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ABSTRACT

Graph structure patterns are widely used to model different area

data recently. How to detect anomalous graph information on these

graph data has become a popular research problem. The objective

of this research is centered on the particular issue that how to

detect abnormal graphs within a graph set. The previous works

have observed that abnormal graphs mainly show node-level and

graph-level anomalies, but these methods equally treat two anom-

aly forms above in the evaluation of abnormal graphs, which is con-

trary to the fact that different types of abnormal graph data have

different degrees in terms of node-level and graph-level anomalies.

Furthermore, abnormal graphs that have subtle differences from

normal graphs are easily escaped detection by the existing meth-

ods. Thus, we propose a multi-representations space separation

based graph-level anomaly-aware detection framework in this pa-

per. To consider the different importance of node-level and graph-

level anomalies, we design an anomaly-aware module to learn the

specific weight between them in the abnormal graph evaluation

process. In addition, we learn strictly separate normal and abnor-

mal graph representation spaces by four types of weighted graph

representations against each other including anchor normal graphs,

anchor abnormal graphs, training normal graphs, and training ab-

normal graphs. Based on the distance error between the graph rep-

resentations of the test graph and both normal and abnormal graph

representation spaces, we can accurately determine whether the

test graph is anomalous. Our approach has been extensively evalu-

ated against baseline methods using ten public graph datasets, and

the results demonstrate its effectiveness. The code for our method

is publicly available on https://github.com/whb605/MssGAD.git
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1 INTRODUCTION

The application of graph structure pattern [25, 42] is widely ex-

ploited in various scenarios. For example, people are associated

with performing various social activities on social networks, and

every user is affiliated with rich profile information. So users are

as attributed nodes and relationships of users are as edges when

social networks are treated as graphs. As the population of vari-

ous graphs, graph anomaly detection application [1, 27] gets in-

creasing attention in recent years. Graph anomaly detection pri-

marily aims to pinpoint uncommon nodes or graphs that exhibit

significant deviations from the majority of other nodes or graphs

within a given set of graph data. Thus, in this work, we concentrate

on detecting abnormal graphs within a graph set, i.e., graph-level

anomaly detection(GLAD), which is also especially significant in

real-life applications. As an illustration, GLAD can be utilized to

identify unusual molecules in extensive collections of molecules

that are depicted as molecular graphs, where atoms are illustrated

as nodes and bonds are represented as edges. This is because ab-

normal molecules have distinct structures and features in their cor-

responding graphs compared to other molecules. Similarly, com-

pared with traditional financial fraud detection technology [6, 43],

GLAD can not only intuitively present the complex topology im-

plied in the data, but also integrate the correlation between data

http://arxiv.org/abs/2307.12994v1
https://github.com/whb605/MssGAD.git
https://doi.org/10.1145/3603719.3603739
https://doi.org/10.1145/3603719.3603739
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objects into the fraud identification task, making it easier to iden-

tify the fraud that is hard to find. In conclusion, GLAD is more

worth developing to improve the performance of anomalous graph

detection.

Figure 1: The example of different anomaly patterns in

datasets. In dataset A, the overall structure of a normal

graph is a hexagon connected by six nodes, and the edges

between the nodes can be arbitrary. However, the difference

in the anomaly graph is that this hexagonal structure is bro-

ken by the extra connected nodes, which indicates that the

graph anomaly in dataset A needs to be judged in conjunc-

tion with the overall structure, which is also known as the

graph-level anomaly. In contrast, the overall shape of the

nodes connected in the normal graph in dataset B is not

fixed, but there needs to be a connection linking each pair

of nodes. While in the abnormal graph, there are no con-

nected edges between several nodes. Therefore, the anomaly

of dataset B is mainly manifested as the different connectiv-

ity of the nodes, that is, the node-level anomaly. In addition,

even if they are both graph-level anomalies or node-level

anomalies, the degree of significance of the difference be-

tween them and normal graphs is not the same. In dataset

A, the structure of graph Aj is closer to a normal graph than

graph Ai, while in dataset B, graph Bn also has fewer miss-

ing edges than graph Bm. These anomalous individuals that

are more like the normal graphs will be more difficult to dis-

criminate.

In recent years, GLADhas gradually received attention and some

methods have achieved good performance. Several studies have

shown that GLAD can achieve promising results by utilizing off-

the-shelf methods like one-class support vectormachine (OCSVM)[34]

and isolation forest (iForest)[22]. However, the efficacy of these

detection methods is restricted, because these measures are not

good at extracting effective node-level and graph-level representa-

tions on complex graph data and the evaluation strategy is shal-

low. Due to the remarkable development of deep learning, some

commonly used graph deep learning methods [41] are migrated to

GLAD and have shown excellent performance. such as [4, 13, 28,

29, 31]. These approaches initially investigate the observation that

abnormal graphs consistently manifest anomalies at both the node

and graph levels. Subsequently, these methods employ encoders

based on graph neural networks (GNNs) [12, 17, 36] to learn node-

level and graph-level representations of normal graphs, and then

determine the normality of a graph by computing node-level and

graph-level reconstruction losses. However, these methods equally

treat node-level anomaly and graph-level anomaly in the evalua-

tion process of abnormal graphs, while themanifestation of anoma-

lous graphs may vary in different graph sets. In other words, ev-

ery type of graph data shows different degrees of node-level and

graph-level anomalies. For instance, anomalous molecule graphs,

differ from other normal molecule graphs in terms of the global

structure, i.e., graph-level anomaly. But anomalous graphs are al-

ways node attribute anomalies or user connectivity anomalies in

social network graphs, i.e., node-level anomaly. In addition, nor-

mal and abnormal graphs may be similar in some graph sets. If we

only rely on the popular anomaly evaluation way based on graph

representation reconstruction error, these abnormal graphs with

subtle differences are difficult to be identified. Figure 1 illustrates a

specific example. Thus, existing methods have not taken the above

problems into account very well, and as a result, their performance

in graph anomaly detection is also affected.

