2208.10658v1 [cs.NE] 23 Aug 2022

arxXiv

Survey on Evolutionary Deep Learning: Principles, Algorithms,
Applications and Open Issues

NAN LI, Northeastern University, China

LIANBO MA*, Northeastern University, China

GUO YU*, East China University of Science and Technology, China
BING XUE, Victoria University of Wellington, New Zealand
MENGJIE ZHANG, Victoria University of Wellington, New Zealand
YAOCHU JIN, Bielefeld University, Germany

Over recent years, there has been a rapid development of deep learning (DL) in both industry and academia fields.
However, finding the optimal hyperparameters of a DL model often needs high computational cost and human
expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic search approach has
shown significant merits in the automated design of DL models, so-called evolutionary deep learning (EDL). This
paper aims to analyze EDL from the perspective of automated machine learning (AutoML). Specifically, we firstly
illuminate EDL from machine learning and EC and regard EDL as an optimization problem. According to the
DL pipeline, we systematically introduce EDL methods ranging from feature engineering, model generation, to
model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus on the discussions of
solution representation and search paradigm in handling the optimization problem by EC. Finally, key applications,
open issues and potentially promising lines of future research are suggested. This survey has reviewed recent
developments of EDL and offers insightful guidelines for the development of EDL.

CCS Concepts: o General and reference — Surveys and overviews; o Computing methodologies — Machine
learning algorithms; ¢ Theory of computation — Evolutionary algorithms.

Additional Key Words and Phrases: deep learning, evolutionary computation, feature engineering, model generation,
model deployment.

ACM Reference Format:
Nan Li, Lianbo Ma, Guo Yu, Bing Xue, Mengjie Zhang, and Yaochu Jin. 2022. Survey on Evolutionary Deep
Learning: Principles, Algorithms, Applications and Open Issues. 1, 1 (August 2022), 34 pages. https://doi.org/10.
1145 /nnnnnnn.nnnnnnn

*Corresponding Authors:Lianbo Ma and Guo Yu

Authors’ addresses: Nan Li, Northeastern University, No.195, Chuangxin Road, Shenyang, Liaoning Province, China,
2010500@stu.neu.edu.cn; Lianbo Ma, Northeastern University, No.195, Chuangxin Road, Shenyang City, Liaoning Province,
China, malb@swc.neu.edu.cn; Guo Yu, East China University of Science and Technology, Meilong Road 130, Shanghai,
China, guoyu@ecust.edu.cn; Bing Xue, Victoria University of Wellington, Wellington, New Zealand, bing.xue@ecs.vuw.ac.nz;
Mengjie Zhang, Victoria University of Wellington, Wellington, New Zealand, mengjie.zhang@ecs.vuw.ac.nz; Yaochu Jin,
Bielefeld University, Bielefeld, Germany, yaochu.jin@uni-bielefeld.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and /or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/8-ART $15.00

https://doi.org/10.1145 /nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 = Nan Lietal

1 INTRODUCTION

Deep learning (DL) as a promising technology has been widely used in a variety of challenging tasks,
such as image analysis [102] and pattern recognition [104]. However, the practitioners of DL struggle to
manually design deep models and find appropriate configurations by trial and error. An example is given
in Fig. 1, where domain knowledge is fed to DL in different stages like feature engineering (FE) [225],
model generation [257] and model deployment [29, 31]. Unfortunately, the difficulty in the acquisition of
expert knowledge makes DL undergo a great challenge in its development.

In contrast, the automatic design of deep neural networks (DNNs) tends to be prevalent in recent
decades [71, 257]. The main reason lies in the flexibility and computation efficiency of automated machine
learning (AutoML) in FE [225], parameter optimization (PO) [242], hyperparameter optimization (HPO)
[185], neural architecture search (NAS) [71, 230, 257], and model compression (MC) [78]. In this way,
AutoML without manual intervention has attracted great attention and much progress has been made.

Evolutionary Deep Learning

= Y

Domain Knoy\{lfzgrg?” Evolutionary Computation

/\ Trial and error - 1"”””' TS .
T

. A
Problem Feature Model Device

=X = il =

FEEs 5

Data Collection Feature Engineering Model Generation Model Deployment

a~

Fig. 1. An overview of DL, driven by domain knowledge or evolutionary computation, where the life of DL gets through
problem, data collection, feature engineering, model generation and model deployment.

Evolutionary computation (EC) has been widely applied to automatic DL, owing to its flexibility and
automatically evolving mechanism. In EC, a population of individuals are driven by the environmental
selection to evolve towards the optimal solutions or front [88]. Nowadays, there are many automatic DL
methods driven by EC, termed as evolutionary deep learning (EDL) [52, 196, 246, 247]. For example,
a number of studies on EC have been carried out to the feature engineering [225], model generation
[230, 257], and model deployments [31], as shown in Fig. 1. Therefore, the integration of EC and DL
has become a hot research topic in both academic and industrial communities. Moreover, in Fig. 2, the
number of publications and citations referring to EC & DL by years from Web of Science gradually
increases until around 2012, whereas it sharply rises in the following decade. Hence, more and more
researchers work on the area of EDL.

In Table 1, we have listed recent surveys on automatic DL. A large number of surveies concentrate
on the optimization of DL models [71, 196, 225, 257], or NAS [116, 231]. Many others focus on specific
optimization paradigms such as reinforcement learning (RL) [85], EC [191] and gradient [171]. However,
very few of them have systematically analysed EDL and runs the gamut of FE, PO, HPO, NAS, and MC.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 3

600 +

550 - 18000

500 16000

450
{- 14000
400
12000
350

300 I 10000

250 - 8000

Publications
suoneyd

200
- 6000

150
{- 4000
100

{2000

| P p— T
995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Publications Il Citations

Fig. 2. Total publications and citations referring to EC & DL by years from Web of Science until July 2022.

Table 1. Comparison between existing surveys and our work, where FE, PO, HPO, NAS, and MC indicate feature
engineering, parameter optimization, hyperparameter optimization, neural architecture search, and model compression,
respectively. “v"" and “-" indicate the content is included or not in the paper, respectively.

Survey Type FE PO HPO NAS MC
230] AutoML v/ - v v -
71] AutoML v/ - v v -
231] NAS - v v v -
164] NAS - - v v -
85) NAS - - v v -
171] NAS - - v v -
196] EDL - - - v -
116] EDL - v v v -
257] EDL - v v v -
225] EDL v - - - -
5] EDL v v - - -
243] EDL - v v v -
7] EDL v - v v -
137] EDL v v v v -
40] EDL - v v v -
60] EDL - v v v -

Ours EDL v v v v

To fill the gap, we aim to give a comprehensive review of EDL in detail. The main contributions of this
work are as follows.

e Existing work on EDL is reviewed from the perspective of DL and EC to facilitate the understanding
of readers from the communities of both ML and EC, and we also formulated EDL into an
optimization problem from the perspective of EC.

e The survey describes and discusses on EDL in terms of feature engineering, model generation,
and model deployment from a novel taxonomy, where the solution representation and the search

, Vol. 1, No. 1, Article . Publication date: August 2022.

4 = Nan Lietal

paradigms are emphasized and systematically discussed. To the best of our knowledge, few survey
has investigated the evolutionary model deployment.

e On the basis of the comprehensive review of EDL approaches, a number of applications, open issues
and trends of EDL are discussed, which will guide the development of EDL.

The rest of this paper is organized as follows. Section 2 presents an overview of EDL. In Section 3,
EC-driven feature engineering is presented. EC-driven model generation is discussed in Section 4. Section
5 reviews EC-driven model compressions. After that, relevant applications, open issues and the trends of
EDL are discussed in Section 6. Finally, a conclusion of the paper is drawn in Section 7.

2 AN OVERVIEW OF EVOLUTIONARY DEEP LEARNING
2.1 Deep Learning

DL can be described as a triplet M = (D, T, P) [230], where D is the dataset used for the training of a
deep model (M), and T is the targeted task. P indicates the performance of M. The aim of DL is to boost
its performance over specific task T, which is measured by P on dataset D. In Fig. 1, we can see there are
three fundamental processes of DL, i.e., feature engineering, model generation and model deployment.

Feature engineering: It aims to find a high-quality D to improve the performance (P) of the deep
model (M) on specific tasks (T'). In practice, the feature space of D may include redundant and noisy
information, which harms the performance (P) of the model (M). On Prostate dataset, the size of feature
subset (65) selected in [199] is only 1% of the total size of features (10509).

Model generation: It targets at optimizing/generating a model (M) with desirable performance (P) for
specific task (T") on the given datasets (D) [71]. Model generation can be further divided into parameter
optimization, model architecture optimization, and joint optimization [257]. Parameter optimization is to
search the best parameters (e.g., weights) for a predefined model. Architecture optimization is dedicated
to finding the optimal network topology (e.g., number of layers and types of operations) of a deep model
(M) [126]. Joint optimization involves in the above two optimization issues by automatically searching
for a powerful model (M) on the datasets (D) [136].

Model deployment: This process aims to deploy a deep model (M) to solve a deployment task 7" with
acceptable performance (P) on input data (D) within limited computational budgets. The key issue of
model deployment is how to reduce the latency, storage, and energy consumption when the number of
parameters of a deep model is large, e.g., Transformer-XL Large has 257M parameters [47].

2.2 Evolutionary Computation

EC is a collection of stochastic population-based search methods inspired by evolution mechanisms such
as natural selection and genetics, which does not need gradient information and is able to handle a
black-box optimization problem without explicit mathematical formulations [128, 203]. Owing to the
above characteristics, EC has been widely employed to the automatic design of DL.

Updating
/v\ No
P q oo Yes
Start — Initialization — Evaluation — Termination —— End

Fig. 3. A general framework of EC.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 5

In principle, we can broadly divide EC methods into two categories: evolutionary algorithms (EA) and
swarm intelligence (SI) [257]. Our work doesn’t make an explicit distinction between EAs and SI since
they comply with a general framework, as shown in Fig. 3, which consists of three main components.

Initialization is performed to generate a population of individuals which are encoded according to the
decision space (or search space and variable space) of the optimization problem, such as the feature
set, model parameters and topological structure.

Evaluation aims to calculate the fitness of individuals. In fact, the evaluation of the individuals in
EDL is a computationally expensive task [135]. For example, the work [162] used 3000 GPU days
to find a desirable architecture.

Updating aims to generates a number of offspring solutions through various reproduction operations.
For example, a new soultion is generated via velocity and position formula in particle swarm
optimization (PSO) [199]. In terms of genetic algorithm (GA), some reproduction operators (e.g.,
crossover and mutation) are used to generate new individuals [202].

2.3 Evolutionary Deep Learning

2.3.1 EDL from two perspectives.

In contrast to traditional DL which heavily relies on expert or domain knowledge to build deep model,
EDL is to automatically design the deep model through an evolutionary process [164, 191, 231, 246].

From the perspective of DL: Traditional DL needs a lot of expert knowledge in inventing and analysing
a learning tool to a specific dataset or task. In contrast, EDL can be seen as a human-friendly learning
tool that can automatically find appropriate deep models on given datasets or tasks [230]. In other words,
EDL concentrates on how easy a learning tool can be used.

From the perspective of EC: The configurations of a model is represented as an individual, and the
performance as the objective to be optimized. EC plays an important role in the optimization driven by
evolutionary mechanisms. Namely, EDL can be seen as an evolutionary optimization process to find the
optimal configurations of the deep model with high performance.

From the above analysis, EDL not only aims to increase the adaptability of a deep model towards
learning tasks via the automatic construction approach (from the perspective of DL), but also tries to
achieve the optimal model under the designed objectives or constraints (from the perspective of EC).

2.3.2 Definition and Framework of EDL.
According to the above discussion in Subsection 2.3.1 and following [230], we can define EDL as follows.

Max Learning tools’ performance,
config.
st { No assistance from humans (1)

Limited computational budgets.

where con fig. indicates the configurations which form the decision space of an optimization problem.
The problem is to maximize the objective (i.e., learning tools’ performance P) of tasks T on datasets D
under the constraints of no assistance from humans and limited computational resources. Accordingly,
three aspects are taken into account in the design of EDL.

Desirable generalization performance: EDL should have desirable generalization performance across
given datasets and tasks.

High search efficiency: EDL is able to find optimal or desirable configuration within a limited compu-
tational budges (e.g., hardware, latency, energy consumption) under different designed objectives
(e.g., high accuracy, small model size).

, Vol. 1, No. 1, Article . Publication date: August 2022.

6 = Nan Lietal

Without human assistance: EDL is able to automatically configure without human intervention.
Following the EC framework described in Fig. 3, we present a general framework of EDL as follows.

Step 1 Initialization: A population of individuals are initialized according to the designed encoding
scheme.

Step 2 Evaluation: Each individual is evaluated according to the objectives (e.g., high accuracy, small
model size) or constraints (e.g., energy consumption).

Step 3 Updating: A required number of new solutions are generated from previous generation via
various updating operations.

Step 4 Termination condition: Go to Step 2 if the predefined termination condition is unsatisfied;
Otherwise, go to Step 5.

Step 5 Output: Output the solution with the best performance.

2.3.3 Taxonomy of EDL Approaches.
In this section, a novel taxonomy of EDL approaches is proposed according to “what to evolve/optimize”
and “how to evolve/optimize”, as shown in Fig. 4.

Evolutionary Deep Learning

Feature Engineering Model Generation Model Deployment
What to evolve/ | |
optimize I i . I i)
Feature Feature Feature Parameters Architecture Joint Model Others
Selection Construction Extraction Optimization Optimization Optimization Pruning
........................ W — — S e e T T
_—

Acceleration Strategy
» Surrogate model
» Population memory
» Weight inheritance
» Early stopping policy
» Hardware implementation

Solution Representation
» Linear encoding
» Tree-based encoding
» Graph-based encoding
» Fixed-length encoding
» Variable-length encoding

Search Paradigm
» Basic EC search paradigm
» Co-evolution search paradigm
» Multi-objective search paradigm
> Gradient-based EC search paradigm

How to evolve/
optimize

Fig. 4. A taxonomy of EDL approaches.

“What to evolve/optimize”: We may be concerned about “what EDL can do” or “what kinds of
problems EDL can tackle”. In feature engineering, there are three key issues to be resolved, including
the feature selection, feature construction and feature extraction [230]. In model generation, parameter
optimization, architecture optimization, and joint optimization become the critical issues [257], while
model deployment is involved with the issues of model pruning and other compression technologies.

“How to evolve/optimize”: The answer to the question is designing appropriate solution representation
and search paradigm for EC, and acceleration strategies for NAS. The representation schemes are
designed for the encoding of individuals, search paradigms for the achievement of optimal configurations,
acceleration strategies for the reduction of time or resources consumption.

According to the above taxonomy, we will elaborately introduce EDL in feature engineering, model
generation and model deployment in Sections 3, 4 and 5, respectively.

3 FEATURE ENGINEERING

Feature engineering is adopted to pre-process given raw data by filtering out the irrelevant features of the
data or creating the new features based on original features [225]. Various EC-based techniques have

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 7

been proposed to reduce data dimensionality, speed up learning process, or improve model performance
[225]. The common techniques can be categorized into feature selection [146], feature construction [16]
and feature extraction [152].

3.1 Feature Selection

3.1.1 Problem Formulation.

Feature selection aims to automatically select a representative subset of features where there are
no irrelevant or redundant features. However, the search space grows exponentially with the increase
of features. If a dataset has n features, then there are 2" solutions in the search space. In addition,
the interactions between features may seriously impact the feature selection performance [225]. In the
followings, we will review existing work on solution representations and search paradigms in EC for
feature selection.

3.1.2 Solution Representations.

Generally, there are three different categories of solution representations.

