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ABSTRACT
Data-driven approaches using deep neural networks have been suc-
cessful in modeling complex financial time series and generating ac-
curate predictions without requiring extensive domain knowledge.
However, most of the existing models that assume independent
and identically distributed (𝑖 .𝑖 .𝑑 .) data may not generalize well to
novel situations or distributional shifts across or inside financial
scenarios. To address this challenge, we introduce an invariant
learning-based regularizer with relaxed bounds that expands the
range of feasible solutions and mitigates over-convergence issues in
Invariant Risk Minimization (IRM). In practice, the regularizer can
be incorporated into both linear and nonlinear financial time series
forecasting models. Experimental results on real-world large-scale
financial datasets show that our proposed method enables more
robust and adaptable financial forecasting models, enhancing the
overall performance and generalizability of financial forecasting
on both in-distribution and out-of-distribution (OOD) samples.
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1 INTRODUCTION
Global financial markets are fundamentally driven by investors’
forward-looking views and expectations about future economic and
business conditions [26]. As such, accurate financial forecasting
is crucial for understanding market dynamics and enabling sound
investment decisions [9]. However, producing reliable forecasts
requires years of experience and deep domain expertise that is
difficult to attain. Data-driven deep learning approach can be used
to tackle financial forecasting tasks. Deep neural networks have
recently achieved state-of-the-art results in modeling complex time
series and generating accurate predictions [29]. They are capable
of learning intricate patterns from large amounts of data without
requiring extensive feature engineering or domain knowledge.

Financial forecasting, by itself, is inherently more difficult than
typical time series forecasting due to a variety of factors [1] such
as external variables, non-stationarity, high degree of noise, and
volatility. On the one hand, the adaptive nature of market partici-
pants, who constantly update their strategies in response to new
information, contributes to the non-stationary nature of financial
time series [5]. On the other hand, different companies within the
market also have different business strategies based on their unique
circumstances, business models, and risk appetites. This discrep-
ancy in business strategies across companies further contributes to
the distributional shift of financial data and returns.

Despite the demonstrated success of long short-term memory
(LSTM) [8] and Transformer-based [12] deep neural networks in
time series forecasting tasks, a growing trend is emerging toward
achieving comparable results utilizing simply linear layers [31]
with its ability to capture the characteristics of trends and season-
ality inside the observed time series and multilayer perceptron
(MLP)-based model for handling covariates and non-linear depen-
dencies [10]. Given the imperative for rapid response in financial
interaction prediction, we envisage a rising preference for lightly
deep neural network models that deliver robust predictive capabili-
ties. Such models are anticipated to gain increasing traction within
the field of financial time series prediction.

Furthermore, creating separate financial forecasting models for
individual companies can be costly and require access to abundant,
company-specific data. This is even harder for emerging companies
that might not have much data available and may also produce zero-
shot settings. Moreover, these models are often tailored to specific
companies and their unique business tactics, making them difficult
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to apply to other firms. However, most if not all of the previous
existing deep learning-based financial forecasting models rely on
the assumption of independent and identically distributed (𝑖𝑖𝑑 .) data,
which constrains the generalization capabilities when confronted
with unencountered scenarios or when tested financial data exhibits
distributional shifts. Recently, it has been observed that models,
such as Invariant Risk Minimization (IRM) [4], leveraging invariant
correlations across multiple training distributions can learn the
underlying invariant causal relationships, thus maintaining stable
performance in novel situations. Nevertheless, such models may
be overly constrained, potentially hindering the achievement of
desired results in various applications.

To tackle the aforementioned challenges, we propose a stan-
dardized algorithm to generate automated financial forecasts for
multiple companies using an invariant learning-based regulariza-
tion with relaxed constraints. This novel regularization approach
effectively mitigates the overfitting issue observed in IRM under ex-
cessively restrictive assumptions by expanding the feasible solution
space. In other words, models employing this regularization can
discern consistent underlying logical relationships across diverse
known financial data scenarios, consequently producing stable fore-
casting results for both familiar and new companies. By providing
such a more flexible solution space, our proposed regularization
enables more robust and adaptable linear/non-linear financial fore-
casting models.

Specifically, leveraging access to an extensive repository of 3rd
party corporate financial records of Standard & Poor’s 500 (S&P
500) companies, we use seven different industry sectors’ data from
their financial statements to train the unified multi-faceted model
with environmentally invariant information. This unified model
is poised to streamline processes ranging from equity research to
algorithmic trading by enabling rapid fundamental analysis at scale
across diverse companies. In experiments, we show that our method
designed under such inductive bias of environmental invariance
can improve previous methods that only target a single environ-
ment. Specifically, when compared to the baseline models with
mixup strategy [32] or IRM, our proposed model demonstrates a
significant over-performing in S&P 500 datasets in the ‘Revenue’
forecasting and ‘EBITDA’ forecasting. Our main contributions can
be summarized as follows:

• Departing from single-scenario forecasting, we seek to de-
vise a financial time series solution capable of maintaining
robust forecasting efficacy with multiple sectors. As per our
understanding, such financial forecasting task has not re-
ceived extensive scholarly attention previously.
• We propose a uniform multi-faceted algorithm with a regu-
larizer toward learning the invariant representation to tackle
distributional shifts within or across companies. Leveraging
the innate correlations across diverse recognized scenarios,
our solution can yield stable forecasting results adequate for
large-scale financial time series analysis.
• We conduct extensive experiments and sensitivity analyses
to demonstrate the effectiveness of our proposed algorithm
on both familiar sectors and zero-shot settings. Notably, our
model outperforms other baselines on the ‘EBITDA’ fore-
casting task of S&P 500 datasets by an average of 27.87%.

2 RELATEDWORK
2.1 Time Series Forecasting
Time series forecasting tasks can be broadly classified into long-
term forecasting [19, 20, 35] and short-term forecasting [7, 16]
based on the forecast horizon. Notably, the Transformer architec-
ture [28] has emerged as a widely accepted algorithm for long-term
predictions, for example, Informer [34] and Crossformer [33], while
short-term predictions predominantly employ Graph Neural Net-
works (GNNs) [6, 14].

As for financial forecasting, Papadimitriou et al. presents a frame-
work that can produce reliable and robust forecasts of financial
metrics in the financial statements such as income statement, cash
flow and balance sheet as well as points out the distinction between
the commonly used univariate model setting and the multivariate
model setting. Clustering Guided model [22] first uses a clustering
algorithm to group companies based on their financial characteris-
tics and select the best time series model for each cluster. Then it
uses a clustering based deep learning model to train and forecast the
financial metrics for each cluster. In addition, TStI [5] transforms
time series data into Gramian angular fields (GAF) images and then
uses an ensemble of convolutional neural networks (CNNs) trained
on different resolutions of GAF images to predict the future trend of
the U.S. market based on the S&P 500 index. Recently, [2] proposes
to forecast the price of the stock from National Stock Exwchange
(NSE) using historical data as well as sentiment analysis of public
opinion and news headlines.

For distributional shifts in time series, AdaRNN [13] addresses
the temporal covariate shift by proposing an adaptive RNN model.
After that, DIVERSIFY [18] extends AdaRNN into an end-to-end
framework and mainly focuses on the time series classification
task. While most of the related methods are limited to forecasting
individual companies or narrow subsets of companies, our goal
is to leverage data from diverse companies across heterogeneous
environments to build a robust financial forecasting model that
remains robust and adaptable across various scenarios. Please refer
to [27] for more comprehensive related works.

2.2 Towards Invariant Representation
Invariant causal prediction (ICP) uses invariance under different
environments to infer causality [23]. Invariant Risk Minimization
(IRM) [4] proposes to find invariant information between environ-
ments to enable the out-of-distribution generalization for causal
estimates. CoCo [30] maximizes an objective where the only solu-
tion is the causal solution by leveraging the causal invariance across
environments. Besides, invariant Causal Representation Learning
(iCaRL) [17] enables out-of-distribution (OOD) generalization via
nonlinear classifiers. Recently, IRM-based learning has been shown
to be fragile[25], and the criticism is mainly focused on the feasible
space of the IRM-based might be overly restrictive for acquiring
a solution with good generalization on unseen environments [3].
However, loosening the over-strict feasible space of IRM to acquire
a solution with good generalization on unseen environments should
be one solution to improve IRM-based methods’ validity and relia-
bility, which motivates us to propose this work under the highly
dynamic and ever-evolving nature of financial markets.

473



Large Scale Financial Time Series Forecasting with Multi-faceted Model ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA

3 PRELIMINARY
3.1 Problem Fomulation
Financial forecasting can be considered as predicting key items
from a company’s financial statements: the income statement, bal-
ance sheet, and cash flow statement obtained from financial filings.
Considering the multitude of factors and data that potentially in-
fluence a company’s financial performance, it is reasonable to view
financial data as a collection of multivariate time series. Conse-
quently, the forecasting task can be modeled as the multivariate
time series forecasting and be written as follows:{

𝑦𝑒𝑡+1, . . . , 𝑦
𝑒
𝑡+𝐻

}
= 𝑓

({
𝑦𝑒1, . . . , 𝑦

𝑒
𝑡 ; x𝑒1, . . . , x

𝑒
𝑡

}
| Θ

)
(1)

where
{
𝑦𝑒
𝑡+1:𝑡+𝑇

}E
𝑒=1 represents the forecast targets derived from

the historical time series
{
𝑦𝑒1:𝑡

}E
𝑒=1. Meanwhile,

{
x𝑒1:𝑡

}𝑁
1 stands for

a set of multivariate time-varying vectors
({
𝑥𝑒1 , . . . , 𝑥

𝑒
𝐷

}
∈ x𝑒

)
of

dimension 𝐷 , which are associated with
{
𝑦𝑒1:𝑡

}E
𝑒=1. The uniform

multi-faceted function 𝑓 is a model that calculates the model pa-
rametersΘ based on historical data from time series 𝑖 . This model is
then used to predict the values for future steps within a horizon 𝐻 ,
extending from time 𝑡 to 𝑡 +𝐻 . The global model parameters, repre-
sented as Θ, can be learned conjointly with 𝑦 and 𝑥 , encompassing
the entire E financial sectors (also note as environments).