In this paper, a new approach for detecting the graph-level anom-

aly, namely Multi-representations Space Separation based Graph-

levelAnomaly-awareDetection(MssGAD), is introduced to address

the aforementioned challenges. In order tomore effectively account

for the varying significance of node-level and graph-level anom-

alies across different sets of graphs, we devise an anomaly-aware

approach that dynamically adjusts the weighting of node-level and

graph-level anomalies in the overall detection of graph anomalies.

Furthermore, we learn a separate multi-representations space to

differentiate normal graph representation space and abnormal graph

representation space. Specifically, we select a certain number of

graph samples from normal and anomalous graphs of the training

set as anchor normal graphs and anchor abnormal graphs. Then,

we train the proposed framework to make normal graphs closer to

the anchor normal graph and anomalous graphs closer to the an-

chor anomalous graph under the weighted graph representation

guidance. Thus, we can get contractible and separate anchor nor-

mal graph representation space and anchor abnormal graph repre-

sentation space. Finally, we judge graph is normal or not by com-

paring the distances between it and the two kinds of graph rep-

resentation spaces above. Therefore, the primary achievements of

this research can be highlighted as:

• We present a framework for detecting the graph-level anom-

aly through the use of the anomaly-aware strategy. For dif-

ferent graph sets, we dynamically adjust the weight of node-

level anomaly and graph-level anomaly in the customized

loss function optimization, to better adapt to different graph

sets.

• Wepropose amulti-representation space separationmethod,

which can gradually increase the distance between anchor

normal graph representation space and anchor abnormal

graph representation space during the training process. And
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we transfer the GLAD problem to the task of computing and

comparing the distances between test graphs and two an-

chor graph representation spaces.

• Wepropose a newGLAD framework, namelyMssGAD,which

can effectively finish the task of graph-level anomaly detec-

tion. It also shows remarkable robustness to different datasets

and it is not sensitive to the abnormal graph label in the col-

lection.

The remaining sections of this paper are structured as follows:

Section 2 provides an overview of related research. Section 3 elab-

orates on the problem definition of graph-level anomaly detection.

Section 4 presents a comprehensive description of the implemen-

tation process and details of our framework. Section 5 showcases

our method’s experimental setup and results on various graph sets

and compares our approach with some baseline methods. Finally,

Section 6 provides concluding remarks.

2 RELATED WORK

With the continuous attention of researchers, graph neural net-

works have been developed significantly and many graph anomaly

detection methods based on them have been proposed, and in this

section, we present the related work from the above two aspects.

2.1 Graph Neural Networks

GNNs [17, 36, 41] are a type of neural network that can operate

directly on graph-structured data. Conventional neural networks

can handle vector or sequence information, and GNNs can learn

and reason about relationships between objects represented as nodes

in a graph and edges connecting them. GNNs have demonstrated

significant promise in numerous tasks, including node classifica-

tion [8, 33, 39], link prediction [5, 10, 44], and graph clustering

[7, 19, 45]. A major benefit of GNNs is their capacity to grasp not

only the local properties but also the global information of a graph,

allowing them tomake accurate predictions based on the structural

characteristics of the graph.

There are various kinds of GNNs, including graph convolutional

networks (GCNs) [14, 21, 30, 40], graph attention networks (GATs)

[36, 38], and graph recurrent neural networks (GRNNs) [9, 11],

each with its unique architecture and approach to graph learn-

ing. As interest in graph analysis continues to grow and graph-

structured data becomes increasingly available, the use of GNNs is

now crucial for data mining and many artificial intelligence topics

will also utilize GNNs. We make use of GCNs in this paper to ob-

tain node-level and graph-level representations of graphs, which

enable us to identify graph anomalies from both local and global

standpoints.

2.2 Graph Anomaly Detection

Graph anomaly detection involves identifying unusual patterns or

behaviors in a dataset that is represented as a graph. This tech-

nique can be categorized into two types: graph-level anomaly de-

tection (GLAD) and node-level anomaly detection (NLAD). Unlike

traditional anomaly detection methods that operate on tabular or

vector data, GLAD aims to identify the graphs which have unusual

or unexpected patterns in a graph set. NLAD refers to identifying

the nodes which are significantly different from others in a single

graph.