Linear encoding: This encoding uses vectors or strings to store feature information. For example, in
[61], a fixed-length binary vector was used to express whether a feature is selected or not, where “1”
indicates a corresponding feature is selected, and “0” is the opposite. In [74], a binary index was used to
indicate the corresponding feature.

Tree-based encoding: In canonical genetic programming (GP), all leaf nodes/terminal nodes represent
the selected features and non-terminal nodes represent functions (e.g., arithmetic or logic operators) [100].
For automatic classification on high-dimensional data, Krawiec et al. [100] proposed a tree-based encoding
to select a subset of highly discriminative features, where each feature consisted of sibling leaf nodes
and their paternal function node. On the basis of the tree-based encoding, Muni et al. [140] proposed a
multi-tree GP mothed for online feature selection.

Graph-based encoding: In [147], the feature space of the high-dimensional data is represented by a
graph and each node of the graph represents a feature. A feature subset is composed of visited nodes of
the graph, i.e., the path of node composition or subgraph. Yu et al. [235] converted feature selection to
the optimal path problem in a directed graph, where the value of the node was “1” or “0” to indicate
whether the feature was selected or not.

3.1.3 Search Paradigms.

In feature selection, representative types of search paradigms are introduced as follows.

Basic EC search paradigm: In feature selection, typical evolutionary search methods have been widely
used, such as GA [36, 51], GP [100, 142], PSO [146, 204], ant colony optimization (ACO) [95, 130], and
artificial bee colony (ABC) [210]. Besides, some other studies [95] combined ACO with DE to seek optimal
feature subsets, where the solutions searched by the ACO were fed into the DE to further explore the
optimal solution. In [36], a family of feature selection methods based on different variants of GA were
developed to improve the accuracy of content-based image retrieval systems.

Co-evolution search paradigm: In co-evolution search paradigm for feature selection, at least two
populations are simultaneously evolved and interacted toward the optimal subset of features [159, 213].
For example, a divide-and-conquer strategy was developed in [213] to manage two subpopulations. One
subpopulation was to conduct an evolution process of classifier design, while the other one was to search
for an optimal subset of features.

Multi-objective search paradigm: This type of search paradigms are driven by two or more conflicting
objectives [28, 70, 224], such as the maximization of the accuracy of a classifier and minimization of the

, Vol. 1, No. 1, Article . Publication date: August 2022.

8 = Nan Lietal

size of a feature subset. On the basis of the above two conflicting objectives, Xue et al. [224] designed a
multi-objective PSO algorithm for feature selection and obtained a set of Pareto non-dominated candidate
solutions for feature selection after the multi-objective search.

3.1.4 Summary.

GA and GP are widely applied to feature selection. GA early serves for low-dimensional (i.e., <1000)
datasets [76, 225]. Recently, many GA-based approaches have been proposed to solve high-dimensional
feature selection [28]. Nevertheless, GP is commonly applied to large-scale/high-dimensional feature
selection since it is flexible in feature representation [225]. Especially, GP outperforms GA on some small
but high-dimensional datasets, e.g., Brain Tumor-2 [23] with 10367 features but only 50 samples. In
addition, PSO has been proved with faster convergence rate to an optimal feature subset than GAs and
GP [250]. The graph representation of ACO outperforms GA and GP on flexibility, but the challenge of
ACO is how to design appropriate graph encoding for large-scale scenarios [196, 225].

3.2 Feature Construction

3.2.1 Problem Formulation.

Feature construction is to create new high-level features from the original features [201] via appropriate
function operators (e.g., conjunction and average) [144, 226], so that the high-level features are more easily
discriminative than the original ones. Feature construction is a complicated combinatorial optimization
problem, where search space increases exponentially along with the total number of original features and
the function operators. In the following subsections, we will describe the EC-based feature construction
methods in terms of both solution representations and search paradigms.

3.2.2 Solution Representations.

Existing EC-based approaches for feature construction can be categorized into three groups.

Linear encoding: The study [226] used n-bit (n is the total number of original features) binary vector
to represent each particle, where “0” indicated the corresponding feature not applied to build the new
high-level feature while “1” was in the opposite. On the basis of the encoding, a local search was performed
to select candidate operators from a predefined function set to construct a new high-level feature.

Tree-based encoding: Tree-based encoding is natural for feature construction, where leaf nodes represent
the feature information and internal nodes represent operators. Many studies [16, 201] have demonstrated
the effectiveness of tree encoding in feature construction. For example, Bhanu et al. [16] designed a
GP-based coevolutionary feature construction procedure to improve the discriminative ability of classifiers.
In [201], an individual in EC was represented by a multi-tree encoding with multiple high-level features.

Graph-based encoding: In this encoding, the nodes and edges represent features and operators (e.g.,
G ek e Iy respectively. Teller et al. [197] applied an arbitrary directed graph to represent all
features and operators, where each possible high-level feature can be represented as a subgraph of this
directed graph. For linear GP, features and operations form a many-to-many directed acyclic graph,
in which each feature is loaded into predefined registers and register’s value can be used in multiple
operators [57]. However, graph encoding becomes inefficient on high-dimensional feature sets since the
complexity of graph traversal exacerbates the difficulty of feature construction.

3.2.3 Search Paradigms.

There are four categories of search paradigms for feature construction in existing work .

Basic EC search paradigm: Existing studies include but are not limited to GA [202], and GP [145, 195,
201]. For example, the work [145] designed GP-based feature construction to reduce the feature (input)

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 9

dimensions of a classifier. Especially, GP has been also widely used to construct new features, where each
individual following the form of a GP tree usually represents a constructed high-level feature [62].

Co-evolution search paradigm: It can be decomposed to feature construction subproblem and classifier
design subproblem, and each subproblem is solved with a standalone subpopulation by an EC-based
method [16, 165]. For example, the study [165] decomposed feature construction into two subproblems
(i.e., feature construction, and object detection), where the feature construction was solved by evolving a
population of pixel (i.e., feature) and the object detection was optimized using object detection algorithm
(ODA) [165].

Multi-features construction search paradigm: Unlike early methods [175, 200-202] only constructing
one high-level feature in a single search process, this sort of paradigms are able to create multiple high-level
features. For example, Ahmed et al. [3] employed Fisher criterion together with p-value measure as the
discriminant information between classes, based on which multiple features were constructed through
multiple GP trees.

Multi-objective evolutionary search paradigm: In this search paradigm, the number of features and
classification accuracy are commonly taken into account as the objective functions for multi-objective
evolutionary optimization [19, 68]. Especially, Hammami et al. [68] constructed a set of high-level features
by optimizing a multi-objective optimization problem (MOP) with three objectives (i.e., the number of
features, the mutual information, and classification accuracy) with Pareto dominance relationship.

3.24 Summary.

GP-based approaches are popular in feature construction due to the flexible representation of features
and operations. In addition, the hybrid of evolutionary algorithms also attracts much attention for feature
construction. However, there is still plenty of room for the improvement of efficiency in constructing
features in high-dimensional or large-scale scenarios, where a large number of computational resources are
needed [195, 200]. Notably, feature construction often requires more computational overhead than feature
selection, since feature construction commonly performs after the feature selection and the quality of the
selected features may influence the performance of feature construction.

3.3 Feature Extraction

3.3.1 Problem Formulation.

Feature extraction is to reduce the feature dimensions by altering the original features/data via some
transformation functions [71]. Traditional extractors include principal component analysis (PCA) [1] and
linear discriminant analysis (LDA) [84]. However, they cannot keep somewhat important information
after the transformation [1] and it is tedious to tune their hyperparameters (e.g., number of retained
features) to find the best extraction. Thus, automatically finding high-quality map functions by EC-based
approaches to achieve informative feature set tends to be popular.

3.3.2 Solution Representations.

There are two typical ways for solution representation in EC-driven feature extraction.

Linear encoding: In this encoding, map functions [6, 163] or function parameters [254] are encoded as a
linear format. For example, Wissam et al. [6] predefined three sets of track functions (i.e., trace functions,
diametric functions, and circus functions) for feature extraction, and the optimal combination between
the functions were obtained by an EC-based method. In [254], the hyperparameters of map functions
were encoded by some linear vectors which were constructed by a number of optimal projection basis
vectors obtained via EC.

, Vol. 1, No. 1, Article . Publication date: August 2022.

10 = Nan Lietal

Tree-based encoding: In tree-based encoding, leaf nodes represent original features or constants, while
the non-leaf nodes are some operators for feature extraction including common arithmetic, logical
operators (i.e., “+7, “/”, “U”) or other transformation operators (e.g., uLBP, and SobelY). In EC-driven
feature extraction, an individual represents a feature extractor or map function [152, 252]. Especially, an
EC-based framework was developed in [252] to search for features and sequences of operations by use of
tree-based encoding.

3.3.3 Search Paradigms.

In this section, some common search paradigms for feature extraction are introduced.

Basic EC search paradigm: EC has been successfully utilized in various feature extraction tasks
[17, 236]. For example, Zhao et al. [256] introduced bagging concept to an evolutionary algorithm for
feature extraction. The work in [255] developed an evolutionary discriminant feature extraction (EDFE)
algorithm by combining GA with subspace analysis, which can reduce the complexity of the search space
and improve the classification performance.

Co-evolution search paradigm: In feature extraction, finding the optimal extractor is an optimization
problem, which can be decomposed into a series of subproblems [67, 97]. For example, Hajati et al. [67]
proposed a co-evolutionary method for feature extraction. Specifically, a subpopulation was evolved to
optimize the classifier-related subproblem (i.e., classifier construction), and the other subpopulation made
use of genetic information from the first population for the optimization of a feature-related subproblem
(i.e., feature extraction).

Multi-objective search paradigm: In multi-objective feature extraction, the model accuracy, computa-
tional time, complexity, and robustness are often taken into account as the objectives [18, 252]. Cano et al.
[18] proposed a Pareto-based multi-objective GP algorithm for feature extraction and data visualization,
where the objectives were to minimize the complexity of data transformation (i.e., tree size) and maximize
the recognition performance (i.e., accuracy).

3.3.4 Summary.

In existing studies, many efficient searching and balancing strategies, driven by EC approaches to
achieve satisfactory solutions at significantly-reduced computation overheads, have been developed in
recent years [18, 132, 176, 252]. However, the performance of extractors may be limited with existing
encoding methods and predefined operation sets. Therefore, it is essential to develop efficient algorithms,
operation control strategies and representation for high-dimensional feature extraction.

4 MODEL GENERATION

Model generation is to search for optimal models with desirable learning capability on given tasks
[71, 230]. In this section, we introduce corresponding evolutionary parameter optimization, architecture
optimization, and joint optimization from solution representation to search paradigms. Readers interested
in other model generation approaches (e.g., RL-based and gradient-based approaches) can refer to the
reviews [85, 164].

4.1 Model Parameter Optimization

4.1.1 Problem Formulation.

Model parameter optimization targets at searching for the best parameter set (i.e., weights W*) for
a predefined architecture (A4). The loss function L (e.g., the cross-entropy loss function) measures the
performance of the model with optimized parameters (i.e., W in Eq. 2) on given datasets. The general

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 11

model parameter optimization can be formulated as
W*=argminL (VV, A) (2)
w

where W is usually large-scale (millions of model parameters) and highly non-convex.

4.1.2 Solution Representations.

There are two typical EC-based representation schemes for model parameter optimization, including
direct encoding and indirect encoding [71].

Direct encoding: The model parameters are directly represented via a vector or matrix, in which each
element represents a specific parameter [82, 93]. For example, a chromosome with 64 real numbers was
used to directly represent the network corresponding weights, where the first 63 real numbers were
used to encode three convolution masks of size 1 x 21. The last real number was the random seed of a
generator for the initialization of a fully connected network [82]. This encoding approach may require a
huge computational overhead to represent and optimize the large-scale weights.

Indirect encoding: This encoding approach represents only a subset of the model parameters via a
deterministic transformation [98, 109]. In [98], the weight information was encoded as a set of Fourier
coefficients in the frequency domain to reduce dimensionality of representation by ignoring high-frequency
coefficients. Although this method is able to speed up the search process, the loss of parameter the
information may occur due to the incomplete information representation, which maydegrades the model
performance.

4.1.3 Search Paradigms.
EC-based methods for model parameter optimization can be divided into two categories according to
whether or not method combines with the gradient approach, i.e., pure EC and gradient-based EC.
Pure EC paradigms optimize model parameters only via evolutionary search, including the basic EC
search paradigm and co-evolution search paradigm.

¢ Basic EC search paradigm: In addition to GA [93, 139], some heuristic algorithms like PSO [4],
ABC [92] and ACO [182] are also commonly utilized for model parameter optimization. For example,
Karaboga et al. [92] adopted ABC to find a set of weights for a feed-forward neural network (FNN)
on targeted tasks.

e Co-evolution search paradigm: Co-evolution search is conducted on the subproblems of the original
optimization problem (e.g., synapse-based and neuron-based problems [21, 22]). For example,
Chandra et al. [22] regarded a single hidden layer as a subcomponent in the initialization phase,
which will be merged with the individuals with the best fitness from different sub-populations to
constitute new neural networks during the co-evolution optimization process.

Evolutionary Gradient Best Gradient Evolutionary Best

Optimization Optimization Solution Optimization Optimization Solution Evolutionary Gradient Best
Optimizati Optimizati Solution
First Stage Second Stage First Stage Second Stage
a b
(a) (b) ()

Fig. 5. Three hybrid ways of gradient-based ECs.

Gradient-based EC combine basic EC with the gradient-based method to enhance the exploitation
ability in optimizing model parameters. According to the execution order, there are three hybrid ways.

, Vol. 1, No. 1, Article . Publication date: August 2022.

12 = Nan Liet al.

e The first hybridization approach is shown in Fig. (5a), where the EC is used to identify the optimal
parameters for model, then the parameters are further optimized using gradient-based method to
find the final optimal solution [24, 249]. For example, a genetic adaptive momentum estimation
algorithm (GADAM) was proposed in [242] by incorporating Adam and GA into a unified learning
scheme, where Adam was an adaptive moment estimation method with first-order gradient.

e The second hybridization approach is given in Fig. (5b), where the gradient-based method is used to
produce a set of parameters for the initialization of the population used in EC [216]. For example,
the study [94] firstly trained a RL agent through a gradient-based method, then the parameters
of the RL were used as the initial population to feed the EC. As a result, the parameters will be
further optimized by the EC.

e The third approach is presented in Fig. (5c), which iteratively applies EC and gradient-based
method during the optimization to find the optimal parameters. Following this framework, when
the method is used and which method is chosen are varying in different studies [35, 228].

4.1.4 Summary.

In model parameter optimization, direct encoding is straightforward and able to keep more information
than the indirect encoding. Compared to gradient-based methods easily trapped into local optima, EC
shows more powerful ability in global search. Here, several scenarios are introduced as follows, where EC
is applied to model parameter optimization.

Small-scale scenario: [139] shows that pure EC approaches outperform gradient-based methods in
search effectiveness on some small-scale problems, where the models are with small numbers of parameters
or simple architectures (e.g., FNN).

Large-scale scenario: The performance of pure EC approaches might not be promising in large-scale
learning models, while a better way is to utilize the hybridization of EC and gradient-based methods. Such
hybrid methods can alleviate the issue of getting trapped in local optima and increase the effectiveness of
subsequent exploitation [228].

In addition to above scenarios, EC-based method can be used to train the DNN, when the exact
gradient information of the loss function is difficult to be acquired [153]. For example, the rewards of policy
network are sparse or deceptive in deep reinforcement learning (DRL) so that the gradient information is
unattainable. The work [34] introduced the novelty search (NS) and the quality diversity (QD) to the
evolution strategies (ES) for the policy network.

4.2 Model Architecture Optimization

4.2.1 Problem Formulation.

Model architecture optimization, also termed as NAS, is to search promising network architectures
with good performance such as model accuracy on given tasks. The model architecture optimization can
be formulated as follows.

