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In this study, we consider a continuous min–max optimization problem min𝑥∈Xmax𝑦∈Y 𝑓 (𝑥, 𝑦) whose objective function is a black-box.

We propose a novel approach to minimize the worst-case objective function 𝐹 (𝑥) = max𝑦 𝑓 (𝑥, 𝑦) directly using a covariance matrix

adaptation evolution strategy (CMA-ES) in which the rankings of solution candidates are approximated by our proposed worst-case

ranking approximation (WRA) mechanism. We develop two variants of WRA combined with CMA-ES and approximate gradient ascent

as numerical solvers for the inner maximization problem. Numerical experiments show that our proposed approach outperforms

several existing approaches when the objective function is a smooth strongly convex–concave function and the interaction between 𝑥

and 𝑦 is strong. We investigate the advantages of the proposed approach for problems where the objective function is not limited

to smooth strongly convex–concave functions. The effectiveness of the proposed approach is demonstrated in the robust berthing

control problem with uncertainty.
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1 INTRODUCTION

Background. Simulation-based optimization is an attractive technique in various industrial fields. Given a design

vector 𝑥 ∈ X ⊆ R𝑑𝑥 , the objective function ℎsim : X → R is evaluated via numerical simulation. Simulation-based

optimization has been used in several real-world applications, such as berthing control [Maki et al. 2020; Miyauchi et al.
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2022], well placement [Bouzarkouna et al. 2012; Miyagi et al. 2018; Onwunalu and Durlofsky 2010], and topology design

[Fujii et al. 2018; Marsden et al. 2004]. To perform simulation-based optimization, it is necessary to determine simulation

conditions in advance so that the objective function values in the real-world, ℎ
real
(𝑥), are accurately computed. In other

words, a simulator such that ℎsim (𝑥) ≈ ℎreal
(𝑥) must be developed. However, owing to some real-world uncertainties,

the predetermined conditions often contain errors and hence ℎsim (𝑥) does not approximate ℎ
real
(𝑥) well [Bouzarkouna

2012; Chen et al. 2013; Oberkampf et al. 2002; Scheidegger et al. 2018; Walker et al. 2003]. In such situations, there is a

risk that the optimal solution obtained in simulation-based optimization, 𝑥sim = argmin𝑥 ∈X ℎsim (𝑥), does not perform
well in the real-world and results in ℎ

real
(𝑥sim) ≫ ℎsim (𝑥sim).

One approach to find a robust solution is to formulate the problem as a min–max optimization problem

min

𝑥 ∈X
max

𝑦∈Y
𝑓 (𝑥,𝑦), (1)

where 𝑓 (𝑥,𝑦) denotes the objective function and 𝑦 ∈ Y ⊆ R𝑑𝑦 is a parameter vector for the simulation conditions,

called a scenario vector in this study, and is uncertain at the optimization stage. This approach aims to find the global

min–max solution 𝑥∗ = argmin𝑥 ∈X 𝐹 (𝑥) that minimizes the worst-case objective function 𝐹 (𝑥) := max𝑦∈Y 𝑓 (𝑥,𝑦). In
this formulation, the simulator designed by an expert engineer, ℎsim, corresponds to 𝑓 (·, 𝑦sim) with a scenario vector

𝑦sim ∈ Y, and the real-world objective, ℎ
real

, corresponds to 𝑓 (·, 𝑦
real
) with a scenario vector 𝑦

real
∈ Y, which is

unknown and may change over time. Minimizing the worst-case objective function 𝐹 minimizes the upper bound of the

objective function values in the real-world, i.e., 𝐹 (𝑥) ⩾ 𝑓 (𝑥,𝑦
real
) provided 𝑦

real
∈ Y.

In this study, we focus on simulation-based optimization where the gradient of the objective function 𝑓 with respect

to 𝑥 and 𝑦 is unavailable, and the objective function 𝑓 and worst-case objective function 𝐹 are nonexplicit (black-box

functions). We refer to such a problem as a black-box min–max optimization . In particular, we focus on the following

two types of problems, for which existing approaches [Akimoto et al. 2022b; Liu et al. 2020] for the black-box min–max

optimization fail to converge or exhibit slow convergence.

(A) 𝑓 is smooth and strongly convex–concave around 𝑥∗, but a strong interaction between 𝑥 and 𝑦 exists.

(B) 𝑓 is not smooth or strongly convex–concave around 𝑥∗.

These difficulties are not well addressed in existing approaches. However, it does not necessarily mean these problems

are not important to address. Indeed, it has been reported in [Bertsimas et al. 2010b; Razaviyayn et al. 2020] that the

objective function in real-world applications is often not convex–concave, i.e., falls into problem of Type (B). Moreover,

because the strength of the interaction term can not be known in advance, we consider approaches to the black-box

min–max optimization should be able to treat such interaction, just like that approaches to black-box optimization

should be able to treat highly ill-conditioned problems.

Robust berthing control problem. As an example of real-world applications, we consider the automatic berthing

control problem [Maki et al. 2020; Miyauchi et al. 2022]. The objective is to obtain a controller that realizes a fine control

of a ship toward a target state with the least collision risk and minimum elapsed time. Given a controller parameterized

by 𝑥 , a trajectory of the ship motion is simulated by numerically solving a ship maneuvering model. The objective

function values are evaluated based on the computed trajectory. However, this simulation contains some uncertainties.

In a previous study [Akimoto et al. 2022b], the problem of finding a robust berthing controller was formulated

as a min–max optimization problem. Figure 1 shows the importance of considering the uncertainties. Figure 1a and

Figure 1b, respectively, show the trajectories and objective function values under different wind conditions when a
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(a) Controller optimized for no wind condition
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(b) Controller optimized for the worst wind condition

Fig. 1. Visualization of trajectories obtained by controllers for (a) no wind condition and (b) the worst wind condition with a 0.5-[m/s]
maximum wind velocity. Center: the objective function values 𝑓 (𝑥, 𝑦) under 𝑦 representing a wind velocity of 0.5 [m/s] and varying
wind direction presented by the polar axis. An objective function value smaller than 10 implies that the ship is controlled without a
collision with the berth. The others: trajectories observed under wind for 0, 45, . . . , 315 [deg] with a velocity of 0.5 [m/s]. The red
points are the target positions. The controllers were obtained in [Akimoto et al. 2022b].

controller optimized by the (1+1)-covariance matrix adaptation evolution strategy (CMA-ES) [Arnold and Hansen 2010;

Igel et al. 2006] under no wind disturbance and a controller optimized by Adversarial CMA-ES (ADV-CMA-ES) [Akimoto

et al. 2022b], where the uncertainty of wind direction ([0, 360] [deg]) and wind speed ([0, 0.5] [m/s]) are considered.

When the controller optimized under the no wind assumption is used, we often observe the collision of the ship and

berth under wind disturbance of a velocity of 0.5 [m/s]. Meanwhile, the robust controller obtained by ADV-CMA-ES

successfully avoids collision for all wind directions.

The robust berthing control problem is expected to fall into Type (B). Its vestiges can be seen in Figure 1. The central

figure shows that the objective function 𝑓 (𝑥,𝑦) is multimodal with respect to the wind direction. Therefore, 𝑓 (𝑥,𝑦) is
nonconcave in terms of 𝑦. Moreover, we observed in our preliminary experiments that the worst-case scenario switches

between offshore-to-berth wind 𝑦sea and berth-to-offshore wind 𝑦
land

. This is explained as follows. In offshore-to-berth

wind 𝑦sea, the optimum control avoids getting too close to the berth to avoid a collision. Under such control, berth-to-

offshore wind 𝑦
land

becomes the worst-case scenario because the ship stops at a position far from the target position

near the berth, resulting in a high objective function value. Conversely, if the optimum control for 𝑦
land

is operated, the

worst-case scenario is 𝑦sea, which causes the ship to collide with the berth. Therefore, the control that minimizes the

objective function at the worst-case scenario is expected to exist on the boundary of the regions where the worst-case

scenario changes between 𝑦
land

and 𝑦sea, and it is not the optimal solution under either scenario.

Related works. Recently, gradient-based min–max optimization has been actively studied. However, most existing

studies investigate the min–max problems of functions that are concave in 𝑦, although several real-world problems are
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not necessarily concave in 𝑦 [Razaviyayn et al. 2020]. In addition, a general nonconvex–nonconcave min–max problem

is theoretically intractable [Daskalakis et al. 2021]. Some studies have been conducted to identify the structures of

nonconcave min–max problems that make it efficiently solvable [Diakonikolas et al. 2021; Liu et al. 2021; Nouiehed et al.

2019; Vlatakis-Gkaragkounis et al. 2021] or to exploit a small domain for scenario vectors [Ostrovskii et al. 2021]. These

studies do not cover Type (B). Gradient-based approaches for general nonconcave min–max problems, where both

implementation error and parameter uncertainty are considered, have been developed in previous studies [Bertsimas

et al. 2010a,b]. However, this approach is designed to exploit the existence of implementation error, and it is not trivial

to extend it to derivative-free situations via gradient approximation.

Derivative-free approaches for min–max optimization include coevolutionary approaches [Al-Dujaili et al. 2019;

Barbosa 1999; Herrmann 1999; Qiu et al. 2018], simultaneous descent–ascent approaches [Akimoto et al. 2022b; Liu

et al. 2020], and surrogate-model-based approaches [Bogunovic et al. 2018]. Particularly, ADV-CMA-ES [Akimoto et al.

2022b] and ZO-Min–Max [Liang and Stokes 2019] are theoretically guaranteed to converge to the optimal solution and

its neighborhood, respectively, in smooth strongly convex–concave min–max problems. Nevertheless, they fail to

converge in Type (B) and exhibit slow convergence in Type (A) [Akimoto et al. 2022b]. Although some coevolutionary

approaches, such as minimax differential evolution [Qiu et al. 2018], are intended to address the difficulty in Type (B),

they fail to converge not only on such problems but also on strongly convex–concave problems [Akimoto et al. 2022b].

STABLEOPT [Bogunovic et al. 2018], a Bayesian optimization approach, is expected to address the difficulty in Type

(B). However, because of the high computational time of the Gaussian process, it is impractical for problems where

numerous 𝑓 -calls are required to obtain satisfactory solutions, according to [Liu et al. 2020].

Contributions. The contributions of this study are as follows.

Approach (Section 5). Aiming at addressing the limitations of existing approaches observed in Types (A) and (B), a novel

approach that directly searches for the global min–max solution is proposed. The proposed approachminimizes theworst-

case objective function using CMA-ES [Akimoto and Hansen 2020; Hansen and Auger 2014; Hansen and Ostermeier

2001] wherein the rankings of solution candidates are approximated by our proposed worst-case ranking approximation

(WRA) mechanism. The WRA mechanism approximately solves the maximization problem max𝑦∈Y 𝑓 (𝑥,𝑦) for each
solution candidate 𝑥 . To save 𝑓 -calls required to solve each maximization problem, we design a warm-starting strategy

and an early-stopping strategy. We propose two variants of WRA implementations using CMA-ES and approximate

gradient ascent (AGA) as inner solvers. To consider nonconvex real-world applications, we incorporate a restart strategy

and a local search strategy.

Evaluation (Section 6). We designed 11 test problems with different characteristics, including both Types (A) and (B).

Numerical experiments on the 11 test problems reveal the limitations of existing approaches and show that the proposed

approach can handle both Types (A) and (B). We experimentally show that the scaling of the runtime on a smooth

strongly convex–concave with respect to the interaction term (denoted by 𝑏 in Section 6) is significantly improved over

existing approaches. To understand when the proposed approach is effective in Type (B), we investigate the effect of

each component of the WRA mechanism on each of the following situations: (S) the global min–max solution 𝑥∗ is a

strict min–max saddle point, (W) 𝑥∗ is a weak min–max saddle point, and (N) 𝑥∗ is not a min–max saddle point.

Application (Section 7). The proposed approach and existing approaches are applied to the robust berthing control

problem with three types of scenario vectors. In the cases where the wind direction is included in a scenario vector, we

confirm that the proposed approach often obtains controllers that can avoid collision with the berth in the worst-case

scenario, whereas the controllers obtained by the existing approaches tend to fail to avoid collision with the berth in

Manuscript submitted to ACM
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2
) when 𝑑𝑥 = 𝑑𝑦 = 1. A black

point at (𝑥, 𝑦) = (0, 0) is the global min–max saddle point. The global min–max saddle point (𝑥∗, 𝑦∗) is such that 𝑥∗ is the global
minimum point of 𝑓 (𝑥, 𝑦∗) (= 1

2
∥𝑥 ∥2

2
in this case) and 𝑦∗ is the global maximum point of 𝑓 (𝑥∗, 𝑦) (= − 1

2
∥𝑦 ∥2

2
in this case).

the worst-case scenario. In the case where an existing approach can often obtain collision-free controllers, we confirm

that the existing approach achieves better worst-case performance than the proposed approach. We also demonstrate

the effect of a hybrid of the existing and proposed approaches.

Implementation. Our implementations are publicly available.
1

2 PRELIMINARIES

The objective of this study is to find the global minimum solution to the worst-case objective function 𝐹 defined as

follows:

𝐹 (𝑥) = max

𝑦∈Y
𝑓 (𝑥,𝑦), (2)

where 𝑓 : X×Y→ R denotes the objective function,X ⊆ R𝑑𝑥 denotes the search domain for design vector 𝑥 , andY ⊆ R𝑑𝑦

denotes the search domain for scenario vector 𝑦. We assume that 𝑓 and 𝐹 are black boxes and their gradient information

and higher order information are unknown. For each 𝑥 ∈ X, let 𝑌 (𝑥) = {𝑦 | 𝐹 (𝑥) = 𝑓 (𝑥,𝑦)} = argmax𝑦∈Y 𝑓 (𝑥,𝑦) be
the worst-case scenario set. If 𝑌 (𝑥) is a singleton, i.e., |𝑌 (𝑥) | = 1, then the unique element is called the worst-case scenario

and is denoted by 𝑦 (𝑥). The global minimum solution of 𝐹 is called the global min–max solution of 𝑓 and is denoted by

𝑥∗ = argmin𝑥 ∈X 𝐹 (𝑥).
One possible approach is to model uncertainty with a finite number of scenarios 𝑆 = {𝑦1, . . . , 𝑦𝑠 } by discretizing

the space Y. In this case, the min-max problem can be formulated as min𝑥 ∈Xmax𝑦∈𝑆 𝑓 (𝑥,𝑦), and this formulation is

employed in many applications, particularly in geo-science field [Bouzarkouna 2012; Miyagi et al. 2019, 2023; Yeten

et al. 2003]. However, in this formulation, the worst-case function 𝐹𝑠 := max𝑦∈𝑆 𝑓 (𝑥,𝑦) significantly depends on the

discretization method of the spaceY and the number of scenarios |𝑆 |. Therefore, the performance of the optimal solution

on 𝐹𝑠 may be significantly degraded on the true worst-case function 𝐹 , as has been demonstrated in a previous study

[Akimoto et al. 2022b] for the above-mentioned robust berthing control problem. Therefore, we focus on solving (1)

without discretization in this work.