Many GNNs-based graph anomaly detection approaches have

beenused and reached great performance. For instance, someNLAD

methods [16, 18, 35] concentrate on detecting abnormal nodes or

edges within a vast graph. In addition, other NLADmethods [3, 15]

consider building contrast instances to extract abnormal relation-

ships of nodes. Recently, some GLAD methods such as [24, 26, 46]

focus on graph-level anomaly detection, and their performance

is better than traditional shallow approaches [2, 22] on different

graph sets. GLocalKD [26] is one example of a method that utilized

graph representation distillation to obtain errors in node-level and

graph-level representations, which are subsequently employed for

the detection of anomalous graphs. OCGTL [32] used advanced

neural transformation learning to improve one-class classification

performance in GLAD tasks. Other methods based on graph out-

of-distribution detection are proposed, such as GOOD-D [23] and

GraphDE [20].

But it should be noted that themanifestation of graph anomalies

in different graph sets is not always consistent. Existing GLAD

methods do not deal well with this problem, therefore, these meth-

ods failed to achieve good generalization performance. For exam-

ple, the difference between anomalous and normal graphs in some

datasets may specifically be more reflected at the node level, while

in other datasets it is more reflected at the graph level. In response,

we propose an anomaly-aware module that leverages dynamic fac-

tors to more accurately adjust the weight of graph-level and node-

level anomalies in the overall detection of anomalies. And for the

issue that anomalous patterns in some datasets are more subtle

and difficult to grasp than others, we learn separate anchor normal

graph representation space and anchor abnormal graph represen-

tation space to detect anomalous graphs more precisely.

3 PRELIMINARIES

3.1 Definition

A graph set is represented as G = {61, 62, ..., 6I }, where z indicates

the number of graphs in the dataset. And a single graph is denoted

as 6 = {+ , �, - }, where+ = {E1, E2, ..., E=} denotes the set of nodes,

� = {41, 42, ..., 4<} denotes the set of edges and - = {G1, G2, ..., G=}

denotes the set of node attribute in the graph respectively. If the

graph is attributed, the feature vector of node E8 , denoted by G8 ,

is generated by the node’s attributes or labels. If the graph is not

attributed, then G8 represents the degree of node E8 . Moreover, �

is an adjacency matrix that denotes the topology of graph 6, �8 9 is

assigned 1 when the edge between E8 and E 9 exists, and by contrast,

0 when not.

• Node-level anomalymeans that a graph has unusual node

attributes or labels and anomalous edges between nodes com-

pared with nodes of normal graphs.We evaluate such anom-

alies by node-level representations. The node-level repre-

sentations is the fusion feature distilled from node neigh-

bors’ attributes and connection status between nodes which

is denoted by �+ = {ℎE1, ℎE2, ..., ℎE=} E8 ∈ + .

• Graph-level anomaly indicates that there is an inconsis-

tency in the overall structure of a particular graph compared
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to normal graphs. We capture this difference through graph-

level representations. The graph-level representations con-

centrate on themore comprehensive information of thewhole

graph which is denoted by �G = {ℎ61, ℎ62, ..., ℎ6I} 68 ∈ G.

In order to derive the graph-level representations, we apply

a max-pooling operation to the node-level representations

of each dimension for all nodes in the graph, and the specific

formula is shown below:

ℎ6 = [
=

max
8=1

(

ℎ1E8

)

,
=

max
8=1

(

ℎ2E8

)

, ...,
=

max
8=1

(

ℎ3E8

)

] E8 ∈ 6, (1)

where the dimension of the node-level representations is d.

3.2 Problem Statement

Given a graph set G = {61, 62, ..., 6I }, where 68 = {+ , �, - } denotes

an unlabeled graph that may be normal or abnormal, we aim to

train a model which can proficiently identify anomalous graphs

that demonstrate substantial deviations from the majority of nor-

mal graphs in both node-level and graph-level anomalies.

4 METHODS

We introduce a framework for identifying graph-level anomalies

in this section, which merges node-level and graph-level represen-

tations of graphs. The overall structure of the MssGAD framework

we propose is illustrated in Figure 2. As a point of emphasis, we in-

troduce the anomaly-aware module and the multi-representations

space separation in detail and explain how they assist the model

to identify more salient features. Then we describe the critical way

to compute the score for anomaly detection.

4.1 Anomaly-aware Module

The key intuition of the anomaly-aware module is that themodel is

utilized to detect graph-level anomalies. The distinction between

normal and abnormal graphs can be more specifically attributed

to either the node level or the graph level. To account for this,

we present an anomaly-aware module that assesses whether the

anomalous pattern is mainly manifested in the node-level repre-

sentations or the graph-level representations.

First, we divided the graph set G into two sets�% and�# ,�% =

{�%1,�%2, ..., �%=} �%8 ∈ � contains normal graphs, and �# =

{�# 1,�# 2, ..., �#< } �#8 ∈ � contains abnormal graphs. And we

randomly extract a certain ratio of samples from �% and �# re-

spectively denoted by �%( = {�%(1,�%(2, ..., �%(> } �%(8 ∈ �%

and �#( = {�#(1,�#(2, ..., �#(A } �#(8 ∈ �# . Under ideal con-

ditions, the specific proportion of sampling should be determined

by the distributions of graphs in the embedding space. However,

the distributions are unknown. Therefore, after experiments with

various parameters, we finally determine the ratio of sampling as

follows:

|�B | = 4lg( |� | ) �B ⊂ �, (2)

where |�B | represents the number of anchor graphs, while |� | cor-

responds to the total number of graphs within the set that have the

same label. These samples are anchor graphs for the model during

training.