3.2 Invariant Risk Minimization
Recent work develops methods for learning an invariant repre-
sentation, such as IRM [4], connecting the regularizer and model
invariance. It minimizes the empirical risk while constraining the
representation learning model 𝑓 : X → R𝑑 to find an embedding
space where our predictor 𝑔𝑤 : R𝑑 → Y has parameter 𝑤 that is
simultaneously optimal for all environments:

min
𝑤,𝑓

∑︁
𝑒∈E

𝑅𝑒 (𝑤, 𝑓 ), (2)

𝑠 .𝑡 . 𝑤 ∈ arg min
�̄�

𝑅𝑒 (𝑤, 𝑓 ), for all 𝑒 ∈ E

where 𝑅𝑒 (𝑤, 𝑓 ) = E𝑥,𝑦∼𝑝𝑒 (𝑥,𝑦) [𝑙𝑦 (𝑔𝑤 (𝑓 (𝑥)), 𝑦)] refers to the risk
of 𝑓 ,𝑤 in environment 𝑒 . 𝑙𝑦 : Y × Y → R is the loss function
computing the difference between the predicted outcome and actual
outcome. In this paper, without loss of generality, we apply square
error (𝑦 − 𝑦)2 as the loss function and follow the notation method
of IRM in this section unless specifically mentioned.

4 METHODOLOGY
4.1 Overview
As shown in Algorithm 1, we first collect data from heterogeneous
sectors and split them into the training set and test set. Then, we
initialize the forecasting model 𝑀 with parameters 𝛼 ∼ N(0, 1).
Note that the selection of the backbone for our predictive model𝑀
is flexible and not confined to linear or nonlinear structures. For il-
lustrative purposes, we will be using a Multilayer Perceptron (MLP)
financial model [21] as an example in the following explanation.
Then, we train the MLP model with forecasting objective function
as well as the optimization-based regularizer.

Enabling a representation learning model to adapt invariant in-
formation in different environments is a challenging task since
most of the machine learning models assume that the testing sam-
ples are drawn from the same distribution as training data. Recent
work develops methods for learning an invariant representation,
such as mixup [32], IRM [4] and CoCo [30]. However, IRM-based
approaches are unstable with the strict approximation of invariant
features [25]. To this end, we propose to learn invariant representa-
tions in a high-dimensional nonlinear feature space through neural
networks that approximate the underlying relationships in a looser
manner.

Algorithm 1 Uniform Multi-faceted Forecasting Model for Large
Scale Financial Time Series
1: Input: Observational time series 𝑋𝑒 , where 𝑒 ∈ {1, ..., 𝑛} is the
E (Environments) index, label 𝑌𝑒 .

2: Outcome: Predicted time series, 𝑌𝑒 .
3: Initialize model𝑀 with parameters 𝛼 ← N(0, 1).
4: Split 𝑋𝑒 into training 𝑋𝑒

𝑡𝑟𝑎𝑖𝑛
and test 𝑋𝑒

𝑡𝑒𝑠𝑡 data
5: while less than training epoch do
6: for each environment 𝑒 do
7: Extract data 𝑋𝑒 from environment 𝑒
8: Split 𝑋𝑒 into 𝑋𝑒,𝑡𝑟𝑎𝑖𝑛 and 𝑋𝑒,𝑡𝑒𝑠𝑡

9: Compile𝑀
10: Fit𝑀 on 𝑋𝑒

𝑡𝑟𝑎𝑖𝑛
using mini-batches

11: Calculate 𝑦𝑒 via model𝑀
12: LeMSE = 𝑙𝑦 (𝑦𝑒 , 𝑦𝑒 )//Calculate outcome loss
13: LeOB = ∥(∇𝑅𝑒 (𝑤, 𝑓 ))◦𝑐 ◦𝑤 ∥22 //Apply optimization-

based regularizer
14: Update 𝛼 according to:
15: 𝛼 ← 𝛼 − 𝜆∇𝛼 (LeMSE + 𝛾L

e
OB)

16: Output: Learnt parameters 𝛼 for forecasting model 𝑀 ; Esti-
mated outcome 𝑌𝑒 .

4.2 Optimization-based Invariant Regularizer
The feasible space for the optimization presented in Section 3.2 may
impose overly stringent conditions for identifying a solution that
effectively generalizes to unseen environments. Our paper seeks
to investigate whether superior solutions could potentially exist
outside this feasible space under certain specific scenarios.