1
Hidden for blind review.
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The min–max saddle point (Definition 2.1) is an essential concept that characterizes the difficulties in obtaining 𝑥∗.

An example of the min–max saddle point is visualized in Figure 2. In what follows, a neighborhood of design vector

𝑥 is a set E𝑥 such that there exists an open ball B(𝑥, 𝑟 ) = {𝑥 ∈ R𝑑𝑥 | ∥𝑥 − 𝑥 ∥ < 𝑟 } included in E𝑥 as a subset. We

analogously define a neighborhood E𝑦 of scenario vector 𝑦. A critical point (𝑥,𝑦) ∈ X ×Y of the objective function 𝑓 is

such that ∇𝑓 (𝑥,𝑦) = (∇𝑥 𝑓 (𝑥,𝑦),∇𝑦 𝑓 (𝑥,𝑦)) = 0.

Definition 2.1 (min–max saddle point). A point (𝑥,𝑦) ∈ X × Y is a local min–max saddle point of a function

𝑓 : X×Y→ R if there exists a neighborhood E𝑥 × E𝑦 ⊆ X×Y including (𝑥,𝑦) such that for any (𝑥,𝑦) ∈ E𝑥 × E𝑦 , the
condition 𝑓 (𝑥,𝑦) ⩽ 𝑓 (𝑥,𝑦) ⩽ 𝑓 (𝑥,𝑦) holds. If E𝑥 = X and E𝑦 = Y, the point (𝑥,𝑦) is called the global min–max saddle

point. If the equality holds only if (𝑥,𝑦) = (𝑥,𝑦), it is called a strict min–max saddle point. A saddle point that is not a

strict min–max saddle point is called a weak min–max saddle point.

We focus on whether 𝑥∗ is a strict min–max saddle point. If so, the problem of locating 𝑥∗ turns into the problem

of locating the global min–max saddle point. In such a situation, locating multiple local min–max saddle points,

{(𝑥𝑖 , 𝑦𝑖 )}𝐾𝑖=1
, and selecting the best, argmin

1⩽𝑖⩽𝐾 max1⩽ 𝑗⩽𝐾 𝑓 (𝑥𝑖 , 𝑦 𝑗 ), can offer the optimal solution 𝑥∗ provided the

global min–max saddle point is included in {(𝑥𝑖 , 𝑦𝑖 )}𝐾𝑖=1
. Existing approaches [Akimoto et al. 2022b; Liu et al. 2020] for

locating local min–max saddle points may be used for this purpose. However, if 𝑥∗ is not a strict min–max saddle point,

the above approach may not provide a reasonable solution; a different approach is required.

3 TEST PROBLEMS

Table 1 lists the test problems used in our experiments. Although it is difficult to formally frame our target problems

as our approach is a heuristic, this list provides examples of problems in the scope of this study. We describe the

characteristics of these problems in the following.

The functions 𝑓3, 𝑓5, 𝑓6, 𝑓7, 𝑓8, and 𝑓11 are strictly convex–concave. On such problems, the worst-case scenario set

𝑌 (𝑥) is a singleton for each 𝑥 ∈ X. The global min–max solution 𝑥∗ is the strict global min–max saddle point (𝑥∗, 𝑦 (𝑥∗)).
Particularly, 𝑓5, 𝑓6, and 𝑓11 are strongly convex–concave, and 𝑓5, 𝑓7, and 𝑓11 are smooth. The functions 𝑓5 and 𝑓11 are both

smooth and strongly convex–concave, where the convergence of the existing approaches is investigated. Different from

𝑓5 and the other functions, 𝑓11 is designed to be highly ill-conditioned in 𝑦 to demonstrate the impact of ill-conditioning.

Although 𝑥∗ is a strict global min–max saddle point, based on our experiments, the existing approaches fail to converge

if the objective function is nonsmooth (𝑓6 and 𝑓8) or exhibit slow convergence if the objective function is not strongly

convex–concave (𝑓7).

The functions 𝑓1, 𝑓2, and 𝑓3 are convex–linear. On such problems, the worst-case scenario is typically located at the

boundary of the scenario domain Y. On 𝑓1 and 𝑓2, where the former is bilinear and the latter is strongly convex in 𝑥 , the

global min–max solution 𝑥∗ forms a weak min–max saddle point (𝑥∗, 𝑦) for any 𝑦 ∈ Y. Hence, the worst-case scenario
set at 𝑥∗ is 𝑌 (𝑥∗) = Y, but the worst-case scenario 𝑦 (𝑥) in a neighborhood of 𝑥∗ is one of the 2

𝑑𝑦
vertices 𝑌 of Y. For

𝑓3, |𝑌 (𝑥∗) | = 1 and (𝑥∗, 𝑦 (𝑥∗)) is a strict global min–max saddle point.

The functions 𝑓4, 𝑓9, and 𝑓10 are not convex–concave. On these problems, the global min–max solution 𝑥∗ does

not form a min–max saddle point. Similar to 𝑓1 and 𝑓2, the worst-case scenarios of 𝑓4 are located at the vertices 𝑌

of Y. However, different from 𝑓1 and 𝑓2, 𝑌 (𝑥∗) = 𝑌 and 𝑥∗ does not form a min–max saddle point in 𝑓4. For 𝑓9, the

worst-case scenarios are not at the vertices of Y but at some specific points inside Y, and |𝑌 (𝑥∗) | > 1. These two

functions are multimodal in 𝑦 for each 𝑥 ∈ X, and the global maximum (i.e., the worst-case scenario) changes depending

on 𝑥 . Different from 𝑓4 and 𝑓9, 𝑓10 is concave in both 𝑦 and 𝑥 . Because of the concavity in 𝑦, we have |𝑌 (𝑥) | = 1 for all
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Table 1. Test problem definitions and their worst-case scenarios. The search domains for 𝑥 and 𝑦 are X = [ℓ𝑥 ,𝑢𝑥 ]𝑑𝑥 and Y =

[−𝑏𝑦, 𝑏𝑦 ]𝑑𝑦 , respectively. The interaction between 𝑥 and 𝑦 is controlled by 𝑑𝑥 × 𝑑𝑦 matrix 𝐵. For 𝑓3, we assume that 𝐵 is of full

column rank, and let 𝐵† = [𝑏†
1
, . . . , 𝑏

†
𝑑𝑥
] be the Moore–Penrose inverse of 𝐵, 𝛼 = − min( |𝑢𝑥 |,|ℓ𝑥 |)

(30/7) max𝑖=1,...,𝑑𝑥
∥𝑏†

𝑖
∥1
, and 𝛾 > 0. For 𝑓9, we set

𝑑𝑦∗ = min{𝑑𝑦, 3}. For 𝑓10, we assume 𝑑𝑥 = 𝑑𝑦 and 𝐵 = diag(1, . . . , 1) . The optimal solutions for the worst-case objective functions
are 𝑥∗ = 0, except for 𝑓1, 𝑓3, and 𝑓9. The optimal solution is [𝐵𝑥∗ ]𝑖 = 0 for 𝑓1, [𝐵𝑥∗ ]𝑖 = 𝛼 for 𝑓3, and [𝐵T𝑥∗ ]𝑖 = − sinh(1) for 𝑖 ⩽ 𝑑𝑦∗
and [𝐵T𝑥∗ ]𝑖 = 0 for 𝑖 > 𝑑𝑦∗ for 𝑓9. Here, [𝑥 ]𝑖 denotes the 𝑖th coordinate of a vector 𝑥 .

Definition [�̂� (𝑥) ]𝑖 (here 𝑧 = 𝐵T𝑥 for short)

𝑓1 = 𝑥T𝐵𝑦

{
𝑏𝑦 sign( [𝑧 ]𝑖 ) [𝑧 ]𝑖 ≠ 0

arbitrary [𝑧 ]𝑖 = 0

𝑓2 = 1

2
∥𝑥 ∥2

2
+ 𝑥T𝐵𝑦

{
𝑏𝑦 sign( [𝑧 ]𝑖 ) [𝑧 ]𝑖 ≠ 0

arbitrary [𝑧 ]𝑖 = 0

𝑓3 = 1

2
∥𝐵T𝑥 − (𝛼 − 𝛾𝑏𝑦 )1𝑛 ∥2

2
+ 𝛾𝑥T𝐵𝑦

{
𝑏𝑦 sign( [𝑧 ]𝑖 ) [𝑧 ]𝑖 ≠ 0

arbitrary [𝑧 ]𝑖 = 0

𝑓4 = 1

2
∥𝑥 ∥2

2
+ 𝑥T𝐵𝑦 + 1

2
∥𝑦 ∥2

2

{
𝑏𝑦 sign( [𝑧 ]𝑖 ) [𝑧 ]𝑖 ≠ 0

±𝑏𝑦 [𝑧 ]𝑖 = 0

𝑓5 = 1

2
∥𝑥 ∥2

2
+ 𝑥T𝐵𝑦 − 1

2
∥𝑦 ∥2

2

{
[𝑧 ]𝑖 | [𝑧 ]𝑖 | ⩽ 𝑏𝑦
𝑏𝑦 sign( [𝑧 ]𝑖 ) | [𝑧 ]𝑖 | > 𝑏𝑦

𝑓6 = 1

2
∥𝑥 ∥2

2
+ ∥𝑥 ∥1 + 𝑥T𝐵𝑦 − ∥𝑦 ∥1 − 1

2
∥𝑦 ∥2

2


0 | [𝑧 ]𝑖 | ⩽ 1

[𝑧 ]𝑖 − sign( [𝑧 ]𝑖 ) 1 < | [𝑧 ]𝑖 | ⩽ 𝑏𝑦 + 1

𝑏𝑦 sign( [𝑧 ]𝑖 ) 𝑏𝑦 + 1 < | [𝑧 ]𝑖 |

𝑓7 = 1

4
∥𝑥 ∥4

2
+ 𝑥T𝐵𝑦 − 1

4
∥𝑦 ∥4

2


[𝑧 ]𝑖
∥𝑧∥2/3

2

[𝑧 ]𝑖
∥𝑧∥2/3

2

⩽ 𝑏𝑦

𝑏𝑦 sign( [𝑧 ]𝑖 ) [𝑧 ]𝑖
∥𝑧∥2/3

2

> 𝑏𝑦

𝑓8 = ∥𝑥 ∥1 + 𝑥T𝐵𝑦 − ∥𝑦 ∥1

{
0 | [𝑧 ]𝑖 | ⩽ 1

𝑏𝑦 sign( [𝑧 ]𝑖 ) | [𝑧 ]𝑖 | > 1

𝑓9 =
∑𝑑𝑦∗

𝑖=1

(
[𝐵T𝑥 ]𝑖 + exp (sign( [𝑦 ]𝑖 )) · sin

(
𝜋 [𝑦 ]𝑖
𝑏𝑦

))
2

+∑𝑑𝑦

𝑖=𝑑𝑦∗+1
(
[𝐵T𝑥 ]2

𝑖
− [𝑦 ]2

𝑖

) 
(𝑏𝑦/2) [𝑧 ]𝑖 ⩾ − sinh(1) & 𝑖 ⩽ 𝑑𝑦∗
−(𝑏𝑦/2) [𝑧 ]𝑖 ⩽ − sinh(1) & 𝑖 ⩽ 𝑑𝑦∗
0 𝑖 > 𝑑𝑦∗

𝑓10 = ∥𝑥T𝐵 ∥2
2
− 2∥𝑦 − 𝑥T𝐵 ∥2

2

{
[𝑧 ]𝑖 | [𝑧 ]𝑖 | ⩽ 𝑏𝑦
𝑏𝑦 sign( [𝑧 ]𝑖 ) | [𝑧 ]𝑖 | > 𝑏𝑦

𝑓11 =
∑𝑑𝑦

𝑖=1

(
1

2
[𝑥 ]2

𝑖
+ 10

−3𝑖/𝑑𝑦 [𝑥T𝐵 ]𝑖 [𝑦 ]𝑖 − 10
−6𝑖/𝑑𝑦

2
[𝑦 ]2

𝑖

) {
10

3𝑖/𝑑𝑦 [𝑧 ]𝑖 |10
3𝑖/𝑑𝑦 [𝑧 ]𝑖 | ⩽ 𝑏𝑦

𝑏𝑦 sign( [𝑧 ]𝑖 ) |10
3𝑖/𝑑𝑦 [𝑧 ]𝑖 | > 𝑏𝑦

𝑥 ∈ X. Moreover, 𝑦 (𝑥) is continuous. The worst-case objective function 𝐹 is convex around 𝑥∗. However, 𝑥∗ is not a

min–max saddle point.

We focus on some characteristics related to the difficulty in approximating the local landscape of the worst-case

objective function 𝐹 . A characteristic common to 𝑓1–𝑓4 and 𝑓9 is that the worst-case scenario changes discontinuously.

Particularly for 𝑓1, 𝑓2, 𝑓4, and 𝑓9, the worst-case scenarios spread over multiple distant points in a neighborhood of the

global min–max solution 𝑥∗. The landscape of 𝐹 cannot be approximated well around such a discontinuous point if

we only have a single candidate 𝑦 of the corresponding worst-case scenario. We expect from Figure 1 that the robust

berthing control problem discussed in Section 1 has the above difficulty. The landscape of 𝐹 cannot be approximated

well with a single candidate 𝑦 on 𝑓10 as well because of the concavity of 𝑓10 in 𝑥 . The nonsmoothness of 𝑓6 and 𝑓8 in 𝑦

can also cause a difficulty in approximating 𝐹 (𝑥) in a neighborhood of 𝑥∗ by 𝑓 (𝑥,𝑦) with a single candidate𝑦. We expect
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that the landscape of 𝐹 is easier to approximate for smooth convex–concave functions such as 𝑓5, 𝑓7, and 𝑓11. However,

if the worst-case scenario 𝑦 : 𝑥 ↦→ 𝑦 (𝑥) is continuous yet very sensitive, then approximating the landscape of 𝐹 with a

single candidate 𝑦 will be unreasonable. Such sensitivity is controlled by 𝐵 in the test problem definition. The greater

the greatest singular value of 𝐵 is, the more sensitive the worst-case scenario is. In these situations, approximating the

landscape of 𝐹 (𝑥) locally around some point 𝑥 by 𝑓 (𝑥,𝑦) with a single candidate 𝑦 ≈ 𝑦 (𝑥) is inadequate.

