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ABSTRACT
Financial benchmarks estimate market values or reference rates
used in a wide variety of contexts, but are often calculated from
data generated by parties who have incentives to manipulate these
benchmarks. Since the LIBOR scandal in 2011, market participants,
scholars, and regulators have scrutinized financial benchmarks and
the ability of traders to manipulate them. We study the impact on
market welfare of manipulating transaction-based benchmarks in
a simulated market environment. Our market consists of a single
benchmark manipulator with external holdings dependent on the
benchmark, and numerous background traders unaffected by the
benchmark. Background traders use standard zero intelligence (ZI)
strategies. We explore two types of manipulative trading strategies:
manually adjusted ZI, and strategies generated by deep reinforce-
ment learning. We find that manipulation decreases market surplus
for the manipulator but increases it (to a lesser degree) for the
background traders. It also decreases the quality of market infor-
mation. Including the benchmark holdings, aggregate profits for
the manipulator substantially increase. The negative impacts of
manipulation, therefore, fall to the external counterparties to the
manipulator’s benchmark holdings, as well as anyone relying on
benchmark information for decision making.
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1 INTRODUCTION
A financial market benchmark is a summary statistic over mar-
ket variables, such as prices of specified securities at designated
times. Benchmarks are employed by market participants for various
purposes, including as reference measures for asset values (e.g., S&P
500), interest rates (LIBOR), and market volatility (VIX); to define
derivative instruments; or as price terms in contracts [15]. Bench-
marks in the form of reference measures can provide a concise
reflection of market realities, thereby supporting decision making
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in the real economy. As such, accurate benchmark prices constitute
a positive externality from functional financial markets [6]. Their
use in financial instruments and contracts also serves a valuable
function in commerce and risk management.

Given their role in market decisions and contracts, some entities
may have stakes in benchmark values, and hence incentives to try
to influence ormanipulate them. For instance, the London Interbank
Offered Rate (LIBOR) long served as a common benchmark, for
upwards of $300 trillion worth of loans worldwide. Several major
banks were implicated in schemes to manipulate LIBOR in the
last decade, and criminal charges were brought against several
individuals [24]. February 2018 saw accusations of manipulation
in the CBOE Volatility Index (VIX), a measure of US stock market
volatility based on the cost of buying certain options [3]. LIBOR
was particularly vulnerable to manipulation because it was based
on self-reported data provided by financially conflicted parties [12,
15]. In the wake of the LIBOR scandal, regulators, academics, and
market participants lobbied for a transaction-based replacement,
such as the Secured Overnight Finance Rate (SOFR) or the US Dollar
Intercontinental Exchange (ICE) Bank Yield Index [12, 18]. Whereas
it may be harder to manipulate transaction-based benchmarks, it is
still possible, as in the alleged manipulation of the VIX in 2018 and
the World Markets/Reuters Closing Spot Rates in 2014 [7].

Fig. 1 presents an example of how a transaction-based benchmark
might be manipulated. In this case, the benchmark is calculated by
the volume-weighted price average (VWAP) of the transactions. A
manipulator shifts the VWAP benchmark downwards—generally
at some cost in market profit—by submitting a series of marketable
sell orders.

Figure 1: Hypothetical order book with unit orders over
a brief trading period. A manipulator submits three mar-
ketable sell orders near the end, shifting the VWAP bench-
mark from 100.3 to 99.2.
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Prior work has employed theoretical models and historical data
to study benchmark manipulation in financial markets [4, 11, 12,
14, 31]. Using a simulated market allows us to incorporate complex
details of market microstructure, representing the actual mechanics
of trade, interactions among market participants, and the structure
of the market. By combining the agent-based model with game-
theoretic reasoning, we can also consider the response of strategic
agents to the presence of a benchmark manipulator, and consider
a wide range of market settings, benchmark designs, and trading
strategy options.

Our model employs a standard market mechanism organized
around a limit order book for a single security. We assume a bench-
mark defined by transaction prices in this market. Trading agents
may submit buy and sell orders, with orders executing immediately
when matched, otherwise resting in the order book pending execu-
tion against a subsequent order. The market includes a manipulator
agent, with external holdings of a contract tied to the benchmark.
The rest of the market comprises background agents who have
private reasons to trade, and a market maker who seeks profit by
connecting these traders across time.