Subsequently, we utilize a graph neural network model to ac-

quire both node-level and graph-level representations. We use the

original graph-level and node-level representations of�% ,�%( , and

�#( to calculate four significant distances denoted by�%=>34 , �%6A0?ℎ,

�#=>34 , �#6A0?ℎ :

�%=>34 =

1

|�% | ∗ |�%( |

∑

‖ 54 (ℎE8) − 54
(

ℎE 9
)

‖, (3)

�%6A0?ℎ =

1

|�% | ∗ |�%( |

∑

‖�68 − �69 ‖, (4)

�#=>34 =

1

|�% | ∗ |�#( |

∑

‖ 54 (ℎE8) − 54 (ℎE: ) ‖, (5)

�#6A0?ℎ =

1

|�% | ∗ |�#( |

∑

‖�68 − �6: ‖, (6)

E8 ∈ �%8 , E 9 ∈ �%(8 , E: ∈ �#(8 , 68 ∈ �% , 6 9 ∈ �%( , 6: ∈ �#( ,

whereℎE8 denotes the node representations of graphs in�% ,ℎE 9 de-

notes the node representations of graphs in �%( and ℎE: denotes

the node representations of graphs in �#( . Similarly, the graph-

level representations of the graphs in the three aforementioned

graph sets are respectively referred to as �68 , �69 , and �6: . The

function 54 denotes the feature extraction process of node-level

representations which can be common functions such as "0G ()

and �E6 (), or more complex functions. In experiments, we use

"0G () as 54 . By combining both node-level representations and

graph-level representations, the first two distances determine the

dissimilarities between normal graphs and anchor normal graphs,

while the latter two are relevant to normal graphs and anchor ab-

normal graphs.

We refer to the Euclidean distance between�%=>34 and �#=>34

as the node-level representation difference and the Euclidean dis-

tance between �%6A0?ℎ and �#6A0?ℎ as the graph-level represen-

tation difference. These two distances assist us to evaluate which

level of representation varies more significantly so that we can pay

more attention to it during training. To quantify how much we fo-

cus on two levels of representations, we introduce two changeable

weight factorsU and V . Specifically, if the node-level representation

difference is more than twice as large as the graph-level represen-

tation difference, U is empirically set to 0 while V is set to 1, by

which we emphasize the node-level representations when calcu-

lating the multi-representations space distances. On the contrary,

if the graph-level representation difference is more than twice as

large as the node-level representation difference, to utilize the graph-

level representations, we set U to 1 and V to 0. In other cases, U and

V are equally set to 0.5 to fuse both of them. By using the anomaly-

aware module to dynamically determine the weight factors, our

model is able to adapt to different patterns of graph anomaly.

4.2 Multi-representations Space Separation

The motivation is the distribution of feature vectors in the embed-

ding space can be very complex. The distribution of some anoma-

lous graphs may be very close to that of normal graphs, making

it difficult to discern subtle differences between them. Therefore

the model may be misled and only achieve sub-optimal effects. To

tackle this challenge, we utilize the extracted anchor graphs �%( ,

and �#( in the anomaly-aware module to guide the normal and

abnormal graphs to be separated.

We map the above four graph sets to the multi-representation

space by fusing the graph-level representations and node-level rep-

resentations in a weighted way. The specific graph representation
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Figure 2: The framework of the proposed MssGAD. a, The Anomaly-aware Module. b, The Training and Detection Procedure.

In the anomaly-awaremodule, we randomly select a certain ratio of anchor normal graphs and anchor abnormal graphs from

normal graphs and abnormal graphs respectively. Then we calculate the node-level representations and graph-level represen-

tations of anchor normal graphs, anchor abnormal graphs, and training normal graphs. Next, we compute four Euclidean

distances among the representations to determine the specific weight in terms of node-level and graph-level anomaly. In the

training and detection procedure, we map the anchor normal graphs, the normal graphs, the abnormal graphs, and the anchor

abnormal graphs to the multi-representations space. We promote the four graph representation spaces to close with or push

away each other through the constraint of the loss function, and eventuallymake the normal and abnormal graph representa-

tion spaces separate from each other. During the reference process, the trained model is employed to map the test graph onto

the graph representation space. Further, wemeasure the graph representation space distance between the test and anchor nor-

mal graphs as �8BC? and obtain the graph representation space distance between the test and anchor abnormal graphs denoted

by �8BC= similarly. Eventually, we judge the label of the test graph by (2>A46 which compares �8BC= with �8BC? .

Table 1: Information and attributes of graph anomaly datasets.

Datasets AIDS DHFR MUTAG PTC-FM HSE MMP P53 PPAR ENZYMES PROTEINS

GRAPHS 2000 756 188 349 8150 7320 8634 8184 600 1113

AVG-NODES 15.69 42.43 17.93 14.11 16.72 17.49 17.79 17.23 32.63 39.06

AVG-EDGES 16.2 44.54 19.79 14.48 17.04 17.83 18.19 17.55 62.14 72.82
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Table 2: The performance of anomaly detection in terms of mean AUC (%) and standard deviation (%). A = 0 means that graphs

with label 0 in the dataset are treated as anomalous graphs, while A = 1means that graphs with label 1 in the dataset are treated

as anomalous graphs.