4 LIMITATIONS OF EXISTING APPROACHES

Asmentioned in Section 1, ZO-Min–Max [Liu et al. 2020] and ADV-CMA-ES [Akimoto et al. 2022b] are promising approaches

for the black-box min–max optimization. Both approaches are designed to converge to a strict local min–max saddle

point (𝑥,𝑦). Let (𝑥𝑡 , 𝑦𝑡 ) be a pair of the solution candidate and the scenario candidate at iteration 𝑡 . These approaches

update it as

(𝑥𝑡+1, 𝑦𝑡+1) = (𝑥𝑡 , 𝑦𝑡 ) + ([𝑥 · 𝐵𝑥 , [𝑦 · 𝐵𝑦), (3)

where [𝑥 and [𝑦 denote the learning rates, and 𝐵𝑥 and 𝐵𝑦 denote the update vectors for 𝑥 and 𝑦, respectively. In

ZO-Min–Max, (𝐵𝑥 , 𝐵𝑦) comprises approximate gradients of the objective function, (−∇̂𝑥 𝑓 (𝑥𝑡 , 𝑦𝑡 ), ∇̂𝑦 𝑓 (𝑥𝑡 , 𝑦𝑡 )). The
learning rates need to be tuned for each problem. In ADV-CMA-ES, (𝐵𝑥 , 𝐵𝑦) comprises (𝑥𝑡 −𝑥𝑡 , 𝑦𝑡 −𝑦𝑡 ), where 𝑥𝑡 and 𝑦𝑡

are approximations of argmin𝑥 ∈X 𝑓 (𝑥,𝑦𝑡 ) and argmax𝑦∈Y 𝑓 (𝑥𝑡 , 𝑦), respectively, obtained using (1+1)-CMA-ES [Arnold

and Hansen 2010; Igel et al. 2006] . The learning rates are adapted during the optimization to alleviate tedious parameter

tuning.

The above two existing approaches are theoretically guaranteed to converge to the global min–max saddle point [Aki-

moto et al. 2022b] or its neighborhood [Liu et al. 2020] when the objective function is twice continuously differentiable

and globally strongly convex–concave. Because the global min–max solution 𝑥∗ is the global min–max saddle point of

𝑓 in such problems, there is convergence to 𝑥∗ or its neighborhood. In particular, the authors of [Akimoto et al. 2022b]

showed sufficient conditions for linear convergence. Although the global convergence is not theoretically guaranteed,

updating 𝑥 and 𝑦 alternately as in (3) is expected to converge to a local min–max saddle point if the objective function

is a locally smooth and strongly convex–concave around the local min–max saddle point.

In addition, the authors of [Akimoto et al. 2022b] reported several limitations of the above two existing approaches.

Among them, the limitations for problems of Type (A) and (B) described in Section 1 are described below.

Difficulty (I): slow convergence on smooth strongly convex–concave problems. First, we discuss the slow convergence

issue on smooth strongly convex–concave problems highlighted in [Akimoto et al. 2022b]. For instance, consider a

convex–concave quadratic problem 𝑓𝑒𝑥 (𝑥,𝑦) = (𝑎/2)𝑥2 + 𝑏𝑥𝑦 − (𝑐/2)𝑦2
. The worst-case scenario is 𝑦 (𝑥) = (𝑏/𝑐)𝑥

for each 𝑥 and the optimal solution is 𝑥 (𝑦) = −(𝑏/𝑎)𝑦 for each 𝑦. It is intuitive that both 𝑦 (𝑥) and 𝑥 (𝑦) should not

be too sensitive to follow their change by (3). In fact, it has been theoretically derived that, for linear convergence,

the learning rate must be set as [𝑥 , [𝑦 ∈ 𝑂 (𝑎𝑐/(𝑎𝑐 + 𝑏2)) and the required number of iterations to find near-optimal

solution is Ω(1 + 𝑏2/(𝑎𝑐)); refer to [Akimoto et al. 2022b] for details. A similar limitation has been reported for the

simultaneous gradient descent–ascent (SGDA) approach [Liang and Stokes 2019]. The same limitation is expected to

exist in ZO-Min–Max because it is regarded as an approximation of the SGDA approach. The adaptation of the learning

rates in ADV-CMA-ES can mitigate the difficulty in tuning learning rates. However, it cannot avoid the slow convergence

problem.
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The situation is worse if the objective function is convex–concave but not strongly convex–concave. For example,

consider 𝑓7 with 𝑑𝑥 = 𝑑𝑦 = 1 and 𝐵 = 𝑏. This objective function is similar to 𝑓𝑒𝑥 , but the coefficients are regarded as

𝑎 = (1/2)𝑥2
and 𝑐 = (1/2)𝑦2

, i.e., decreasing as the solution approaches the global min–max saddle point (𝑥∗, 𝑦∗ = 𝑦 (𝑥∗)).
In this problem, the learning rate must converge to zero as the solution approaches (𝑥∗, 𝑦∗). This jeopardizes the
advantage of the existing approaches, i.e., linear convergence to the min–max saddle point. In fact, the authors of

[Akimoto et al. 2022b] reported such an issue empirically.

Difficulty (II): nonconvergence to a min–max solution that is not a strict min–max saddle point. Next, we discuss the

nonconvergence issue on problems where 𝑥∗ is not a strict min–max saddle point. The existing approaches fail to

converge to 𝑥∗. Such a situation occurs when the objective function is not strictly convex–concave. The situations can

be categorized into two: (W) 𝑥∗ is a weak min–max saddle point and (N) 𝑥∗ is not a min–max saddle point. Among

the test problems in Table 1, 𝑓1 and 𝑓2 fall into Category (W), and 𝑓4, 𝑓9, and 𝑓10 fall into Category (N). A numerical

experiment in [Akimoto et al. 2022b] has shown that ADV-CMA-ES fails to converge to 𝑥∗ on such problems. A theoretical

investigation in [Liang and Stokes 2019] has shown that SGDA fails to converge as well. Therefore, ZO-Min–Max is also

expected to fail. The authors of [Liang and Stokes 2019] reported that with some modifications, SGDA can converge to

the weak global min–max saddle point on bilinear functions. The existing approaches may tackle problems of Category

(W) by incorporating such a modification. However, problems of Category (N) cannot be solved.

In our experiments, we also confirmed that there exists a situation where the existing approaches fail to converge

even if 𝑥∗ is a strict global min–max saddle point. Example functions are 𝑓3, 𝑓6, and 𝑓8, which are strictly convex–concave

but nonsmooth. The situation where 𝑥∗ is a strict global min–max saddle point but 𝑓 is nonsmooth is denoted as

Category (S).

Direction to address Difficulties (I) and (II). One approach to avoid Difficulty (II) is to approximate the worst-case

objective function 𝐹 by solving max𝑦∈Y 𝑓 (𝑥,𝑦) numerically and optimize it directly. If 𝐹 can be approximated well

for each 𝑥 ∈ X, i.e., max𝑦∈Y 𝑓 (𝑥,𝑦) can be solved efficiently for each 𝑥 , and 𝐹 can be globally optimized efficiently by

a numerical solver, it does not matter whether 𝑥∗ is a min–max saddle point or not. Therefore, Difficulty (II) can be

addressed naturally.

We also expect that there can be a solution to Difficulty (I). Because any smooth strongly convex–concave function

can be approximated by a quadratic convex–concave function around the global min–max saddle point, we focus on

𝑓𝑒𝑥 for simplicity. Its worst-case objective function is 𝐹 (𝑥) = 1

2
(𝑎 + 𝑏2/𝑐)𝑥2

. Because it is a convex quadratic function, a

reasonable solver converges linearly to its global minimum point 𝑥∗. For 𝑑𝑦 > 1 and 𝑑𝑥 > 1, the worst-case objective

function can be ill-conditioned. However, if we employ a solver that uses second-order information, such as CMA-ES

[Akimoto and Hansen 2020; Hansen and Auger 2014; Hansen and Ostermeier 2001], we expect that it can be solved

efficiently. Therefore, the number of 𝑓 -calls spent by the approach that directly optimizes 𝐹 is expected to be less

sensitive to the interaction term. If the objective function is smooth and weakly convex–concave, this argument does not

hold. However, considering the aforementioned example 𝑓7, we have 𝐹 (𝑥) = (1/4)𝑥4 + (3/4) (𝑏𝑥)4/3, which is smooth

at 𝑥∗ = 0 and strictly convex. Therefore, we expect that a comparison-based approach, invariant to any increasing

transformation of the objective function, can solve it efficiently.

5 PROPOSED APPROACH

We propose a novel approach to address Difficulties (I) and (II). The main idea is to directly minimize the worst-

case objective function 𝐹 . The bottleneck of directly minimizing 𝐹 in the black-box min–max optimization setting
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is the computational time for each 𝐹 (𝑥) evaluation, which requires solving maximization problem max𝑦∈Y 𝑓 (𝑥,𝑦)
approximately. To tackle this bottleneck, we propose to employ CMA-ES to minimize 𝐹 (Section 5.1), and propose the

WRA mechanism that approximates the ranking of {𝐹 (𝑥𝑖 )}_𝑥𝑖=1
for the given solution candidates {𝑥𝑖 }_𝑥𝑖=1

(Section 5.2).

For the proposed approach to work effectively, we suppose (a) |𝑌 (𝑥) | = 1 and 𝑦 (𝑥) is continuous almost everywhere

in X, (b) the solver for the inner maximization problem can globally maximize 𝑓 (𝑥,𝑦) with respect to 𝑦 efficiently for

each 𝑥 ∈ X, and (c) the solver for the outer minimization problem, CMA-ES in this study, can minimize 𝐹 efficiently.

Unfortunately, one can not confirm these assumptions in advance as our target problems are black-box. However, (a) is

very natural to assume if the objective function is continuous almost everywhere, and (b) and (c) are more like our

hope to justify our choice of the baseline optimizer.

5.1 CMA-ES for outer minimization

The proposed approach tries to solve the outer minimization problem of (1) using the CMA-ES. The CMA-ES is a

state-of-the-art derivative-free optimization approach for continuous black-box optimization problems [Hansen 2009;

Hansen et al. 2010; Rios and Sahinidis 2013] and has been used in several real-world applications [Fujii et al. 2018; Maki

et al. 2020; Miyagi et al. 2018; Tanabe et al. 2021; Urieli et al. 2011]. There are two essential characteristics of the CMA-ES

that attract attention. One is that it is a quasiparameter-free approach, i.e., one does not need any hyperparameter

tuning except for a population size _𝑥 , which is desired to be increased if the problem is multimodal or noisy or if several

CPU cores are available. Because the worst-case objective function 𝐹 is a black-box and it is difficult to understand the

characteristics of 𝐹 in advance, the parameter-free nature is essential. The second is that it is parallel-implementation

friendly. The objective function values (𝐹 in our case) of multiple solution candidates generated at an iteration can be

evaluated in parallel. It is desired when the computational cost of the objective function evaluation is high. Because

each evaluation of 𝐹 is expensive as it requires solving maximization problem max𝑦∈Y 𝑓 (𝑥,𝑦) approximately, this is

practically essential.

The CMA-ES repeats the sampling, evaluation, and update steps until a termination condition is satisfied. Let 𝑡 ⩾ 0

be the iteration counter. First, _𝑥 solution candidates {𝑥𝑖 }_𝑥𝑖=1
are generated independently from a Gaussian distribution

N(𝑚𝑡𝑥 , Σ𝑡𝑥 ) with mean vector𝑚𝑡𝑥 ∈ X and covariance matrix Σ𝑡𝑥 ∈ R𝑑𝑥×𝑑𝑥 . Next, the worst-case objective function
values of the _𝑥 solution candidates, {𝐹 (𝑥𝑖 )}_𝑥𝑖=1

, are evaluated, and their rankings Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
) are computed, where

the 𝑖th ranked solution candidate has the 𝑖th smallest 𝐹 value. Finally, the CMA-ES updates the distribution parameters,

𝑚𝑡𝑥 and Σ𝑡𝑥 , and other dynamic parameters using the solution candidates and their rankings. An important aspect of

the update of the CMA-ES is that it is comparison-based. That is, provided the rankings of the solution candidates,

Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
), are computed, the worst-case objective function values, {𝐹 (𝑥𝑖 )}_𝑥𝑖=1

, do not need to be accurately

computed.

In this study, we implemented the version of the CMA-ES proposed in [Akimoto and Hansen 2020], namely, dd-CMA-

ES, as the default solver.
2
The configuration of the CMA-ES follows the default proposed procedure in [Akimoto and

Hansen 2020]. If the search domain has a box constraint, we employ the mirroring technique along with upper-bounding

the coordinate-wise standard deviation

√︁
[Σ𝑡𝑥 ]ℓ,ℓ for ℓ = 1, . . . , 𝑑𝑥 [Yamaguchi and Akimoto 2018], where [Σ𝑡𝑥 ]ℓ,ℓ denotes

the (ℓ, ℓ)-th element of Σ𝑡𝑥 . The initial distribution parameters,𝑚0

𝑥 and Σ0

𝑥 , should be set problem-dependently. We

terminate the CMA-ES when maxℓ∈{1,...,𝑑𝑥 }
√︁
[Σ𝑡𝑥 ]ℓ,ℓ < 𝑉 𝑥

min
is satisfied, where 𝑉 𝑥

min
is a problem-dependent threshold,

2
The code for DD-CMA-ES is downloaded from https://gist.github.com/youheiakimoto/1180b67b5a0b1265c204cba991fa8518 .
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or Cond(Σ𝑥 ) > Cond
𝑥
max

= 10
14

is satisfied, where Cond(Σ𝑥 ) is the condition number, i.e., the ratio of the greatest to

smallest eigenvalues, of Σ𝑡𝑥 .