We consider three types of manipulation strategies. The first is a
simple hand-crafted strategy, which extends the behavior of simple
background traders by adjusting offers systematically in order to
influence the benchmark in a certain direction. The other two types
of benchmarkmanipulator generate their trading strategies through
deep reinforcement learning (DRL). The two types correspond
to qualitatively different RL algorithms, called deep Q-network
(DQN) [26] and deep deterministic policy gradient (DDPG) [21].
In both cases, the agent is not explicitly instructed to manipulate,
but rather learns a policy (mapping from market state to orders
submitted) that effectively achieves manipulation; this is illustrated
in Fig. 2. These policies are derived through simulated experience
with the market model, given a reward function that credits the
agent for its profits from the market combined with profits from
its contract holdings tied to the benchmark.

Figure 2: In training a trading strategy, the learning algo-
rithm considers reward frommarket profit plus returns from
benchmark holdings. This may result in a learned strategy
that sacrifices market profits to influence the benchmark.

We determine the impact of benchmark manipulation by com-
paring market outcomes with and without manipulation. These
comparisons reflect strategic responses of the background traders
to the presence or absence of the manipulator. We find across a
variety of settings that manipulation is profitable overall to the
manipulators. The manipulation activity itself is costly, in that the

manipulator must sacrifice trading profit to move the benchmark.
The background traders actually benefit from the manipulation, as
their aggregate gains from trading increase. The external parties
dependent on the opposite side of the benchmark are the real losers
from manipulation, with their losses captured in part by the ma-
nipulator and in part by the background agents whose trading is
effectively subsidized.

This work represents the first automatic derivation of benchmark
manipulators. Our key contributions:

• A model of financial benchmark manipulation, instantiated
in an agent-based simulation environment.

• Trading strategies that effectively and profitably manipulate
the benchmark in this model, including techniques for au-
tomatically generating manipulation strategies using deep
reinforcement learning. We demonstrate successful learning
to manipulate using two qualitatively different DRL algo-
rithms, with and without the presence of market makers.

• Analysis of the impact of benchmark manipulation on mar-
ket efficiency and on social welfare, accounting for some
variation in market structure and strategic response.

Following a discussion of related work in the next section, we de-
scribe the market environment in §3. §4 introduces the benchmark
manipulator and methods for learning to manipulate. §5 describes
our experimental design, and §6 presents the results and our anal-
ysis of the effect of benchmark manipulation. As the ability to
automatically generate manipulation strategies presents significant
new challenges for financial regulation, §7 provides commentary
on how this study can inform policy.

2 RELATEDWORK
Martínez-Miranda et al. [23] studied market manipulation using a
Markov decision model, identifying conditions that are relatively
favorable for manipulative strategies. Wang et al. [41] developed an
agent-based model of market manipulation, demonstrating settings
where a spoofer can effectively influence market prices despite the
presence of rationally responding traders. The current work builds
on this agent-based approach, employing a similar market model
extended to include a financial benchmark.

Mizuta [25] showed that a genetic algorithm combined with
agent-based simulation can learn a sequence of actions that profits
in a specified simulation scenario by influencing the prices offered
by other trading agents following a fixed market-sensitive strategy.
Wang and Wellman [42] studied methods to adapt a spoofing strat-
egy to evade detection, within an adversarial learning framework.
Byrd [9] considered the problem of learning not to spoof: that is,
ensuring that an RL algorithm does not inadvertently manipulate a
market in particular ways.

Significant attention has been paid to the potential of automating
market manipulation through misinformation campaigns, in social
media and other forums. Yagemann et al. [47] study the potential
for conducting market-based manipulation at scale, through botnet
hijacking of brokerage accounts. On the basis of SEC data and
agent-based simulation, they find that such attacks appear to be
quite feasible.

The majority of prior research on benchmark manipulation
is either theoretical or based on analysis of historical market data.
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Duffie and Dworczak [12] introduce a theoretical model to analyze
the robustness and bias of alternative benchmark constructions,
and find that VWAP is optimal among linear benchmarks. Duffie
[11] also considers robustness to manipulation in design of an
auction mechanism to convert LIBOR-based contracts to employ
the replacement SOFR benchmark.

