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Abstract. Active investing aims to construct a portfolio of assets that
are believed to be relatively profitable in the markets, with one popular
method being to construct a portfolio via factor-based strategies. In
recent years, there have been increasing efforts to apply deep learning to
pursue “deep factors” with more active returns or promising pipelines
for asset trends prediction. However, the question of how to construct an
active investment portfolio via an end-to-end deep learning framework
(E2E) is still open and rarely addressed in existing works. In this paper,
we are the first to propose an E2E that covers almost the entire process
of factor investing through factor selection, factor combination, stock
selection, and portfolio construction. Extensive experiments on real stock
market data demonstrate the effectiveness of our end-to-end deep leaning
framework in active investing.

Keywords: Deep learning · Quantitative investment · Financial data.

1 Introduction

Active investing is one of the dominant investment styles in the financial market
that aims to generate excess returns compared to a market benchmark. Factor
investing is one of the most common methods for active investing in a quantitative
way, the core of which is using the factor as a explanatory tool for the future return.
In the initial phase, human experts manually create factor databases composed
of data from markets and financial reports. Then, practitioners conduct factor
tests to select useful factors from the database, which later serve as candidates
for building a multifactor model for stock selection. Finally, an active portfolio
can be constructed, which is a collection of financial investments, particularly
selected stocks, that seek to provide a return greater than the return of a
market benchmark, such as a major market index. However, these steps are often
optimized in isolation, while the end-to-end active investment (E2E) is rarely
addressed in existing works [9,21,22].

In practice, this may lead to sub-optimal portfolios. First, in the factor
selection phase, only the factors that meet a rule of thumb are selected, e.g.,
the absolute value of the information coefficient (IC) should not be less than
0.02 and the absolute value of its z-score (ICIR) should not be less than 0.20. In
this way, only those factors that have a “sufficient” linear correlation with the
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expected return are selected. However, this may result in ignoring some factors
that, although useful for finding attractive stocks, are highly related to future
returns and do not have a linear relationship. Second, the routine factor selection
does not guarantee the diversity of factors. There is a risk of selecting a group of
factors that have similar characteristics, leading to the problem of exposing the
final portfolio to a single concentrated risk factor. Third, portfolio construction
based on a multifactor model and the goal of maximizing weighted factor values
is not a direct way to learn the optimal portfolio. A multifactor model is trained
to improve the explanatory power of the inputs to the expected returns and can
later be used as a tool to score stocks, and subsequent portfolio construction
is based on these scores of stocks. However, the attractive stocks selected by
the scores do not always result in the most profitable portfolio, as the stocks
that are less attractive than the spotlights more often generate higher returns.
Instead, the goal should be to achieve a higher portfolio return subject to certain
constraints on stock weighting. Finally, isolated modules are later combined to
construct a portfolio with a specific investment objective. However, each of these
modules focuses on different learning objectives, which may distract them from
achieving that objective together. In contrast, systematizing all modules in an
E2E framework with a synthetic learning objective can make all modules achieve
the same investment objective.

To advance the progress of deep neural networks without being hindered
by the existing drawbacks of sequentially using isolated modules, in this paper
we propose a novel E2E Active Investing framework (E2EAI) that encourages
all modules, i.e., factor selection, stock selection, and portfolio construction, to
fulfill the same learning objective, e.g., optimizing portfolio returns subject to
weighting or risk constraints. We develop a gated attention block for both factor
selection and portfolio construction. Different from the rule of thumb for factor
selection in practice that selects factors satisfied the threshold of IC or ICIR, we
design a gated-attention mechanism to find the factor that contributes the most
in portfolio construction. Later, a deep multifactor model learns a deep factor
via attention modules based on a multi-relationship stock graph that considers
the intra-sector and cross-sector influence of the other stocks with different close
relationships. The portfolio construction is based on the exposure of the deep
factors, the market and the fundamental context of the company learned from the
original inputs. The whole learning framework is trained with the same objective.

Even if an E2E framework shows promising results in active investing, portfolio
managers are still interested in the financial logic and insights behind deep
learning, especially how the original factors contribute to and influence the deep
factor that is later used for portfolio construction. Therefore, an E2E framework
should also provide an interpretation of the deep factor. To be interpretable in the
deep multifactor module, we further develop a linear and directional estimator
of the deep factor to identify the logic and insights behind the original factors
from the perspective of linear representation. Unlike existing work [20,13,14], we
provide a directional attention mechanism that can identify the contribution of
the original factor through attention while indicating the direction of the factor
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as positive contribution and negative contribution. The similar directional buffer
can also be applied to a deep factor, which directly indicates whether the sign of
its correlation with future return is positive or negative.