Let us denote the variance of the outcome 𝑦, given the embed-
ding 𝑓 (𝑥), in the test environment 𝑒 , as 𝜎2

𝑒 (𝑦 |𝑓 (𝑥)). Suppose that 𝑓 ∗
represents the optimal solution of the Invariant Risk Minimization
(IRM). The distribution of 𝑥 in the test environment is represented
as 𝑝𝑒 (𝑥). We posit that there might exist a superior solution out-
side the feasible space of IRM, if there exists a data representation
function 𝑓 ′ such that, in the test environment 𝑒 , 𝑔𝑤 (𝑓 (𝑥)) exhibits
𝐿-Lipschitz continuity with respect to 𝑤 on the support set of 𝑥 .
And we have:

E𝑥∼𝑝𝑒 (𝑥 ) [𝜎
2
𝑒 (𝑦 |𝑓 ∗ (𝑥)) − 𝜎2

𝑒 (𝑦 |𝑓 ′ (𝑥))] > 𝐿 | |𝑤 ′ −𝑤 ′′ | |22 (3)

where𝑤 ′ is the optimal predictor parameter trained with 𝑓 ′ as en-
coder on the training environments and𝑤 ′′ is the optimal predictor
parameter trained with 𝑓 ′ as encoder on the testing environment.
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The previously discussed equation indicates that if the optimal
solution for the predictor across diverse environments remains
bounded, a superior representation of the learning model could ex-
ist outside the IRM’s feasible space. This insight suggests an oppor-
tunity to judiciously relax the parameter constraints, consequently
improving performance. This enhancement can be achieved by
compelling the model to formulate an embedding space, in which a
predictor 𝑔𝑤 can be identified that stays near to an optimal solution
within each environment.

Nonetheless, the optimization issue outlined above presents com-
putational challenges due to the necessity of calculating the𝑤∗𝑒 for
every environment. By strengthening condition 1 on 𝑔𝑤 a notch,
restricting the 𝑅𝑒 (𝑤, 𝑓 ) to possess a Lipschitz continuous gradient,
we can make this more manageable. As such, the magnitude of the
gradient of 𝑤 , denoted as ∇𝑤𝑅𝑒 (𝑤, 𝑓 ), can serve as an indicator
of the distance separating 𝑤 and the nearest 𝑤∗𝑒 . Then, we can
optimize the following tractable formulation:

min
𝛼

∑︁
𝑒∈E

[
𝑅𝑒 (𝑤, 𝑓 )︸     ︷︷     ︸

Empirical risk

+𝜆 max( | |∇𝑤𝑅𝑒 (𝑤, 𝑓 ) | |22, 𝜖 )︸                            ︷︷                            ︸
Invariant regularization

]
, (4)

where 𝜖 is a hyperparameter to control how loose the regulariza-
tion is. In practice, to avoid numerical issues and simplify the opti-
mization landscape, we approximate the max( | |∇𝑤𝑅𝑒 (𝑤, 𝑓 ) | |22, 𝜖)
term with a smoothed surrogate. Specifically, we replace it with
the squared Hadamard power1 function | |∇𝑤𝑅𝑒 (𝑤, 𝑓 ))◦𝑐 | |22, where
(∇𝑤𝑅𝑒 (𝑤, 𝑓 ))◦𝑐 represents taking the element-wise power of the
gradient vector ∇𝑤𝑅𝑒 (𝑤, 𝑓 ).

The element-wiseHadamard power replacement for themax(·, 𝜖)
function approximates its key properties. When ∥(∇𝑤𝑅𝑒 (𝑤, 𝑓 ))◦𝑐 ∥
is small, its value approaches zero rapidly, mimicking the behav-
ior of the maximum function for small inputs. Additionally, for
regions where𝑤 is distant from optimality along some dimensions,
(∇𝑤𝑅𝑒 (𝑤, 𝑓 ))◦𝑐 provides stronger regularization compared to a
simple threshold. This acts to restrain large gradient updates that
could hinder convergence. Critically, the surrogate remains fully
differentiable, maintaining the benefits of gradient-based optimiza-
tion. Together, these properties allow the Hadamard power formu-
lation to uphold the aims of limiting uninformative updates, while
introducing the favorable characteristics of smoothness into the
objective. The result is an optimization procedure that can traverse
complex landscapes efficiently to obtain high-quality solutions.