{A*:arg min L (W, A)

W, A (3)

st. Ae A

where A* indicates the architecture from the search space (A) with the best performance under the
parameters W, and L is used to measure the performance of architectures on given tasks. Thereby, this
optimization is a bi-level optimization problem [116, 257], where the model architecture optimization is
subject to the model parameter optimization [124]. Since the current NAS works are mainly focused on
CNN, we will discuss the solution representations, the search paradigms, and acceleration strategies of

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 13

CNN. Due to the page limit, the design of the search space of NAS are not introduced here, but interested
readers can check these surveys [116, 164] which have details about search space design.

4.2.2 Solution Representations.

According to varying lengths of encodings, we can classify the encoding strategies into fixed-length and
variable-length encodings.

Fixed-length encoding: The length of each individual is fixed during the evolution. For example, a
fixed-length vector is designed to represent the model architecture of CNN [221], where a subset of
elements in the vector represents an architectural units (e.g., convolutional, pooling or fully-connected
layer) of a CNN. Such encoding may be easily adapted to evolutionary operations (e.g., crossover and
mutation) of EC [221], but it has to specify an appropriate maximal length, which is usually unknown in
advance and needs to predefine based on domain expertise.

Variable-length encoding: Different from the fixed-length approach, the variable-length encoding
strategy does not require a prior knowledge about the optimal depth of model architecture and actually
could be a way to reduce the complexity of the search space. The flexible design of this encoding may
encode more detailed information about the architecture into a solution vector, and the optimal length
of the solution is automatically found during the search process [116]. In [26], the entire variational
autoencoder (VAE) was divided into four blocks, including h-block, p-block, o-block and t-block, while the
variable-length chromosomes consisted of different quantities and types of layers. Notably, variable-length
encoding it is not straightforward to apply standard genetic operators (e.g., crossover).

Since the neural network architectures are composed of basic units and connections between them, so
that both of them are to be encoded, as suggested in [116].

1) Encoding hyperparameters of basic units. In CNNs, there are many hyperparameters to be specified
for each unit (e.g., layer, block or cell), such as feature map size, type of convolution layer, and filter size
[191]. In [188], DenseBlock only had to set two hyperparameters (e.g., block type and specific parameter
of internal unit) to configure the block can be seen as a microcosm of a complete CNN model. The
parameterization of a cell is more flexible than that of a block since it can be configured via a combination
of different primitive layers [189].

2) Encoding connections between units. In general, there are two kinds of model architectures according
to the connection patterns of basic units: linear topological architectures and non-linear topological
architectures [229]. The linear pattern of architecture consists of sequential basic units, and the non-linear
pattern allows for skip or loop connections in the architecture [116].

e Linear topological architecture: The linear topology widely appears in the construction of layer-wise
and block-wise search spaces. Due to the simplicity of linear topology, basic units can be stacked
one by one by a linear piecing method. In this way, the skeleton of an architecture can be built up
effectively [26, 188] regardless of the complexity of the internal of basic units.

e Non-linear topological architecture: Compared to the linear architecture, the non-linear topological
architecture receives much more attention due to its flexibility to construct well-performing architec-
tures [206, 208, 221], such as macro structures composed of basic units, and micro structures within
basic units. There are two typical encoding approaches for non-linear topological architectures. The
one is to use adjacent matrix to represent the connections in non-linear architectures, where “1” of
the matrix denotes the existence of the connection between two units and “0” goes the opposite.
In [122], skip connections are represented by a matrix where constraints can be set in place to
guarantee valid encoding and avoid recurrent edges while performing skip connections. Note that
adjacent matrix has a limitation that the number of basic units needs to be fixed in advance [96].
Another one is to utilize an ordered pair to represent a directed acyclic graph, and then encode the

, Vol. 1, No. 1, Article . Publication date: August 2022.

14 = Nan Liet al.

connections between unites. The ordered pair can be formulated as G = (V, E) where V is a set of
vertices and F is a directed edge in the acyclic graph, and it has been applied in [83] to encode the
connections.

4.2.3 Search Paradigms.

In this section, the commonly used EC-based search paradigms for NAS are introduced.

Basic EC search paradigm: Many basic EC algorithms have been widely applied in existing NAS
methods, such as GA [96] and PSO [190]. A general framework of EC is presented in Fig. 3.

Incremental search paradigm: A model architecture can be built in an incremental way where model
elements (e.g., layers and connections) are gradually added to the model during the evolutionary process
[110, 178, 207]. This way allows to find parts of architecture at different optimization stages, which
reduces the computational burden on acquiring a complete model at once [110]. For example, Wang et
al. [207] used an incremental approach to stack blocks for building architectures, which improved the
capacity of the final architecture via a progressive process.

Co-evolution search paradigm: An architecture optimization problem is decomposed into the optimiza-
tions of a blueprint and its components [149, 240]. Specifically, the blueprint plays a role in specifying
the topological connection patterns of its components, and an optimal architecture is acquired by co-
operatively optimizing the blueprint and its components. For example, O’Neill et al. [149] proposed a
co-evolution search paradigm for NAS, where the candidate blueprints and components were sampled
from two populations, and then combined to form new architectures.

Multi-objective search paradigm: This paradigm targets at searching for a set of Pareto optimal
architectures based on multiple criteria, and finding the final solutions according to some practical
considerations, such as computational environment [125, 143]. This paradigm becomes popular in practical
applications, since many objectives are required to be considered such as the accuracy, inference time,
model size, and energy consumption. In [143], NSGA-IT and RL were used to explore model architectures
with respect to the model accuracy, and model complexity (e.g., the number of model parameters and
multiply-adds operators).

4.2.4 Acceleration Strategies.

NAS is a high computational overhead task, mainly due to the large search space and highly time-
consuming evaluation [230]. To overcome this challenge, various acceleration strategies [12, 190] have
been developed to accelerate the optimization. In this section, we summarize the speed-up strategies from
the aspects of algorithm design to the hardware implementation, as shown in Fig. 6.

e e Iy -

i Tnitializati Evaluation |

'_._.@. ____________ @_4_..]

> Early stopping policy
> Reduced population > Reduced training set

Algorithm > Efficient search space e cginheriance
design » Surrogate model

> Population memory

Optimization
speed-up

Hardware > Parallel computation
implementation » Federated learning

Fig. 6. Overview of acceleration strategies.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 15

From the algorithm design point of view, we summarized a number of acceleration strategies from
population initialization to evaluations.

e Initialization:

— Reduced population: The simplest way of acceleration during the initialization stage is to set the
population with a small size. In other words, less evaluations are required with a smaller size of
population since the evaluation of a candidate architecture is time-consuming [230]. As a result,
some studies [11, 12] use small population with fixed size to speed up their evolution, like CARS
(size = 32) [229]. In contrast, some other studies use dynamic sizes of populations during the
optimization. In [55], the population size is dynamically changed to reach a balance between
algorithmic efficiency and population diversity.

— Efficient search space: Another way is to design efficient search space to speed up the search
process. For example, an architecture constructed on the basis of cell-wise search space [116] is
composed of many similar structures of cells and only representative cells need to be optimized,
which contributes to significant computational speed-up.

e Evaluations:

(1) Early stopping policy: A relatively small number of training epochs are used to reduce the training
cost (i.e., early stopping policy) since the training time is reduced [2, 190, 198].

(2) Reduced training set: Some methods are designed to reduce the size of the training set to improve
training efficiency at the expense of a little accuracy [113, 172]. Besides, low-resolution data (e.g.,
ImageNet 32) [32] is also commonly used as the training set to accelerate the search process for
the optimal architecture.

(3) Weight inheritance :

— Supernet-based inheritance: uses an over-parameterized and pre-trained supernet to encode all
candidate architectures (i.e., subnets). In other words, the subnets share weights of the identical
structures from the supernet, and they are directly evaluated on the validation dataset to obtain
their model accuracy [37, 49, 158, 172].

— Parent-based inheritance: inherits weights from previously-trained networks (i.e., parental
networks) instead of a supernet, since offspring individuals retain some identical parts of their
parental architectures [48, 103, 162, 261] [162]. As a result, offspring architectures can inherit
the weights of the identical parts and no longer need to be trained from scratch.

(4) Surrogate model: Since the evaluation of an architecture is time-consuming [116, 230], cheap surro-
gate models have been introduced in NAS as performance predictors to reduce the computational
time [124].

— Online performance predictors: They are trained online on the datasets sampled from past
several epochs [116], including a sequence of data pairs with different training epochs and
their corresponding performance of these epochs [124]. After that, they will be used for the
performance prediction on new architectures. To reduce the true evaluations of architectures,
some performance predictors directly predict whether a candidate architecture can be survived
into next iteration through a trained ranking or classification method, such as classification-wise
NAS [129].

— Offline performance predictors: They are essentially a sort of regression models mapping the
architectures to specific performance. End-to-end predictors can be trained in an offline manner,

'In [105, 167, 168], Rumelhart/Hinton/LeCun used the term "weight sharing" to mean that different network connections/links
share the same set of weights, and pointed out that "weight sharing" is the core of shared weight NNs/CNNs. More recent
[124, 220] use of this term refers to "weight/parameter replications" or "weight inheritance".

, Vol. 1, No. 1, Article . Publication date: August 2022.

16 = Nan Liet al.

so that they are able to predict the performance of architectures during the entire search process.
Consequently, they can significantly reduce the computational burden [110, 186, 187].

(5) Population memory: Population memory is used to store elite individuals from different generations
during the optimization [61, 191]. When a new individual is generated, it does not need to be
evaluated again if it is the same as an individual in the memory. In other words, the performance
of individuals sharing the same architectures are the same and can be acquired via the population
memory instead of training from scratch. This mechanism relies on the fact that similar or same
individuals may repeatedly appear in different generations.

According to the above introduction, we can conclude that many of them improve the search efficiency at
the expense of sub-optimiality. For example, a small population cannot well cover a multi-objective optimal
front. Parameter sharing may lead to the biased search due to much similarities among the individuals.
Highly accurate surrogates need a large number of training data, which are commonly time-consuming.
Population memory heavily relies on the random emergence of similar or same individuals.

Hardware implementation: Importantly, a powerful hardware platform can significantly speed up the
search process under the reasonable utilization of computing resources (e.g., cloud computing [30] and
volunteer computers [13]). Parallel computation is a powerful tool to decompose large search problems
into small sub-problems, which can be simultaneously optimized by several cheaper hardware[86, 87]. For
example, Lorenzo et al. [123] proposed a parallel PSO algorithm to search for optimal architecture of
CNN. The security of the computing device also becomes an important consideration. For this reason,
an emerging decentralized privacy-preserving framework is applied to NAS, which unites multiple local
clients to collaboratively learn a shared global model trained on the parameters or gradients of the local
models, instead of the raw data. For example, Zhu et al. [262] firstly proposed a real-time federated NAS
that can not only optimize the model architecture but also reduce the computational payload. Specifically,
the decentralized system is able to accelerate the algorithm efficiency of federated NAS. Besides, data
encryption is employed on the transmitted data (parameters or gradients of the local models) between
the clients and the server to ensure the privacy even though all of the training are performed in local.
Accordingly, federated NAS is highly efficient and secure, which may become a new hot research topic.

Table 2. Different acceleration strategies

Initialization | Reduced population [12],[55],[113],[229]
Early stopping policy [190],[2],[151],[59],[10],[12],[138]
Reduced training set [172],[113],[207]
Supernet-based sharing [172],[158],[37],[49]
Algorithm design | Evaluation | Weight inheritance |75 0 o oo g [48],[103],[261],[2],[59],[L73],[27]
Online performance predictors | [124],{110], [129], [118]
Surrogate model Offline performance predictors | [187],[111], [160]
Population memory [191],[135],[108],[33]
Hardware implementation [30],[87],[86],[262]

Table 2 lists the common acceleration strategies to improve the algorithm efficiency. It is noted that
multiple strategies can be utilized together to improve computational speed-up. For example, Lu et al.
[124] employed supernet and learning curve performance predictor in NAS, while Liu et al. [113] leveraged
a small populations size and a small dataset to reduce the time overhead of evaluation.

4.2.5 Summary.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 17

Most NAS methods are based on basic EC search paradigms on an entire-structured search space,
which are introduced above. However, there are also some other automatic search techniques such as
RL-based [85], Bayesian-based [214], and gradient-based [112] methods, for architecture search.

RL-based methods can be regarded as an incremental search, where a policy function is learned by
using a reward-prediction error to drive the generation of incremental architecture. Due to the large-scale
of state space and action space, RL-based methods require immense computational resources. In addition,
there are a large number of hyper-parameters (e.g., discount factor) in RL-based NAS. Besides, they
transform a multi-objective optimization problem into a single-objective problem via a priori or expert
knowledge, so they are unable to find a Pareto optimal set to the target tasks.

Bayesian-based methods are a common tool for hyperparametric optimization problems with low
dimensions. In comparison to EC-based methods, they are much more efficient on the condition that a
proper distance function has to be designed to evaluate the similarities between two subnets. However,
the computational cost of Gaussian process grows exponentially and its accuracy decreases, when the
dimensionality of the problem increases.

Gradient-based methods, taking a NAS problem as a continuous differentiable problem instead of a
discrete one, are able to efficiently search architectures with proper weight parameters. Unfortunately,
their GPU costs are usually very high due to a large number of parameters to be updated in gradient-based
algorithms [112].

In contrast, EC-based methods benefit from less hyperparameters to be optimized and no distance
functions to be designed. In addition, EC-based methods can be applied to NAS with multiple objectives
and constraints. Although there many acceleration strategies in EC-based methods, they still suffer from
high computational overheads.

4.3 Joint Optimization

4.3.1 Problem Formulation.

The independent optimization of architecture or parameters is difficult to achieve the optimal model on
give tasks. Hence, joint optimization methods have been developed to search for the optimal configuration
of architecture (A*), and parameters (W*, associated weights). The optimization problem can be defined
in Eq. 4.

W, A*)=argminL (W, A
(W=, A7) =arg minl (W 4) (4)
where L is the loss function.
In the followings, we will introduce the joint optimization regarding the solution representations and
search paradigms, and then discuss the pros and cons of EC-based methods in comparison to others.

4.3.2 Solution Representations.

There are three typical classes of encoding schemes used for joint optimization.

Linear encoding: This is a simple but effective encoding strategy, which has been widely used in many
studies to build architecture with high performance [8, 131]. In [131], a variable-length binary vector was
used to represent weights and structure of neural networks, where the weights utilize direct encoding.

Tree-based encoding: In this encoding, the topology and weights of an architecture can be represented
by a tree structure with a number of nodes and edges [64, 239]. In [241], the mechanism of Reverse
Encoding Tree (RET) was developed to ensure the robustness of a deep model, where the topological
information of an architecture was represented by a combination of nodes and the weight information
was recorded on the edges.

, Vol. 1, No. 1, Article . Publication date: August 2022.

18 = Nan Liet al.

Graph-based encoding: In this encoding, the nodes of a graph represent neurons or other network
units, and the edges are used to record the weight information [20, 69]. For example, a graph incidence
matrix was developed in [150] to encode a neural network. The size of the matrix was set to (NV; + Np,
+ N,) x (N; + N, + N,), where N;, N, and N, indicate the numbers of input, hidden, and output
nodes, respectively. In the graph incidence matrix, real numbers represented the weight and biases, and
“0” meant that there was no connection between two nodes.

4.3.3 Search Paradigms.

There are a number of effective search paradigms for joint optimization, and the EC-based search
paradigms are in the spotlight.

Basic EC search paradigm: Some basic EC search methods have been employed to handle joint
optimization problems [14, 15, 54, 150, 185]. In [150], an architecture and its corresponding weights were
simultaneously optimized by an EC-based method using linear and graph encodings. In neuro-evolution
of augmenting topologies (NEAT) [185], the architecture of a small network is evolved by an incremental
mechanism, while the weights are optimized by an EC-based method. NEAT is able to ensure the lowest
dimensional search space over all generations. Some representative studies on NEAT are presented in
[14, 15].

