the latest computer vision research.

8 CONCLUSION
In this work, we propose CLERA - a deep learning framework for joint cognitive load and eye region analysis. By
using a detection model with two novel techniques: Localized Feature Tracking and Mask-Localized Regressor, the
proposed model is capable of learning visual feature representations for precise eye bounding box and landmark
detection. Additionally, it can track these representations over time and apply temporal modeling for cognitive
load estimation. We also introduce the MIT Pupil Dataset, a large-scale, open-source dataset comprised of around
30k images of human faces with joint pupil, eye-openness, and landmark annotations.
The main contribution of our work lies in our demonstration that the tasks of eye-region analysis and eye-

dynamics modeling can be jointly modeled. This approach ensures that the computational cost is on par with
that of a common eye tracker. Moreover, our model is capable of outperforming prior work in all evaluated tasks,
including cognitive load estimation, eye landmark detection, and blink estimation.
In terms of future work, we look forward to exploring other tasks in the area of human factors and human-

centered computing that can be modeled through eye and facial movements using the proposed framework. This
work also provides a new benchmark for eye-region analysis and can be utilized to support related research areas.
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