To validate the effectiveness of our approach, we conduct a comprehensive
study with real data containing more than 2800 constituent stocks from three
broad-based indices in Chinese stock markets, where our E2E framework out-
performs existing investment pipelines whose modules are separately optimized.
The deep factor learned by our E2E method can also deliver a better portfolio
than existing multifactor models. In summary, the contribution of this work is
to 1) develop the first E2E framework for active investing using original data
for portfolio construction, 2) propose a novel loss design that incorporates a
directional multiplier to determine the direction of the deep factor, recover the
original factor contribution, and determine the historical cross-sectional factor
returns of the deep factor, 3) develop a training algorithm with a global optimizer
for training the E2E framework and a local optimizer to compute the historical
factor returns of the deep factor with a directional recovery.

2 Related works

Deep Multifactor Model Incorporating Stock Relationship. The multifactor model
has received considerable attention from researchers and academics for several
decades to determine the exact nature of the common factors that influence
risk and return in various assets and markets [11], with a large body of work
showing that deep or nonlinear models perform better than linear models [7,14,13].
Moreover, cross-sectional factors can provide a better explanation for average
stock returns [4], which inspires us to develop a deep learning architecture to
learn cross-sectional factors. With the rapid development and its advantages
in learning nonlinear relationships from Big Data in finance [6], graph neural
networks have been successful in solving a variety of finance problems [18], such
as stock movement prediction [21,9,2], event-driven prediction [22], and risk
management [8].[17]. In our work, we design a relational neutralization block
based on a gated graph attention mechanism to learn the multi-relational stock
relationship from different perspectives.

Interpretation of deep factors. Although deep learning methods perform well in
learning deep factors in terms of the multi-factor model, the lack of transparency
and limited interpretability of the deep factor make it difficult for institutional
investors to apply a model that operates in a black-box manner in actual invest-
ment practice. One remedy is to use layer-wise relevance propagation (LRP) [1], a
method that highlights which input features it uses to support its prediction [12],
to capture the linear relationship between the input factors and the prediction
[14,10]. Later, [20] provides a more direct way to learn the linear contribution of
each input factor to the deep factor via an attention mechanism. However, these
methods neglect the directional property of the original factor’s contribution to
the deep factor, i.e., the contribution of an original factor can be positive or
negative. Without considering the different directions of the contribution, the
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Fig. 1. The pipeline of E2E active investing framework (E2EAI).

linear approximation of the original factors in [20] may ignore the factor that
contributes negatively to the deep factor, resulting in a “biased” approximation.
In this paper, we propose a directional linear approximation of the deep factor
via an attention module and a directional buffer to account for both the positive
and negative contribution of the original factor to the deep factor.

Portfolio construction. In existing work, portfolio construction is usually per-
formed by the ad hoc methods, e.g., dividing stocks into ten groups with equal
numbers w.r.t their factor exposures and selecting the top or bottom group as the
portfolio [20,3]. In our work, we use a soft allocation strategy to simultaneously
select attractive stocks and assign them an appropriate weight in the portfolio.
Some applications use deep learning methods to solve the portfolio allocation
problem [15,19] in an “E2E” way. However, they solves the problem only in the
context of portfolio construction, which is one and the last module in our E2E
framework. To best of our knowledge, we are the first to solve the problem of
active investing in a holistic but also E2E way.

3 Preliminaries

Definition 1. The problem of active investing is defined as follows: Given a set of
original factors Ft = {fit ∈ Rn, i = 1, . . . ,m} with m being the number of factors.
Each factor is a handcrafted characteristic of n stocks, with values changing
over time. These factors can be engineered from market data or fundamental
data (which come from financial reports). One should learn a stock allocation
wt = [w1t, . . . , wnt]

T to maximize the future portfolio return from time t to t+ k,
rt+kp = wtr̂t+k, with a set of constraints C. r̂t+k = E[rt+k|Ft] is the expected
return of each stock in the stock pool and rt+k ∈ Rn. Some common constraints
are: 1)

∑n
j=1 wjt = 1; 2) 0 ≤ wjt ≤ u, where u is the upper bound of a stock

allocation with 0 < u ≤ 1.