Therefore, the optimization-based invariant regularizer is: Le
OB =

∥(∇𝑅𝑒 (𝑤, 𝑓 ))◦𝑐 ∥22, where the power 𝑐 applied element-wise to the
gradient is a tunable hyperparameter, which is set greater than
one. This strengthens regularization for large gradient magnitudes
compared to 𝑐 = 1 (vanilla IRM’s setting), guiding optimization.
Inspired by prior work on causal discovery from observational data
[30], we additionally multiply the gradient by the predictor weights
𝑤 . This attenuates the influence of non-causal features with𝑤 ≈ 0,
focusing the objective on truly predictive dimensions. Together,
these modifications yield our final regularize:

Le
OB =

(𝑤 ◦ ∇𝑅𝑒 (𝑤, 𝑓 ))◦𝑐
2

2 , (5)

where ◦ denotes the Hadamard product. Importantly, our formu-
lation presents a flexible and principled framework for learning
1Hadamard power is defined as, for 𝑦 = 𝑥◦𝑐 , we have 𝑦𝑖 = 𝑥𝑐

𝑖

Consumer

[𝑞!" , … , 𝑞#" ]

Healthcare

[𝑞!$, … , 𝑞#$ ]

Consumer

[𝑞#%!" , … , 𝑞#%&" ]

Healthcare

[𝑞#%!$ , … , 𝑞#%&$ ]

Technology

[𝑞!', … , 𝑞#' ]

Technology

[𝑞#%!' , … , 𝑞#%&' ]

…

…

Num of cells = 12
Acti = SoftReLU
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Acti = SoftReLU

Num of cells = 50
Acti = SoftReLU La

ye
r 1

   
 L

ay
er

2 
   

 L
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er
3

Invariant 
Regularizer

MSE Loss

Figure 1: The proposed uniform architecture for multi-step
forecasting with optimization-based Invariant regularizer
and data-driven backbone, which is three-layer MLP as an
example .

underlying invariant structures through gradient-based optimiza-
tion objectives.

4.3 Objective Function
As shown in Figure 1, our proposed regularizer can be seamlessly
integrated with any existing machine learning model to enhance its
stability across diverse environments. We Utilize the Mean Squared
Error (MSE) as the loss function, i.e., Le

MSE = 1
𝑛𝑒

∑𝑛𝑒

𝑖=1 (𝑦𝑖 − 𝑦𝑖 )
2, for

prediction loss, where the 𝑦𝑖 is the predicted value from backbone
forecasting model (MLP). In addition, we incorporate our novel
regularizer to derive a model that exhibits consistent performance
across different sectors. Thus, the loss for the sector e from the
heterogeneous environments can be written as:

Le = Le
MSE + 𝛾Le

OB, (6)

where 𝛾 is the hyperparameter for controlling the importance of
the proposed regularizer.

5 EXPERIMENTS
5.1 Datasets
The assessment and prediction of a company’s future profitability
and input-output ratio are essential for the development and in-
vestment of the company. Financial analysis and forecasting are
data-driven and mostly depend on the combination of different
types of data which include company filings, industry reports, and
so on. In this project, we mainly use the financial statements of a
company: balanced sheet, income statements, and cash flow state-
ments.

Standard & Poor’s 500 Index (S&P 500) is a market-capitalization-
weighted index of the 500 largest U.S. publicly traded companies [11].

475



Large Scale Financial Time Series Forecasting with Multi-faceted Model ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA

…

…

…

…

2000 2022 t

: x

: y

20 quarters 4 quarters

Figure 2: An illustration of the data allocation for future 4
quarter forecasting.

We evaluate our model in S&P 500 with companies’ quarterly data
for 10 sectors: Basic Materials (21 companies), Communication Ser-
vices (26 companies), Consumer Cyclical (58 companies), Consumer
Defensive (36 companies), Energy (22 companies), Financial Ser-
vices (69 companies), Healthcare (65 companies), Industrials (73
companies), Technology (71 companies), Utilities (30 companies)
from the years 2000 to 2022. Sliding Window (Section 5.2) is used
to build the time series samples, where we can get 19,513 samples
from 7 sectors as seen data for training and 11,188 samples from 3
sectors as unseen data (referring to zero-shot setting) for generation
ability evaluation. As a financial project, our target is to predict the
future performance of companies with multiple quarters. Thus we
forecast future one-year metrics using the past 5 years’ data.

5.2 Experimental Setting
We conduct our experiments using four NVIDIA GeForce GTX 2080
GPUs with 16G memory. For each sector in the training seen stage,
we split the data into training, test, and validation sets with an
80/10/10 ratio. The hyperparameter 𝛾 was determined through a
systematic grid search, with the search space encompassing the
values 1, 0.1, 0.01, and 0.001. To ensure an unbiased comparison, the
reported results represent the arithmetic mean of three independent
runs. We set batch size to 32 for training.

Out-of-distribution (OOD) Setting. Based on all the sectors, we
separate 10 sectors into 7 seen data (Healthcare, Technology, Basic
Materials, Energy, Financial Services, Utilities, Communication
Services) for the training stage as well as the evaluation stage and
3 sectors (Consumer Defensive, Consumer Cyclical, Industrials) as
the unseen environments to build the OOD setting for evaluation
stage, also referring to the zero-shot setting in our results.

Sliding Window Setting. For each company, we do the window
to partition the dataset into subsections in order to increase the
dimension shape of the time series dataset. We set window slide
t=24 which means 24 quarters as one sample (the first 20 quarters/5
years data as input and the last 4 quarters/1 year data for evaluation).
The window framework is demonstrated in Figure 2.