Multi-objective search paradigm: Multi-objective optimization on model design has been developed
in many studies (e.g., artificial neural network [166] and recurrent neural network [181]). For example,
Smith et al. [181] built a bi-objective optimization (i.e., the minimizations of the mean squared error
(MSE) on a training dataset and the number of connections in the network) to search for optimal weights
and connections of network architectures. The chromosome of an individual was composed of two parts,
where the one with Boolean type represented the structure of a network, and the other with real values
represented the weights.

4.3.4 Summary.

Direct encoding is used to be prevalent in the joint optimization of small-scale neural networks [150, 232].
However, with the increase of the scale of neural networks, direct coding of high-dimensional vector or
matrix of weights is not realistic. Therefore, recent studies are more on indirect encoding. For example, a
complex mapping with acceptable accuracy loss is designed in [39, 99] to construct weight vectors with
arbitrary size.

EC-based approaches with capability of searching the optimal solution have been developed to configure
a DL model for the specific task. However, they often encounter a prohibitive computational cost, which is
even higher than that of model architecture optimization. Hence, designing efficient EC-based approaches
for architecture and parameter search deserves much investigation.

5 MODEL DEPLOYMENT

The large-scale DNNs are not straightforward to be deployed into devices (e.g., smartphones) with limited
computation and storage resources (e.g., battery capacity and memory size). To solve this issue, various
model compression approaches have been proposed to reduce the model size and inference time, such as
pruning, model distillation, and quantization [31]. However, they need much expert knowledge and a lot
of efforts on the manual compression of neural network models. In contrast, EC-based approaches are
automation approaches and has been recently introduced to achieve automated model compression. We
have observed that most of them concentrate on the area of model pruning.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 19

5.1 Model Pruning

5.1.1 Problem Formulation.

DNN is commonly an over-parameterized model, which has redundant and non-informative components
(e.g., weights, channels and filters). To address this issue, researchers have designed various pruning
approaches (e.g., channel pruning [72]) to obtain a lightweight deep network model with high accuracy.
Model pruning can be formulated as

LossA; ~ Loss
s.t. Af=pruning (A, C) (5)
C

where C' represents redundant and non-informative units, A and As* represent original model and
lightweight model, respectively, Lossax and Loss represent loss of As* and A.

This study aims to introduce EC-based methods for model pruning, and readers interested in traditional
pruning methods such as weight-based pruning, neuron-based pruning, filter-based pruning, layer-based
pruning, and channel-based pruning may refer to the surveys [31] to get more details.

5.1.2 Solution Representations.

For model pruning, binary encoding is one of the most popular approaches among these solution
representations, where each element corresponds to the network component (e.g., channel). In [211], the
network pruning task was formulated as a binary programming problem, where a binary variable was
directly associated with each convolution filter to determine whether or not the filter took effect. Although
binary representation is straightforward, the length of the representation becomes large when the model
complexity (i.e., the number of units) improves, and the overhead of exploration will also increase.

To address the above issue, some efficient solution representations (i.e., indirect encoding) have been
developed. For example, Liu et al. [114] used N digits to record the number of compressed layers. The first
digit represented the number of compressed layers, and following digits recorded the selected compression
operator index of each layer. This way can significantly improve the search efficiency. In [117], encoding
vectors are used to represent the number of channels in each layer for original networks. Then a meta-
network is constructed to generate the weights according to network encoding vectors. By stochastically
fed with different structure encoding, the meta-network gradually learns to generate weights for various
pruned structures.

5.1.3 Search Paradigms.

The search paradigms in model pruning studies can be categorized into two main groups.

Basic EC search paradigm: A number of studies introduce single-objective EC search paradigm for
model pruning [194, 217]. For example, Wu et al. [217] first analysed the pruning sensitivity on weights
via differential evolution (DE), and then the model was compressed by iteratively performing the weight
pruning process according to the weight sensitivity. In addition, this method adopted a recovery strategy
to increase the pruned model performance during the fine-tuning phase.

Multi-objective search paradigm: Recently, this sort of search paradigm has been adopted to model
pruning, which is able to provide users with a set of Pareto lightweight models. For example, Zhou
et al. [258] considered two objectives (i.e., minimizing convolutional filters and maximizing the model
performance) for biomedical image segmentation. During the model pruning, a classical multi-objective
optimization algorithm (NSGA-II [41]) was used find the optimal set of non-dominated solutions, where
the optimization was based on a binary string encoding (each bit represents a filter).

In Table 3, we have summarized these two categories of search paradigms as well as their corresponding
ways of encoding.

, Vol. 1, No. 1, Article . Publication date: August 2022.

20 = Nan Lietal

Table 3. Different search paradigms and solutions representations for model pruning

Direct encoding Indirect encoding
Basic EC search
D e [170],[90].[194],[217).[01].[259].[63].[237], (23], 156, [56]. [106].[177] 117
Multi-objective
search paradigm [258],[260],[218],[75],[223],[227],[244] [212],[253],[121]

5.2 Other EC-based Model Deployment Methods

Different from model pruning, there are several other EC-based model compression methods for model
deployment. In the followings, some typical methods are introduced, including knowledge distillation,
low-rank factorization, and EC for hybrid techniques.

5.2.1 Knowledge Distillation.

Knowledge distillation (KD) [65] aims to get a small light network but with good generalization
capability. The basic idea is to transfer the knowledge learned from a big cumbersome network (or teacher
network) with good generalization ability to a small but light network (or student network).

However, knowledge distillation may be seriously influenced when there is a big gap in the learning
capability between the teacher and student networks. In other words, if the difference is large, the student
network may not be able to learn knowledge from the teacher network. Recently, several EC-based
approaches have been proposed to mitigate the above issue of knowledge distillation. For example, Wu et
al. [219] proposed an evolutionary embedding learning (EEL) paradigm to learn a fast accurate student
network via massive knowledge distillation. Their experimental results show that the EEL is able to narrow
the performance between the teacher and student networks on given tasks. Zhang et al. [245] developed
an evolutionary knowledge distillation method to improve the effectiveness of knowledge transfer. In this
method, an evolutionary teacher was learned online and consistently transfers intermediate knowledge to
the student network to narrow the gap of the learning capability between them.

5.2.2 Low-rank Factorization.

DNNSs often involve in a huge number of weights, which may impact the inference speed and seriously
increase the storage overhead of the DNN. The weights can be viewed as a matrix W with m x n
dimensions. The low-rank approach is commonly applied to the weight matrix (W) after the DNN is
fully trained. For example, singular value decomposition [58] is a typical low-rank factorization method,
where W is decomposed as follows.

Ww=UsvT (6)

where U € R™*™ VT ¢ R"™ ™ are orthogonal matrices and S € R™*" is a diagonal matrix.

Notably, most of the existing low-rank factorization methods rely on domain expertise and experience
for the selection of hyperparameters (e.g., the rank and sparsity of weight matrix) to get an appropriate
compression results without serious performance degradation [77, 192, 215].

Accordingly, EC-based methods have been introduced to solve the above challenge [81, 211]. For
example, Huang et al. [81] presented a multi-objective evolution approach to automatically optimize
rank and sparsity for weight matrix without human intervention, where two objectives were taken into
account including the minimization of the model classification error rate and maximization of the model
compression rate. They therefore generated a set of approximately compressed models with different
compression rates to mitigate the expensive training process.

5.2.3 EC for Jointly Optimization.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 21

Many compression techniques (e.g., quantization) can be easily applied on top of other techniques (e.g.,
pruning and low-rank factorization). For example, pruning first and then quantification can obtain a
lightweight model with faster inference. Similarly, EC can optimize more than one model compression
method at the same time. In the followings, we will briefly review such works.

Phan et al. [154] designed an efficient 1-Bit CNNs, which combined quantization with a compact model.
Specifically, they firstly created a number of strong baseline binary networks (BNNs), which had abundant
random group combinations at each convolutional layer. Then, they adopted evolutionary search to seek
an optimal group convolution combination with accuracy above threshold. Finally, the obtained binary
models werr trained from scratch to achieve the final lightweight network. Different from [154], Polino
et al. [155] jointly utilized weight quantization and distillation to compress large networks (i.e., teacher
network) into small networks (i.e., student network), where the latency and model error were regarded as
the objectives during the optimization.

Recently, Zhou et al. [259] developed an evolutionary algorithm-based method for shallowing DNNs at
block levels (ESNB). In ESNB, a prior knowledge was extracted from the original model to guide the
population initialization. Then, an evolutionary multi-objective optimization mothed was performed to
minimize the number of blocks and the accuracy drop (i.e., loss). After that, knowledge distillation was
employed to compensate for the performance degradation via matching output of the pruned model with
the softened and hardened output of the original model.

5.2.4 Summary.

There is still a big room for the improvement on addressing the huge computational overhead of
evolutionary model deployment. Acceleration strategies may be able to alleviate the issue. Besides, there is
a high coupling between model deployment and model generation since the performance of the compressed
network is strongly dependent on the performance of the original network. The black-box nature of
model also hampers deployment in security-critical tasks (e.g., medicine and finance).Consequently,
it is promising and challenging to take the model compression, NAS, and interpretability as a single
optimization problem and handle it with acceptable time consumption.

6 APPLICATIONS, OPEN ISSUES, AND TRENDS
6.1 Applications

EDL algorithms have been widely used in various real-world applications. In practical, great development
has been achieved in computer vision (CV), natural language processing (NLP) and other practical
applications (e.g., crisis prediction and disease prediction).

6.1.1 Computer Vision.

CV is an important domain of computer science, playing an important role in identifying useful
information (e.g., objects and classifications) for specific tasks (e.g., image segmentation [258] and object
detection [251]) on images or videos. In the early days, manually designed models for computer vision
achieved good performance on public datasets at the expense of extensive time and labour. With the
development of EDL, many new structures have been developed by computer programming and they
show better performance than these manually designed models, especially on the widely used benchmark
datasets for image classification, such as CIFAR-10, CIFAR-100 [101], and ImageNet [43]. For example,
the state-of-the-art NAT-M4 [124] with a small model size achieves Top-1 accuracy of 80.5% on ImageNet.
Image-to-image processing [116] (e.g., super-resolution, image inpainting, and image restoration) also
received extensive attention from researchers [169, 183, 238]. Ho et al. [73] employed NAS techniques to
improve image denoising, inpainting, and super-resolution on the foundation of deep image prior [73]. In

, Vol. 1, No. 1, Article . Publication date: August 2022.

22 = Nan Lietal

addition to the above applications, EDL also has great potential in other areas of CV, such as object
detection [42], video/picture understanding [131], and image segmentation [55].

6.1.2 Natural Language Processing.

Natural language processing (NLP) driven by computer science and computational linguistics, aims
to understand, analyze, and extract knowledge on text and speech recoginition [234]. Many effective
NLP models (e.g., GPT-2 [157] and BERT [44]) narrow the chasm between human communication and
computer understanding using sophisticated mechanisms. Recently, EC-inspired NLP models have been
proposed such as language model [141], entity recognition [180], text classification [9, 119, 120, 193], and
keyword spotting [133]. Satapathy et al. [184] introduced evolutionary multi-objective (i.e., inference time
and accuracy) optimization in an English translation system. Sikdar et al. [180] employed DE in feature
selection for named entity recognition (NER).

6.1.3 Other Applications.

In addition to CV and NLP, EDL also shows strong ability on handling other practical applications,
such as medical analysis [115, 263], financial prediction [194], signal processing [50, 80], and industrial
prediction [127, 134]. In particular, Zhu et al. [263] presented a Markov blanket-embedded genetic
algorithm for feature selection to improve gene selection. In [194], financial bankruptcy analysis was
handled by an evolutionary pruning neural network. The work in [50] designed a feature selection method
based on ACO to classify electromyography signals. For remote sensing imagery, a suitable model was
found by multi-objective neural evolution architecture search [127], where architecture complexity and
performance error of searched network were two conflicting objectives.

6.2 Open Issues

EDL is a hot research topic in both fields of machine learning and evolutionary computation. There are a
large number of publications on various top conferences and journals, such as ICCV, CVPR, GECCO,
TPAMI, TEVC, TCYB, and TNNLS (see the reference list). Yet some challenges remain to be resolved.

Acceleration strategies: Many EDL approaches suffer from low efficiency due to the expensive evalua-
tions. So various acceleration strategies, such as surrogate model [187], supernet [66], and early stop [190]
have been designed. However, the improvements of the accuracy are at the expense of sacrifice a bit of
model accuracy. Taking the supernet-based inheritance as an example [220], we cannot guarantee that
every subnet receives a reliable evaluation due to the catastrophic forgetting [248] and weight coupling
[79]. Therefore, how to balance the efficiency and accuracy needs further investigation.

Effectiveness: There is a debate on whether EDL has many advantages over other search paradigms (e.g.,
random search and RL). Some studies argue that many popular search paradigms (e.g., EC-based methods
and RL-based methods) have no big difference from the random search methods in their performance,
and some random search methods even outperform EC-based methods in some scenarios [174]. On the
contrary, EC-based approaches have also been proved to be more effective than random search methods
in many studies [66, 89, 161]. Thus, a unified platform is essential to measure the effectiveness of different
search models, under the consistent search space and hyperparameters configuration [222]. In addition,
elaborate experiments are required to justify the effects of different genetic operators (e.g., crossover
operator) to the evolutionary process of EDL.

Large-scale datasets: There is an issue for the studies of EDL on large-scale datasets. It is noted that
many studies of EDL are tested on small- and medium-scale datasets such as CIFAR-10 and CIFAR-100
(including 60000 32x32 images), and especially the accuracy on CIFAR-10 reaches up to 98% [124].
Although large-scale datasets are ubiquitous and essential in various domains like gene analysis [235] and

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 23

TmageNet [43], computational costs are unaffordable for many researchers as pointed in some statistical
reports [71, 116]. Therefore, the sensitivity of the EDL methods to different scales of datasets is necessary
[257] and how to economically and efficiently verify EDL methods on large-scale datasets also deserves
much investigations.

End-to-end EDL: Originally, AutoML aims to simultaneously optimize feature engineering, model
generation and model deployment as a whole. However, there is a strong correlation between them where
the performance of next phase heavily relies on the results of the previous phase [114]. As a result, most
studies only focus on parts of the EDL pipeline (Fig. 1). For instance, TPOT [148] is designed on top of
Pytorch for building classification tasks, which however only supports a multi-layer perception machine
(i.e., model generation). There are many partially accomplished end-to-end for EDL, such as ModelArts
(model generation), Google’s Cloud (NAS), and Feature Labs (feature engineering) [230], to name but a
few. The main reason is that the optimization of the whole EDL pipeline may need huge computational
cost not only on the exploration of the large-scale search space but also on handling highly-coupled
relation between different parts of EDL. Consequently, finding an optimal solution of the complete EDL
pipeline is essential but challenging.

6.3 Challenges and Future Trends

Although remarkable progress has been made in EDL, there are still many promising lines of research.

Fair comparisons: Unfair comparisons of different EDL methods are easily encountered with the following
reasons. Firstly, uniform benchmarks are essential. In feature engineering, no uniform benchmark is for
the fair comparison of different algorithms due to different downstream prediction models and feature sets.
Secondly, there is no uniform criterion for different methods in handling NAS and model compression
by using different tricks (e.g., cutout [45] and ScheduledDropPath [264]), which may influence the
performance of the final architecture. Thirdly, a fair platform for EDL is essential. There are some fair
benchmarks but only for specific tasks, such as BenchENAS [222], NAS-Bench-101 [233], NAS-Bench-201
[46], NAS-Bench-301 [179], and HW-NAS-Bench [107].