Datasets
FGSD-IF FGSD-LOF FGSD-OCSVM GOOD-D OCGTL MssGAD

A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1

AIDS 99.35±0.75 0.65±0.75 87.92±3.45 12.08±3.45 83.47±4.89 16.50±4.89 92.62±2.19 14.56±7.39 94.89±3.74 98.90±1.13 99.61±0.76 98.87±0.45

DHFR 51.51±4.09 48.49±4.09 49.05±5.97 50.95±5.97 55.05±6.37 44.95±6.37 62.82±2.98 61.35±4.73 71.77±8.78 50.15±6.22 72.24±2.05 72.27±2.87

MUTAG 78.98±8.67 21.02±8.67 74.45±5.94 25.55±5.94 57.70±5.71 42.30±5.71 79.41±2.45 18.64±8.66 86.41±9.34 82.05±9.56 90.07±3.42 89.18±4.74

PTC-FM 40.86±5.48 59.14±5.48 42.88±4.83 57.12±4.83 50.38±7.88 49.62±7.88 54.85±5.76 51.37±5.45 60.52±5.06 46.56±3.97 61.58±3.59 62.19±5.00

HSE 39.26±2.19 60.74±2.19 42.86±3.28 57.14±3.28 42.13±2.78 57.87±2.78 66.86±3.05 55.98±3.37 64.98±4.34 64.57±4.06 55.76±7.26 52.87±6.85

MMP 67.97±1.08 32.03±1.08 57.71±1.78 42.29±1.78 51.90±2.04 48.10±2.04 70.14±2.09 52.85±3.44 61.01±1.34 80.53±1.27 68.07±0.75 68.05±0.81

P53 66.83±2.35 33.17±2.35 57.26±1.58 42.74±1.58 48.64±3.03 51.36±3.03 62.88±2.29 58.73±2.23 61.92±5.25 75.98±4.34 62.19±8.78 60.59±5.61

PPAR 34.83±3.10 65.17±3.10 47.14±4.96 52.86±4.96 50.13±5.27 49.87±5.27 66.61±1.55 55.01±4.07 61.07±4.10 70.36±6.58 61.04±7.04 65.76±3.94

ENZYMES 47.82±5.27 48.47±6.96 38.68±6.03 46.36±5.92 42.72±5.40 55.04±5.31 63.16±4.58 54.79±5.81 65.84±12.50 64.44±6.48 65.90±5.68 57.42±6.41

PROTEINS 75.30±2.21 24.68±2.21 58.29±3.74 41.71±3.74 31.81±0.83 68.19±0.83 72.20±4.00 72.32±3.32 59.34±1.27 64.78±2.96 77.24±3.04 76.63±3.41

space distances can be given as:

�8BC1 = U ∗
∑

‖�68 − �69 ‖ + V ∗
∑

‖ 54 (ℎE8) − 54
(

ℎE 9
)

‖, (7)

�8BC2 = U ∗
∑

‖�68 − �6: ‖ + V ∗
∑

‖ 54 (ℎE8) − 54 (ℎE: ) ‖, (8)

�8BC3 = U ∗
∑

‖�69 − �6: ‖ + V ∗
∑

‖ 54
(

ℎE 9
)

− 54 (ℎE: ) ‖, (9)

�8BC4 = U ∗
∑

‖�6; − �69 ‖ + V ∗
∑

‖ 54 (ℎE; ) − 54
(

ℎE 9
)

‖, (10)

�8BC5 = U ∗
∑

‖�6; − �6: ‖ + V ∗
∑

‖ 54 (ℎE; ) − 54 (ℎE: ) ‖, (11)

E8 ∈ �%8 , E; ∈ �#8 , E 9 ∈ �%(8 , E: ∈ �#(8 ,

68 ∈ �% , 6; ∈ �# , 6 9 ∈ �%( , 6: ∈ �#( .

We can denote the graph representation space distance between

normal graphs and anchor normal graphs by �8BC1, normal graphs

and anchor abnormal graphs by �8BC2, anchor normal graphs and

anchor abnormal graphs by �8BC3. Likewise, we can obtain the

graph representation space distance between abnormal graphs and

anchor normal graphs denoted by �8BC4 as well as which between

abnormal graphs and anchor abnormal graphs denoted by �8BC5.

During training, we can present the training loss function as:

!>BB? = "40= (�8BC1) −"40= (�8BC2) −"40= (�8BC3) , (12)

!>BB= = "40= (�8BC5) −"40= (�8BC4) −"40= (�8BC3) . (13)

In each epoch, we train the graph neural network model with nor-

mal graphs byminimizing the!>BB? , and thenwith abnormal graphs

by the !>BB= . So that the model can learn every graph in the train-

ing set. And we drive the anchor normal graphs and the anchor

abnormal graphs apart by the constraint of "40= (�8BC3) in the

loss function and then make normal graphs close to anchor nor-

mal graphs under the action of"40= (�8BC1) while far away from

anchor abnormal graphs due to "40= (�8BC2). Symmetrically, the

abnormal graphs will approach the anchor abnormal graphs be-

cause of"40= (�8BC5) and escape from the anchor normal graphs

as a result of "40= (�8BC4). Generally, the multi-representations

space distance between normal graphs and abnormal graphs will

vary to be bigger. So it is less difficult for the model to learn their

feature distinctions. And during inference, the performance of the

anomaly score based onmulti-representations space distances will

be better as well.