Bariviera et al. [4] and Eisl et al. [14] use historical data to find
instances of manipulation of interest-rate benchmarks and provide
suggestions for more robust benchmarks and regulation. Rauch
et al. [31] also use historical data to find instances of benchmark
manipulation in LIBOR and investigate which banks were poten-
tially involved in the 2011 scandal. Griffin and Shams [17] examine
spikes at time of settlement as evidence for possible manipulation
of the VIX benchmark. Such findings have underscored concerns
and contributed to policy discussions around reforms of financial
benchmarks [13, 15, 19, 38].

There exists a significant amount of prior work that focuses on
the goal of developing trading strategies using reinforcement learn-
ing (RL). Previous studies address this in agent-based simulation and
with historical data. Numerous simulation-based studies demon-
strate the learning of profitable trading studies from a discrete or
continuous observation space and an action space [1, 33, 35, 44].
Likewise many have demonstrated successful RL of trading strate-
gies using historical data. Most employ DRL with a discrete or
continuous observation space and discrete action space [10, 20, 27–
29, 36, 45, 49], but some recent work considers continuous observa-
tion and action spaces [22, 30, 45, 46, 48]. Not surprisingly, given
the profit potential of any advantage in trading strategy, advances
in RL and DRL are quickly implemented in this domain. What is
reported in public research is undoubtedly just the tip of an iceberg.

3 MARKET ENVIRONMENT
Our model comprises a single security traded through a limit order
book, with a transaction-based benchmark calculated at the end of
the trading period. The common value of the security at time 𝑡 is
given by the fundamental 𝑟𝑡 , which is generated by a stochastic
process. This model is implemented in market-sim, a market sim-
ulation platform originally developed by Wah [39] and employed
in many agent-based finance studies [40, 41, 44].

3.1 Benchmark
The benchmark we employ is volume-weighted average price
(VWAP), which Duffie andDworczak [12] showed should be hardest
to manipulate among a class of transaction-based benchmarks. As
its name suggests, VWAP sums the prices weighted by quantity
of transactions. Suppose there are 𝑁 transactions at quantity and
price (𝑞𝑖 , 𝑝𝑖 ) over the trading horizon 𝑇 . Then VWAP is given by:

𝛽𝑇 =

∑𝑁
𝑖=1 𝑞𝑖𝑝𝑖∑𝑁
𝑖=1 𝑞𝑖

.

In our market scenario, agents submit only single-unit orders, thus
the VWAP benchmark becomes:

𝛽𝑇 =

∑𝑁
𝑖=1 𝑝𝑖

𝑁
.

3.2 Agents in the Market
The benchmark manipulator operates in a market populated by
background agents employing the zero intelligence (ZI) trading
strategy [16] in a version described by Brinkman [8]. ZI background
traders arrive according to a Poisson process, and on each arrival
perceive the market state (current price quote, recent transaction
prices, plus a noisy observation of the fundamental).1 From this
they construct an estimate 𝑟𝑡 of the final fundamental based on
information observed up to 𝑡 . Finally, they submit a buy or sell order
(decided by coin-flip) for a single unit. The new order replaces its
previous offer, if any, on the order book. The price of the limit order
at time 𝑡 is set at the agent’s estimated valuation for the good, 𝑣 (𝑡),
offset by a requested surplus 𝜁𝑡 . Valuation 𝑣 (𝑡) is the sum of the
estimated fundamental value 𝑟𝑡 , and an agent-specific private value.
Private values are vectors expressing diminishing marginal value
for units of the security, drawn i.i.d. from a specified distribution
for each agent at the start of the market. The requested surplus
𝜁𝑡 is chosen for each order uniformly at random, from an interval
whose endpoints are parameters of the ZI strategy. The ZI agent
employs one additional strategic parameter, 𝜂 ∈ [0, 1], in deciding
to submit an executable order instead if it would be able to obtain
at least fraction 𝜂 of its requested surplus from the current order
book.

Some market instances also include a market maker (MM),
which follows the MM strategy described by Wah et al. [40].

4 BENCHMARK MANIPULATION
STRATEGIES

Like the background traders, the benchmark manipulator operates
in the market by submitting single-unit limit orders to buy and
sell the market security. Also like these traders, the manipulator
accrues profit from the market as the sum of trading cash flow
and value of terminal holdings, where this value in turn is the sum
of common and private value elements. What distinguishes the
manipulator is that it also obtains payoff based on holdings of a
contract tied to the benchmark. An example of a manipulator’s
contract holdings may be the stake they have in a publicly traded
acquisition target. If the acquisition contract is tied to the price of
the stock, then the manipulator may benefit through market actions
that increase the stock price. The benchmark in this example is
a function of trading price history. In our model, an agent with
𝜓 units of contract holdings receives a payment of𝜓𝛽𝑇 when the
market ends with final benchmark value 𝛽𝑇 .