Interpretability: EDL is known as a black-box optimization, and there is a lack of theoretical analysis
to explain its superiority [205]. For example, it is difficult to explain why EC-based method tends to
select features contribute to the performance of the classification model in feature engineering. As a
result, the development of EDL in some sensitive domains such as financial and medical fields is slow. To
overcome this issue, Evans et al. [53] used visualization to expound how the evolved convolution filter
served and indirectly explained the search process of the model. Nevertheless, some studies argue that
the explanation for these occurrences is usually post-hoc and lacks trustworthy mathematical deduction
[5, 116]. Thus, the interpretability of EDL is an interesting and promising research direction.

Exploring more scenarios: There is still plenty of room for the improvement of the performance of
EDL on both benchmarks and real-world applications. Although EDL methods outperform manually
designed models on various image benchmarks (CIFAR-10 and ImageNet), the state-of-the-art EDL
methods [209] lost their advantages on NLP in comparison with human-designed models (e.g., GPT-2
[157], Transformer-XL [38]). In comparison with the benchmarks, it is more difficult to handle real-
world tasks, which inevitably contain noise (e.g., mislabeling and inadequate or imbalance data) or may
have small-scale datasets (leading to overfitting). Hence, some techniques such as unsupervised and
self-supervised learning may be incorporated into EDL to mitigate these types of issues.

, Vol. 1, No. 1, Article . Publication date: August 2022.

24 = Nan Liet al.

7 CONCLUSIONS

With the development of machine leaning and evolutionary computation, many EDL approaches have
been proposed to automatically optimize the parameters or architectures of deep models following the EC
optimization framework. EDL approaches show competitive performance in robust and search capability,
in comparison with the manually designed approaches. Therefore, EDL has become a hot research topic.

In this survey, we first introduced EDL from the perspective of DL and EC to facilitate the understanding
of readers from the communities of ML and EC. Then we formulated EDL as a complex optimization
problem, and provided a comprehensive survey of EC techniques in solving EDL optimization problems in
terms of feature engineering, model generation to model deployment to form a new taxonomy (i.e., what,
where and how to evolve/optimize in EDL). Specifiically, we discussed the solution representations and
search paradigms of EDL at different stages of its pipeline in detail. Then the pros and cons of EC-based
approaches in comparison to non-EC based ones are discussed. Subsequently, various applications are
summarized to show the potential ability of EDL in handling real-world problems.

Although EDL approaches have achieved great progress in AutoML, there are still a number of
challenging issues to be resolved. For example, effective acceleration strategies are essential to reduce
the expensive optimization process. Another issue is to handle large-scale datasets and how to perform
fair comparisons between different EDL approaches or non-EC based methods. More investigations are
required to theoretically analyse or interpret the search ability of EDL. In addition, a lot of efforts are
required on the improving the performance of EDL on both benchmarks (e.g., large-scale and small-scale
data) and real-world applications. Lastly, the development of end-to-end EDL is challenging but deserves
much efforts.

REFERENCES

[1] Hervé Abdi and Lynne J Williams. 2010. Principal Component Analysis. Comput. Stat. 2, 4 (2010), 433-459.

[2] Amr Ahmed, Saad Mohamed Darwish, and Mohamed M. El-Sherbiny. 2019. A Novel Automatic CNN Architecture

Design Approach Based on Genetic Algorithm. In Int. Conf. Adv. Intell. Syst. Inform. 473-482.

Soha Ahmed, Mengjie Zhang, Lifeng Peng, and Bing Xue. 2014. Multiple Feature Construction for Effective Biomarker

Identification and Classification Using Genetic Programming. In Proc. Genetic Evol. Comput. Conf. 249-256.

Buthainah Al-kazemi and Chilukuri Krishna Mohan. 2002. Training Feedforward Neural Networks using Nulti-phase

Particle Swarm Optimization. In Proc. Int. Conf. Neural Inf. Process., Vol. 5. 2615-2619.

Harith Al-Sahaf, Ying Bi, Qi Chen, Andrew Lensen, Yi Mei, Yanan Sun, Binh Tran, Bing Xue, and Mengjie Zhang.

2019. A Survey on Evolutionary Machine Learning. J. R. Soc. N. Z. 49, 2 (2019), 205-228.

[6] Wissam A. Albukhanajer, Johann A. Briffa, and Yaochu Jin. 2015. Evolutionary Multiobjective Image Feature

Extraction in the Presence of Noise. IEEE Trans. Cybern. 45, 9 (2015), 1757-1768.

Stamatios-Aggelos N Alexandropoulos and Christos K Aridas. 2019. Multi-objective Evolutionary Optimization

Algorithms for Machine Learning: A Recent Survey. Approzimation and Optimization (2019), 35-55.

Ibrahim Aljarah, Hossam Faris, and Seyed Mohammad Mirjalili. 2018. Optimizing Connection Weights in Neural

Networks Using the Whale Optimization Algorithm. Soft Comput. 22, 1 (2018), 1-15.

Hayden Andersen, Sean Stevenson, Tuan Ha, Xiaoying Gao, and Bing Xue. 2021. Evolving Neural Networks for Text

Classification Using Genetic Algorithm-based Approaches. In Proc. IEEE Congr. Evol. Comput. 1241-1248.

[10] Filipe Assuncdo, Joao Correia, and Ruben Conceigdo. 2019. Automatic Design of Artificial Neural Networks for
Gamma-Ray Detection. IEEE Access 7 (2019), 110531-110540.

[11] Filipe Assungdo, Nuno Lourenco, P. Machado, and Bernardete Ribeiro. 2018. Evolving the Topology of Large Scale
Deep Neural Networks. In Proc. Eur. Conf. Genetic Program. 19-34.

[12] Filipe Assuncdo, Nuno Lourengo, Penousal Machado, and Bernardete Ribeiro. 2019. Fast denser: Efficient Deep
Neuroevolution. In Proc. Eur. Conf. Genetic Program. 197-212.

[13] Medha Atre, Birendra Jha, and Ashwini Rao. 2021. Distributed Deep Learning Using Volunteer Computing-Like
Paradigm. In Proc. Int. Parallel and Distrib. Process. Symp. 933-942.

[14] Shohag Barman and Yung-Keun Kwon. 2020. A Neuro-Evolution Approach to Infer A Boolean Network From
Time-Series Gene Expressions. Bioinformatics 36, 2 (2020), i762-i769.

3

[4

5

7

8

[9

, Vol. 1, No. 1, Article . Publication date: August 2022.

(15]
[16]
(17]
(18]
(19]
20]
(21]
(22]
23]
24]
[25]
[26]
27]
(28]
29]

(30]

(31]
(32]
33]

(34]

(35]
(36]
(37)
(38]
(39]

[40]

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 25

Amir Behjat and Sharat Chidambaran. 2019. Adaptive Genomic Evolution of Neural Network Topologies (AGENT)
for State-to-Action Mapping in Autonomous Agents. In Proc. Int. Conf. Robot. Autom. 9638-9644.

Bir Bhanu and Krzysztof Krawiec. 2002. Coevolutionary Construction of Features for Transformation of Representation
in Machine Learning. In Proc. Genetic Evol. Comput. Conf. 249-254.

Ying Bi, Bing Xue, and Mengjie Zhang. 2018. An Automatic Feature Extraction Approach to Image Classification
Using Genetic Programming. In Proc. Int. Conf. Appl. Evol. Comput. 421-438.

Alberto Cano, Sebastian Ventura, and Krzysztof J. Cios. 2017. Multi-Objective Genetic Programming for Feature
Extraction and Data Visualization. Soft Comput. 21, 8 (2017), 2069-2089.

Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi. 2011. Multi Objective Genetic Programming for Feature
Construction in Classification Problems. In Proc. Int. Conf. Learn. Intell. Optim. 503-506.

Zheng-Yi Chai, ChuanHua Yang, and Ya-Lun Li. 2022. Communication Efficiency Optimization in Federated Learning
Based on Multi-Objective Evolutionary Algorithm. Ewol. Intell. (2022), 1-12.

Rohitash Chandra. 2015. Competition and Collaboration in Cooperative Coevolution of Elman Recurrent Neural
Networks for Time-Series Prediction. IEEE Trans. Neural Netw. Learn. Syst. 26, 12 (2015), 3123-3136.

Rohitash Chandra and Mengjie Zhang. 2012. Cooperative Coevolution of Elman Recurrent Neural Networks for
Chaotic Time Series Prediction. Neurocomputing 86 (2012), 116-123.

Ke Chen, Bing Xue, Mengjie Zhang, and Fengyu Zhou. 2022. Evolutionary Multitasking for Feature Selection in
High-Dimensional Classification via Particle Swarm Optimization. IEEE Trans. Evol. Comput. 26, 3 (2022), 446-460.

Qi Chen, Bing Xue, and Mengjie Zhang. 2015. Generalisation and Domain Adaptation in GP with Gradient Descent
for Symbolic Regression. In Proc. IEEE Congr. Evol. Comput. 1137-1144.

Shuxin Chen, Lin Lin, Zixun Zhang, and Mitsuo Gen. 2019. Evolutionary NetArchitecture Search for Deep Neural
Networks Pruning. In Proc. Aust. Conf. Artif. Intell. 189-196.

Xiangru Chen, Yanan Sun, Mengjie Zhang, and Dezhong Peng. 2020. Evolving Deep Convolutional Variational
Autoencoders for Image Classification. IEEE Trans. Evol. Comput. 25, 5 (2020), 815-829.

Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang, and Chang Huang. 2019. RENAS: Reinforced Evolutionary
Neural Architecture Search. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 4787—4796.

Fan Cheng, Feixiang Chu, Yi Xu, and Lei Zhang. 2021. A Steering-Matrix-Based Multiobjective Evolutionary
Algorithm for High-Dimensional Feature Selection. IEEE Trans. Cybern. 52, 9 (2021), 9695-9708.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A Survey of Model Compression and Acceleration for Deep
Neural networks. arXiv preprint arXiv:1710.09282 (2017).

Zouhair Chiba, Noreddine Abghour, Khalid Moussaid, Amina El Omri, and Mohamed Rida. 2019. Intelligent
Approach to Build a Deep Neural Network Based IDS for Cloud Environment Using Combination of Machine Learning
Algorithms. Comput. & Sec. 86 (2019), 291-317.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. 2020. A Comprehensive Survey
on Model Compression and Acceleration. Artif. Intell. Rev. 53, 7 (2020), 5113-5155.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A Downsampled variant of imageNet as an alternative
to the Cifar datasets. arXiv preprint arXiv:1707.08819 (2017).

Xijangxiang Chu, Bo Zhang, Ruijun Xu, and Hailong Ma. 2020. Multi-Objective Reinforced Evolution in Mobile
Neural Architecture Search. In Proc. Eur. Conf. Comput. Vis. 99-113.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. 2018.
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking
Agents. In Proc. Adv. Neural Inf. Process. Syst., Vol. 31. 5032-5043.

Xiaodong Cui, Wei Zhang, Zoltan Tiske, and Michael Picheny. 2018. Evolutionary Stochastic Gradient Descent for
Optimization of Deep Neural Networks. Proc. Adv. Neural Inf. Process. Syst. 31 (2018), 6051-6061.

Sérgio Francisco Da Silva and Jodao do ES Batista Neto. 2011. Improving The Ranking Quality of Medical Image
Retrieval Using A Genetic Feature Selection Method. Decis. Support. Syst. 51, 4 (2011), 810-820.

Binay Dahal and Justin Zhijun Zhan. 2020. Effective Mutation and Recombination for Evolving Convolutional
Networks. In Proc. Adv. Neural Inf. Process. Syst. 1-6.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov. 2019. Transformer-XL:
Attentive Language Models beyond a Fixed-Length Context. In Proc. Assoc. Comput. Linguist. 2978-2988.

David B. D’Ambrosio and Kenneth O. Stanley. 2007. A Novel Generative Encoding for Exploiting Neural Network
Sensor and Output Geometry. In Proc. Genetic Evol. Comput. Conf. 974-981.

Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. 2020. A Survey of Swarm And Evolutionary Computing
Approaches for Deep Learning. Artif. Intell. Rev. 53, 3 (2020), 1767-1812.

, Vol. 1, No. 1, Article . Publication date: August 2022.

26

[41]
42]
(43]
44]
(45]
[46]
[47]
(48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]

(58]
[59]

[60]
[61]
(62]
(63]
[64]
[65]
(6]
[67]

(68]

= Nan Liet al.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. 2002. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 2 (2002), 182-197.

Cem Demirkir and Biilent Sankur. 2006. Object Detection Using Haar Feature Selection Optimization. In Proc. IEEE
Signal Process. Commun. Appl. 1-4.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. 2009. ImageNet: A Large-scale Hierarchical
Image Database. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2009), 248-255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018).

Terrance DeVries and Graham W Taylor. 2017. Improved Regularization of Convolutional Neural Networks with
Cutout. arXiv preprint arXiv:1708.04552 (2017).

Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search.
In Proc. Int. Conf. Learn. Represent. https://arxiv.org/abs/2001.00326.

Thomas Dowdell and Hongyu Zhang. 2020. Language Modelling for Source Code with Transformer-XL. arXiv preprint
arXiv:2007.15818 (2020).

Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. 2017. Simple and Efficient Architecture Search for Convolu-
tional Neural Networks. arXiv preprint arXiv:1711.04528 (2017).

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Efficient Multi-Objective Neural Architecture Search
via Lamarckian Evolution. In Proc. Int. Conf. Learn. Represent. https://arxiv.org/abs/1804.09081.

Turker Tekin Erguzel, Serhat Ozekes, Selahattin Gultekin, and Nevzat Tarhan. 2014. Ant Colony optimization Based
Feature Selection Method for QEEG data classification. Psychiatry Investig. 11, 3 (2014), 243.

Pablo A Estévez and Rodrigo E Caballero. 1998. A Niching Genetic Algorithm for Selecting Features for Neural
Network Classifiers. In Proc. Int. Conf. Artif. Neural Netw. 311-316.

Benjamin Evans, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. 2018. Evolutionary Deep Learning: A Genetic
Programming Approach to Image Classification. In Proc. IEEE Congr. Evol. Comput. 1538-1545.

Benjamin Patrick Evans, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. 2018. Evolutionary Deep Learning: A
Genetic Programming Approach to Image Classification. In Proc. IEEE Congr. Evol. Comput. 1-6.

Tresna Maulana Fahrudin, Iwan Syarif, and Ali Ridho Barakbah. 2016. Ant Colony Algorithm for Feature Selection
on Microarray Datasets. In International Electronics Symposium. 351-356.

Zhun Fan, Jiahong Wei, Guijie Zhu, Jiajie Mo, and Wenji Li. 2020. Evolutionary Neural Architecture Search for
Retinal Vessel Segmentation. arXiv preprint arXiv:2001.06678 (2020).

Francisco Erivaldo Fernandes and Gary G. Yen. 2021. Automatic Searching and Pruning of Deep Neural Networks for
Medical Imaging Diagnostic. IEEE Trans. Neural Netw. Learn. Syst. 32, 12 (2021), 5664-5674.

Christopher Fogelberg and Mengjie Zhang. 2005. Linear Genetic Programming for Multi-class Object Classification.
In Proc. Aust. Joint Conf. Artif.l Intell. 369-379.

Luigi Fortuna and Mattia Frasca. 2021. Singular Value Decomposition. Optim. Rob. Control (2021), 51-58.

Luc Frachon, Wei Pang, and George M Coghill. 2019. Immunecs: Neural Committee Search by an Artificial Immune
System. arXiv preprint arXiv:1911.07729 (2019).

Alex A Freitas. 2003. A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery. In Adv. Evol.
Comput. Springer, 819-845.

Saya Fujino, Naoki Mori, and Keinosuke Matsumoto. 2017. Deep Convolutional Networks for Human Sketches By
Means of The Evolutionary Deep Learning. In Proc. Int. Conf. Soft Comput. Intell. Syst. 1-5.