Definition 2. The stock graph [22,20] is defined as a directed and dynamic graph
as, Gt = ⟨St,Rt,Mt⟩, where St denotes the set of constituents of a broad-based
stock index and Rt is the set of relations between two stocks at time t. Mt is the
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set of adjacent matrices. For an adjacent matrix Mr
t ∈ Mt of relation rt ∈ Rt,

where Mr
t ∈ R|Rt|×|Rt|

t , Mr(i, j) = 1 means that there is a relation r from stock
stj to stock sti and Mr

t (i, j) = 0 means that there is no such relation.

4 Method

In this work, we develop an E2E deep learning framework to find the cross-
sectional factors that can consistently explain the average stock returns well,
making good use of the relationships between stocks and the insights from finance.
(see Fig. 1).

4.1 Factor Selection

The classical way in factor selection is to select factors that meet the IC or ICIR
threshold using the rule of thumb. However, this can have two drawbacks: 1) It
only considers the isolated and linear correlation between a single factor and
the realized return. 2) It is a static selection procedure where the candidate
list remains unchanged over a period of time. To mitigate the drawbacks of the
existing selection practice, we develop a non-linear and dynamic factor selection
module using an attention mechanism. The factor selection module is defined as
the follows

Mt
f = 1≥γf

(
softmax

(
MLP(Fto)

))
, (1)

Ft = Mt
fF

t
o, (2)

where 1≥γf (·) denotes an attention gate that forces the focus of the selection
module to higher attention factors and γf is the attention lower bound for an
original factor. Fto ∈ Rn×m is a matrix representing m factors w.r.t n stocks.

4.2 Deep Multifactor Model

Stock Context Encoder. We define n as the number of constituents inside a broad-
based stock index, and m as the number of types of stock context that covers
fundamental, trading information and analysts’ estimates.

Ct = MLP (BatchNorm (Ft)) , (3)

where Ft ∈ Rn×m is a matrix represents ms(ms ≤ m) factors selected from
original factors w.r.t n stocks , and Ct ∈ Rn×m1 is the stock context matrix with
m1 hidden features extracted from the original factors. Batch normalization [5] is
a deep learning counterpart to z-score normalization, which is generally applied
in data preprocessing for factor engineering [20].

Relational Neutralization Block. As a rule of thumb in investment practice, factor
processing usually applies industry neutralization and size neutralization to
remove the effect of industry and capitalization. Therefore, we design a relational
neutralization block to remove the effect of different types of relationships. To
encode the stock relationships, we apply Graph Attention Network (GAT) [17] to



6 Z. Wei et al.

predefined stock graphs and its corresponding stock context, which is a common
paradigm in existing works [20,21,18]. The relational neutralization block (RNB)
is defined as

C̄t = RNB(Ct;Gt) = Ct −GAT(Ct,M
r
t ), (4)

where Ct ∈ Rn×m1 is the stock context, Gt is the given stock graph at time t and
Mr

t is its corresponding adjacent matrix representing the stock relationship r.
Similar to [20], we have two neutralized stock context corresponding to inner-
industry and cross-industry relationship, C̄t

I and C̄t
U , i.e.

C̄t
I = RNB(Ct;GIt ), C̄t

U = RNB(C̄t
I ;GUt ), (5)

where GtI is the industry graph and GtU is the cross-industry graph.

Learning Deep Factors for Multiple Horizons. We design K output heads for
learning ultimate factors corresponding to multiple forward periods be aware
of practitioners, i.e. k-forward trading days, where k = 3, 5, 10, 15, 20. Formally,
we learn the deep factor f tk ∈ Rn that explains the future information on the k-
forward trading day from different granularity: stock original context Ct, industry
neutralized context C̄t

I , and universe-neutralized context C̄t
U :

f tk = LeakyReLU
(
WT

[k]

(
Ct||C̄t

I ||C̄t
U

))
, (6)

where WT
[k] is a single-layer feed-forward neural network for k-forward trading

days and || represents concatenation.

4.3 Portfolio Construction on Automatic Stock Selection

Directional Buffer. To determine the direction of the contribution of each original
factor to the deep factor in the deep multifactor module, we develop a directional
buffer to “memorize” the directions of each factor. This direction is defined
by the sign of the accumulated linear correlations between the original factor

and the deep factor in the training period: d
[i]
k = (d1, . . . , dm), with d

[i]
k =

sgn
(∑

t∈T IC(f ti , f
t
k)
)
, where sgn denotes a sign function, f ti ∈ Rn is the i-th

factor in Ft. The details of the direction buffer is shown in Algo. 1.