Let𝑉 (𝑡) denote the value of the agent’s market position at time 𝑡 ,
defined as valuation of current market holdings plus cash flow
from transactions to that time. The total profit of a benchmark
manipulator 𝐵(𝑡) is:

𝐵(𝑡) = 𝑉 (𝑡) +𝜓𝛽𝑡 . (1)

If sign(𝜓 ) is positive (negative), then the manipulator benefits from
higher (lower) benchmark levels. By choosing higher or lower order
prices than it would otherwise, it may be able to influence the
benchmark. Doing so entails some loss of profit in the securities
1Trading based on a combination of market information and noisy fundamental infor-
mation is a common feature in agent-based finance studies [5, 34]. Trader attention
to market information is necessary for the possibility of spoofing [41], and may also
provide a channel facilitating benchmark manipulation.
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market, but may be worthwhile if the gain in payment from contract
holdings is sufficient.

4.1 Zero Intelligence Manipulation
The first manipulation strategy we consider is ZIM, an adjusted
version of the ZI strategy that attempts to influence the benchmark.
A standard ZI agent arriving at time 𝑡 submits orders priced at
𝑝ZI (𝑡) = 𝑣 (𝑡) ± 𝜁𝑡 , where 𝜁𝑡 is the requested surplus. A ZIM agent
offsets 𝑝ZI (𝑡) by sign(𝜓 )𝜒 , where 𝜒 is a strategic parameter:

𝑝ZIM (𝑡) = 𝑝ZI (𝑡) + sign(𝜓 )𝜒. (2)

This manipulator also employs the strategic parameter 𝜂 ∈ [0, 1]
to submit a marketable order if the current quote is sufficiently
favorable. There is a subtle difference in how 𝜂 applies for ZIM
compared to ZI. For a ZI agent, it is always the case that requested
surplus 𝜁𝑡 ≥ 0. With offset, however, a ZIM agent’s total requested
surplus may be negative. If in fact 𝜁𝑡 ± sign(𝜓 )𝜒 < 0, then the
manipulator is willing to accept any portion of its requested surplus.
Specifically, when buying, the manipulator prices its order at ASK𝑡
rather than 𝑝ZIM (𝑡) if:

ASK𝑡 ≤ 𝑣 (𝑡) + max
{
𝜂
(
sign(𝜓 )𝜒 − 𝜁𝑡

)
,
(
sign(𝜓 )𝜒 − 𝜁𝑡

)}
.

When selling, it prices its order at BID𝑡 rather than 𝑝ZIM (𝑡) if:

BID𝑡 ≥ 𝑣 (𝑡) + min
{
𝜂
(
sign(𝜓 )𝜒 + 𝜁𝑡

)
,
(
sign(𝜓 )𝜒 + 𝜁𝑡

)}
.

4.2 Manipulation with Deep RL
We also develop manipulative strategies using two qualitatively
distinct DRL algorithms: deep Q-network (DQN) [26] and deep
deterministic policy gradient (DDPG) [21].

4.2.1 Deep Q-Network. DQN is amodel-free, off-policy value learn-
ing algorithm. Value learning is the task of inducing a function
representing the value of relevant situations. DQN ismodel-free as
it does not incorporate explicit representations of the environment
dynamics in value learning. A policy defines the agent’s behavior
in terms of a mapping from states to actions. In the value-based
approach, the learned policy is implicit in the learned value func-
tion. DQN is off-policy as the learned policy may be unconnected
from the policy used to generate experiences. Off-policy learning
is imperative in our context, as the interface to market-sim does
not permit updating the policy while the market is active. Thus all
training occurs between market runs.