David Garcia, Antonio Gonzélez Mufioz, and Raul Pérez. 2011. A Two-Step Approach of Feature Construction for A
Genetic Learning Algorithm. Proc. Int. Conf. Fuzzy Syst. (2011), 1255-1262.

Richard C Gerum, André Erpenbeck, Patrick Krauss, and Achim Schilling. 2020. Sparsity Through Evolutionary
Pruning Prevents Neuronal Networks From Overfitting. Neural Netw. 128 (2020), 305-312.

Wolfgang Golubski and Thomas Feuring. 1999. Evolving Neural Network Structures by Means of Genetic Programming.
In Proc. Eur. Conf. Genetic Program. 211-220.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowledge Distillation: A Survey. Int. J.
Comput. Vis. 129, 6 (2021), 1789-1819.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. 2020. Single Path
One-Shot Neural Architecture Search with Uniform Sampling. In Proc. Eur. Conf. Comput. Vis. 544-560.

Farshid Hajati, Caro Lucas, and Yongsheng Gao. 2010. Face Localization Using an Effective Co-evolutionary Genetic
Algorithm. Proc. Int. Conf. Digit. Image Comput.: Tech. and Appl. (2010), 522-527.

Marwa Hammami, Slim Bechikh, and Chih-Cheng Hung. 2018. A Multi-Objective Hybrid Filter-Wrapper Evolutionary
Approach for Feature Construction on High-Dimensional Data. In Proc. IEEE Congr. Evol. Comput. 1-8.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 27

[69] Sang-Jun Han and Sung-Bae Cho. 2006. Evolutionary Neural Networks for Anomaly Detection Based on the Behavior
of a Program. IEEE Trans. Syst. Man Cybern. 36, 3 (2006), 559-570.

[70] Emrah Hancer, Bing Xue, Mengjie Zhang, and Dervis Karaboga. 2015. A Multi-objective Artificial Bee Colony
Approach to Feature Selection Using Fuzzy Mutual Information. In Proc. IEEE Congr. Evol. Comput. 2420-2427.

[71] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the State-of-the-Art. Knowli-Based Syst 212
(2021), 106622.

[72] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating Very Deep Neural Networks. In
Proc. IEEE Int. Conf. Comput. Vis. 1398-1406.

[73] Kary Ho, Andrew Gilbert, Hailin Jin, and John P. Collomosse. 2021. Neural Architecture Search for Deep Image
Prior. Comput. & Graph. 98 (2021), 188-196.

[74] Jin-Hyuk Hong and Sung-Bae Cho. 2006. Efficient Huge-Scale Feature Selection With Speciated Genetic Algorithm.
Pattern Recognit. Lett. 27, 2 (2006), 143-150.

[75] Wenjing Hong, Peng Yang, Yiwen Wang, and Ke Tang. 2020. Multi-objective Magnitude-Based Pruning for Latency-
Aware Deep Neural Network Compression. In Proc. Int. Conf. on Parallel Probl. Solving Nat. 470-483.

[76] Mohamed Hosni, Ginés Garcia-Mateos, and Juan Carrillo-de Gea. 2020. A Mapping Study of Ensemble Classification
Methods in Lung Cancer Decision Support Systems. Med. & Biol. Eng. €& Comput. 58, 10 (2020), 2177-2193.

[77] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. 2021. Language Model Compression
with Weighted Low-rank Factorization. In Proc. Int. Conf. Learn. Represent. https://arxiv.org/abs/2207.00112.

[78] Bin Hu, Tianming Zhao, Yucheng Xie, Yan Wang, and Xiaonan Guo. 2021. MIXP: Efficient Deep Neural Networks
Pruning for Further FLOPs Compression via Neuron Bond. In Proc. Int. Joint Conf. Neural Netw. 1-8.

[79] Yiming Hu, Xingang Wang, Lujun Li, and Qingyi Gu. 2021. Improving One-Shot NAS with Shrinking-and-Expanding
Supernet. Pattern Recognit. 118 (2021), 108025.

[80] Hu Huang, Hong-Bo Xie, Jing-Yi Guo, and Hui-Juan Chen. 2012. Ant Colony Optimization-based Feature Selection
Method for Surface Electromyography Signals Classification. Comput. Biol. Med. 42, 1 (2012), 30-38.

[81] Junhao Huang, Weize Sun, and Lei Huang. 2020. Deep Neural Networks Compression Learning Based on Multiobjective
Evolutionary Algorithms. Neurocomputing 378 (2020), 260-269.

[82] Earnest Paul Ijjina and Krishna Mohan Chalavadi. 2016. Human Action Recognition Using Genetic Algorithms and
Convolutional Neural Networks. Pattern Recognit. 59 (2016), 199-212.

[83] William Irwin-Harris, Yanan Sun, Bing Xue, and Mengjie Zhang. 2019. A Graph-Based Encoding for Evolutionary
Convolutional Neural Network Architecture Design. In Proc. IEEE Congr. Evol. Comput. 546-553.

[84] Alan Julian Izenman. 2013. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques. Springer,
237-280.

[85] Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur. 2019. Reinforcement Learning for
Neural Architecture Search: A Review. Image Vis. Comput. 89 (2019), 57-66.

[86] Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Auto-keras: Efficient Neural Architecture Search with Network
Morphism. arXiv preprint arXiv:1806.10282 (2018).

[87] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural Architecture Search System. In Proc.
ACM SIGKDD Int. Conf. on Knowl. Discov. & Data Min. 1946-1956.

[88] Yaochu Jin. 2006. Multi-Objective Machine Learning. Springer Science.

[89] David T Jones, Anja Schroeder, and Geoff S. Nitschke. 2019. Evolutionary Deep Learning to Identify Galaxies in the
Zone of Avoidance. arXiv preprint arXiv:1903.07461 (2019).

[90] Francisco Erivaldo Fernandes Junior and Gary G. Yen. 2021. Pruning Deep Convolutional Neural Networks Architec-
tures with Evolution Strategy. Inf. Sci. 552 (2021), 29-47.

[91] Francisco Erivaldo Fernandes Junior and Gary G. Yen. 2021. Pruning of Generative Adversarial Neural Networks for
Medical Imaging Diagnostics with Evolution Strategy. Inf. Sci. 558 (2021), 91-102.

[92] Dervis Karaboga, Bahriye Akay, and Celal Oztiirk. 2007. Artificial Bee Colony (ABC) Optimization Algorithm for
Training Feed-Forward Neural Networks. In Proc. Int. Conf. Modeling Decis. Artif. Intell. 318-329.

[93] Asha Gowda Karegowda and A. S. Manjunath. 2011. Application of Genetic Algorithm Optimized Neural Network
Connection Weights for Medical Diagnosis of PIMA Indians Diabetes. Int. J. Soft Comput. 2, 2 (2011), 15-23.

[94] Shauharda Khadka and Kagan Tumer. 2018. Evolution-Guided Policy Gradient in Reinforcement Learning. In Proc.
Adv. Neural Inf. Process. Syst., Vol. 31. 1196-1208.

[95] Rami N Khushaba, Ahmed Al-Ani, Akram AlSukker, and Adel Al-Jumaily. 2008. A Combined Ant Colony and
Differential Evolution Feature Selection Algorithm. In Proc. Int. Conf. Ant Colony Optim. Swarm Intell. 1-12.

[96] Hiroaki Kitano. 1990. Designing Neural Networks Using Genetic Algorithms with Graph Generation System. Complex
Syst. 4, 4 (1990), 225-238.

, Vol. 1, No. 1, Article . Publication date: August 2022.

28

[97]
(98]
(9]
[100]

[101]
[102]

[103)]

[104]
[105]

[106]

[107]

[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]

[116]

[117]
[118]
[119]
[120]
[121]
[122]

[123]

= Nan Liet al.

Manabu Kotani and Daisuke Kato. 2004. Feature Extraction Using Coevolutionary Genetic Programming. In Proc.
IEEE Congr. Evol. Comput. 614-619.

Jan Koutnik, Faustino J. Gomez, and Jirgen Schmidhuber. 2010. Evolving Neural Networks in Compressed Weight
Space. In Proc. Genetic Evol. Comput. Conf. 619-626.

Jan Koutnik, Jirgen Schmidhuber, and Faustino J. Gomez. 2014. Evolving Deep Unsupervised Convolutional Networks
for Vision-Based Reinforcement Learning. In Proc. Genetic Evol. Comput. Conf. 541-548.

Krzysztof Krawiec. 2002. Genetic Programming-Based Construction of Features for Machine Learning and Knowledge
Discovery Tasks. Genet. Program Evolvable Mach. 3, 4 (2002), 329-343.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of Features From Tiny Images. (2009).
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Proc. Adv. Neural Inf. Process. Syst., Vol. 25. 1097-1105.

Arkadiusz Kwasigroch, MichaAC Grochowski, and Mateusz Mikolajczyk. 2019. Deep Neural Network Architecture
Search using Network Morphism. In Proc. Int. Conf. Methods and Models in Autom. and Robot. 30—35.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature 521, 7553 (2015), 436-444.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, and Wayne Hubbard. 1989.
Backpropagation Applied to Handwritten Zip Code Recognition. Neural computation 1, 4 (1989), 541-551.

Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, and Liang Lin. 2020. EagleEye: Fast Sub-net Evaluation for Efficient
Neural Network Pruning. In Proc. Eur. Conf. Comput. Vis. 639-654.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Cong Hao,
and Yingyan Lin. 2021. HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark. In Proc. Int. Conf.
Learn. Represent. https://arxiv.org/abs/2103.10584.

Qing Li, Wei Zhang, Lin Zhao, Xia Wu, and Tianming Liu. 2022. Evolutional Neural Architecture Search for
Optimization of Spatiotemporal Brain Network Decomposition. IEEE. Trans. Biomed. Eng. 69, 2 (2022), 624-634.
Youru Li, Zhenfeng Zhu, Degiang Kong, Hua Han, and Yao Zhao. 2019. EA-LSTM: Evolutionary Attention-Based
LSTM for Time Series Prediction. Knowl.-Based Syst. 181 (2019), 104785.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. 2018. Progressive Neural Architecture Search. In Proc. Eur. Conf. Comput. Vis. 19-34.
Chia-Hsiang Liu, Yu-Shin Han, Yuan-Yao Sung, Yi Lee, Hung-Yueh Chiang, and Kai-Chiang Wu. 2021. FOX-NAS:
Fast, On-device and Explainable Neural Architecture Search. In Proc. IEEE Int. Conf. Comput. Vis. 789-797.
Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable Architecture Search. In Proc. Int.
Conf. Learn. Represent. https://arxiv.org/abs/1806.09055.

Peng Liu, Mohammad D. El Basha, Yangjunyi Li, Yao Xiao, Pina C. Sanelli, and Ruogu Fang. 2019. Deep Evolutionary
Networks with Expedited Genetic Algorithms for Medical Image Denoising. Med. Image Anal. 54 (2019), 306-315.
Sicong Liu and Bin Guo. 2021. AdaSpring: Context-adaptive and Runtime-evolutionary Deep Model Compression for
Mobile Applications. In Proc. ACM Interact., Mobile, Wearable Ubiquitous Tech., Vol. 5. ACM, 1-22.

Xijao-Ying Liu, Yong Liang, Sai Wang, Zi-Yi Yang, and Han-Shuo Ye. 2018. A Hybrid Genetic Algorithm With
Wrapper-Embedded Approaches for Feature Selection. IEEE Access 6 (2018), 22863-22874.

Yugiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, and Kay Chen Tan. 2021. A Survey on Evolutionary
Neural Architecture Search. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.
3100554

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, K. Cheng, and Jian Sun. 2019. MetaPruning:
Meta Learning for Automatic Neural Network Channel Pruning. In Proc. IEEE Int. Conf. Comput. Vis. 3295-3304.
Eugenio Lomurno, Stefano Samele, Matteo Matteucci, and Danilo Ardagna. 2021. Pareto-optimal Progressive Neural
Architecture Search. In Proc. Genetic Evol. Comput. Conf. 1726-1734.

Trevor Londt, Xiaoying Gao, and Peter Andreae. 2021. Evolving Character-level DenseNet Architectures Using
Genetic Programming. In Proc. Int. Conf. Appl. Evol. Comput. 665-680.

Trevor Londt, Xiaoying Gao, Bing Xue, and Peter Andreae. 2020. Evolving Character-level Convolutional Neural
Networks for Text Classification. arXiv preprint arXiv:2012.02223 (2020).

Mohammad Loni, Sima Sinaei, and Ali Zoljodi. 2020. DeepMaker: A Multi-Objective Optimization Framework for
Deep Neural Networks in Embedded Systems. Microprocess. Microsyst. 73 (2020), 102989.

Pablo Ribalta Lorenzo and Jakub Nalepa. 2018. Memetic Evolution of Deep Neural Networks. In Proc. Genetic Evol.
Comput. Conf. 505-512.

Pablo Ribalta Lorenzo, Jakub Nalepa, Luciano Sdnchez Ramos, and José Ranilla. 2017. Hyper-parameter Selection in
Deep Neural Networks Using Parallel Particle Swarm Optimization. In Proc. Genetic Evol. Comput. Conf. 1864—1871.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1109/TNNLS.2021.3100554

[124]
[125]
[126]

[127]

[128]

[129]

[130]
[131]
[132]
[133]

[134]

[135]
[136]
[137)
[138]
[139]
[140]
[141]
[142]

[143]

[144]
[145]
[146]
[147]

[148]

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 29

Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti.
2021. Neural Architecture Transfer. IEEE IEEE Trans. Pattern Anal. Mach. Intell. 43, 9 (2021), 2971-2989.
Zhichao Lu, Jan Whalen, Vishnu Naresh Boddeti, Yashesh D. Dhebar, and Kalyanmoy Deb. 2019. NSGA-Net: Neural
Architecture Search using Multi-objective Genetic Algorithm. In Proc. Genetic Evol. Comput. Conf. 419-427.
Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2018. Neural architecture optimization. In Proc.
Adv. Neural Inf. Process. Syst., Vol. 31. 7827-7838.

Ailong Ma, Yuting Wan, Yanfei Zhong, Junjue Wang, and Liang pei Zhang. 2021. SceneNet: Remote Sensing
Scene Classification Deep Learning Network Using Multi-Objective Neural Evolution Architecture Search. ISPRS J.
Photogramm. Remote Sens. 172 (2021), 171-188.

Lianbo Ma, Min Huang, Shengxiang Yang, Rui Wang, and Xingwei Wang. 2022. An Adaptive Localized Decision
Variable Analysis Approach to Large-Scale Multiobjective and Many-Objective Optimization. IEEE Trans. Cybern.
52, 7 (2022), 6684-6696.

Lianbo Ma, Nan Li, Guo Yu, Xiaoyu Geng, Min Huang, and Xingwei Wang. 2021. How to Simplify Search:
Classification-wise Pareto Evolution for One-shot Neural Architecture Search. arXiv preprint arXiv:2109.07582
(2021).

Wenping Ma, Xiaobo Zhou, Hao Zhu, Longwei Li, and Licheng Jiao. 2021. A Two-stage Hybrid Ant Colony
Optimization for High-dimensional Feature Selection. Pattern Recognit. 116 (2021), 107933.

V. Maniezzo. 1994. Genetic Evolution of the Topology and Weight Distribution of Neural Networks. IEEE Trans.
Neural. Netw. 5, 1 (1994), 39-53.

Stefano Mauceri, James Sweeney, Miguel Nicolau, and James McDermott. 2021. Feature Extraction by Grammatical
Evolution for One-class Time Series Classification. Genet. Program. Evolvable Mach. 22, 3 (2021), 267-295.

Hanna Mazzawi, Xavi Gonzalvo, Aleksandar Kracun, and Prashant Sridhar. 2019. Improving Keyword Spotting and
Language Identification via Neural Architecture Search at Scale. In INTERSPEECH. 1278-1282.