Interpretation of Deep Factor via Directional Attention Module. We introduce
directional factor attention module to investigate the positive or negative con-
tribution of original input factors or features to the deep factor. We employ
attention mechanism [16] to attend our deep factor to learn the token importance
of the original features. The normalized attention weight through a softmax
function illustrates “how much information influx in the deep factor from an
original feature”.

At
k = softmax

(
LeakyReLU

(
WT

a,kFt
))
, ātk =

1

n

∑
i∈n

atik, (7)
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Algorithm 1: Algorithm for Training E2EAI

Input : training data Dtrain, model parameters Φ, Ψ
Output :Φ∗, Ψ∗

1 Randomly initialize Φ, Ψ
2 while not meet the stopping criteria do
3 Ltrain ← 0, lf ← 0, bf ← 10−6, and bi ← 10−6, i = 1, . . . ,m

4 for Dbatch ← Dtrain do

5 Obtain the deep factors via E2EAI: fbatch,wbatch ← Φ(Dbatch)
6 lf ← 0

7 df = sgn(bf ), where bf ← bf + sum
(
IC(rbatch, fbatch)

)
8 di = sgn(bi), where bi ← bi + sum

(
IC(rbatch, fbatchi )

)
, i = 1, . . . ,m

9 for k ← 1 to K do
10 l← 0
11 for i← 1 to Niter do
12 Calculate the regression loss li of cross-sectional model for deep factor fk,

where ψk is its cross-sectional coefficient.

13 l← l− li · df
14 Update ψt via the cross sectional optimizer γ1 by minimizing l

15 lf ← lf −mean(ψt ◦ df )
16 Calculate the loss for factor stability ls and the loss for attention estimate le,

where le is calculated based on the directional buffer: di, i = 1, . . . ,m. Then,
update the train loss:

17 Ltrain ← Ltrain + lp + λele + λsls + λf lf
18 Update Ψ via the global optimizer γ2.

where WT
a,k ∈ Rn×n is a single-layer feed-forward neural network corresponding

to the k-forward trading day. At
k ∈ Rn×m is the attention weight matrix for the

deep factor f tk and atik is i-th column of At
k. Here, a

t
k is its corresponding attention

weight vector. We define the linear approximation of deep factor, f̂ tk ∈ Rm, as

f̂ tk = FTt
(
ātk ◦ dk

)
, (8)

where ◦ denotes Hadamard product, dk ∈ Rm is the directional buffer of original
factors w.r.t horizon k. When f̂ tk is very close to f tk, the attention weight ātk can
interpret the portion of quantity comes from the original input factors.

Learn a Deep Portfolio with Automatic Stock Selection. We develop a gated
additive attention mechanism for automatic stock selection based on the deep
factors generated by the previous module and the market embedding learned
from all stock contexts. The attention score for all stocks in the universe is defined
by Eq. (10) and the allocation of the selected stocks is shown in Eq. (11):

At
p,k = softmax

(
LeakyReLU

(
WT

a,k

(
Ct||(f tk ◦ df,k)

)))
, (9)

Wt
k = softmax

(
1≥γp(A

t
p,k)

)
, (10)

where γp ∈ (0, 1] is the attention lower bound, df,k is the directional buffer of
deep factor. If the attention weight of a stock does not satisfy this requirement,
then it would not be considered in the portfolio.
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4.4 Loss Design

Now we ponder the design of loss function to fulfill the learning objectives of our
E2E active investing. Specifically, the general loss function is

L = Lp + λsLs + λfLf + λeLe, (11)

where Lp, Ls, Lf , and Le are the loss terms associated with the portfolio, stability,
factor returns, and attention estimates, respectively. λ’s are balancing coefficients.
In what follows, we denote T as the set of trading days in the training period
and K as the set of future horizons.