DQN combines Q-learning and deep neural networks (DNNs)
to learn Q-values in environments with rich sensory data. A Q-
value is the estimated value of total discounted reward for the
remainder of an episode, for a given state-action pair (𝑠, 𝑎). Sup-
pose the agent arrives to the market in state 𝑠 and takes action 𝑎,
leading to state 𝑠′ and producing immediate reward 𝜌 . We record
the experience tuple (𝑠, 𝑎, 𝑠′, 𝜌) to learn from and update Q-values
once the episode is complete. DQN uses a DNN to learn a hierar-
chical abstract representation of a complex state space. This DNN
estimates Q-values over a discrete action space. DQN updates the
DNN parameters 𝜃 using the stochastic gradient descent updating
rule:

Δ𝜃 = 𝛼

[
(𝜌 + 𝛾 max

𝑎′
𝑄𝜃 (𝑠′, 𝑎′)) −𝑄𝜃 (𝑠, 𝑎)

]
∇𝜃𝑄𝜃 (𝑠, 𝑎),

where 𝑄𝜃 (𝑠, 𝑎) is the estimated Q-value given the current DNN
parameters and state-action pair, 𝛼 is the learning rate, and 𝛾 is the
discount factor.

4.2.2 Deep Deterministic Policy Gradient. DDPG is a model-free,
off-policy actor-critic algorithm. An actor-critic algorithm com-
bines policy learning and value learning. Policy learning tries to
directly learn a policy function that maximizes the agent’s reward.
The actor maintains a parametrized policy function and the critic
a value function, represented as a DNN (like DQN). The actor is
updated given the learned parameters from the critic 𝜃𝑄 , and by ap-
plying the chain rule to the expected return from the distribution 𝐽

with respect to the parameters of the actor 𝜃𝜇 :

Δ𝜃𝜇 𝐽 ≈ E𝑠𝑡∼𝜈𝜋
[
Δ𝜃𝜇𝑄 (𝑠, 𝑎 | 𝜃𝑄 ) |𝑠=𝑠𝑡 ,𝑎=𝜇 (𝑠𝑡 |𝜃𝜇 )

]
= E𝑠𝑡∼𝜈𝜋

[
Δ𝑎𝑄 (𝑠, 𝑎 | 𝜃𝑄 ) |𝑠=𝑠𝑡 ,𝑎=𝜇 (𝑠𝑡 ) Δ𝜃𝜇 𝜇 (𝑠 | 𝜃𝜇 ) |𝑠=𝑠𝑡

]
,

where 𝜈𝜋 is the discounted state visitation distribution for a stochas-
tic behavior policy 𝜋 . The actor learns a distribution over the action
space, which is mapped to a continuous action space. Noise N is
added to the actor’s policy for exploration:

𝜇′ (𝑠𝑡 ) = 𝜇 (𝑠𝑡 | 𝜃𝜇𝑡 ) + N .

4.2.3 State Space. The benchmark manipulator’s state space in-
cludes all the agent’s private information. This includes its private
valuation of the traded security, contract holdings, and current
holdings of the security. We also include the side of the current
order (buy or sell).

The agent’s state space includes publicly available information
in the market, such as the remaining time in the trading period and
time since the last trade. We also include features from the market’s
order book, such as size, spread, and currently listed order prices.
The state must be a constant size, but the order book is dynamic
throughout the trading period. We address this problem by fixing
a limited depth of book, padding or truncating as necessary. For
padding, we set prices at estimated final fundamental, plus or minus
three standard deviations of the observation noise.

We also include the omega ratio, a metric that determines the
favorability of submitting an order. Lastly, we include the number
of transactions and their prices. We pad or truncate the transaction
price history as necessary to fit a fixed length, as for the order book.

4.2.4 Action Space. The benchmark manipulator’s learned policy
selects the price of the order to submit. Upon each arrival, the
manipulator perceives the observable state and submits an order. It
determines whether to buy or sell by flipping a coin, then submits a
single-unit order for the selected side. There is no option to refrain
from submitting an order, but the same effect can be achieved by
submitting an order price sufficiently far from current quotes.

For the DQN agent, the action space is a discrete set of ZIM strate-
gies, each defined by a setting of the ZI parameters plus the offset
parameter 𝜒 . On each market arrival, the agent observes state 𝑠 and
evaluates the available actions using the DNN representation of
the Q-function. The optimal action 𝑎∗ = arg max𝑎 𝑄𝜃 (𝑠, 𝑎)—one of
the available ZIM strategies—is selected, and applied to the current
market state to generate an order for the market.