5.2 Worst-case Ranking Approximation

Algorithm 1WRA

Require: 𝑥1, . . . , 𝑥_𝑥

Require: {(𝑦𝑘 , 𝜔𝑘 , 𝑝𝑘 )}𝑁𝜔

𝑘=1

Require: 𝜏
threshold

, 𝑝
threshold

, 𝑝+, 𝑝−
1: // Warm-starting

2: for 𝑖 = 1, . . . , _𝑥 do
3: evaluate 𝑓 (𝑥𝑖 , 𝑦𝑘 ) for all 𝑘 = 1, . . . , 𝑁𝜔

4: 𝑘worst

𝑖
= argmax𝑘∈{1,...,𝑁𝜔 } 𝑓 (𝑥𝑖 , 𝑦𝑘 )

5: 𝑦𝑖 = 𝑦𝑘worst

𝑖
, �̃�𝑖 = 𝜔𝑘worst

𝑖
, and 𝐹 0

𝑖
= 𝑓 (𝑥𝑖 , 𝑦𝑘worst

𝑖
)

6: end for
7: // Early-stopping

8: initialize
˜\1, . . . , ˜\_𝑥

9: for rd = 1, 2, . . . do
10: for 𝑖 = 1, . . . , _𝑥 do
11: 𝐹 rd

𝑖
, 𝑦𝑖 , �̃�𝑖 , ˜\𝑖 ←M(𝐹 rd−1

𝑖
, 𝑦𝑖 , �̃�𝑖 , ˜\𝑖 )

12: end for
13: 𝜏 = Kendall({𝐹 rd−1

𝑖
}_𝑥
𝑖=1

, {𝐹 rd

𝑖
}_𝑥
𝑖=1
)

14: break if 𝜏 > 𝜏
threshold

15: end for
16: // Postprocessing

17: 𝑆worst = {𝑘worst

𝑖
for 𝑖 = 1, . . . , _𝑥 }

18: for ˜𝑘 ∈ 𝑆worst do
19: ℓ = argmin𝑖=1,...,𝑁𝜔

{𝐹 rd

𝑖
| 𝑘worst

𝑖
= ˜𝑘}

20: 𝑦
˜𝑘
= 𝑦ℓ , 𝜔 ˜𝑘

= �̃�ℓ

21: 𝑝
˜𝑘
= min(𝑝

˜𝑘
+ 𝑝+, 1)

22: end for
23: 𝑝𝑘 = 𝑝𝑘 − 𝑝− · I{𝑘 ∉ 𝑆worst} for all 𝑘 = 1, ..., 𝑁𝜔

24: for 𝑘 = 1, . . . , 𝑁𝜔 do
25: refresh (𝑦𝑘 , 𝜔𝑘 , 𝑝𝑘 ) if 𝑝𝑘 < 𝑝

threshold

26: end for
27: return {𝐹 rd

𝑖
}_𝑥
𝑖=1

and {(𝑦𝑘 , 𝜔𝑘 , 𝑝𝑘 )}𝑁𝜔

𝑘=1
for the next call

The proposed WRA mechanism approximates the

rankings of solution candidates by roughly solving

maximization problems max𝑦∈Y 𝑓 (𝑥𝑖 , 𝑦) for each
solution candidate {𝑥𝑖 }_𝑥𝑖=1

. To save the inner 𝑓 -

calls to approximate the rankings Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
),

we incorporate a warm-starting strategy, where

we try to start each maximization max𝑦∈Y 𝑓 (𝑥𝑖 , 𝑦)
with a good initial solution candidate and a good

configuration of the inner solver (Section 5.2.1),

and an early-stopping strategy, where we try

to stop each maximization max𝑦∈Y 𝑓 (𝑥𝑖 , 𝑦) once
Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1

) are considered well-approximated

(Section 5.2.2). The overall framework is summa-

rized in Algorithm 1.

Hereinafter, letM be a solver used to approxi-

mately solve max𝑦∈Y 𝑓 (𝑥𝑖 , 𝑦). Let 𝜔 represent the

configurations of the solverM inherited over the

WRA calls. Let \ represent the other configurations

that are not inherited.

5.2.1 Warm-starting strategy. Two key ideas be-

hind the design of our warm-starting strategy are

as follows.

First, we inherit the worst-case scenario candi-

dates and the configurations from the lastWRA call.

The Gaussian distribution N(𝑚𝑡 , Σ𝑡 ) of the CMA-

ES for the outer minimization does not significantly

change in one iteration. Then, the distribution of

the worst-case scenarios for the solution candidates

generated at iteration 𝑡 is considered to be similar

to that at iteration 𝑡 + 1. Therefore, we expect that

using the solver configurations used at the last itera-

tion will contribute to reduce the number of 𝑓 -calls.

This idea is expected to be effective for the problem

where |𝑌 (𝑥) | = 1 and 𝑦 (𝑥) is continuous almost everywhere in X.

Second, we maintain 𝑁𝜔 (⩾ 1) configurations. Consider situations (W) and (N) described in Section 3. The worst-case

scenarios corresponding to solution candidates {𝑥𝑖 }_𝑥𝑖=1
generated in a single iteration may not be concentrated at one
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point butmay be distributed around |𝑌 (𝑥∗) | distinct points even if {𝑥𝑖 }_𝑥𝑖=1
are concentrated around𝑥∗ = argmin𝑥 ∈X 𝐹 (𝑥).

If we only maintain one configuration, it may be a good initial configuration only for a small portion of {𝑥𝑖 }_𝑥𝑖=1
. There

is a high risk that 𝐹 values are accurately estimated only for these candidates and they are underestimated for the

others due to insufficient maximization. To address this difficulty, we maintain multiple configurations and try to keep

them diverse.

These two ideas are implemented in our warm-starting strategy. It comprises (1) selecting a good initial worst-case

scenario candidate 𝑦 and configuration �̃� of solverM for each solution candidate 𝑥𝑖 among 𝑁𝜔 pairs {(𝑦𝑘 , 𝜔𝑘 )}𝑁𝜔

𝑘=1

(Lines 1–6 in Algorithm 1) and (2) preparing 𝑁𝜔 pairs {(𝑦𝑘 , 𝜔𝑘 )}𝑁𝜔

𝑘=1
for the next WRA call (Lines 16–26 in Algorithm 1).

For each 𝑥𝑖 , we evaluate 𝑓 (𝑥𝑖 , 𝑦𝑘 ) for 𝑘 = 1, . . . , 𝑁𝜔 and select the worst-case scenario candidate. Let 𝑘worst

𝑖
=

argmax𝑘∈{1,...,𝑁𝜔 } 𝑓 (𝑥𝑖 , 𝑦𝑘 ) be the index of the worst-case scenario candidate among {𝑦𝑘 }𝑁𝜔

𝑘=1
. Then, we select the

configuration 𝜔𝑘worst

𝑖
of the solver that generated 𝑦𝑘worst

𝑖
as the initial configuration �̃�𝑖 to search for the worst-case

scenario for 𝑥𝑖 . After approximating {𝐹 (𝑥𝑖 )}_𝑥𝑖=1
, we update the set of configurations of the solver. Basically, we replace

the selected configurations with the configurations obtained after the solver execution. If the same configuration is

selected for different solution candidates, we replace the configuration with the one used for the solution candidate

with the optimal approximated worst-case value.

Moreover, to avoid keeping unused configurations, we refresh such configurations and try to have diverse configura-

tions. For this purpose, we maintain a parameter 𝑝𝑘 ∈ (0, 1] for 𝑘 = 1, . . . , 𝑁𝜔 and initialize the parameter as 1. The

parameter 𝑝𝑘 is increased by 𝑝+ if the 𝑘th configuration is selected. It is decreased by 𝑝− otherwise. Once we have

𝑝𝑘 ⩽ 𝑝
threshold

, the 𝑘th configuration and the corresponding worst-case scenario candidate are refreshed in the same

manner as their initialization, and 𝑝𝑘 is reset to 1.

5.2.2 Early-stopping strategy. Our early-stopping strategy is to save 𝑓 -calls by terminating _𝑥 solvers once the rankings

of the worst-case objective function values of the given solution candidates, Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
), are regarded as well-

approximated. The early-stopping strategy is described at Lines 7–15 in Algorithm 1.

The main idea is as follows. As aforementioned, the CMA-ES is a comparison-based approach. Therefore, the worst-

case objective function values are not needed to be accurately estimated provided their rankings are computed. We

further hypothesize that the CMA-ES behaves similarly on the approximated rankings if the rankings of solution

candidates are approximated with a high correlation to the true rankings, according to Kendall [Kendall and Gibbons

1990]. This hypothesis is often imposed in surrogate-assisted approaches and related approaches [Akimoto et al. 2020,

2019; Hansen 2019; Miyagi et al. 2021, 2023; Pitra et al. 2021] and is partly validated in theory [Akimoto 2022]. Because

the true rankings of the worst-case objective function values are unknown, instead of trying to check the rank correlation

between the true and approximate rankings, we keep track of changes in the rankings and stop if the change is regarded

as sufficiently small.

To compute the rankings of the worst-case objective function values, _𝑥 solvers are run in parallel, and we pe-

riodically compute the rankings of the solution candidates using the approximated worst-case objective function

values, {𝐹 rd

𝑖
= 𝑓 (𝑥𝑖 , 𝑦𝑖 )}_𝑥𝑖=1

, where rd ⩾ 0 is the number of ranking computations so far and is called the round.

After each round, we compute the Kendall’s rank correlation between the current and last approximations of the

rankings, 𝜏 ({𝐹 rd−1

𝑖
}_𝑥
𝑖=1

, {𝐹 rd

𝑖
}_𝑥
𝑖=1
). If it is greater than the predefined threshold 𝜏

threshold
⩾ 0, we regard the rankings

are well-approximated and terminate the solvers. A reasonable definition of a round of a solver call depends on the

choice of the solver. We discuss the solver choice and round definition in the next section.
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5.2.3 Hyperparameters. The hyperparameters for WRA are the threshold for Kendall’s rank correlation 𝜏
threshold

,

number of configurations 𝑁𝜔 , threshold 𝑝
threshold

, and parameters 𝑝+ and 𝑝− for the refresh strategy. The initial

configurations {𝜔𝑘 }𝑁𝜔

𝑘=1
and initial worst-case scenario candidates {𝑦𝑘 }𝑁𝜔

𝑘=1
must be set problem-dependently. We

describe the expected effect of these hyperparameters in this section. The sensitivities of 𝜏
threshold

, 𝑝+ and 𝑝− are

empirically investigated in Appendix A.

Threshold 𝜏
threshold

should be set to a relatively high value to approximate Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
) with high accuracy.

However, setting a high value of 𝜏
threshold

(e.g., 𝜏
threshold

= 1) has a risk of spending too many 𝑓 -calls. Based on our

sensitivity analysis in Appendix A , we set its default value as 𝜏
threshold

= 0.7 and used this value throughout our

experiments.

The number of configurations, 𝑁𝜔 , is desired to be set no smaller than the number |𝑌 (𝑥∗) | of worst-case scenarios
around 𝑥∗ to maintain good configurations and good initial scenarios for each solution. In addition, because 𝑁𝜔 𝑓 -calls

are required to select the initial configuration for each 𝑥 , 𝑁𝜔 is desired to be as small as possible. However, |𝑌 (𝑥∗) |
is unknown in advance and is problem-dependent. We suggest setting 𝑁𝜔 to be a few times greater than _𝑥 to allow

_𝑥 solution candidates a chance to use _𝑥 distinct worst-case scenario candidates. The effect is further discussed in

Section 6.

The parameters 𝑝
threshold

, 𝑝+, and 𝑝− affect the frequency of each configuration to be refreshed. If the configurations

are frequently refreshed, our warm-starting strategy may be less effective. In our sensitivity analysis described in

Appendix A, we confirmed that the performance of the proposed approach was not very sensitive to the change of the

frequency of refreshing configurations on the test problems. Therefore, we set 𝑝
threshold

= 0.1, 𝑝+ = 0.4 and 𝑝− = 0.05

as the default values and these values were used in all experiments in this paper. In this case, the configurations {𝜔𝑖 }_𝑥𝑖=1

are kept for at least 6 = (𝑝+ − 𝑝threshold
)/𝑝− outer loop iterations after the last use or 18 = (1− 𝑝

threshold
)/𝑝− iterations

after the initialization or last refresh.

5.3 Implementation of WRA

We implement two variants of WRA with the CMA-ES (Section 5.3.1) and AGA (Section 5.3.2) as solversM.

5.3.1 WRA using CMA-ES. The first variant, summarized in Algorithm 2, uses dd-CMA-ES [Akimoto and Hansen 2020]

as a solverM. If the search domain has a box constraint, we employ the mirroring technique along with upper-bounding

the coordinate-wise standard deviation [Yamaguchi and Akimoto 2018]. The configuration �̃� includes the mean vector

�̃� and covariance matrix Σ̃, and ˜\ includes other parameters such as evolution paths, iteration counter 𝑡 ′ ⩾ 0 (initialized

as 𝑡 ′ = 0), and termination flag ℎ (initialized as ℎ = False).

Because the proposed approach is a double-loop approach, setting the termination conditions for the inner loop is

crucial. Algorithm 2 runs the CMA-ES until the worst-case scenario candidate is improved 𝑐max times. If the worst-case

scenario candidate is improved for 𝑐max times, we regard that it is significantly improved. Similar to the CMA-ES for

outer minimization, we terminate the maximization process if all coordinate-wise standard deviations,

√︃
[Σ̃]ℓ,ℓ , become

smaller than 𝑉
𝑦

min
. In this situation, we expect that the distribution is sufficiently concentrated and no more significant

improvement will be obtained. We stop the CMA-ES if the condition number, Cond(Σ̃), becomes greater than Cond
𝑦
max

.

If one of the latter two conditions is satisfied, we set ℎ = True, and the CMA-ES will not be executed in the following

rounds in the current WRA call.

The distribution parameters are inherited over WRA calls. Once the condition maxℓ

√︃
[Σ̃]ℓ,ℓ < 𝑉

𝑦

min
is satisfied for

some configurations, it is expected to be immediately satisfied in the next WRA call if these configurations are selected.
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However, because the objective function with respect to 𝑦, i.e., 𝑓 (𝑥𝑖 , 𝑦), differs as solution candidates 𝑥𝑖 differ in each

WRA call, there is a chance that the distribution will be enlarged due to the step-size adaptation mechanism of the

CMA-ES, and a significant improvement will be realized. Therefore, we force all coordinate-wise standard deviations to

be no smaller than 𝑉
𝑦

min
once the greatest one becomes smaller than 𝑉

𝑦

min
(Lines 11–12) and the CMA-ES to run at least

𝑇min iterations for each WRA call.