Yi Mei, Su Nguyen, Bing Xue, and Mengjie Zhang. 2017. An Efficient Feature Selection Algorithm for Evolving
Job Shop Scheduling Rules With Genetic Programming. [EEE Trans. Emerg. Topics Comput. Intell. 1, 5 (2017),
339-353.

Erfan Miahi, Seyed Abolghasem Mirroshandel, and Alexis Nasr. 2022. Genetic Neural Architecture Search for
Automatic Assessment of Human Sperm Images. Ezpert Syst. Appl. 188 (2022), 115937.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz
Shahrzad, Arshak Navruzyan, Nigel Dufty, et al. 2019. Evolving Deep Neural Networks. In Artificial Intelligence in
the Age Of Neural Networks and Brain Computing. Elsevier, 293-312.

Seyedali Mirjalili, Hossam Faris, and Ibrahim Aljarah. 2019. Evolutionary Machine Learning Techniques. Springer.
Hyunho Mo, Leonardo Lucio Custode, and Giovanni lacca. 2021. Evolutionary Neural Architecture Search for
Remaining Useful Life Prediction. Appl. Soft Comput. 108 (2021), 107474.

David J Montana and Lawrence Davis. 1989. Training Feedforward Neural Networks Using Genetic Algorithms. In
Proc. of the Int. Joint Conf. Artif. Intell., Vol. 4. 762—767.

Durga Prasad Muni, Nikhil R Pal, and Jyotirmay Das. 2006. Genetic Programming for Simultaneous Feature Selection
and Classifier Design. IEEE Trans. Syst. Man. Cybern. 36, 1 (2006), 106—-117.

Kenton Murray and David Chiang. 2015. Auto-Sizing Neural Networks: With Applications to N-Gram Language
Models. In Proc. Conf. Empir. Methods Nat. Lang. Proc. 908-916.

Vladimir Nekrasov, Chunhua Shen, and Ian Reid. 2020. Template-Based Automatic Search of Compact Semantic
Segmentation Architectures. In Proc. Winter Conf. Appl. Comput. Vis. 1980—1989.

Mehdi Neshat, Meysam Majidi Nezhad, Ehsan Abbasnejad, Lina Bertling Tjernberg, Davide Astiaso Garcia, Bradley
Alexander, and Markus Wagner. 2020. An Evolutionary Deep Learning Method for Short-term Wind Speed Prediction:
A Case Study of the Lillgrund Offshore Wind Farm. arXiv preprint arXiv:abs/2002.09106 (2020).

Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. 2012. A Filter Approach to Multiple Feature Construction
for Symbolic Learning Classifiers Using Genetic Programming. IEEE Trans. Evol. Comput. 16, 5 (2012), 645-661.
Kourosh Neshatian, Mengjie Zhang, and Mark Johnston. 2007. Feature Construction and Dimension Reduction Using
Genetic Programming. In Proc. Aust. Conf. Artif. Intell. 242-253.

Hoai Bach Nguyen, Bing Xue, Ivy Liu, and Mengjie Zhang. 2014. PSO and Statistical Clustering for Feature Selection:
A New Representation. In Proc. Asia-Pacific Conf. Simulated Evol. Learn. 569-581.

Noel M O’Boyle and David S Palmer. 2008. Simultaneous Feature Selection and Parameter Optimisation Using An
Artificial Ant Colony: Case Study of Melting Point Prediction. Chem. Cent. J. 2, 1 (2008), 1-15.

Randal S. Olson and Jason H. Moore. 2016. TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine
Learning. In Proc. Int. Conf. Mach. Learn. 151-160.

, Vol. 1, No. 1, Article . Publication date: August 2022.

30 = NanlLietal

[149] Damien O’Neill, Bing Xue, and Mengjie Zhang. 2018. Co-evolution of Novel Tree-Like ANNs and Activation Functions:
An Observational Study. In Proc. Aust. Conf. Artif. Intell. 616-629.

[150] Tatt Hee Oong and Nor Ashidi Mat Isa. 2011. Adaptive Evolutionary Artificial Neural Networks for Pattern
Classification. IEEE Trans. Neural Netw. 22, 11 (2011), 1823-1836.

[151] Patxi Ortego, Alberto Diez-Olivan, Javier Del Ser, and Fernando Veiga. 2020. Evolutionary LSTM-FCN Networks for
Pattern Classification in Industrial Processes. Swarm Evol. Comput. 54 (2020), 100650.

[152] Bo Peng, Shuting Wan, Ying Bi, Bing Xue, and Mengjie Zhang. 2021. Automatic Feature Extraction and Construction
Using Genetic Programming for Rotating Machinery Fault Diagnosis. IEEE Trans. Cybern. 51, 10 (2021), 4909-4923.

[153] Yiming Peng, Gang Chen, Harman Singh, and Mengjie Zhang. 2018. NEAT for Large-scale Reinforcement Learning
Through Evolutionary Feature Learning and Policy Gradient Search. In Proc. Genetic Evol. Comput. Conf. 490-497.

[154] Hai T. Phan, Zechun Liu, Dang The Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhigiang Shen. 2020. Binarizing
MobileNet via Evolution-Based Searching. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 13417-13426.

[155] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model Compression via Distillation and Quantization. In
Proc. Int. Conf. Learn. Represent. https://arxiv.org/abs/1802.05668.

[156] Javier Poyatos, Daniel Molina, Aritz Martinez, et al. 2022. EvoPruneDeepTL: An Evolutionary Pruning Model for
Transfer Learning based Deep Neural Networks. arXiv preprint arXiv:2202.03844 (2022).

[157] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving Language Understanding by
Generative Pre-training. (2018), https://www.cs.ubc.ca/ amuham01/LING530/papers/radford2018improving.pdf.

[158] Elad Rapaport, Oren Shriki, and Rami Puzis. 2019. EEGNAS: Neural Architecture Search for Electroencephalography
Data Analysis and Decoding. In Proc. Int. Joint Conf. Artif. Intell. 3-20.

[159] ANM Bazlur Rashid, Mohiuddin Ahmed, Leslie F Sikos, and Paul Haskell-Dowland. 2020. Cooperative Co-Evolution
for Feature Selection in Big Data With Random Feature Grouping. J. Big Data 7, 1 (2020), 1-42.

[160] Aditya Rawal and Risto Miikkulainen. 2018. From Nodes to Networks: Evolving Recurrent Neural Networks. arXiv
preprint arXiv:1803.04439 (2018).

[161] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized Evolution for Image Classifier
Architecture Search. In Proc. AAAI Conf. Artif. Intell., Vol. 33. 4780-4789.

[162] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey
Kurakin. 2017. Large-Scale Evolution of Image Classifiers. In Proc. Int. Conf. Mach. Learn. 2902—2911.

[163] Mohammad Saleh Refahi, A Mir, and Jalal A Nasiri. 2020. A Novel Fusion Based on the Evolutionary Features for
Protein Fold Recognition Using Support Vector Machines. Sci. Rep. 10, 1 (2020), 1-13.

[164] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, and Zhihui Li. 2021. A Comprehensive Survey of Neural
Architecture Search: Challenges and Solutions. ACM Comput. Surv. 54, 4 (2021), 1-34.

[165] Mark E. Roberts and Ela Claridge. 2005. A Multistage Approach to Cooperatively Coevolving Feature Construction
and Object Detection. In Proc. Appl. Evol. Comput. 396-406.

[166] Shahin Rostami and Ferrante Neri. 2016. Covariance Matrix Adaptation Pareto Archived Evolution Strategy With
Hypervolume-Sorted Adaptive Grid Algorithm. Integr. Comput. Aided. Eng. 23, 4 (2016), 313—-329.

[167] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning Internal Representations by Error
Propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science.

[168] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning Representations by Back-propagating
Errors. Nature 323, 6088 (1986), 533-536.

[169] Leonardo Rundo, Andrea Tangherloni, Marco S Nobile, Carmelo Militello, Daniela Besozzi, Giancarlo Mauri, and
Paolo Cazzaniga. 2019. MedGA: A Novel Evolutionary Method for Image Enhancement in Medical Imaging Systems.
Expert Syst. Appl. 119 (2019), 387-399.

[170] Ravi K. Samala, Heang-Ping Chan, Lubomir M. Hadjiiski, Mark A. Helvie, Caleb D. Richter, and Kenny H. Cha.
2018. Evolutionary Pruning of Transfer Learned Deep Convolutional Neural Network For Breast Cancer Diagnosis In
Digital Breast Tomosynthesis. Phys. Med. Biol. 63, 9 (2018), 095005.

[171] Santanu Santra, Jun-Wei Hsieh, and Chi-Fang Lin. 2021. Gradient Descent Effects on Differential Neural Architecture
Search: A Survey. IEEE Access 9 (2021), 89602-89618.

[172] Dolly Sapra and Andy D Pimentel. 2020. Constrained Evolutionary Piecemeal Training to Design Convolutional
Neural Networks. In Proc. Int. Conf. Industr., Eng. and Other Appl. of App. Intell. Syst. 709-721.

[173] Christoph Schorn, Thomas Elsken, Sebastian Vogel, and Armin Runge. 2020. Automated Design Of Error-Resilient
and Hardware-Efficient Deep Neural Networks. Neural. Comput. Appl. 32, 24 (2020), 18327-18345.

[174] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Cristian Musat, and Mathieu Salzmann. 2020. Evaluating the
Search Phase of Neural Architecture Search. In Proc. Int. Conf. Learn. Represent. https://arxiv.org/abs/1902.08142.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 31

[175] Leila Shila Shafti and E. Islas Pérez. 2008. Data Reduction by Genetic Algorithms and Non-Algebraic Feature
Construction: A Case Study. Proc. Int. Conf. Hybri. Intell. Syst. (2008), 573-578.

[176] Pratistha Shakya, Eamonn Kennedy, Christopher Rose, and Jacob K. Rotein. 2021. High-Dimensional Time Series
Feature Extraction for Low-Cost Machine Olfaction. IEEE Sens. J. 21, 3 (2021), 2495-2504.

[177] Haopu Shang, Jia-Liang Wu, Wenjing Hong, and Chao Qian. 2022. Neural Network Pruning by Cooperative
Coevolution. arXiv preprint arXiv:2204.05639 (2022).

[178] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang. 2019. Searching for Accurate Binary Neural Architectures.
In Proc. IEEE Int. Conf. Comput. Vis. 2041-2044.

[179] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. 2020. NAS-bench-301
and The Case for Surrogate Benchmarks for Neural Architecture Search. arXiv preprint arXiv:2008.09777 (2020).

[180] Utpal Kumar Sikdar, Asif Ekbal, and Sriparna Saha. 2012. Differential Evolution Based Feature Selection and
Classifier Ensemble for Named Entity Recognition. In Proc. COLING. 2475-2490.

[181] Christopher Smith and Yaochu Jin. 2014. Evolutionary Multi-objective Generation of Recurrent Neural Network
Ensembles for Time Series Prediction. Neurocomputing 143 (2014), 302-311.

[182] Krzysztof Socha and Christian Blum. 2007. An Ant Colony Optimization Algorithm for Continuous Optimization:
Application to Feed-forward Neural Network Training. Neural. Comput. Appl. 16, 3 (2007), 235-247.

[183] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, and Yunhe Wang. 2020. Efficient Residual Dense Block
Search for Image Super-Resolution. In Proc. AAAI Conf. Artif. Intell., Vol. 34. 12007-12014.

[184] Xin Song. 2021. Intelligent English Translation System Based on Evolutionary Multi-Objective Optimization Algorithm.
J. Intell. Fuzzy Syst. 40 (2021), 6327-6337.

[185] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks Through Augmenting Topologies. Evol.
Comput. 10, 2 (2002), 99-127.

[186] Yanan Sun, Xian Sun, Yuhan Fang, Gary G. Yen, and Yugiao Liu. 2021. A Novel Training Protocol for Performance
Predictors of Evolutionary Neural Architecture Search Algorithms. IEEE Trans. Evol. Comput. 25, 3 (2021), 524-536.

[187] Yanan Sun, Handing Wang, Bing Xue, Yaochu Jin, Gary G Yen, and Mengjie Zhang. 2019. Surrogate-Assisted
Evolutionary Deep Learning Using an End-To-End Random Forest-Based Performance Predictor. IEEE Trans. Evol.
Comput. 24, 2 (2019), 350-364.

[188] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. 2019. Completely Automated CNN Architecture Design
Based on Blocks. IEEE Trans. Neural Netw. Learn. Syst. 31, 4 (2019), 1242-1254.

[189] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. 2019. Evolving Deep Convolutional Neural Networks for
Image Classification. IEEE Trans. Evol. Comput. 24, 2 (2019), 394-407.

[190] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G. Yen. 2019. A Particle Swarm Optimization-Based Flexible
Convolutional Autoencoder for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 30, 8 (2019), 2295-2309.

[191] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv. 2020. Automatically Designing CNN
Architectures Using the Genetic Algorithm for Image Classification. IEEE Trans. Cybern. 50, 9 (2020), 3840-3854.

[192] Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and Frédéric Andrés. 2020. Sparse Low Rank Factorization
for Deep Neural Network compression. Neurocomputing 398 (2020), 185-196.

[193] Tomohiro Tanaka, Takafumi Moriya, and Takahiro Shinozaki. 2016. Evolutionary Optimization of Long Short-Term
Memory Neural Network Language Model. J. Acoust. Soc. Am. 140, 4 (2016), 3062-3062.

[194] Yajiao Tang, Junkai Ji, Yulin Zhu, Shangce Gao, Zheng Tang, and Yuki Todo. 2019. A Differential Evolution-Oriented
Pruning Neural Network Model for Bankruptcy Prediction. In Complexity, Vol. 2019. 8682124:1-8682124:21.

[195] Hassan Tariq, EIf Eldridge, and Ian Welch. 2018. An Efficient Approach for Feature Construction of High-Dimensional
Microarray Data By Random Projections. PLoS ONE 13, 4 (2018), e0196385.

[196] Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, and Amir H Gandomi. 2021. Evolutionary Machine
Learning: A Survey. ACM Comput. Surv. 54, 8 (2021), 1-35.

[197] Astro Teller and Manuela Veloso. 1996. PADO: A New Learning Architecture for Object Recognition. Symbolic visual
learn. (1996), 81-116.

[198] Haiman Tian, ShuChing Chen, MeiLing Shyu, and Stuart Harvey Rubin. 2019. Automated Neural Network Construction
with Similarity Sensitive Evolutionary Algorithms. In Proc. IEEE Int. Conf. Inf. Reuse Integr. Data Scti. 283-290.

[199] Binh Tran, Bing Xue, and Mengjie Zhang. 2018. A New Representation in PSO for Discretization-Based Feature
Selection. IEEE Trans. Cybern. 48, 6 (2018), 1733-1746.

[200] Binh Tran, Bing Xue, and Mengjie Zhang. 2019. Genetic Programming for Multiple-Feature Construction on
High-Dimensional Classification. Pattern Recognit. 93 (2019), 404-417.

[201] Binh Tran, Mengjie Zhang, and Bing Xue. 2016. Multiple Feature Construction in Classification on High-Dimensional
Data Using GP. In IEEE Symposium Series on Computational Intelligence. 1-8.

, Vol. 1, No. 1, Article . Publication date: August 2022.

32 = NanLietal

[202] Haleh Vafaie and Kenneth De Jong. 1998. Feature Space Transformation Using Genetic Algorithms. IEEE Intell.
Syst. Appli. 13, 2 (1998), 57-65.

[203] Gustavo A Vargas-Hékim, Efrén Mezura-Montes, and Héctor-Gabriel Acosta-Mesa. 2022. A Review on Convolutional
Neural Networks Encodings for Neuroevolution. IEEE Trans. Evol. Comput. 26, 1 (2022), 12-27.