4.3 Graph Anomaly Evaluation

The graph anomaly evaluation ismainly based on themulti-represen-

tations space distance between the unlabeled graph set and anchor

normal graphs as well as the one between the unlabeled graph

set and anchor abnormal graphs. We don’t take the whole normal

graphs set or the abnormal graphs set into account. Because our

anomaly score is dependent on the distance, we hope to select the

graphs with more typical features, namely the anchor graphs, to

reduce the impact of the singular graphs and improve the preci-

sion.

Specifically, to detect abnormal graphs with the trained model,

we can calculate two vital graph representation space distances of

a given graph �D= . �8BC? denotes the graph representation space

distance between �D= and �%( , and �8BC= denotes the graph rep-

resentation space distance between �D= and �#( as follows:

�8BC? = U ∗
∑

‖�68 − �69 ‖ + V ∗
∑

‖ 54 (E8 ) − 54
(

ℎE 9
)

‖

E8 ∈ �D=, E 9 ∈ �%(8 ,
(14)

�8BC= = U ∗
∑

‖�68 − �6: ‖ + V ∗
∑

‖ 54 (ℎE8) − 54 (ℎE:) ‖

E8 ∈ �D=, E: ∈ �#(8 .
(15)

(2>A46 = �8BC= − �8BC? . (16)

If�D= belongs to the normal graphs set, (2>A46 will be greater than

a certain threshold value, on the contrary, (2>A46 being smaller

than the threshold value indicates�D= is more likely to be anoma-

lous. Empirically and ideally, we use 0 as the threshold value. Fi-

nally, the algorithm 1 shows the detailed training process of Mss-

GAD.

5 EXPERIMENT

In this section, we present an evaluation of the MssGAD model on

diverse publicly available datasets from various domains and com-

pare its performance with several other anomaly detection meth-

ods proposed in recent years. Based on this, we then design and

conduct several comparative experiments and try to interpret and

validate the effectiveness of our model design through the results

of these experiments.
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Algorithm 1: MssGAD

Input: graph set G; normal graph set �% and abnormal

graph set �# , G = �% ∪�# ; GCN model" ;

unlabeled graph sample�D= ; training epochs � and

training batches �;

Output: anomaly score Scoreg.

1 Randomly initialized model weights of" ;

2 Calculate the count of anchor normal graphs as (% and the

count of anchor abnormal graphs as (# by Eq.(2);

3 Randomly draw an anchor normal graph set �%( with a

size of (% from�% and an anchor abnormal graph set

�#( with a size of (# from�# ;

4 Calculate �%=>34 , �%6A0?ℎ , �#=>34 , �#6A0?ℎ by Eq.(3),

Eq.(4), Eq.(5), Eq.(6);

5 Determine the value of U and V by �%=>34 , �%6A0?ℎ,

�#=>34 , �#6A0?ℎ ;

6 Use graph set G as training set;

7 for 8 ← 1 to � do

8 Use normal graph set �% as training set;

9 for 9 ← 1 to � do

10 Distill �E and �6 from" by Eq.(1);

11 Calculate �8BC1, �8BC2, �8BC3 on the normal graph

set�% by Eq.(7), Eq.(8), Eq.(9);

12 Update" by minimizing !>BB? shown in Eq.(12);

13 end

14 Use abnormal graph set �# as training set;

15 for 9 ← 1 to v� do

16 Distill �E and �6 from" by Eq.(1);

17 Calculate �8BC3, �8BC4, �8BC5 on the normal graph

set�# by Eq.(9), Eq.(10), Eq.(11);

18 Update" by minimizing !>BB= shown in Eq.(13);

19 end

20 end

21 Use unlabeled graph sample�D= ;

22 Distill �E and �6 from" by Eq.(1);

23 Calculate �8BC? , �8BC= on the unlabeled graph sample�D=

by Eq.(14), Eq.(15);

24 Calculate (2>A46 on unlabeled graph sample�D= by Eq.(16);

25 Return anomaly score Scoreg.

5.1 Datasets

For the selection of datasets, ten different datasets are selected

frommultiplefields such as toxic substances, molecular compounds,

macromolecular proteins, etc. HSE,MMP, p53, and PPAR are datasets

established to predict the properties and effects of compounds ac-

cording to their chemical structures, which contain thousands of

potentially harmful chemicals. AIDS is an antiviral screening dataset

used for NCI / NIH development and treatment programs. DHFR

is a dihydrofolate reductase inhibitors dataset that contains struc-

tural information for 325 compounds. For each compound, 228molec-

ular descriptors have been calculated. PTC-FM contains compounds

that are carcinogenic markers for rodents. The ENZYMES and PRO-

TEINS datasets are composed of protein structures, where graphs

correspond to individual proteins and nodes correspond to sec-

ondary structure elements. Two nodes are connected by an edge

if they are adjacent in either the amino acid sequence or 3D space.

Table 1 presents the specifics of these datasets. These datasets are

not identical in structure because they belong to different domains,

some of them contain node features and others do not, therefore

we use the degrees of the nodes to replace node features when they

do not exist. In addition, we will take one class of graphs as anoma-

lous graphs, while the graphs of the other categories will be treated

as normal graphs during experiments.