The hyperparameters includes the initial configurations for inner CMA-ES ({𝑚𝑘 }𝑁𝜔

𝑘=1
, {Σ𝑘 }𝑁𝜔

𝑘=1
, \ ), initial scenarios

{𝑦𝑘 }𝑁𝜔

𝑘=1
, and termination conditions for Algorithm 2, 𝑐max, 𝑉

𝑦

min
, and 𝑇min. The configuration and initialization of \ ,

including the initialization of evolution paths and population size _𝑦 , follow the values proposed in [Akimoto and

Hansen 2020]. The parameter 𝑐max impacts the approximation accuracy of the rankings on the worst-case objective

function values Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
) and 𝑓 -calls to approximate the rankings. If 𝑐max is set to a greater value, WRA will

require more 𝑓 -calls. Meanwhile, setting 𝑐max to a smaller value has a risk to terminate the scenario improvement

before the ranking on the worst-case objective function Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
) is estimated with sufficient accuracy. The

parameter 𝑇min can be set to a constant value, as the CMA-ES can increase the standard deviation rapidly if it is

desired. We set 𝑇min = 10 as the default value. The parameter 𝑉
𝑦

min
and initial distributions {(𝑚𝑘 , Σ𝑘 )}𝑁𝜔

𝑘=1
must be set

problem-dependently. The initial scenarios {𝑦𝑘 }𝑁𝜔

𝑘=1
are drawn from the initial distributions, i.e., 𝑦𝑘 ∼ N(𝑚𝑘 , Σ𝑘 ).

Algorithm 2 CMA-ES asM

Require: 𝑥,𝑦, 𝐹𝑦, �̃� = (�̃�, Σ̃), ˜\ = (ℎ, 𝑡 ′, . . . )
Require: 𝑉min > 0, 𝑐max ⩾ 1, _𝑦 = ⌊4 + 3 log(𝑑𝑦)⌋
1: Σ̃init = Σ̃, 𝑐 = 0

2: while 𝑐 < 𝑐max and ℎ = False do
3: Sample {𝑦′}_𝑦

𝑘=1
∼ N(�̃�, Σ̃)

4: Evaluate 𝑓𝑘 = 𝑓 (𝑥,𝑦′
𝑘
) for all 𝑘 = 1, . . . , _𝑦

5: Select the worst index
˜𝑘worst = argmax𝑘=1,...,_𝑦

𝑓𝑘

6: if 𝑓 (𝑥,𝑦′
˜𝑘worst

) > 𝐹𝑦 then
7: 𝐹𝑦 = max𝑘=1,...,_𝑦 𝑓𝑘 , 𝑦 = 𝑦′

˜𝑘worst

, and 𝑐 = 𝑐 + 1

8: end if
9: Perform CMA-ES update using {𝑦′

𝑘
, 𝑓𝑘 }

_𝑦

𝑘=1

10: if maxℓ

{√︃
[Σ̃]ℓ,ℓ

}
< 𝑉

𝑦

min
and 𝑡 ′ ⩾ 𝑇min then

11: 𝐷 = diag

(
max

(
1,

𝑉
𝑦

min√︃
[Σ̃]1,1

)
, . . . ,max

(
1,

𝑉
𝑦

min√︃
[Σ̃]𝑑𝑦,𝑑𝑦

))
12: Σ̃ = 𝐷 Σ̃𝐷 and ℎ = True

13: end if
14: ℎ = True and set Σ̃ = Σ̃init if Cond(Σ̃) > Cond

𝑦
max

15: 𝑡 ′ = 𝑡 ′ + 1

16: end while
17: return 𝑦, 𝐹𝑦 , �̃� = (�̃�, Σ̃), ˜\ = (ℎ, 𝑡 ′, . . . )

Algorithm 3 AGA asM

Require: 𝑥,𝑦, 𝐹𝑦, �̃� = [̃, ˜\ = (ℎ, . . . )
Require: 𝑈min > 0, 𝑐max ⩾ 1, 𝛽 ∈ (0, 1)
1: 𝑐 = 0

2: while 𝑐 < 𝑐max and ℎ = False do
3: Obtain approximated gradient

¯∇𝑦 𝑓 at 𝑦

4: 𝑦′ = 𝑦 + [̃ ¯∇𝑦 𝑓
5: if 𝑓 (𝑥,𝑦′) > 𝐹𝑦 then
6: [̃ = [̃/𝛽
7: else
8: while 𝑓 (𝑥,𝑦′) ⩽ 𝐹𝑦 do
9: [̃ = [̃ × 𝛽
10: 𝑦′ = 𝑦 + [̃ ¯∇𝑦 𝑓
11: ℎ = True if ∥[̃ ¯∇𝑦 𝑓 ∥∞ ⩽ 𝑈min

12: end while
13: end if
14: if 𝑓 (𝑥,𝑦′) > 𝐹𝑦 then
15: 𝐹𝑦 = 𝑓 (𝑥,𝑦′), 𝑦 = 𝑦′, and 𝑐 = 𝑐 + 1

16: end if
17: end while
18: return 𝑦, 𝐹𝑦 , �̃� = [̃, ˜\ = (ℎ, . . . )

5.3.2 WRA using AGA. The second variant, summarized in Algorithm 3, uses AGA as a solverM. The AGA solver

uses the numerical gradient
¯∇𝑦 at the worst-case scenario candidate 𝑦 obtained by SLSQP function in the SciPy module
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in Python.
3
If the search domain for the scenario vector has a box constraint, the projected gradient idea is used to

force the worst-case scenario candidate to be feasible. The configuration 𝜔 for Algorithm 3 includes the learning rate

{[𝑘 }𝑁𝜔

𝑘=1
, and the other parameters are included in \ .

We use a simple adaptation mechanism for the learning rate [̃ in Algorithm 3, similar to the backtracking line search.

The learning rate [̃ is decreased by 𝛽 ∈ (0, 1) until the worst-case scenario candidate is improved. If the worst-case

scenario candidate is improved for the first trial, the learning rate is increased by 1/𝛽 . This is because a significant
improvement of the worst-case scenario candidate is expected by a large learning rate in the next iteration.

The termination criteria of Algorithm 3 are described as follows. Algorithm 3 is terminated when the scenario is

improved for 𝑐max times. If the infinity norm of the update vector is smaller than 𝑈min, i.e., ∥[̃ ¯∇𝑦 𝑓 ∥∞ ⩽ 𝑈min, we

consider that a significant increase of the objective function value is not expected and terminate the solver. When

Algorithm 3 is terminated by the latter condition, we set ℎ = True andM is not called with the current configuration

in the current WRA call.

The hyperparameters include the initial learning rate {[𝑘 }𝑁𝜔

𝑘=1
, parameter for updating the learning rate 𝛽 , termination

threshold𝑈min, and maximum number of improvements, 𝑐max. They should be set problem-dependently.

5.4 Restart and Local Search Strategy

We implement two devices for practical use to enhance exploration (by restart) and exploitation (by local search).

A restart strategy is implemented to obtain good local optimal solutions when 𝐹 is multimodal. When a termination

condition is satisfied before an 𝑓 -call budget or a wall clock time budget is exhausted, the _𝑥 solution candidates and

𝑁𝜔 worst-case scenario candidates at the last iteration are stored in X∗ and Y∗, respectively. We restart the search

without inheriting any information from previous restarts. Once the budgets are exhausted, the last solution candidates

and worst-case scenario candidates are stored as well. The final output of the algorithm, i.e., the candidate of the global

min–max solution, is argmin𝑥 ∈X∗ max𝑦∈Y∗ 𝑓 (𝑥,𝑦). One can also include randomly sampled scenario vectors to Y∗

when deciding the final output for a good estimate of 𝐹 (𝑥). The resulting algorithms using CMA-ES and AGA with this

restart strategy are denoted as WRA-CMA and WRA-AGA, respectively.

We implement an optional local search strategy using ADV-CMA-ES. If the problem is locally smooth and strongly

convex–concave, ADV-CMA-ES exhibits significantly faster convergence than WRA. Therefore, by stopping each

run of WRA early and performing ADV-CMA-ES, we expect that the solution candidate obtained by WRA will be

more locally improved by ADV-CMA-ES than by spending the same 𝑓 -calls by WRA. This is implemented as fol-

lows. When a termination condition is satisfied, let Y = {𝑦𝑘 }𝑁𝜔

𝑘=1
be the set of 𝑁𝜔 worst-case scenario candidates,

𝑖
Adv

= argmin𝑖=1,...,_𝑥
max𝑦∈Y 𝑓 (𝑥𝑖 , 𝑦) be the best-case solution candidate, and 𝑘

Adv
= argmax𝑘=1,...,𝑁𝜔

𝑓 (𝑥𝑖
Adv

, 𝑦𝑘 ) be
the corresponding worst-case scenario index obtained at the last iteration. Then, ADV-CMA-ES is applied to optimize

𝑓Y (𝑥,𝑦) = max�̃�∈{𝑦 }∪Y 𝑓 (𝑥,𝑦), with distributions initialized around (𝑥𝑖
Adv

, 𝑦𝑘
Adv

) to exhibit local search. The search

distribution for 𝑥 in ADV-CMA-ES is initialized by the distribution for 𝑥 in WRA at the last iteration. The distribution

parameters for search in 𝑦 is initialized by those of 𝜔𝑘
Adv

if Algorithm 2 is used. When Algorithm 3 is used, the mean

vector is initialized by 𝑦𝑘
Adv

, and a relatively small initial covariance matrix, 10
−2 ×

(
𝑏𝑦
2

)
2

𝐼𝑑𝑦 , is used as ADV-CMA-ES

is used for local search. The other parameters of ADV-CMA-ES are set to the default values proposed in [Akimoto

et al. 2022b]. Once ADV-CMA-ES is terminated, we perform a restart as in WRA-CMA and WRA-AGA. The approaches using

3
Note that SLSQP is not used for maximizing the objective function value but obtaining the numerical gradient.

Manuscript submitted to ACM



16 Atsuhiro Miyagi, Yoshiki Miyauchi, Atsuo Maki, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto

Algorithm 2 and Algorithm 3 with the local search and restart strategies are denoted as WRA-CMA+ADV and WRA-AGA+ADV,

respectively.

6 NUMERICAL EXPERIMENTS ON TEST PROBLEMS

We performed numerical experiments to confirm that existing approaches ADV-CMA-ES and ZO-Min–Max face Difficulties

(I) and (II), whereas the proposed approach can cope with them.
4

6.1 Common settings

We used test problems listed in Table 1. Unless otherwise specified, the dimensions were 𝑑𝑥 = 𝑑𝑦 = 20, and the search

domains were X = [−3, 3]𝑑𝑥 and Y = [−3, 3]𝑑𝑦 . The coefficient matrix 𝐵 was set to 𝐵 = diag(𝑏, ...., 𝑏).
The proposed and existing approaches were configured as follows. The initial mean vector (WRA-CMA and WRA-AGA)

and initial solution candidate (ADV-CMA-ES and ZO-Min–Max) for outer minimization were drawn from U(X). The
initial covariance matrices for the outer minimization were set to

(
𝑢𝑥−ℓ𝑥

4

)
2

𝐼𝑑𝑥 in WRA-CMA, WRA-AGA, and ADV-CMA-ES.

The initial mean vectors (WRA-CMA) and initial worst-case scenario candidates (WRA-AGA, ADV-CMA-ES, and ZO-Min–Max)

were drawn independently fromU(Y). The initial covariance matrices for the inner maximization were set to

(
𝑏𝑦
2

)
2

𝐼𝑑𝑦

in WRA-CMA and ADV-CMA-ES. For WRA-CMA and WRA-AGA, we set 𝑉 𝑥
min

= 10
−12

, 𝑐max = 1, and 𝑁𝜔 = 36(= 3 × _𝑥 ). For
WRA-CMA, we set 𝑉

𝑦

min
= 10

−4
and 𝑇min = 10. For WRA-AGA, we set 𝑈min = 10

−5
, 𝛽 = 0.5, and the initial learning rate

{[𝑘 }𝑁𝜔

𝑘=1
= 1. For ZO-Min–Max, referencing [Liu et al. 2020], we set the learning rates as [𝑥 = 0.02 and [𝑦 = 0.05, the

number of random direction vectors as 𝑞 = 5, and the smoothing parameter for gradient estimation as ` = 10
−3
. For

ADV-CMA-ES, referencing [Akimoto et al. 2022b], we set the threshold parameter for restart as 𝐺
tol

= 10
−6
, the minimal

learning rate as [min = 10
−4
, and the minimal standard deviation as 𝜎min = 10

−8
. For simplicity of the analysis, the

restart strategy of WRA-CMA and WRA-AGA was not used in these experiments.
5 ADV-CMA-ES performed restart because

it is implemented by default. We also turned off the diagonal acceleration mechanism both in CMA-ES for the outer

minimization and inner maximization in WRA-CMA for fair comparison of efficiency (to avoid the speed-up effect of the

diagonal acceleration) in Figure 3 below.
6

The performance of each algorithm is evaluated by 20 independent trials. We regarded a trial as successful if

|𝐹 (𝑧) − 𝐹 (𝑥∗) | ⩽ 10
−6

was satisfied for 𝑧 =𝑚𝑡𝑥 in case of ADV-CMA-ES, WRA-CMA, and WRA-AGA and for 𝑧 = 𝑥𝑡 in case of

ZO-Min–Max before 10
7 𝑓 -calls were spent. If the maximum 𝑓 -calls were spent or some internal termination conditions

were satisfied, we regard the trial as failed.

6.2 Experiment 1

To confirm that the proposed approach overcomes Difficulty (I), four approaches were applied to smooth convex–

concave problems 𝑓5, 𝑓7 and 𝑓11 for varying 𝑏 with and without bounds for the search domains. Note that the strength

of the interaction between 𝑥 and 𝑦 is controlled by 𝑏 as the interaction term is 𝑥T𝐵𝑦 and we set 𝐵 = diag(𝑏, ...., 𝑏) in
this experiment.

4
The code for ADV-CMA-ES is downloaded from https://gist.github.com/youheiakimoto/ab51e88c73baf68effd95b750100aad0. The code for ZO-Min–Max is

downloaded from https://github.com/KaidiXu/ZO-minmax.

5
The worst-case functions for our test problems are all single peak functions. On such problems, WRA-CMA and WRA-AGA (i.e., CMA-ES) are expected to

converge toward the optimal solution as long as the WRA mechanism approximates Rank𝐹 ( {𝑥𝑖 }_𝑥𝑖=1
) properly. Therefore, we omitted the restart strategy

to investigate the goodness of WRA solely.