When the benchmark manipulator uses a policy learned through
DDPG to select an action, it directly selects a value 𝐴 ∈ [0, 1]. Our
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agent then maps this action to a price for its order at time 𝑡 :

𝑝DDPG𝑡 = 𝑟𝑡 +
(
sign(𝜓 )𝜒 −𝐶

)
𝐴,

where 𝐶 is a hyperparameter tuned during training, sign(𝜓 ) is the
direction of the agent’s contract holdings, and 𝜒 is an offset param-
eter. This mapping function is similar to (2), though rather than
randomly selecting a requested profit from a uniform distribution,
the agent learns the requested profit directly.

4.2.5 Reward Function. The benchmark manipulator aims to max-
imize combined profit 𝐵 from the market and benchmark (1). We
thus define reward for time 𝑡 as the difference between the total
profit at its next arrival at time 𝑡 ′ and the total profit at 𝑡 :

𝜌𝑡 = 𝐵(𝑡 ′) − 𝐵(𝑡).
This reward cannot be immediately calculated, since the order
placed at time 𝑡 can match with another anytime between 𝑡 and 𝑡 ′
(when it is replaced by a new order). Thus, we wait until 𝑡 ′ to
calculate the reward for the action at time 𝑡 . At the end of the
market at time 𝑇 , the summation of the rewards is equivalent to
the manipulator’s final payoff:

𝐵(𝑇 ) =
∑︁
𝑡 ∈Arr

𝜌𝑡 , where Arr denotes the agent’s market arrivals.

5 EXPERIMENTS
We test the efficacy and implications of benchmark manipulation
strategies through agent-based simulation, employing a simplified
form of empirical game-theoretic analysis (EGTA) [37, 43] to iden-
tify approximate equilibria among the available strategies. The
first question is to what extent agents employing benchmark ma-
nipulation strategies—hand-crafted or learned—can influence the
benchmark to enhance profit. The second is what are the ramifica-
tions for market performance and agent welfare. We evaluate these
questions in multiple market environments, employing a variety of
strategies for the background agents and benchmark manipulator.
In each case, we find the combination of strategies that background
traders play in equilibrium in the presence or absence of manip-
ulation. We then evaluate the outcomes in each case, from the
perspectives of the manipulator, background agents, and aggregate
market.

5.1 Market Environment Settings
Our test environments have fifteen background agents and one
benchmark manipulator. The market settings are the same as em-
ployed by Wright and Wellman [44]. The market fundamental time
series has mean 𝑟 = 105, mean reversion 𝜅 = 0.01, and market shock
variance 𝜎𝑠 = 2 × 104. The maximum number of units all agents
can hold at any time is 𝑞max = 10. Lastly, the private value variance
is 𝜎2

𝑃𝑉
= 2× 107. The finite time horizon of the market is𝑇 = 2, 000

time steps. The background agents and manipulator arrive to the
market according to a Poisson distribution with rate 𝜆𝑎 = 0.012.

We consider instances of this market with and without a market
maker. If the MM is present, its arrival rate is 𝜆𝑚𝑚 = 0.05. The
market maker submits 100 buy orders and 100 sell orders at each
market arrival. The spread the market maker uses is 1024 and each
order is spaced by 100. The market maker is not considered a player
in the market game as its parameters are fixed.

ZI strategies available to the background traders are the same
as those employed by Wright and Wellman [44]. We use the pure-
strategy equilibrium among background traders found by these
authors as the baseline no-manipulation case.

In each environment the benchmarkmanipulator is assigned con-
tract holdings𝜓 = 40. The ZIM agent draws its requested surplus
𝜁𝑡 ∼ 𝑈 [380, 420] and chooses among strategies with 𝜂 ∈ {0.5, 1.0},
and possible offsets 𝜒 ∈ {0, 250, 500, 750}. Selecting 𝜒 = 0 is tanta-
mount to not manipulating. We also examine environments where
the manipulator learns trading strategies with DQN or DDPG, using
the methods described in §4.2.

5.2 Simplified EGTA Process
We model the market as a role-symmetric game and partition the
agents into two roles: background traders and a single benchmark
manipulator. Starting with the baseline no-manipulation equilib-
rium identified by Wright and Wellman [44], we replace one of
the background traders with a manipulator: implemented as a ZIM,
DQN, or DDPG agent. For the ZIM agent, we try each ZIM candidate
against the baseline equilibrium and select the most profitable. For
the DRL (DQN or DDPG) agents, we likewise train in the context
of this baseline.