5.2 Baselines

For the choice of comparing methods, we select three more tradi-

tional methods: FGSD-IF [22], FGSD-LOF [2], and FGSD-OCSVM

[34], which are commonly based on the Family of Graph Spectral

Distances (FGSD) [37]. FGSD is a method to embed node pairwise

distances and obtain the graph feature representations which ex-

hibits certain stability and uniqueness, while isolation forest (IF),

local outlier factor (LOF), and one-class support vector machine

(OCSVM) are three classical classifiers combined with FGSD. Fur-

thermore, GOOD-D [23] is selected because it is a contrastive learning-

based unsupervised graph anomaly detection approach that has

been recently introduced. In addition, OCGTL [32] is a graph-level

anomaly detection method that incorporates concepts from trans-

formation learning and self-supervised learning, and has recently

set a new standard in this area. TomakeMssGADmore convincing,

we also added OCGTL to the baseline methods for comparison.

5.3 Experimental Implementation

Tomeasure the effectiveness of our methodmore comprehensively

and accurately, we test each dataset twice, regarding the graphs

with label 0 and the graphs with label 1 as anomalous graphs re-

spectively while the rest graphs of the dataset as normal graphs,

and employ 5-fold cross-validation in each experiment to obtain

more reliable and consistent outcomes. In our experiments, we as-

sess the performance based on the mean AUC and its standard

deviation, as the evaluation criterion. It is also worth mentioning

that GOOD-D provides detailed configurations of training hyper-

parameters on all datasets except for the MUTAG and PTC-FM

datasets, so we determine the training hyperparameters on these

two datasets by ourselves.

5.4 Anomaly Detection Performance

The specific anomaly detection results of each baseline on the above

ten datasets are shown in Table 2. A=0 and A=1 represent the cases

when the label of anomaly graphs is set to 0 and 1 respectively.

The data presented in the table reveals that the MssGAD model

performs better than most of the other methods on the majority of

the datasets, specifically, on the data sets of AIDS, DHFR, MUTAG,

PTC-FM, ENZYMES, and PROTEINS than several of the selected

baseline methods. While on the remaining four datasets of HSE,

MMP, P53, and PPAR, MssGAD performs less well than GOOD-

D and OCGTL. Among them, DHFR, ENZYMES, and PROTEINS

have more average number of nodes and edges, but our model still

performs the detection task relatively well, which we believe is
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due to our multi-representations space separation method. It al-

lows us to still discriminate the difference between normal graphs

and abnormal graphs clearly in a relatively high-dimensional rep-

resentation space. As for the four datasets with poorer results, the

reason is that as the size of the dataset increases the number of

anchor graphs also becomes larger, resulting in the distance-based

loss function becoming less effective in the case of more complex

distributions. The randomly selected graphs do not perform well

enough as anchor graphs. Additionally, by comparing the values,

it can be found that the accuracies of these two methods usually

differ greatly between the two cases of A=0 and A=1. And there

is often a difference of more than ten percentage points between

the lower accuracy and the higher accuracy. The reason is that the

graph set usually consists of more than two varieties of graphs

in many cases. We commonly regard one class as the abnormal

graph set and the others compose the normal graph set. Due to the

diversity of categories in the normal graph set, the distribution of

the normal graphs in the embedding space tends to be more scat-

tered than the abnormal graphs. The haphazard distribution limits

the performance of some existing methods when they try to distill

consistent feature representations of the normal graphs. Thus their

performances vary widely and can not be very stable across data

sets and anomalous labels. Thanks to our symmetrical sampling

from both normal and abnormal graph sets, the distributions of

both the normal graph set and abnormal graph set become tighter

with the bootstrap of the anchor graphs and the constraint of the

loss function. MssGAD can better grasp the pattern of both sets

so as to maintain relatively close accuracies no matter A=0 or A=1.

Therefore, MssGAD can achieve relatively good anomaly detection

results on most of the datasets.

5.5 Ablation Experiments
In addition to comparing the performance with the baseline ap-

proaches, we also conduct ablation experiments. And then analyze

the results with the key design points in our work.
The first part is the ablation experiment for the anomaly-aware

module. As mentioned in the previous section, to take into account

both graph-level representations and node-level representations

comprehensively, we introduce two dynamic factorsU and V . Their

values will be determined by comparing the differences between

the two kinds of representations, in order to emphasize the rep-

resentations with more obvious distinction. In the ablation exper-

iment, we set both U and V to 1, then divide the experiment into

two groupswith the anomalous label being 0 and 1. And test on the

previously selected datasets and analyze the results with those in

the previous baseline experiment. The results of our experiments

are displayed in Figure 3. The solid bar presents the mean value

of AUC while the top line reflects the standard deviation of AUC.

The red one is the original model and the green one is the abla-

tion model. In general, the results suggest that the original model

achieves better performance than the ablation model. The average

AUC of the ablation model appears to be lower than the original

model across datasets. Precisely, the differences are larger in some

datasets and smaller in others. We consider that the reason is that

settingU and V to constant valuesmay happen to reflect the anoma-

lous patterns of the graph reasonably, however, they don’t fit on

other datasets. It indicates that the anomaly-aware module does

help the model to sense and refine more representative anomalous

pattern handling various datasets.