6
We recommend to use the diagonal acceleration mechanism both in the outer and inner minimization in practice. The performance of the proposed

approach on the test problems will not degrade with diagonal acceleration.
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Fig. 3. Median and interquartile range of the number of 𝑓 -calls spent by WRA-CMA, WRA-AGA, ZO-Min–Max, and ADV-CMA-ES over 20

trials on 𝑓5, 𝑓7, and 𝑓11 with 𝑏 ∈ {1, 3, 10, 30, 100}. Note that the interquartile ranges were so small that the gaps between bars are
barely visible in some cases. Top: unbounded search domains (X = R𝑑𝑥 and Y = R𝑑𝑦 ). Bottom: bounded search domains.
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Fig. 4. Gap |𝐹 (𝑚𝑡 ) − 𝐹 (𝑥∗) | with the number of 𝑓 -calls at 𝑏 = 1 on 𝑓11. Solid line: median (50 percentile) over 20 runs. Shaded area:
interquartile range (25–75 percentile) over 20 runs. Note that the interquartile ranges were so small that the shaded areas are barely
visible in some cases.

6.2.1 Results. Figure 3 shows that WRA-CMA and WRA-AGA could successfully optimize 𝑓5 and 𝑓7 with all 𝑏 ∈
{1, 3, 10, 30, 100} in all trials, whereas ADV-CMA-ES and ZO-Min–Max failed to optimize them except for 𝑓5 with 𝑏 ⩽ 3.

WRA-CMA was the only approach that successfully optimized 𝑓11 with all 𝑏 values, whereas ADV-CMA-ES could optimize

𝑓11 with 𝑏 = 1 with and without boundary and 𝑏 = 3 without boundary. From these results, we confirm that both

ZO-Min–Max and ADV-CMA-ES fail in problems where the min–max solution is a global min–max saddle point but is not

locally smooth and strongly convex–concave, and our approaches can solve such problems.

When the search domain is unbounded on 𝑓5, both ZO-Min–Max and ADV-CMA-ES successfully locate near-optimal

solutions for 𝑏 ⩽ 3 with smaller 𝑓 -calls than our approaches. However, for 𝑏 ⩾ 30, they failed to converge, although 𝑓5
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is smooth and strongly convex–concave. For 𝑓11 with the unbounded search domain, ZO-Min–Max failed to converge

at every trials, and ADV-CMA-ES could not obtain successful convergence for 𝑏 ⩾ 10, although 𝑓11 is also smooth and

strongly convex–concave. For ZO-Min–Max, an inadequate learning rate may be a possible reason. For convergence, it

must be tuned problem-dependently. However, even if an appropriate value is set, the slow convergence issue discussed

in Section 4 occurs. For ADV-CMA-ES, when 𝑏 ⩾ 30 in 𝑓5 and 𝑓11 with the unbounded search domain, slow convergence

issue is the main reason, as the expected 𝑓 -calls (blue dash line in Figure 3) in 𝑓5 exceeded 𝑓 -call budget. When the

search domain is unbounded, we expect ADV-CMA-ES to obtain the successful convergence for 𝑓11 until 𝑏 = 10 similarly

as 𝑓5. However, ADV-CMA-ES failed to converge in 𝑓11 with 𝑏 = 10. We observed that ADV-CMA-ES suffered to approach 𝑥∗

because the learning rate reached to lower bound [min. Therefore, to obtain successful convergence for 𝑓11 with 𝑏 = 10,

lower bound [min for ADV-CMA-ES should be properly set. When there was a bound for search domain, ADV-CMA-ES

failed to converge with 𝑏 = 10 for 𝑓5 and 𝑏 = 3 for 𝑓11.

The difference between WRA-CMA and WRA-AGA is in the speed of convergence for 𝑓5 and 𝑓7 as well as the performance

for 𝑓11. For 𝑓5 and 𝑓7, WRA-AGA converged faster than WRA-CMA. Meanwhile, WRA-AGA failed to optimize 𝑓11 within a given

𝑓 -call budget. Figure 4 shows gap 𝐹 (𝑚𝑡 ) − 𝐹 (𝑥∗) on 𝑓11 with 𝑏 = 1. From Figure 4, we expect that WRA-AGA eventually

converges, but the convergence speed is very slow. Preliminary, we confirmed that Algorithm 3 converges slowly on

ill-conditioned function. Therefore, on 𝑓11 which is ill-conditioned in𝑦, Algorithm 3 with small 𝑐max cannot significantly

improve the worst-case scenario candidate 𝑦 and the early-stopping strategy may terminate the inner maximization

process before approximating the worst-case scenario in adequate accuracy. Because of the underestimation of the

rankings on the worst-case objective functionRank𝐹 {(𝑥𝑖 )_𝑥𝑖=1
)} by WRA, the outer minimization failed to converge

at the global min–max solution, indicating the relevance of the choice of the inner solver for the WRA mechanism.

Because the CMA-ES is a variable metric approach and the covariance matrices are inherited over WRA calls, WRA-CMA

could optimize 𝑓11 efficiently.

6.2.2 Discussion on the effect of the interaction term. We discuss the effect of the worst-case scenario sensitivity

(coefficient matrix 𝐵 of the interaction term 𝑥𝑇𝐵𝑦) on 𝑓 -calls spent by our approaches when the objective function

is convex–concave. Figure 3 shows that the numbers of 𝑓 -calls were in 𝑂 (log(𝑏)) or even in 𝑂 (1) in terms of the

coefficient of the interaction term, 𝑏. We provide a brief but not rigorous explanation of these results.

For simplicity, we focus on 𝑓5 with 𝑑𝑥 = 𝑑𝑦 and 𝐵 = diag(𝑏, . . . , 𝑏). The worst-case objective function is 𝐹 (𝑥) =
(1+𝑏2)

2
∥𝑥 ∥2

2
and the worst-case scenario is 𝑦 (𝑥) = 𝑏𝑥 in this case. Moreover, we focus on WRA-CMA.

To proceed, we assume that the CMA-ES converges linearly for such spherical functions. That is, a point in {𝑥 :

∥𝑥 − 𝑥∗∥ ⩽ 𝜖 · ∥𝑚0

𝑥 − 𝑥∗∥} around the optimal solution 𝑥∗ can be found in 𝑂 (log(∥𝑚0

𝑥 − 𝑥∗∥/𝜖)) 𝑓 -calls. Although no

rigorous runtime analysis has been performed for the CMA-ES, we have ample empirical evidence. Moreover, (1+1)-ES,

which is a simplified version of the CMA-ES, converges linearly on Lipschitz smooth and strongly convex objective

functions [Akimoto et al. 2022a].

First, we consider how many iterations the CMA-ES for the outer minimization spends to reach a point𝑚
𝑇𝜖
𝑥 such that

∥𝑚𝑇𝜖𝑥 − 𝑥∗∥ ⩽ 𝜖 ∥𝑚0

𝑥 − 𝑥∗∥. We call 𝑇𝜖 the runtime. WRA returns approximate rankings of given solution candidates,

and they highly correlate with the true rankings. Then, the CMA-ES is expected to behave similarly in these two

rankings. Therefore, if the CMA-ES converges linearly for 𝐹 , we expect that the CMA-ES converges linearly for the

rankings given by WRA as well, which is partly supported by a theoretical investigation [Akimoto 2022]. Because the

worst-case objective function 𝐹 (𝑥) is spherical, the CMA-ES is expected to converge linearly, i.e., the runtime 𝑇𝜖 is in

𝑂 (log(∥𝑚0

𝑥 − 𝑥∗∥/𝜖)).
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Next, we consider how many 𝑓 -calls WRA-CMA spends in each call. Let the current search distribution of the CMA-ES

for the outer minimization be N(𝑚𝑡𝑥 , Σ𝑡𝑥 ). Because 𝐹 is spherical, Σ𝑡𝑥 is expected to be proportional to the identity

matrix 𝐼𝑑𝑥 . Let us assume that Σ𝑡𝑥 ≈ 𝜎2

𝑡 𝐼𝑑𝑥 . Then, the solution candidates 𝑥1, . . . , 𝑥_𝑥 given to WRA are independently

N(𝑚𝑡𝑥 , 𝜎2

𝑡 𝐼𝑑𝑥 )-distributed. For the two solution candidates 𝑥𝑖 and 𝑥 𝑗 , the expected difference in the worst-case objective

function values is as follows:

E[(𝐹 (𝑥𝑖 ) − 𝐹 (𝑥 𝑗 ))2]1/2 = (1 + 𝑏2) Tr((Σ𝑡𝑥 )2)1/2 ≈ 𝑑𝑥 1/2 (1 + 𝑏2)𝜎2

𝑡 . (4)

The early-stopping strategy is expected to stop the maximization process once the rankings of the given candidate

solutions are well-approximated in terms of Kendall’s rank correlation. To have a high value of the Kendall’s rank

correlation, the orders of 𝐹 (𝑥𝑖 ) and 𝐹 (𝑥 𝑗 ) and their approximate values, 𝑓 (𝑥𝑖 , 𝑦𝑖 ) and 𝑓 (𝑥 𝑗 , 𝑦 𝑗 ) must be concordant

with high probability for each pair (𝑥𝑖 , 𝑥 𝑗 ) among _𝑥 solution candidates 𝑥1, . . . , 𝑥_𝑥 , where 𝑦𝑖 (𝑖 = 1, . . . , _𝑥 ) is the

approximate worst-case scenario for 𝑥𝑖 obtained in WRA. It suffices to obtain 𝑦𝑖 and 𝑦 𝑗 such that |𝐹 (𝑥𝑖 ) − 𝑓 (𝑥𝑖 , 𝑦𝑖 ) | and
|𝐹 (𝑥 𝑗 ) − 𝑓 (𝑥 𝑗 , 𝑦 𝑗 ) | are both less than |𝐹 (𝑥𝑖 ) − 𝐹 (𝑥 𝑗 ) |. With a simple derivation, we obtain

𝐹 (𝑥) − 𝑓 (𝑥,𝑦) = 1

2

∥𝑦 (𝑥) − 𝑦∥2 . (5)

That is, if ∥𝑦 (𝑥𝑖 ) −𝑦𝑖 ∥ ⩽ 𝑐 · (1 + 𝑏2)1/2𝜎𝑡 is satisfied for some 𝑐 > 0, the true order of the two points among _𝑥 solution

candidates will be correctly identified with high probability. Because the objective function of the inner maximization

problem is spherical in𝑦, to obtain such approximate worst-case scenarios, the required 𝑓 -calls is𝑂

(
log

(
∥𝑦 (0)−�̂� (𝑥𝑖 ) ∥
𝑐 · (1+𝑏2)1/2𝜎𝑡

))
,

where 𝑦 (0) denotes the initial scenario for 𝑥𝑖 .

Assuming that the Gaussian distribution of the CMA-ES for the outer loop does not change significantly from the

previous iteration, the worst-case scenario for the solution candidate in the current iteration, 𝑦 (𝑥), and that in the

previous iteration are expected to follow the distribution N(𝑏𝑚𝑡𝑥 , 𝑏2Σ𝑡𝑥 ). Because the warm-starting strategy selects

the worst-case scenario among the set of scenarios including the ones obtained in the previous WRA call, the distance

between 𝑦 (𝑥) and 𝑦 is expected to be no greater than E[∥𝑦 (𝑥) − 𝑦 (0) ∥] = 𝑏2
Tr(Σ𝑡𝑥 ) = 𝑑𝑥𝑏

2𝜎2

𝑡 . From this, we estimate

∥𝑦 (0) − 𝑦 (𝑥)∥ ∈ 𝑂 (𝑏𝜎𝑡 ). As a result, the number of 𝑓 -calls required to approximate the worst-case objective function

values for each solution candidate is 𝑂

(
log

(
𝑏

𝑐 · (1+𝑏2)1/2
))
.

Altogether, the proposed approach is expected to locate a near-optimal solution with

𝑂

(
_𝑦 log

(
𝑏

𝑐 · (1 + 𝑏2)1/2

)
· log

(
∥𝑚 (0)𝑥 − 𝑥∗∥

𝜖

))
(6)

𝑓 -calls. It scales as log (𝑏) for 𝑏 ⩽ 1 and is constant for 𝑏 →∞, which well-estimates the behavior observed in Figure 3.

6.3 Experiment 2

We applied four approaches to the problems 𝑓1–𝑓4, 𝑓6, and 𝑓8–𝑓10 to investigate their performance on the functions that

are not smooth and strongly convex–concave.

The results are shown in Figure 5. We confirm that near-optimal solutions were obtained by WRA-CMA for 𝑓1–𝑓3, 𝑓6,

𝑓8, and 𝑓9 and by WRA-AGA for 𝑓1–𝑓3, 𝑓6, 𝑓8, and 𝑓10. Moreover, the existing approaches failed to locate near-optimal

solutions in all trials.

6.3.1 Category (S) (𝑓3, 𝑓6, and 𝑓8). Our approaches can solve 𝑓3, 𝑓6, and 𝑓8 even with 𝑁𝜔 = 1. Figure 6a demonstrates the

results of WRA-CMA and WRA-AGA with 𝑁𝜔 = 1 for 𝑓8. The worst-case scenario for 𝑓3, 𝑓6, and 𝑓8 is a singleton |𝑌 (𝑥∗) | = 1
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Fig. 5. Gap |𝐹 (𝑚𝑡 ) − 𝐹 (𝑥∗) | with the number of 𝑓 -calls at 𝑏 = 1 on 𝑓1–𝑓4, 𝑓6, and 𝑓8–𝑓10. Solid line: median (50 percentile) over 20
runs. Shaded area: interquartile range (25–75 percentile) over 20 runs. [R1C17] Note that the interquartile ranges were so small that
the shaded areas are barely visible in some cases.

and a constant around the global min–max solution 𝑥∗. Therefore, maintaining a single configuration (𝑁𝜔 = 1) was

sufficient for the warm-starting strategy in WRA to work efficiently on these problems. Figure 6a shows WRA-CMA and

WRA-AGA with a smaller 𝑁𝜔 could converge to near global min–max solution with fewer f-calls. This may be because

𝑓 -calls spent by the warm-starting strategy are saved by setting smaller 𝑁𝜔 . The reduction of 𝑓 -calls by a small 𝑁𝜔

was not significant; therefore, we do not consider 𝑁𝜔 should be daringly small.