Once the benchmark manipulation strategy is selected, it is likely
that the background traders are no longer in equilibrium. Therefore,
we test single-player strategy deviations of the background traders,
holding the manipulator strategy fixed. If there is a beneficial single-
player deviation, we test a variety of mixed strategies containing
the original equilibrium strategy and the best deviation. Fixing the
new distribution of background traders, we repeat the manipulator
strategy optimization (enumerated selection for ZIM, or retraining
for the DRL agents). We then repeat the process with another single-
player deviation for background traders, followed if applicable by
another optimization of the manipulator.

6 RESULTS
We analyze the performance of the various manipulators in multiple
environments. Environment A is the market environment where
the background agents are equilibrated for no manipulation in a
pure strategy equilibrium found by Wright and Wellman [44]. Envi-
ronment B refers to the market environment where the background
agents are calibrated to the ZIMmanipulator using the single-player
deviation method. Environment C denotes the market environment
where the background agents are calibrated to the DQN manipula-
tor using the single-player deviation method. We include the label
“ZI” to signify the case when the agent does not manipulate. We
study the welfare impacts of the three manipulators—ZIM, DQN,
and DDPG—by examining agent and aggregate market payoffs.
Specifically, we calculate the market profit and total profit of the
benchmark manipulator where total profit aggregates the profit
from market trading (i.e., market profit) and profit from the bench-
mark holdings. We also find the profit of the background traders.
The total profit and market profit are the same for the background
traders because they are indifferent to the final benchmark calcu-
lation. Lastly, we study the aggregate market profit and aggregate
total profit. Aggregate market profit is the sum of the background
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(a) MM present.

(b) No MM present.

Figure 3: Profit of the manipulator. In both figures, the 𝑥-
axis represents which strategy the manipulator uses and in
which environment. Each point shows the average payoff of
the manipulator with standard error bars.

traders’ profit, MM profit (if present), and the benchmark manipu-
lator’s market profit. Aggregate total profit replaces the third term
with benchmark manipulator’s total profit.

Fig. 3 depicts the total and market profit of the benchmark ma-
nipulator. In all cases, the total profit of the benchmark manipula-
tor increases when it manipulates the benchmark. When a MM is
present, DQN and DDPG agents in Environment A significantly
increase profits. The ZIM agent and DQN agent in B and C in-
creased their average total profit from the non-manipulative case,
but not by as much. The manipulators’ market profit decreases
from the non-manipulative case. It is worthwhile for the successful
manipulator to endure the decrease in market profit because its
profits from the change in benchmark more than cover the loss.
Without MM, all of the manipulators significantly increase total
profit and decrease market profit. It is easier for the manipulator
to profit when there is no MM because it does not need to trade
through the MM’s many orders in the book to change the price.

Fig. 4 shows the profit of the background agents. The background
agents benefit from benchmark manipulation in all cases. The back-
ground agents are especially better off when there is no MM; this
is likely due to an increase in direct trades with the manipulator.
The manipulator’s orders are priced to influence the benchmark,
which tends to divorce them from market values and in many cases
make them more attractive to background traders. Background

(a) MM present.

(b) No MM present.

Figure 4: Aggregate market profit of the fifteen background
traders. The 𝑥-axis represents which strategy the manipula-
tor uses and in which environment. Each point shows the
average with standard error bars.

traders benefit from the manipulative activity, both from the in-
crease in profitable trades, and from the opportunity to demand
higher surplus on orders that would have traded anyway.

Fig. 5 shows the aggregate total and market profit. Aggregate
total profit increases with benchmark manipulation. Aggregate mar-
ket profit decreases, as the market becomes less efficient when the
manipulator is more successful. Manipulation impacts the bench-
mark enough that the manipulator’s gain from the benchmark ex-
ceeds its losses from trading in the market. The background traders
gain at most the manipulator’s loss from the market, but the ma-
nipulator’s resulting gain from the external contract exceeds that
of the background traders. The implicit loser is the counterparty to
the manipulator in the benchmark contract, who effectively pays
the price of successful benchmark manipulation.