Features and Targets. Following [21]’s multivariate time series
setting, we choose cost of goods sold (COGS), selling, general and
administrative expenses (SG&A), RD expenses (RD_EXP) which
are more significant and basic financial metrics among all financial
data as fixed input features from the income statement. For the sake
of simplicity, we make predictions for revenue (REV) and Earnings
Before Interest, Taxes, Depreciation, and Amortization (EBITDA)

which can also be calculated as EBITDA = REV - COGS - SG&A -
RD_EXP, respectively.

Missing value. The S&P 500 dataset contains some examples of
missing values. For instance, many companies may lose information
before 2010. For this kind of missing data, we experiment with
different interpolation methods and find that linear interpolation is
the best for our time series data. Linear interpolation is an approach
used to estimate a value within a range based on two known end-
point values. Another major missing data is research development
expenses that many companies not have invested in which will
leave null in statements. Thus we replace all the null in research
development expenses with the value 0.

For each method, we predict quarterly Revenue/EBITDA by the
past 20 quarters’ data and use prediction value to predict the next
quarter’s Revenue/EBITDA for 4 times to get yearly prediction
result and the evaluation result(SMAPE) is based on the yearly
value (sum of 4 quarters).

5.3 Evaluation Metrics
In reality, the magnitude of financial metrics values for different
companies may be largely different. We choose the symmetric
mean absolute percentage error (SMAPE) which is an accurate
measurement based on the percentage as our evaluation metrics:

SMAPE =
200%
𝑛

𝑛∑︁
𝑡=1

|𝐹𝑡 −𝐴𝑡 |
𝐹𝑡 +𝐴𝑡

, (7)

where 𝐹𝑡 is the true value and 𝐴𝑡 is the prediction value in our
system and 𝑛 is the total time steps we need to forecast.

SMAPE is sensitive to outliers, in particular, when true data and
prediction are opposite in sign, the error may be up to 200% which
will seriously skew the final result. Following [21], we remove
the data points of 80% and 90% and verify they have a significant
financial change due to mergers & acquisitions (M&A) etc.
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Figure 3: Revenue prediction results (SMAPE) for General
Mills Inc in Consumer Defensive sector (out-of-sample).

5.4 Results
Baselines. For the purposes of establishing a robust comparison,

we construct the Linear model [31] with its variants, including
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Table 1: SMPAE of Revenue setting with baselines and our proposed method. Hereafter for the tables, we remove outliers with
SMAPE over 0.8/0.9. The best results are marked in bold and second optimal in underlined respectively with 0.8 & 0.9.

REV Sectors LSTM MLP Transformer AdaRNN Linear NLinear DLinear Ours
Healthcare 54.6/59.4 44.1/48.8 16.5/18.6 31.5/35.4 19.9/21.1 34.4/37.5 30.2/32 15.4/15.6
Technology 32.4/32.6 47.5/50.4 16.1/16.1 32/32.8 21.6/21.6 35.7/36.1 30.6/30.6 13.4/13.4

Basic Material 15.1/15.1 27.2/27.2 19.1/19.1 14.4/14.4 10.8/10.8 13.8/13.8 12.2/12.2 10.2/10.2
Energy 32.8/33.3 52.2/54.9 25.3/25.3 42/42 24.4/24.4 38.1/38.1 31.5/31.5 23.3/23.3

Financial Services 27.7/28.5 40.5/42 10.6/10.6 19.4/19.4 12/12 24/24.7 19.8/20.3 10.1/10.1
Utilities 14/14 17.1/17.1 8.1/8.1 13.1/13.1 8.7/8.7 10.7/10.7 7.8/7.8 8.8/8.8

SEEN

Communication Services 24/24 39.4/39.4 15/15 26.9/26.9 12.8/12.8 23.2/23.2 19.3/19.3 11.7/11.7
Consumer Defensive 26.4/26.7 38.1/38.5 12.1/12.1 32.6/32.9 15.3/15.3 27.6/27.9 22.4/22.6 9.6/9.6
Consumer Cyclical 26.8/27 29.8/30.1 13.6/13.6 22.3/22.5 13.9/14 23.7/23.8 18.9/19 11.9/12Zero-shot

Industrials 18.3/18.3 30.2/30.2 12.9/12.9 14.7/15.2 8.8/8.8 17/17 13.5/13.6 8.8/8.9

Table 2: SMPAE of EBITDA setting with baselines and our proposed method.