Loss Related to Portfolio. A fundamental objective in portfolio construction is to
maximize expected return without violating the weighting constraints on equity
allocation. Based on this objective, we express the loss function of our portfolio
in two terms, i.e., loss of portfolio Lp return Lret and the loss of weight Lup
penalizing the allocation exceeding its upper bound θ, e.g., θ = 0.10, where
Lret = − 1

|T ||K|
∑
k∈K

∑
t∈T Wt

kR
t
k and Lup = 1

|T ||K|
∑
k∈K

∑
t∈T (W

t
k − θ). In

short, Lp = Lret + Lup.
Maximizing Factor Stability. The information ratio of information coefficient
(ICIR) is a widely used metric for assessing the factor stability, and ICIR is
defined as the mean of IC divided by its standard deviation [9,20]. We use ck
to denote the ICIR of the deep factor f tk, where ck measures the stability of the
predictive power of the deep factor f tk for the future return over the next k trading
days rt+k. Thus, since ICIR is positively correlated to stability, the stability loss
is defined as Le = 1

|K||T |
∑
k∈K

∑
t∈T dkc

t
k, where dk is the directional indicator

with value of 1 or -1.

Maximizing Factor Return. Factor returns are the cross-sectional regression
coefficients [8,20] that indicate the return attributable to a particular common
factor: r̂t+k = btkf

t
k, where b

t ∈ R is the factor return at time t. Since a deep
factor is expected to have a higher cumulative factor return, the loss for factor
return is defined as Lf = 1

|K||T |
∑
k∈K

∑
t∈T ψ

t
kd
k
f .

Improving “Attention Estimate”. We use L2-norm to evaluate the deviation
between the deep factor f tk and its corresponding attention estimate f̂ tk, which

can be calculated as etk = ||f tk − f̂ tk||2. Therefore, the attention estimate loss is
defined as Le = 1

|K||T |
∑
k∈K

∑
t∈T e

t
k.

4.5 Optimization

To improve the performance of the E2E framework, besides the global optimizer
we further propose a specialized optimizer, named cross-sectional optimizer, for
learning the directional cross-section coefficient.

Cross-sectional optimizer. The cross-sectional optimizer γ1 is a local optimizer for
learning the factor return of the deep factor, which is defined as the cross-sectional
regression coefficient (factor return) at each time t ∈ T . A linear regression model
is fitted by minimizing the mean squared errors of the predicted returns and the
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target returns. Since a deep factor has a positive or negative IC, the factor’s
return has the same direction as its IC. Therefore, we first determine the direction
of the deep factor and then estimate its factor using the cross-sectional optimizer.
This cross-sectional optimizer is independent of the global optimizer we use to
train our E2E framework.

Global optimizer. The global optimizer γ2 is designed to update the parameters
of our deep E2E framework. It is set to simultaneously optimize the parameters
of the factor selection, multifactor model, directed contribution estimator, and
portfolio construction module.

5 Experiment Results
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Fig. 2. The heat map shows the dynamic contribution of the original factors to the
deep factors: 1) the first row shows the dynamic attention allocation to the original
factor groups; 2) the second row shows the average attention weights for each style
factor on a semi-annual basis.
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Fig. 3. The monotonicity analysis of the deep factor and its attention approximation
(AA) on different stock universes. 1) The average returns increase monotonically in
stratified groups based on factor exposure, showing good stability of their predictive
power; 2) the AA of deep factor can linearly explain most cases in CSI300 and CSI500
from the perspective of portfolio performance in different groups.

Stock Pool. To have a fair comparison to the existing deep multifactor model, we
use the same stock pool with the same period used in [20]. The stock pool consist
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Table 1. The comparison of portfolio performances based on both ad-hoc and automatic
construction over the period 2015 to mid-2022 (best/2nd best).

CSI 1000 CSI 500 CSI 300

Method α↑ IR↑ MD↓ TT n̄ α↑ IR↑ MD↓ TT n̄ α↑ IR↑ MD↓ TT n̄

Linear 7.79 1.35 0.08 0.76 100 5.62 0.77 0.04 0.89 50 1.73 0.32 0.08 0.89 30
EW 14.65 1.92 0.06 0.71 100 8.91 1.86 0.06 0.97 50 7.57 1.20 0.06 0.71 30
MLP 15.16 3.53 0.07 0.88 100 4.48 0.67 0.05 0.78 50 3.56 0.65 0.15 0.88 30
MGAT 9.24 1.63 0.15 1.05 100 4.96 0.62 0.12 0.83 50 3.17 0.56 0.09 1.53 30
DMFM 16.36 3.46 0.08 0.92 100 9.03 1.89 0.07 1.01 50 7.85 1.09 0.06 0.96 30
E2El 15.14 2.92 0.07 0.94 100 12.00 2.18 0.07 1.11 50 9.60 1.46 0.09 0.71 30
E2Ed 18.10 4.35 0.08 0.92 100 13.37 2.45 0.08 1.01 50 13.40 2.02 0.07 0.97 30