Fig. 6 depicts the VWAP benchmark in each market environ-
ment. As expected (particularly given observed profit effects), the
benchmark increases significantly when there is manipulation com-
pared to when there is no manipulation. The manipulator is able
to successfully shift the benchmark in the direction of its contract
holdings regardless of MM presence, though the magnitude of the
shift is larger without MM.

7 POLICY ANALYSIS
Following the LIBOR scandal, regulators investigated other bench-
marks that had allegedly been manipulated and imposed some of
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(a) MM present.

(b) No MM present.

Figure 5: Aggregate total and market profit of all agents. In
both figures, the 𝑥-axis represents which strategy the manip-
ulator uses and in which environment. Each point shows the
average with standard error bars.

the largest penalties ever paid by financial institutions. Given the
important role of benchmarks as financial infrastructure, regulators
also turned to potential policy measures to avoid manipulation. The
International Organization of Securities Commissions published its
Principles for Financial Benchmarks [19] and the European Union
adopted its Benchmarks Regulation. Both documents stress the
governance obligations of benchmark administrators, the quality of
benchmark data, and most relevantly, robust methodological design
of benchmarks. Nonetheless, regulators have neither suggested, nor
mandated benchmark design features at a microstructure level of
granularity. International regulators’ interest in developing best
practices for benchmark methodology means there should be sub-
stantial interest in the implications of DRL for benchmark manipu-
lation.

The role of regulation is also important because we should not
expect markets to produce optimal benchmarks themselves. Index
providers do not generally operate in fully competitive markets or
internalize the full costs and benefits of the indices they produce.
There are several reasons. First, indices are subject to network
effects that can cause them to gain a significant degree of lock-
in, giving the index provider market power. Second, benchmarks
are often produced as a side effect of other financial activity and
do not provide their administrators with a robust revenue stream,
notwithstanding the benchmark’s significant effects on the welfare

(a) MM present.

(b) No MM present.

Figure 6: The VWAP benchmark under different manipu-
lation strategies and environments. Each point shows the
average VWAP with standard error bars.

of counterparties [32]. To illustrate, LIBOR originally arose to serve
as a reference rate for banks’ own lending activities, but came to
play a pivotal role in the enormous interest rate derivatives market,
without generating any direct revenue for the LIBOR panel banks.
As a result of these forces, administrators’ private incentives to
ensure optimal benchmark design are weaker than what would be
socially desirable.

8 CONCLUSION
We analyze the effectiveness and impact of financial benchmark
manipulation, in a simulated market with a single traded security.
The manipulator’s objective is to shift the benchmark up or down,
in order to profit from holdings of a contract tied to the benchmark.
The benchmark is transaction-based (VWAP in this study), so po-
tentially influenced by market actions. These actions are costly
in that they entail reduced profits or even losses in the primary
market. We design and implement three types of benchmark ma-
nipulator: one simple hand-crafted strategy, and two derived using
deep reinforcement learning.

We find that all three strategies succeed in profitable benchmark
manipulation. Presence of a market maker makes manipulation
more difficult, and reduces but does not eliminate the manipulative
effect. With or without MM, the manipulative activity increases
profits of background traders, who thus have no incentives to help
mitigate this type of manipulation. Though the aggregate total
profit of the market participants increases when the benchmark is
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manipulated, the aggregate market profit decreases. As the profit
of all market participants increases, it is the non-market counter-
parties to the benchmark contracts who bear the burden of the
manipulation costs. All of these results hold consistently across a
range of experimental market environments.

The DRL agents (DQN and DDPG) effectively learn to manipu-
late, even though they are not given direct instructions to manip-
ulate, or objectives with explicit reference to manipulation. The
manipulative strategies emerge naturally from the selection of stan-
dard market actions to maximize profits. These market actions
include the possibility of offsetting prices in the direction of bench-
mark holdings, along with a host of other strategic parameters that
can be conditioned on a complex set of state variables. This learning
takes place in an environment of other rationally derived trading
strategies, and subjected to adjustment based on presence of the
manipulator. To our knowledge, this is the first such demonstration
of automated learning of market manipulation strategies.

The apparent ease of learning to manipulate presents serious
challenges for financial market regulation. Current manipulation
law in the US stock market requires establishment of intent to ma-
nipulate, which is arguably not present in this scenario. Given the
growing accessibility of DRL technique, it may be worth revisiting
these laws to address what might be a seen as a “machine learning
loophole” for manipulation [2].
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