EBITDA Sectors LSTM MLP Transformer AdaRNN Linear NLinear DLinear Ours
Healthcare 60.4/74.9 44.1/48.8 23/23.4 32.2/33 37.4/39.3 29.8/31 43.4/45.7 20.5/21.4
Technology 44.3/47.2 47.5/50.4 32.7/34 40.8/41 45.8/49.7 38.4/40.3 52.7/57 28.6/29.1

Basic Material 42.5/45.6 27.2/27.2 35.8/38.5 35.2/37.4 27.9/29.6 27.4/29.2 29.7/31.4 28.1/29.8
Energy 45.9/47.3 52.2/54.9 36.2/36.8 30/30.6 34.8/36.4 37.1/39.6 43/42.4 32/34.5

Financial Services 41.6/43.5 40.5/42 29.6/30.5 30/31.3 33.3/34 28.6/29.2 38.1/39.1 22.6/23.5
Utilities 30/30.4 17.1/17.1 23.8/24.5 29.4/29.7 22.7/22.7 21.3/21.1 22/22.4 21.1/21.5

Seen

Communication Services 27.7/29.6 39.4/39.4 39.2/43 39.1/41 27.9/28.4 31.8/31.8 30.6/31.2 27.0/27.6
Consumer Defensive 30.1/30.3 38.1/38.5 26.3/26.6 25.7/25.9 18.5/18.6 19/19 19.2/19.2 17.8/17.8
Consumer Cyclical 74.3/76.9 29.8/30.1 68.4/72.3 39/40.3 39/39.5 25.8/26.4 46.3/47.2 21.9/22.5Zero-shot

Industrials 42.7/43.3 30.2/30.2 41.4/43.5 26.4/26.7 22.7/23 20.2/20.7 27.1/27.3 18.3/18.7

Table 3: Sensitivity analysis: SMPAE of Revenue with proposed our regularizer’s different power.

REV Sectors ERM IRM Ours(Penalty **2) Ours(Penalty **3) Ours(Penalty **4)

SEEN

Healthcare 44.1/48.8 58.6/62.3 52/56.4 56.3/60.1 23.4/25
Technology 47.5/50.4 58/59.7 45.7/48.5 56.2/57.9 29.9/29.9

Basic Material 27.2/27.2 30.5/30.5 27.6/27.6 30/30 20.4/20.4
Energy 52.2/54.9 58.7/64.7 53.8/57.4 56.2/62.4 35.9/35.9

Financial Services 40.5/42 46.7/49.2 42.4/44.1 45.3/47.5 28/29
Utilities 17.1/17.1 17.8/17.8 17.9/17.9 17.2/17.2 13.7/13.7

Communication Services 39.4/39.4 46/47.6 42.7/43.6 44/45.2 17.6/17.6

Zero-shot
Consumer Defensive 38.1/38.5 50.5/51.3 42.3/42.9 46.1/46.8 17.8/17.8
Consumer Cyclical 29.8/30.1 38.5/39.4 34/34.8 36/36.6 18/18.3

Industrials 30.2/30.2 37.7/37.9 33/33.2 35.9/36.1 13.3/13.4

NLinear with a simple normalization for the input sequence and
DLinear, which is a combination of a Decomposition scheme used
in FEDformer [35]with linear layers as well as non-linear models
including LSTM [15], multi-layer perceptron (MLP) [21], Trans-
former [34] as our ERM model in a mixup way [24, 32] for both
Revenue (REV) and EBITDA. In addition, we compare our method
with AdaRNN [13] for distributional shifts. All the baselines have
been widely recognized and adopted in the field for their ability to
handle time series data, thereby serving as appropriate reference
points for our study. According to Figure 1, we add the proposed in-
variant regularization with 𝛾=0.01 for EBITDA and 𝛾=1 for Revenue
into the NLinear model to build our proposed system.

Examining every sector’s results are shown in Table 1 for the
Rev setting and Table 2 for the EBITDA setting. As shown in those
tables, our proposed system, as a unified multi-faceted model, es-
tablishes a new benchmark for both SEEN and zero-shot scenarios,
reinforcing its capability to tackle diverse sector-based scenarios.
Importantly, our findings rest on the Linear-based model in which
the parameters of this system (12, 301) represent only 1/856 of those
of the transformer (10, 531, 077). In addition, under the EBITDA
setting, prevalent models such as LSTM, Transformer, and DLinear
exhibit significant difficulties when dealing with OOD data from
the Consumer Cyclical sector, leading to substantial prediction er-
rors of 74.3%, 68.4%, and 46.3%, respectively. In stark contrast, our
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Table 4: Sensitivity analysis: SMPAE of EBITDA with proposed our regularizer’s different power.