Figure 3: The AUC results of ablation experiment for the

anomaly-aware module. The bars represent the AUC val-

ues of each model, and the top lines show the standard de-

viation. Anomaly = 0 means the graphs whose label is 0

are regarded as anomalous graphs. Similarly, anomaly = 1

means the graphs whose label is 1 are regarded as anoma-

lous graphs.

The second part is the ablation experiment designed for inves-

tigating the role played by the anchor graphs. We randomly select

anchor graphs from the normal and abnormal graph sets respec-

tively. And we hope that the unselected graphs of the same label

gradually converge in the multi-representations space with the an-

chor graphs as the center during training. And we guide the anchor

normal graphs and anchor abnormal graphs to gradually separate

from each other through the restriction of "40= (�8BC3). Eventu-

ally, the normal and abnormal graphs are separated along with the

anchor normal graphs and anchor abnormal graphs. Therefore, we

remove"40= (�8BC3) from !>BB% and !>BB# in the second ablation

experiment, maintaining only the rest parts, and then experiment
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Figure 4: TheAUC results of ablation experiment for anchor

graphs. The bars represent the AUC values of each model,

and the top lines show the standard deviation. Anomaly = 0

means the graphswhose label is 0 are regarded as anomalous

graphs. Similarly, anomaly = 1means the graphswhose label

is 1 are regarded as anomalous graphs.

again. Figure 4 displays the comparison results. The red one is still

the original model,while the blue one is the ablationmodel. In com-

parison to the original model, the ablation model exhibits reduced

accuracy. And there is a large increase in the standard deviation

of the AUC of the ablation model on some datasets. This indicates

that the performance of the model in extracting anomalous pat-

terns becomes more unstable. We believe this is because the un-

separated normal graph representations and abnormal graph rep-

resentations are more difficult to find the boundaries of the divi-

sion. And the comparison clearly shows that "40= (�8BC3) helps

to expand the graph representation space distance between anchor

normal graphs and anchor abnormal graphs. The distinction can be

more easily learned by the model after being expanded. Thus the

original model can refine the subtle feature differences and obtain

a better performance, which fulfills our idea of design.

In addition, we can see that the variances of the results for MU-

TAG, PTC-FM, and ENZYMES are relatively large, considering that

the reason is the small number of graphs in the datasets which lead

to the fluctuations in the quality of the extracted anchor graphs.

Similarly, the greater variances of the original model results on

some datasets are due to unreasonable weight values determined

by the anomaly-aware module based on unreliably anchor graphs

in some cases, but the overall average results are still better.
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Figure 5: The AUC results of MssGAD under different ratios

of samples in the normal graph set and abnormal graph set.

A = 0 denotes that the graphs with label 0 in the dataset are

anomalous. Similarly, A = 1 denotes that the graphs with la-

bel 1 in the dataset are anomalous.
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5.6 Parameter Analysis
In the previous ablation experiments, we initially illustrate the ef-

fectiveness of the anchor graphs. So in this session, we experiment

and analyze one of the crucial parameters, i.e., the sampling ratio.

In this session, we experiment with different normal and abnormal

sampling ratios. In detail, we take the sampling ratio factor k as 1,

2, 3, 4... and so on consecutive integers up to the number of the

whole graph set. And the relationship between k and the anchor

graph set �B can be given as follows:

|�B | = : lg( |� | ) �B ⊂ �, (17)

where G refers to the set of all normal graphs or the set of all ab-

normal graphs. Since there is a rounding operation when taking

logarithms, the maximum value that k can reach needs to be deter-

mined according to the number of graphs in the whole set. During

the experiments, we set various sampling ratio factors on the nor-

mal and abnormal graph set and then use 5-fold cross-validation.

Our experimental evaluation involves three datasets, namely AIDS,

DHFR, and MUTAG, for a total of six scenarios with anomalous

labels of 0 and 1, respectively. Figure 5 illustrates that the trends

of AUC vary across different datasets and abnormal labels. How-

ever, as the ratio of normal and abnormal sampling ratio is rela-

tively small to relatively large, the overall AUC shows an upward

trend. But when the ratio reaches a certain level, there is no ob-

vious improvement continuing increasing the ratio. Therefore, we

analyze that when the random sample is too small, the selected

anchor graphs can not represent the features of the overall dataset

properly; however, if the sampling ratio is too high, it will lead to a

great increase in computation, so we finally set the final sampling

ratio factor to 4 to achieve a balance between the two aspects.

6 CONCLUSION
In this work, we propose MssGAD to solve two common prob-

lems encountered in graph-level anomaly detection. We present

the anomaly-awaremodule as a solution to the problem that anoma-

lous graphs in different datasets tend to exhibit varying empha-

sis on node-level and graph-level anomalies. We dynamically ad-

just the weight factors according to the magnitude of the morpho-

logical differences between node-level and graph-level represen-

tations, enabling a more accurate and flexible fusion of both two

representations. Further, to deal with the problem that it is hard

to distinguish anomalous graphs from normal graphs when they

are very similar, we expand the gap between the normal and ab-

normal graphs based onmulti-representations space separation. So

that we can precisely detect every anomalous graph by its distance

error with anchor graph representation spaces. The experiments

show that MssGAD performs well on most of the publicly avail-

able datasets, and the subsequent ablation and comparison experi-

ments also demonstrate that the design of the model achieves the

expected results.
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