6.3.2 Category (W) (𝑓1, 𝑓2). Maintaining multiple configurations, i.e., 𝑁𝜔 > 1, is crucial for the proposed approach

to successfully converge to the near global min–max solution 𝑥∗ for functions in Category (W) as we discussed in

Section 5.2.1. Figure 6b shows the results of WRA-CMA and WRA-AGA for 𝑓1 with 𝑁𝜔 ∈ {1, 3, 5, 7, 12, 24, 36}. We confirmed

that WRA-CMA with a small 𝑁𝜔 failed to converge to 𝑥∗. Meanwhile, WRA-AGA could converge to 𝑥∗ with 𝑁𝜔 = 1. This

may be because AGA can rapidly maximize 𝑓1 for 𝑦 from any starting point in Y and the warm-starting strategy is

unnecessary for WRA-AGA in 𝑓1.

6.3.3 Category (N) (𝑓4, 𝑓9, and 𝑓10). Multimodality in 𝑦, particularly with a weak global structure, seems to make it

difficult to obtain the global min–max solution. As we see in Figure 5 for 𝑓4, WRA-CMA and WRA-AGA could not successfully

converge. The objective function 𝑓 (𝑥, ·) for 𝑓4 has 2
𝑑𝑦

local solutions and is a multimodal function with a weak structure.
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Fig. 6. Median and interquartile range of the number of 𝑓 -calls spent by WRA-CMA and WRA-AGA over 20 trials with 𝑁𝜔 ∈
{1, 3, 5, 7, 12, 24, 36}. Note that the interquartile ranges were so small that the gaps between bars are barely visible in most cases.
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(c) 𝑓10

Fig. 7. Kendall’s 𝜏 between the rankings of the worst-case objective function values and rankings obtained using the WRA mechanism
at each iteration in a typical run of WRA-CMA. In 𝑓10, WRA-CMA was terminated due to Cond(Σ𝑥 ) > Cond

𝑥
max

before 𝑓 -calls reached 10
7.

Such an objective function is difficult to efficiently optimize with any of the currently proposed algorithms [Hansen

2009]. Therefore, we consider that the proposed approach failed to approximate the worst-case objective function

values {𝐹 (𝑥)}_𝑥
𝑖=1

at many iterations; consequently, the outer CMA-ES could not converge to 𝑥∗.

Setting 𝑁𝜔 greater than the number of local maxima in 𝑓 (𝑥, ·) is crucial to obtain successful convergence. As we

see in Figure 5 for 𝑓9, WRA-CMA could successfully converge. The objective function 𝑓 (𝑥, ·) for 𝑓9 has 8 local maxima.

When {𝑦𝑘 }𝑁𝜔

𝑘=1
can include every local solution because of 𝑁𝜔 = 36 > 8, the solver explores the worst-case scenario

using a good initial configuration in any case, i.e., the warm-starting strategy works effectively. Meanwhile, WRA-AGA

could not converge to 𝑥∗ in most trials. AGA failed to even locally maximize 𝑓 , possibly due to the ill-condition, more

precisely, the Hessian matrix is not necessarily negative definite at some 𝑥 . As a result of approximating the worst-case

rankings Rank𝐹 ({𝑥𝑖 }_𝑥𝑖=1
) in several iterations, the outer CMA-ES failed to converge to 𝑥∗. Further, for 𝑓4, we confirmed

the benefit of setting 𝑁𝜔 greater than the number of local maxima in 𝑓 (𝑥, ·). For 𝑑𝑦 = 5, 𝑁𝜔 = 36 is greater than the

number of local maxima, which is 2
5 = 32. Figure 5i shows the experimental result from WRA-CMA and WRA-AGA for 𝑓4

with 𝑑𝑥 = 𝑑𝑦 = 5. As shown in Figure 5i, WRA-AGA converged successfully and WRA-CMA converged to a near-optimal

solution.
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Fig. 8. Landscape of max𝑦∈𝑌𝑙𝑜𝑐𝑎𝑙 𝑓 (𝑥, 𝑦) with 𝑌𝑙𝑜𝑐𝑎𝑙 = Y and 𝑌𝑙𝑜𝑐𝑎𝑙 = {�̂� (𝑥) |𝑥 ∈ [−0.5, 0.5] } on 𝑓1, 𝑓5, and 𝑓10 with 𝑑𝑥 = 𝑑𝑦 = 1.
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Fig. 9. Median and interquartile range of the number of 𝑓 -calls spent by WRA-CMA and WRA-AGA over 20 trials on 𝑓10 with 𝑐max ∈
{1, 3, 5, 7, 10, 20}. Note that the interquartile ranges were so small that the gaps between bars are barely visible in most cases.

The relevance of 𝑐max is pronounced in the results of WRA-CMA for 𝑓10. Figure 5h shows that WRA-CMA with 𝑐max = 1

failed to converge for 𝑓10. From Figure 7, the Kendall’s 𝜏 for 𝑓10 is more frequently negative than those for 𝑓1 and

𝑓5 in which WRA-CMA could converge successfully. The reason for the low 𝜏 value is explained using Figure 8, which

visualizes the landscape of an approximated worst-case objective function max𝑦∈𝑌𝑙𝑜𝑐𝑎𝑙 𝑓 (𝑥,𝑦) with 𝑌𝑙𝑜𝑐𝑎𝑙 = Y (i.e.,

the ground truth worst-case objective) and 𝑌𝑙𝑜𝑐𝑎𝑙 = {𝑦 (𝑥) |𝑥 ∈ [−0.5, 0.5]}. Figure 8 simulates the situation where

the search distribution for 𝑥 is concentrated around [−0.5, 0.5] and hence 𝑁𝜔 worst-case scenario candidates in

WRA are concentrated at the corresponding worst-case scenario region. Differently from 𝑓1 and 𝑓5, the worst-case

objective function values of candidate solutions outside [−0.5, 0.5], which are generated by chance, are significantly

underestimated for 𝑓10. In such a situation, the worst-case scenario search with a small 𝑐max may be insufficient to

correctly rank such solutions and they may be regarded as the best solutions. This will prevent convergence to the

global min–max solution. From Figure 9, the performance of WRA-CMA is improved by setting a greater 𝑐max. However, a

too large 𝑐max value requires more 𝑓 -calls. WRA-AGA could converge successfully for 𝑓10 even with 𝑐max = 1. This could

be because the objective function for 𝑦 in 𝑓10 was relatively easy for Algorithm 3; therefore, the worst-case scenario

could be approximated with high accuracy even for small 𝑐max. Differently with the result from WRA-CMA, the number

of 𝑓 -calls spent by WRA-AGA was less sensitive on various 𝑐max. We confirmed that most of AGA in this experiments

was terminated by𝑈min before the number of improvements reached to 𝑐max.

Manuscript submitted to ACM



Covariance Matrix Adaptation Evolutionary Strategy with Worst-Case Ranking Approximation for Min–Max

Optimization 23

7 APPLICATION TO ROBUST BERTHING CONTROL

We confirm the effectiveness of WRA-CMA, WRA-AGA, WRA-CMA+ADV, and WRA-AGA+ADV on a robust berthing control

problem presented in [Akimoto et al. 2022b].

7.1 Problem description

We exactly follow the problem setup in [Akimoto et al. 2022b]. We briefly describe the problem. The objective of this

problem is to obtain a controller to control a ship to a target state located near a berth while avoiding collision with the

berth. The ship’s state is represented by 𝑠 ∈ R6
, and the control signal is represented by 𝑎 ∈ 𝑈 ⊂ R4

. The state equation

is the maneuvering modelling group model used in [Miyauchi et al. 2022]. The feedback controller 𝑢𝑥 : R6 → 𝑈 is

modeled by a neural network with 𝑑𝑥 = 99 parameters. The domain of the network parameters is set to X = [−1, 1]𝑑𝑥 .
We consider three cases of uncertainty sets. Case A: The wind condition is the uncertainty vector. The wind condition

is parameterized by the wind direction in [−𝜋, 𝜋] [rad] and wind velocity in [0, 0.5] [m/s]. Case B: The coefficient in

the state equation regarding the wind force is the uncertain vector, which comprises a 10-dimensional vector. Case C:

Both uncertainties in Cases A and B. In all cases, the search domain is scaled to Y = [−1, 1]𝑑𝑦 .
The objective function 𝑓 (𝑥,𝑦) comprises two components. The first component measures the difference between the

ship’s final state and target state. The second component measures the penalty for a collision with the berth. If a ship

collides with the berth during the control period comprising 200 [s], it receives a penalty greater than 10. Our objective

is to minimize the worst-case objective function max𝑦∈Y 𝑓 (𝑥,𝑦), where the uncertainty set Y differs for Cases A, B,

and C.

7.2 Experimental settings

The proposed approach and the existing approaches, ZO-Min–Max and ADV-CMA-ES, were applied to the robust berthing

control problem. For each problem, we run 20 independent trials with different random seeds. The maximum number

of 𝑓 -calls was set to 2 × 10
6
.

All approaches were configured as in Section 6, where 𝑢𝑥 = 1, ℓ𝑥 = −1, and 𝑏𝑦 = 1 were plugged, except that we

turned on the restart strategy of the proposed approach and ADV-CMA-ES to tackle multimodality as it has been used

in the previous study [Akimoto et al. 2022b], and the diagonal acceleration in CMA-ES for the outer minimization in

WRA-CMA and WRA-AGA. For fair comparison, we have implemented a simple restart strategy for ZO-Min–Max. The initial

solution and the initial scenario vector are reset uniform randomly in the given domains when ∥[𝑥 ∇̂𝑥 𝑓 (𝑥𝑡 , 𝑦𝑡 )∥2
2
+

∥[𝑦 ∇̂𝑦 𝑓 (𝑥𝑡 , 𝑦𝑡 )∥2
2
⩽ 10

−5
is satisfied, i.e., significant improvements of the solution candidate and the scenario vector are

not expected. We set the number of configurations as 𝑁𝜔 = 34 (= 2 × _𝑥 ). The termination thresholds were𝑉 𝑥
min

= 10
−6

and Cond
𝑥
max

= 10
14
. In addition, we terminated the proposed approach if the best worst-case objective function value

were not significantly improved. Precisely, we save 𝐹 𝑡
min

= min𝑖=1,...,_ (𝐹 (𝑥𝑖 )), where 𝐹 (𝑥𝑖 ) is the approximated worst-

case objective function value of 𝑥𝑖 computed in WRA, and terminate if max𝑇=𝑡−10,...,𝑡 {𝐹 𝑡
min
} −min𝑇=𝑡−10,...,𝑡 {𝐹 𝑡

min
} <

0.01 is satisfied.
7

For each trial, the obtained solution was evaluated on the worst-case objective function value as in the previous study

[Akimoto et al. 2022b]. To estimate the worst-case objective function value for each solution, we ran the (1+1)-CMA-ES to

7
We often observe that (1+1)-CMA-ES converges significantly faster than the standard CMA-ES (non-elitism CMA-ES) when optimizing a neural network.

Probably because of this effect, ADV-CMA-ES could perform several restarts on this problem, whereas the proposed approach could not perform any restart

without this termination condition. For the proposed approach to perform multiple restarts, we introduced the termination criterion at the risk of too

early termination. As a result, we confirmed that the proposed approach performed restarts 1 or 2 times in each run for Case A and Case C, and 2 − −4

times in each run for Case B.
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(c) C

Fig. 10. Performance of the solution obtained in 20 independent trials of ZO-Min–Max, ADV-CMA-ES, WRA-AGA, WRA-CMA+ADV, and
WRA-AGA+ADV for Cases A, B, and C. Side edge on each box indicates the lower quartile Q1 and upper quartile Q3, and middle line in
each box indicates the median. The lower and upper whiskers are the lowest datum above Q1-1.5(Q3-Q1) and the highest datum
below Q3+1.5(Q3+Q1).

approximate max𝑦∈Y 𝑓 (𝑥,𝑦) with 100 different initial points. Then, by taking the maximum of the obtained worst-case

scenario candidates, 𝑦1, . . . , 𝑦100, the worst-case objective function value is evaluated. For the configuration of the

(1+1)-CMA-ES, we exactly followed the previous study [Akimoto et al. 2022b].

7.3 Result and evaluation

The worst-case performances of the obtained solutions are summarized in Figure 10.

Results of ADV-CMA-ES and ZO-Min–Max. ADV-CMA-ES could find robust solutions in all but one trial in Case B.

Meanwhile, the medians of the worst-case performances in Cases A and C were greater than 10, indicating collision

with the berth. These results agree with those of a previous study [Akimoto et al. 2022b]. ZO-Min–Max failed to obtain

solutions that could avoid collision with the berth in the worst-case scenario in most trials in all cases.

Results of WRA-CMA and WRA-AGA. Except for a trial of WRA-AGA in Case C, WRA-CMA and WRA-AGA could find controllers

that could avoid collision with the berth in the worst-case scenarios. As discussed in Section 1, we hypothesize that the
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(b) WRA-CMA+ADV

Fig. 11. Visualization of the trajectories obtained by the controllers for the worst wind condition with the maximum wind velocity of
0.5 [m/s]. The best controller obtained by (a) WRA-CMA and (b) WRA-CMA+ADV are displayed. See the caption of Figure 1 for details of
the figures.

problems in Cases A and C are such that the worst-case scenario around the optimal controller for 𝐹 changes discon-

tinuously, and they are difficult for ADV-CMA-ES and ZO-Min–Max. We confirmed ADV-CMA-ES restarted significantly

more often than WRA-CMA and WRA-AGA, however, superior solutions were obtained by the proposed approaches. We

consider this is one of the reasons for the superior worst-case performances of WRA-CMA and WRA-AGA in Cases A and C.

Moreover, the worst-case performances of WRA-CMA and WRA-AGA were significantly worse than that of ADV-CMA-ES in

Case B. One reason for this result is the termination criterion introduced in the experiment, which prevents performing

an intensive local search. In addition, we confirmed that the worst-case performances of WRA-CMA and WRA-AGA were

inferior to that of ADV-CMA-ES, even without this termination condition, attributable to the slower convergence of

CMA-ES than (1+1)-CMA-ES for this problem.

Results of WRA-CMA+ADV and WRA-AGA+ADV. In Case B, WRA-CMA+ADV and WRA-AGA+ADV could obtain better worst-case

performances in several trials. From these results, we confirm that the motivation of running ADV-CMA-ES after WRA-CMA

and WRA-AGA, namely, improving the exploitation ability, was realized in Case B. The worst-case performances exhibited

more variance in Case A, and their median was significantly degraded in Case C. The negative effect of running

ADV-CMA-ES after WRA-CMA and WRA-AGAmay be explained as follows. The set 𝑌 of worst-case scenario candidates given

to ADV-CMA-ES is expected to approximate the worst-case scenario set 𝑌 (𝑥) of a given solution candidate 𝑥 as a subset

of 𝑌 . During ADV-CMA-ES, 𝑌 is fixed and the solution candidate 𝑥 is optimized under 𝑌 and a newly added scenario

candidate 𝑦
adv

. Because 𝑌 (𝑥) may change with 𝑥 , 𝑌 may not approximate 𝑌 (𝑥) well after ADV-CMA-ES and a single

scenario candidate 𝑦
adv

may not be sufficient to recover 𝑌 (𝑥). Thus, the solution obtained by ADV-CMA-ES may be

overfitting to 𝑌 and there may be scenarios where the performance is worse.
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Figure 11 shows the ship trajectory observed under the best controllers obtained by WRA-CMA and WRA-CMA+ADV.