EBITDA Sectors ERM IRM Ours(Penalty **2) Ours(Penalty **3) Ours(Penalty **4)

SEEN

Healthcare 39.4/39.2 40.6/42.3 37/36.8 37.6/37.8 37.4/37.2
Technology 36.4/37.1 44/45.3 44.8/48.2 35.1/36.2 39.4/41.2

Basic Material 31.9/33 33.8/34.9 30/31.7 32/34.2 33.2/34.8
Energy 39.7/41.5 44.5/46.9 38.7/40.1 39.1/40.2 43.9/44.5

Financial Services 33.3/33.7 42.7/44.3 36.3/37.8 29.3/29.3 33.3/33.5
Utilities 29.7/29.1 26.8/27.2 26.4/26.4 26.2/26.5 28.3/28.7

Communication Services 32.3/32.8 37.8/39.3 36.1/36.6 37.4/38.4 38.6/40.1

Zero-shot
Consumer Defensive 29.7/29.8 27.5/27.7 27.1/27.2 31.1/31.2 26.5/26.7
Consumer Cyclical 39.2/41.5 57/58.9 48.4/51.5 46.1/48.6 45/48

Industrials 42.8/44.1 45.7/47.3 37.8/38.8 39.7/40.6 43.9/45.9
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Figure 4: EBITDA prediction results (SMAPE) for Westing-
house Air Brake Technologies Corp in Industrials sector (out-
of-sample).

model leverages invariant representation to effectively manage the
Consumer Cyclical sector data, thereby limiting the prediction error
to a mere 21.9%. On a broader scale, our proposed model outper-
forms the next best model by a substantial margin, reducing the
prediction error by 16.10% on the Rev setting and 27.87% on the
EBITDA setting.

Furthermore, we deliver a case study of the revenue predictions
for General Mills Inc from the Consumer Defensive sector, which
is an unseen sector. We use the past 20 quarters (5 years) data
to predict the next 4 quarters (1 year) revenue iteratively to get
prediction results. Figure 3 shows that our model works much better
than other methods. Besides, the EBITDA yearly prediction results
ofWestinghouse Air Brake Technologies Corp in Figure 4 show that
the forecast of our model is more accurate than all other methods
in this case.

In summary, through experiments on real-world financial datasets,
we show that our approach generates models with stronger gen-
eralization ability. Specifically, the model learns latent invariant
relationships that hold across different market conditions by jointly
training on data frommultiple economic scenarios. However, unlike
traditional invariant models, it does so without overly constraining
the solution space, enabling it to capture more complex relation-
ships. As a result, the learned model produces stable and accurate

forecasts on both in-sample data from known scenarios as well as
out-of-sample data from new scenarios.

6 ANALYSIS
6.1 Towards Invariant Representation Learning
To empirically demonstrate the superior flexibility and effectiveness
of our proposed regularizer over Mixup [32] and IRM [4] we apply
the three regularizers to the NLinear and Transformer backbones,
respectively. As depicted in Figure 5, models with mixup tend to be
relatively less self-assured with over-smoothed labels, which leads
to high entropy for both in-distribution and out-of-distribution sam-
ples. Besides, IRM’s overly strict feasible space can potentially lead
to unstable results, specifically, an increase rather than a decrease
in prediction error in unseen scenarios. Contrastingly, our proposed
regularizer consistently delivers performance improvements across
all unseen scenarios. This experimental evidence underscores the
robustness and adaptive capabilities of our proposed regularizer,
highlighting its potential for broader application.

6.2 Sensitivity Analysis on 𝐿𝑂𝐵

We investigate the effect of the power value 𝑐 in Equation 5 of on
the proposed model (MLP as the backbone) to verify our claim pre-
viously. We vary the power value 𝑐 in the range {2.0, 3.0, 4.0} and the
IRM. The Rev results are shown in Table 3, where the performance
of the IRM is worse than the ERM and the performance of penalty
with power 4 is the best. Specifically, over-constraining a model
with environmental invariance assumptions can degrade overall
performance when comparing ERM with IRM and our regularizer
with power 2 and 3. On the other hand, judiciously relaxing such
constraints within a model can lead to improved accuracy over
traditional ERM approaches. Furthermore, for previously OOD sce-
narios, imposing properly constrained environmental invariance
encourages the model to learn representations that are robust to
variations in the input distribution. This enables stable predictions
across a range of test-time environments not observed during train-
ing. For EBITDA, according to the result shown in Table 4, the
performance of IRM is worse than the baseline which is the same as
revenue. The results reveal that the best performance of all sectors
is mainly concentrated on the penalty with power 2 and 3.
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Figure 5: The comparison for Mixup, IRM, our regularizer on NLinear and Tranformer under EBITDA setting.

7 CONCLUSION
We propose an invariant learning-based regularizer with relaxed
bounds, for large-scale financial forecasting tasks. This regularizer
alleviates over-convergence by relaxing the constraints on feasible
solutions, allowing the model to learn a wider range of invariant
features. This regularizer can be incorporated into both linear and
non-linear architecture for financial time series forecasting. In con-
trast, models without the proposed regularizer fail to generalize
as well, with their performance suffering significantly when ap-
plied to new scenarios. Similarly, standard MLP models overfit to
in-sample data and do not generalize to out-of-sample data even
from known scenarios. Our model thus achieves the desirable prop-
erty of learning generalizable, invariant relationships from the data
without the typical loss in performance on in-sample data faced by
most invariant learning methods. The clear ongoing future work
is to inject the regularizer with more powerful forecasting models,
for example, Transformers-based models combing with large lan-
guage models, to achieve more accuracy and more stable results on
financial datasets.
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