S-Best 7.10 0.42 0.11 0.81 319 0.74 0.90 0.01 0.24 433 -0.06 -0.58 0.01 0.16 272
S-Avg 11.10 0.67 0.11 0.82 321 0.88 1.16 0.01 0.22 455 0.01 -0.19 0.01 0.13 289
S-T20 -0.04 -0.08 0.32 1.75 32 -9.44 -0.81 0.22 1.03 25 11.22 0.69 0.11 0.40 50
E2Eauto 20.12 1.37 0.09 0.96 95 8.88 2.47 0.04 0.76 129 7.40 1.56 0.04 0.60 103

of the most representative stocks of China stock markets, i.e., the constituents of
three major China Stock Indices (CSIs): CSI 300, CSI 500 and CSI 1000, which
represent more than 80% of total market capitalization of the entire stock market
in China [20]. These three indices covers 1800 stocks largest and most liquid
stocks in the market at the same time, while they cover more than 2800 stocks
in the period from 2010 to mid-2022.

Dataset Construction. The factors consist of fundamental factors and technical
factors based on various data sources. The fundamental and market data come
from publicly available data from tushare.pro, which can also be obtained
from Refinitiv or WIND institutional investor databases [20]. We create our
dataset on a daily basis and divide the original factors into seven groups: Value,
Growth, Momentum, Quality, Size, Liquidity [20,13,11]. The daily stock return
is calculated by rt+k = pt+k−pt+1

pt+1
, where t is the forecast day and pt+k denotes

the volume-weighted average price of all stocks on the next k day after the
forecast day. To avoid look-ahead bias, we create a point-in-time dataset [20] and
delete the intersection of the validation and test sets from the validation set. For
the stock graphs, the industry graph is created based on the CITIC Securities
Industry Classification Standard [20] and the universal graph is created based on
the list of constituent members issued by the China Securities Index Company.
In creating the dataset, we use the time- series cross-validation technique, which
divides the entire dataset into 14 groups in chronological order [20].

Baselines and Model Implementation. We compare our proposed method with
the following baselines: 1) Linear[4] is a linear multifactor model. 2) EW [11] is
an equally weighted model that has nothing to do with data mining or in-sample
optimization. In practice, any deviations from equal weighting are determined by
economic rationality [11]. 3) MLP is a nonlinear model that learns factors from
the stock context based on neural networks and consists of a context encoder and
a feature decoder. 4) MGAT [20] is a model based on a context encoder, a GAT,
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which learns the interactions between stocks in a universe graph, and a decoder,
which learns a deep factor from the stock context and the universal relationships
of the stocks. 5) DMFM [20] is a deep multifactor model. For comparison of E2E
and step-by-step methods, we provide three additional step-by-step baselines with
different criteria for factor selection: 1) S-Best, which selects the factors with
the best performance at different prediction horizons; 2) S-Avg, which selects
the factors that can perform well on average at different prediction horizons. 3)
S-T20 selects only the factors that perform well in predicting one-month returns.

The Performance based on Ad-Hoc and Automatic Portfolio Construction. We use
three widely used metrics for portfolio construction: excess return (α), information
ratio (IR), and maximum active drawdown (MD), as well as two additional
descriptive metrics such as buy and sell turnover (TT) and average number of
stocks held. ↑ and ↓ denote the metrics ”the higher the better” and ”the lower
the better” respectively. 1) The ad-hoc method is a popular method used to test
the ability of a multifactor model to select stocks and to show the effectiveness of
our multifactor model. It involves dividing stocks into K groups w.r.t of factor
exposures and constructing an equally weighted portfolio based on the group with
the largest factor exposure (when the factor is positively linearly correlated with
expected return and vice versa). Table 1 shows the comparison of the different
methods based on a stratification of 10 groups, where E2Ed and E2El denote
the portfolio constructed based on a deep factor and its linear approximation
(AA) via attention estimate. 2) In Table 1, we compare the stepwise with the
end-to-end portfolio construction, and our E2E method outperforms the other
stepwise baselines. Overall, our E2EAI can outperform different baselines under
different portfolio construction paradigms w.r.t metrics such as α and IR.