Under both controllers, collision is successfully avoided under wind from an arbitrary direction.

8 CONCLUSION

To address the limitation of existing approaches for black-box min–max optimization problems, ZO-Min–Max and

ADV-CMA-ES, we propose a novel approach to minimize the worst-case objective function using the CMA-ES while

approximating the rankings of the worst-case objective function values of the solution candidates using a proposed

WRA mechanism. To save 𝑓 -calls inside the WRA mechanism, we implement a warm-starting strategy and an early-

stopping strategy. We developed WRA-CMA and WRA-AGA by combining the WRA mechanism with the CMA-ES and AGA,

respectively. A restart strategy and a hybridization of the proposed approach and ADV-CMA-ES are implemented for

practical use. The proposed approach was evaluated for 11 test problems and three cases of the robust berthing control

problem.

The relevant findings from our numerical experiments are as follows. On smooth strongly convex–concave problems,

where ZO-Min–Max and ADV-CMA-ES have been analyzed for their convergence, the proposed approach exhibited slower

convergence than existing approaches when the interaction between 𝑥 and 𝑦 is relatively weak. However, the 𝑓 -calls

were not increased significantly for the proposed approach when the interaction was stronger, whereas they were

increased significantly for the existing approaches. On nonsmooth strictly convex–concave problems and problems

where the global min–max solution is not a strict global min–max saddle point, ZO-Min–Max and ADV-CMA-ES failed to

converge, whereas the proposed approach converged. For the former problems, the proposed approach could locate the

global min–max solution even with 𝑁𝜔 = 1; a sufficiently large 𝑁𝜔 was a key to the success of the proposed approach.

When good initial configurations were not provided for some solution candidates, a greater 𝑐max was helpful.

The effectiveness of WRA-CMA and WRA-AGA were demonstrated in three cases of the robust berthing control problem.

For problems where wind direction was included in 𝑦, WRA-CMA and WRA-AGA could find controllers that avoid collision

with the berth in the worst-case scenario, whereas controllers obtained by the existing approaches, ADV-CMA-ES and

ZO-Min–Max, often collided with the berth in the worst-case scenario. For problems where the wind direction is included

in 𝑦, the worst-case scenario is expected to change discontinuously around the optimal controller for 𝐹 , and they are

difficult for the existing approaches. Moreover, the proposed approach can address such a difficulty. Therefore, we

consider that controllers obtained using the proposed approach were superior to those obtained using the existing

approaches. For a problem where the existing approaches obtained controllers that avoid a collision, we confirmed that

the existing approaches found a better solution than the solutions obtained using the proposed approach. In addition,

for such a problem, several trials showed that better controllers were obtained by running ADV-CMA-ES after WRA-CMA

and WRA-AGA.

Besides the above advantages of the proposed approach, one practical advantage of the proposed approach over

ZO-Min–Max and ADV-CMA-ES is that it is parallel-implementation friendly. In WRA, _𝑥 solversM(𝜔𝑘 ) (𝑘 = 1, . . . , _𝑥 )

can be run in parallel. The _𝑥𝑁𝜔 evaluations of 𝑓 (𝑥𝑖 , 𝑦𝑘 ) at the beginning of WRA can be performed in parallel.

Moreover, if WRA-CMA is used, _𝑦 𝑓 -calls at each iteration ofM(𝜔𝑘 ) can be performed in parallel. In total, roughly _𝑥_𝑦

times speedup in terms of the wall clock time can be achieved ideally. For example, in Case C of the robust berthing

control problem, we have 𝑑𝑥 = 99 and 𝑑𝑦 = 12; hence, _𝑥 = 17 and _𝑦 = 11, resulting in a possible speedup of factor

187. Each 𝑓 evaluation took about 0.1 s on average, amounting to about 2.3 days for each trial. If the ideal speedup is

achieved, the wall clock time reduces to about 18 min. This compensates for the disadvantage of the proposed approach

over ADV-CMA-ES: slower convergence.
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The main limitation of this study is the lack of theoretical guarantees. For the WRA mechanism to work effectively,

we assume that 𝑦 (𝑥) is continuous almost everywhere and max𝑦∈Y 𝑓 (𝑥,𝑦) can be solved efficiently for each 𝑥 . However,

questions as to how much 𝑦 can be sensitive or how efficiently the inner solverM should solve max𝑦∈Y 𝑓 (𝑥,𝑦) are not
answered formally in this study. Such a theoretical investigation provides not only a guarantee of the performance of

the proposed approach but also a seed to improve it. Therefore, theoretical investigations of the WRA mechanism are

important future research directions.

The black-box min–max optimization lacks the de facto standard benchmarking testbed, covering problems with

different characteristics. In this study, we design 11 test problems from the perspective of the characteristics of the global

min–max solution (whether it is a strict min–max saddle point, a weak min–max saddle point, or not a min–max saddle

point), and the perspective of the smoothness and the strong convexity of 𝑓 . Moreover, we limit our focus on problems

where 𝑓 (𝑥,𝑦) has relatively simple characteristics with respect to 𝑥 and 𝑦 and difficulties in black-box optimization,

such as ruggedness, non-separability, and ill-conditioning, are yet to be considered. For example, all test problems are

convex in 𝑥 except for 𝑓10 and the effect of the multimodality in 𝑥 is not considered. The investigation of the effect

of ill-conditioning of 𝑓 is limited to the comparison between 𝑓5 and 𝑓11. Because approaches for black-box min–max

optimization are designed and improved based on benchmarking and theoretical analyses on black-box min–max

optimization are rather limited, developing benchmarking test cases is highly desired. This is also an important future

research direction.
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A SENSITIVITY ANALYSIS

The sensitivities of WRA-CMA and WRA-AGA on their hyper-parameters 𝜏
threshold

, 𝑝+, and 𝑝− are investigated on test

problems. The experimental settings are the same as those described in Section 6.1. Among test problems, the proposed

approaches under the setting in Section 6.1 can converge to the optimal solution 𝑥∗ in 𝑓1–𝑓3 and 𝑓5–𝑓8. Test function 𝑓1

has similar characteristic with 𝑓2 in terms of that the worst-case scenarios around 𝑥∗ are discontinuously distributed,

and 𝑓5 has similar characteristic with 𝑓3 and 𝑓5–𝑓8 in which the worst-case scenarios around 𝑥∗ are continuously

distributed. Therefore, we use 𝑓1 and 𝑓5 for this sensitivity analysis. In this sensitivity analysis, the dimensions are set

to 𝑑𝑥 = 𝑑𝑦 = 20, and the coefficient matrix of the interaction term 𝑥𝑇𝐵𝑦 is 𝐵 = diag (1, . . . , 1).
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Fig. 12. Median and interquartile range of the number of 𝑓 -calls over 20 trials obtained from WRA-CMA and WRA-AGA with 𝜏
threshold

∈
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.

A.1 Sensitivity to 𝜏
threshold

A higher 𝜏
threshold

is expected to estimate the worst-case function 𝐹 with higher accuracy, while requiring more 𝑓 -calls

for WRA. On the other hand, when 𝜏
threshold

is set to a smaller value, WRA will spent fewer 𝑓 -calls, and the estimation

accuracy of the worst-case function 𝐹 is expected to be lower, leading to a difficulty for the proposed approaches to

converge at the optimal solution.

The results of the sensitive analysis on 𝜏
threshold

are shown in Figure 12.

The number of 𝑓 -calls spent by WRA-CMA depended on the setting of 𝜏
threshold

, however, the differences were at most

the factor of two when 𝜏
threshold

∈ [0.3, 0.7]. On 𝑓5, we have observed a clear trend of the efficacy as we expected.

When 𝜏
threshold

⩽ 0.7, the performance of WRA-CMA was degraded on 𝑓5, whereas it is more or less constant on 𝑓1. The

reason for such a constant behavior on 𝑓1 may be because the candidates of the worst-case scenarios are at the corners

of the domain Y, independently of solution candidates. Therefore, once such scenario vectors are maintained in 𝑁𝜔

scenarios, the ranking of the worst-case objective function can be estimated accurately with the initial scenario vectors

in WRA. In such a case, the estimated worst-case ranking will not change significantly from its initial estimates and it

will results in 𝜏 ⩾ 0.7 at the first round.

The numbers of 𝑓 -calls spent by WRA-AGA were nearly constant over different values of 𝜏
threshold

. This may be due to

the fact that 𝑓1 and 𝑓5 are concave and linear with respect to 𝑦 and they can be maximized easily by AGA. Then, the

estimated ranking of the solution candidates on the worst-case objective quickly converges and 𝜏 will be 1. In such a

situation, the performance will not change for 𝜏
threshold

< 1.

A.2 Sensitivity to 𝑝+ and 𝑝−

The frequency of refreshing configurations {(𝑦𝑘 , 𝜔𝑘 )}𝑁𝜔

𝑘=1
is considered to have the following impacts. If the configura-

tions are too frequently refreshed, the warm starting strategy will become less effective. The frequency of refreshing

configurations is controlled by 𝑝+, 𝑝−, and 𝑝threshold
. The minimum number of iterations that a configuration is refreshed

after the last use is given by (𝑝+ − 𝑝threshold
)/𝑝−. In this study, we fixed 𝑝

threshold
= 0.1 and changed 𝑝+ and 𝑝−.

Figure 13 and Figure 14 shows the results of sensitivity analysis on 𝑓1 and 𝑓5. On both problems, we can confirm

that the proposed approach is not sensitive to the change of 𝑝+ and 𝑝−. On 𝑓5, the reason is simply because the
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Fig. 13. Median and interquartile range of the number of 𝑓 -calls over 20 trials obtained from WRA-CMA and WRA-AGA with 𝑝+ ∈
{1, 0.8, 0.6, 0.4, 0.2}.
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Fig. 14. Median and interquartile range of the number of 𝑓 -calls over 20 trials obtained from WRA-CMA and WRA-AGA with 𝑝− ∈
{0.01, 0.02, 0.05, 0.1, 0.3}.

refreshing strategy is not necessary as a single configuration is sufficient for this problem. Indeed, one among 𝑁𝜔

configurations has been selected as the worst case scenario almost all the time during optimization. On 𝑓1, because

the objective function is linear with respect to 𝑦, searching for the worst-case scenario from an inherited worst-case

scenario candidate that are not close to the worst-case scenario for a given 𝑥 and searching from a randomly refreshed

scenario will requires nearly the same number of 𝑓 -calls to locate a near worst-case scenario.

The effect of refreshing strategy is expected to appear when the objective function is multimodal with respect to 𝑦.

Further investigation is required into this direction.

B [R2C13] SCALABILITY ANALYSIS

We investigate the efficiency of WRA-CMA and WRA-AGA on 𝑓1 and 𝑓5 with various dimensions 𝑑𝑦 and 𝑑𝑥 . The experimental

setting is the same as in Section 6.1 except that the coefficient matrix 𝐵 of the interaction term 𝑥𝑇𝐵𝑦 is set to a band

matrix with the band width of |𝑑𝑦 − 𝑑𝑥 | + 1 and the band elements are all 1.
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Fig. 15. Median and interquartile range of the number of 𝑓 -calls on 𝑑𝑥 ∈ {5, 10, 20, 40, 60, 80} over 20 trials.
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Fig. 16. Median and interquartile range of the number of 𝑓 -calls on 𝑑𝑦 ∈ {5, 10, 20, 40, 60, 80} over 20 trials.

B.1 Scalability to 𝑑𝑥

Figure 15 shows the results of WRA-CMA and WRA-AGA on 𝑓1 and 𝑓5 with different 𝑑𝑥 ∈ {5, 10, 20, 40, 60, 80} and 𝑑𝑦 = 10.

The numbers of 𝑓 -calls spent by these approaches increase as 𝑑𝑥 increases. On 𝑓5, the increase is near-linearly with

respect to 𝑑𝑥 . This may be understood naturally as the CMA-ES used for the outer-minimization requires 𝑂 (𝑑𝑥 ) 𝑓 -calls
on convex quadratic functions. On the other hand, it is more than linearly on 𝑓1. This may be understood as the defect

of the cumulative step-size adaptation (CSA) on problems with no-effective dimensions. On 𝑓1, the worst-case objective

function has the effective dimension of rank(𝐵) = min(𝑑𝑥 , 𝑑𝑦) and it is 10 if 𝑑𝑥 ⩾ 10. On such problem, it has been

reported in [Akimoto and Hansen 2022] that the existence of no effective dimension slows down the convergence of

the CSA used in the CMA-ES.

B.2 Scalability to 𝑑𝑦

The scalability of 𝑓 -calls spent by WRA-CMA and WRA-AGA is investigated as the dimension of the scenario vector 𝑑𝑦

changes in 𝑓1 and 𝑓5. The results on 𝑑𝑦 ∈ {5, 10, 20, 40, 60, 80} with fixing 𝑑𝑥 = 10 are shown in Figure 16.
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First, we focus on the results of WRA-AGA. The number of 𝑓 -calls scaled up near linearly with respect to 𝑑𝑦 when

𝑑𝑦 ⩾ 10. This may be simply because that 𝑑𝑦 𝑓 -calls are required to approximate a gradient at each update.

Second, we focus on the results of WRA-CMA. Similarly to the results of WRA-AGA, the number of 𝑓 -calls scaled up near

linearly with respect to 𝑑𝑦 on 𝑓5. Because the CMA-ES requires 𝑂 (𝑑𝑦) 𝑓 -calls to solve a convex quadratic function, this

may be understood as such an effect. On the other hand, the number of 𝑓 -calls on 𝑓1 did not increased for 𝑑𝑦 ⩾ 40. This

may be because the effective dimension of the objective function with respect to 𝑦 is rank(𝐵) = min(𝑑𝑥 , 𝑑𝑦) and it is 10

if 𝑑𝑦 ⩾ 10. Differently from the result of the scalability analysis to 𝑑𝑥 , the defect of CSA was considered successfully

avoided by the early stopping strategy of WRA.
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