[204] Susana M Vieira, Luis F Mendonga, Goncalo J Farinha, and Jodao MC Sousa. 2013. Modified Binary PSO for Feature
Selection Using SVM Applied to Mortality Prediction of Septic Patients. Appl. Soft Comput. 13, 8 (2013), 3494-3504.

[205] Bin Wang, Wenbin Pei, Bing Xue, and Mengjie Zhang. 2021. Evolving Local Interpretable Model-Agnostic Explanations
for Deep Neural Networks in Image Classification. In Proc. Genetic Evol. Comput. Conf. 173-174.

[206] Bin Wang, Bing Xue, and Mengjie Zhang. 2020. Particle Swarm Optimization for Evolving Deep Convolutional
Neural Networks for Image Classification: Single-and Multi-objective Approaches. In Deep Neural Evolution. Springer,
155-184.

[207] Bin Wang, Bing Xue, and Mengjie Zhang. 2020. Particle Swarm Optimization for Evolving Deep Neural Networks for
Image Classification By Evolving and Stacking Transferable Blocks. In Proc. IEEE Congr. Evol. Comput. 1-8.

[208] Bin Wang, Bing Xue, and Mengjie Zhang. 2021. Surrogate-Assisted Particle Swarm Optimization for Evolving
Variable-Length Transferable Blocks for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 33, 8 (2021),
3727-3740.

[209] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. 2020. HAT: Hardware-
Aware Transformers for Efficient Natural Language Processing. In Proc. Assoc. Comput. Linguist. 7675-7688.

[210] Xiao-han Wang, Yong Zhang, and Xiao-yan Sun. 2020. Multi-Objective Feature Selection Based on Artificial Bee
Colony: An Acceleration Approach With Variable Sample Size. Appl. Soft Comput. 88 (2020), 106041.

[211] Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao. 2018. Towards Evolutionary Compression. In Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. & Data Min. 2476-2485.

[212] Zhehui Wang, Tao Luo, Miqing Li, Joey Tianyi Zhou, Rick Siow Mong Goh, and Liangli Zhen. 2021. Evolutionary
Multi-Objective Model Compression for Deep Neural Networks. IEEE Comput. Intell. Mag. 16, 3 (2021), 10-21.

[213] Yun Wen and Hua Xu. 2011. A Cooperative Coevolution-Based Pittsburgh Learning Classifier System Embedded
With Memetic Feature Selection. In Proc. IEEE Congr. Evol. Comput. 2415-2422.

[214] Colin White, Willie Neiswanger, and Yash Savani. 2021. BANANAS: Bayesian Optimization with Neural Architectures
for Neural Architecture Search. In Proc. AAAI Conf. Artif. Intell., Vol. 35. 10293-10301.

[215] Genta Indra Winata, Andrea Madotto, Jamin Shin, Elham J Barezi, and Pascale Fung. 2019. On the Effectiveness of
Low-rank Matrix Factorization for LSTM Model Compression. arXiv preprint arXiv:1908.09982 (2019).

[216] Min Wu, Wanjuan Su, Luefeng Chen, and Zhentao Liu. 2021. Weight-Adapted Convolution Neural Network for Facial
Expression Recognition in Human-Robot Interaction. IEEE Trans. Syst. Man Cybern. 51, 3 (2021), 1473-1484.

[217) Tao Wu, Xiaoyang Li, Deyun Zhou, Na Li, and Jiao Shi. 2021. Differential Evolution Based Layer-Wise Weight
Pruning for Compressing Deep Neural Networks. Sens. 21, 3 (2021), 880.

[218] Tao Wu, Jiao Shi, Deyun Zhou, Yu Lei, and Maoguo Gong. 2019. A Multi-objective Particle Swarm Optimization for
Neural Networks Pruning. In Proc. IEEE Congr. Evol. Comput. 570-577.

[219] Xiang Wu, Ran He, Yibo Hu, and Zhenan Sun. 2020. Learning an Evolutionary Embedding via Massive Knowledge
Distillation. In¢. J. Comput. Vis. 128, 8 (2020), 1-18.

[220] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Zhengsu Chen, Lanfei Wang, Anxiang Xiao, Jianlong
Chang, Xiaopeng Zhang, and Qi Tian. 2022. Weight-Sharing Neural Architecture Search: A Battle to Shrink the
Optimization Gap. ACM Comput. Surv. 54, 9 (2022), 1-37.

[221] Lingxi Xie and Alan Yuille. 2017. Genetic CNN. In Proc. IEEE Int. Conf. Comput. Vis. 1379-1388.

[222] Xiangning Xie, Yugiao Liu, Yanan Sun, Gary G. Yen, Bing Xue, and Mengjie Zhang. 2022. BenchENAS: A
Benchmarking Platform for Evolutionary Neural Architecture Search. IEEE Trans. Evol. Comput. (2022). https:
//doi.org/10.1109/TEVC.2022.3147526

[223] Ke Xu, Dezheng Zhang, Jianjing An, Li Liu, Lingzhi Liu, and Dong Wang. 2021. GenExp: Multi-objective Pruning
for Deep Neural Network based on Genetic Algorithm. Neurocomputing 451 (2021), 81-94.

[224] Bing Xue, Mengjie Zhang, and Will N Browne. 2012. Multi-Objective Particle Swarm Optimization (PSO) for Feature
Selection. In Proc. Genetic Evol. Comput. Conf. 81-88.

[225] Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao. 2015. A Survey on Evolutionary Computation Approaches
to Feature Selection. IEEE Trans. Evol. Comput. 20, 4 (2015), 606-626.

[226] Bing Xue, Mengjie Zhang, Yan Dai, and Will N Browne. 2013. PSO for Feature Construction and Binary Classification.
In Proc. Genetic Evol. Comput. Conf. 137-144.

[227] Chuanguang Yang, Zhulin An, Chao Li, Boyu Diao, and Yongjun Xu. 2019. Multi-objective Pruning for CNNs Using
Genetic Algorithm. In Proc. Int. Conf. Artif. Neural Netw. 299-305.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/TEVC.2022.3147526
https://doi.org/10.1109/TEVC.2022.3147526

[228)

[229]
[230]

[231]
[232]

[233]

[234]
[235]
236]
[237]

[238)

[239]
[240]
[241]
[242]

[243]

[244]

[245]
[246]
[247]
[248]
[249]
[250]

[251]

[252]

Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues = 33

Shangshang Yang, Ye Tian, Cheng He, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. 2021. A Gradient-Guided
Evolutionary Approach to Training Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https:
//doi.org/10.1109/TNNLS.2021.3061630

Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, and Chao Xu. 2020. CARS: Continuous Evolution for Efficient
Neural Architecture Search. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 1826—1835.

Quanming Yao, Mengshuo Wang, Yugiang Chen, Wenyuan Dai, and Yu-Feng Li. 2018. Taking Human out of Learning
Applications: A Survey on Automated Machine Learning. arXiv preprint arXiv:1810.13306 (2018).

Xin Yao. 1993. A Review of Evolutionary Artificial Neural Networks. Int. J. Intell. Syst. 8, 4 (1993), 539-567.

Xin Yao and Yong Liu. 1996. Ensemble Structure of Evolutionary Artificial Neural Networks. In Proc. Genetic FEvol.
Comput. Conf. 659-664.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin P. Murphy, and Frank Hutter. 2019.
NAS-Bench-101: Towards Reproducible Neural Architecture Search. In Proc. Int. Conf. Learn. Represent.
https://arxiv.org/abs/1902.09635.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018. Recent Trends in Deep Learning Based
Natural Language Processing [Review Article]. IEEE Comput. Intell. Mag. 13, 3 (2018), 55-75.

Hualong Yu, Guochang Gu, Haibo Liu, Jing Shen, and Jing Zhao. 2009. A modified Ant Colony Optimization
Algorithm for Tumor Marker Gene Selection. Genomics, Proteomics € Bioinformatics 7, 4 (2009), 200-208.
Emigdio Z.-Flores, Leonardo Trujillo, Pierrick Legrand, and Frédérique Faita-Ainseba. 2020. EEG Feature Extraction
Using Genetic Programming for the Classification of Mental States. Algorithms 13, 9 (2020), 221.

Ryad A. Zemouri, N. Omri, Farhat Fnaiech, Noureddine Zerhouni, and Nader Fnaiech. 2019. A New Growing Pruning
Deep Learning Neural Network Algorithm (GP-DLNN). Neural. Comput. Appl. 32 (2019), 1-17.

Zheng Zhan, Yifan Gong, Pu Zhao, Geng Yuan, Wei Niu, Yushu Wu, Tianyun Zhang, Malith Jayaweera, David R.
Kaeli, Bin Ren, Xue Lin, and Yanzhi Wang. 2021. Achieving on-Mobile Real-Time Super-Resolution with Neural
Architecture and Pruning Search. In Proc. IEEE Int. Conf. Comput. Vis. 4801-4811.

Byoung-Tak Zhang and Heinz Miihlenbein. 1995. Balancing Accuracy and Parsimony in Genetic Programming. Ewvol.
Comput. 3, 1 (1995), 17-38.

Di Zhang, Yichen Zhou, Jiaqi Zhao, and Yong Zhou. 2022. Co-evolution-based Parameter Learning for Remote
Sensing Scene Classification. Int. J. Wavelets Multiresolut. Inf. Process. 20, 2 (2022), 2150046.

Haoling Zhang, Chao-Han Huck Yang, Hector Zenil, Narsis Aftab Kiani, Yue Shen, and Jesper N. Tegner. 2020.
Evolving Neural Networks through a Reverse Encoding Tree. In Proc. IEEE Congr. Evol. Comput. 1-10.

Jiawei Zhang and Fisher B Gouza. 2018. GADAM: Genetic-evolutionary ADAM for Deep Neural Network optimization.
arXiv preprint arXiw:1805.07500 (2018).

Jun Zhang, Zhi-hui Zhan, Ying Lin, Ni Chen, Yue-jiao Gong, Jing-hui Zhong, Henry SH Chung, Yun Li, and Yu-hui
Shi. 2011. Evolutionary Computation Meets Machine Learning: A Survey. IEEE Comput. Intell. Mag. 6, 4 (2011),
68-75.

Kaiyu Zhang, Jinglong Chen, Shuilong He, Enyong Xu, Fudong Li, and Zitong Zhou. 2021. Differentiable Neural
Architecture Search Augmented with Pruning and Multi-objective Optimization for Time-efficient Intelligent Fault
Diagnosis of Machinery. Mech. Syst. Signal Process. 158 (2021), 107773.

Kangkai Zhang, Chunhui Zhang, Shikun Li, Dan Zeng, and Shiming Ge. 2022. Student Network Learning via
Evolutionary Knowledge Distillation. IEEE Trans. Circuits. Syst. Video Technol. 32, 4 (2022), 2251-2263.

Mengjie Zhang. 2018. Evolutionary Deep Learning for Image Analysis. (2018), https://ieeetv.ieee.org/mengjie-zhang—
evolutionary—deep—learning—for-image—analysis.

Mengjie Zhang and Stefano Cagnoni. 2020. Evolutionary Computation and Evolutionary Deep Learning for Image
Analysis, Signal Processing and Pattern Recognition. In Proc. Genetic Evol. Comput. Conf. 1221-1257.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and Steven W. Su. 2020. Overcoming Multi-Model Forgetting in
One-Shot NAS With Diversity Maximization. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 7806—7815.
Mengjie Zhang and Will Smart. 2004. Genetic Programming with Gradient Descent Search for Multiclass Object
Classification. In Proc. Eur. Conf. Genetic Program. 399—408.

Yong Zhang, Dun-wei Gong, Xiao-yan Sun, and Yi-nan Guo. 2017. A PSO-Based Multi-Objective Multi-Label Feature
Selection Method in Classification. Sci. Rep. 7, 1 (2017), 1-12.

Yang Zhang and Peter I. Rockett. 2005. Evolving Optimal Feature Extraction Using Multi-objective Genetic
Programming: A Methodology and Preliminary Study on Edge Detection. In Proc. Genetic Evol. Comput. Conf.
795-802.

Yang Zhang and Peter I. Rockett. 2011. A Generic Optimising Feature Extraction Method Using Multiobjective
Genetic Programming. Appl. Soft Comput. 11, 1 (2011), 1087-1097.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/TNNLS.2021.3061630
https://doi.org/10.1109/TNNLS.2021.3061630

34 = Nan Lietal

[253] Yidan Zhang, Youheng Zhen, Zhenan He, and Gray G. Yen. 2021. Improvement of Efficiency in Evolutionary Pruning.
In Proc. Int. Joint Conf. Neural Netw. 1-8.

[254] Qijun Zhao, David Zhang, and Hongtao Lu. 2006. A Direct Evolutionary Feature Extraction Algorithm for Classifying
High Dimensional Data. In Proc. AAAI Conf. Artif. Intell., Vol. 1. 561-566.

[255] Qijun Zhao, David Dian Zhang, Lei Zhang, and Hongtao Lu. 2009. Evolutionary Discriminant Feature Extraction
with Application to Face Recognition. EURASIP J. Adv. Signal. Process. 2009 (2009), 1-12.

[256] Tianwen Zhao, Qijun Zhao, Hongtao Lu, and David Dian Zhang. 2007. Bagging Evolutionary Feature Extraction
Algorithm for Classification. In Proc. Int. Conf. Neural Comput., Vol. 3. 540-545.

[257] Xun Zhou, A. K. Qin, Maoguo Gong, and Kay Chen Tan. 2021. A Survey on Evolutionary Construction of Deep
Neural Networks. IEEE Trans. Evol. Comput. 25, 5 (2021), 894-912.

[258] Yao Zhou, Gary G. Yen, and Zhang Yi. 2020. Evolutionary Compression of Deep Neural Networks for Biomedical
Image Segmentation. IEEE Trans. Neural Netw. Learn. Syst. 31, 8 (2020), 2916-2929.

[259] Yao Zhou, Gary G. Yen, and Zhang Yi. 2021. Evolutionary Shallowing Deep Neural Networks at Block Levels. IEEE
Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3059529

[260] Yao Zhou, Gary G. Yen, and Zhang Yi. 2021. A Knee-Guided Evolutionary Algorithm for Compressing Deep Neural
Networks. IEEE Trans. Cybern. 51, 3 (2021), 1626-1638.

[261] Hui Zhu, Zhulin An, Chuanguang Yang, Kaigiang Xu, and Yongjun Xu. 2019. EENA: Efficient Evolution of Neural
Architecture. In Proc. IEEE Int. Conf. Comput. Vis. 1891-1899.

[262] Hangyu Zhu and Yaochu Jin. 2022. Real-Time Federated Evolutionary Neural Architecture Search. IEEE Trans.
Evol. Comput. 26, 2 (2022), 364-378.

[263] Zexuan Zhu, Y. Ong, and Manoranjan Dash. 2007. Markov Blanket-Embedded Genetic Algorithm for Gene Selection.
Pattern Recognit. 40, 11 (2007), 3236-3248.

[264] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning Transferable Architectures for
Scalable Image Recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 8697-8710.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/TNNLS.2021.3059529

	Abstract
	1 Introduction
	2 An Overview of Evolutionary Deep Learning
	2.1 Deep Learning
	2.2 Evolutionary Computation
	2.3 Evolutionary Deep Learning

	3 Feature Engineering
	3.1 Feature Selection
	3.2 Feature Construction
	3.3 Feature Extraction

	4 Model Generation
	4.1 Model Parameter Optimization
	4.2 Model Architecture Optimization
	4.3 Joint Optimization

	5 Model Deployment
	5.1 Model Pruning
	5.2 Other EC-based Model Deployment Methods

	6 Applications, Open Issues, and Trends
	6.1 Applications
	6.2 Open Issues
	6.3 Challenges and Future Trends

	7 Conclusions
	References