Interpreting Deep Factor via Directional Contribution. 1) Learning the directional
contribution can reveal the dynamic allocation of the original factors. Fig. 2
shows the group contribution and the directional contribution of each factor
over the test period. An interesting result is related to liquidity: liquidity hardly
contributes in the universe of CSI300, while in CSI500 it contributes a throw in
the second tier of the most liquid stocks with the largest market capitalization.
However, liquidity contributes more in CSI1000 as it consists of 1000 small cap
companies that are less liquid than CSI 800 (CSI300 and CSI500). This shows
that liquidity is more important in small caps, which makes sense in practice.
2) The portfolio E2El constructed by attention approximation over attention
estimate is monotonically similar to E2Ed, see Fig. 3.

6 Conclusion
In this paper, we are the first to propose an E2E framework for active investing
that outperforms existing methods in three major stock universes in the Chinese
stock markets. Using a directional buffer, we can identify both the positive and
negative contribution of each factor and also determine the dynamic allocation
of each orignal factor. In the future, we plan to apply our method to the entire
market with diversified client-oriented investment objectives.



12 Z. Wei et al.

References

1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7), e0130140 (2015)

2. Chen, C., Zhao, L., Bian, J., Xing, C., Liu, T.Y.: Investment behaviors can tell
what inside: Exploring stock intrinsic properties for stock trend prediction. pp.
2376–2384 (2019)

3. Duan, Y., Wang, L., Zhang, Q., Li, J.: Factorvae: A probabilistic dynamic factor
model based on vae for predicting cross-sectional stock returns. AAAI (2022)

4. Fama, E.F., French, K.R.: Comparing cross-section and time-series factor models.
The Review of Financial Studies 33(5), 1891–1926 (2020)

5. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448–456. PMLR (2015)

6. Jiang, W.: Applications of deep learning in stock market prediction: recent progress.
Expert Systems with Applications 184, 115537 (2021)

7. Levin, A.: Stock selection via nonlinear multi-factor models. NeurIPS 8 (1995)
8. Lin, H., Zhou, D., Liu, W., Bian, J.: Deep risk model: a deep learning solution for

mining latent risk factors to improve covariance matrix estimation. In: Proceedings
of the Second ACM International Conference on AI in Finance. pp. 1–8 (2021)

9. Lin, H., Zhou, D., Liu, W., Bian, J.: Learning multiple stock trading patterns
with temporal routing adaptor and optimal transport. In: SIGKDD. pp. 1017–1026
(2021)

10. Matsunaga, D., Suzumura, T., Takahashi, T.: Exploring graph neural networks for
stock market predictions with rolling window analysis. NeurIPS Workshops (2019)

11. Melas, D.: Best practices in factor research and factor models. MSCI Research
Insight (2018)

12. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise
relevance propagation: an overview. Explainable AI: interpreting, explaining and
visualizing deep learning pp. 193–209 (2019)

13. Nakagawa, K., Ito, T., Abe, M., Izumi, K.: Deep recurrent factor model: interpretable
non-linear and time-varying multi-factor model. arXiv:1901.11493 (2019)

14. Nakagawa, K., Uchida, T., Aoshima, T.: Deep factor model. In: ECML PKDD 2018
Workshops. pp. 37–50. Springer (2018)

15. Uysal, A.S., Li, X., Mulvey, J.M.: End-to-end risk budgeting portfolio optimization
with neural networks. arXiv preprint arXiv:2107.04636 (2021)

16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

17. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

18. Wang, J., Zhang, S., Xiao, Y., Song, R.: A review on graph neural network methods
in financial applications. arXiv preprint arXiv:2111.15367 (2021)

19. Wang, L., Liu, W., Yang, X., Bian, J.: Conservative or aggressive? confidence-aware
dynamic portfolio construction. In: GlobalSIP. pp. 1–5. IEEE (2019)

20. Wei, Z., Dai, B., Lin, D.: Factor investing with a deep multi-factor model. arXiv
preprint arXiv:2210.12462 (2022)

21. Xu, W., Liu, W., Wang, L., Xia, Y., Bian, J., Yin, J., Liu, T.Y.: Hist: A graph-
based framework for stock trend forecasting via mining concept-oriented shared
information. arXiv preprint arXiv:2110.13716 (2021)

22. Xu, W., Liu, W., Xu, C., Bian, J., Yin, J., Liu, T.Y.: Rest: Relational event-driven
stock trend forecasting. In: Proceedings of the Web Conference. pp. 1–10 (2021)


	E2EAI: End-to-End Deep Learning Framework for Active Investing

