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This paper shows a novel machine learning model for realized volatility (RV) prediction using a normalizing flow, an invertible
neural network. Since RV is known to be skewed and have a fat tail, previous methods transform RV into values that follow a
latent distribution with an explicit shape and then apply a prediction model. However, knowing that shape is non-trivial, and the
transformation result influences the prediction model. This paper proposes to jointly train the transformation and the prediction
model. The training process follows a maximum-likelihood objective function that is derived from the assumption that the prediction
residuals on the transformed RV time series are homogeneously Gaussian. The objective function is further approximated using an
expectation–maximum algorithm. On a dataset of 100 stocks, our method significantly outperforms other methods using analytical or
naïve neural-network transformations.
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computing→ Time series analysis.

Additional Key Words and Phrases: realized volatility, neural networks, time-series prediction, normalizing flow

1 INTRODUCTION

Volatility is the primary measure of financial risk, and its time series modeling is an important task in financial
engineering. Volatility presents a large skew toward the tail, usually called “fat tail.” Since modeling this distribution is
non-trivial, previous methods to analytically transform the distribution into a more tractable latent distribution often
presume a certain prior rigorous distributional shape, such as Gaussian.

Previously, Ghaddar and Tong [18] proposed to Gaussianize the distribution by a Box-Cox power transformation [4].
Proietti and Lütkepohl [29] showed, however, that Box-Cox transformation outperformed the other transformations in
only a fraction of all time series studied. Other analytical families of transformations have been considered [19, 35, 41], but
choosing the “correct” shape is non-trivial, and the latent distribution might not have any tractable shape. Furthermore,
this transformation is influenced by what comes after the transformation (i.e., the prediction model).

Such questions naturally lead to an idea to transform volatility into a tuned latent distribution that best fits the
prediction model. In other words, we are interested in jointly fitting the transformation and the prediction model
together. If the volatility is explicit, then the joint training becomes tractable via the residual of the prediction.

Therefore, we propose a new machine-learning model for volatility prediction. We use realized volatility (RV [7])
defined with high-frequency data as the root sum of the quadratic variations of intraday high-frequency price returns.
While other definitions of volatility, including conditional volatility [14] or stochastic volatility [36], remain implicit
and require statistical inference, RV has acquired popularity with an increasing availability of high-frequency data.

Our approach is demonstrated by the lower half of Figure 1. A volatility value 𝑋𝑡 at the timestep 𝑡 is transformed
with a neural network, specifically, a technique of normalizing flow [31]. Normalizing flow realizes an invertible
transformation, and it can be trained to acquire the best approximation to a desired distribution. The transformed latent
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Fig. 1. An overview of our approach (lower half) compared with the previous approach (upper half). Unlike previous approaches, our
approach does not assume the latent distribution to be Gaussian or another tractable shape. Furthermore, the prediction model is
co-trained with the neural transformation.

values 𝑍1, · · · , 𝑍𝑡 are fed into a prediction model that outputs the estimate at the following timestep 𝑍𝑡+1, for which we
use a heterogeneous auto-regressive (HAR) model [8]. At the same time, we have the actual realized volatility 𝑋𝑡+1 of
time 𝑡 + 1, which is transformed into 𝑍𝑡+1. The residual 𝑍𝑡+1 −𝑍𝑡+1 can be used to jointly train both the transformation
and prediction, naturally realized as an expectation–maximization procedure.

We show how our setting outperforms other possibilities when using no transformation or using analytical or simple
neural-network transformations.

2 RELATEDWORKS

First proposed in the 1970s [7], with a greater availability of high-frequency data, RV now holds the key to many
financial engineering tasks, such as the prediction of return variation [2, 37] and option pricing [9].

This paper focuses on the problem of RV prediction with a distributional transformation. Various analytical functions
have been considered previously, which we summarize in Section 2.1. While the transformation operates for each
timestep, it requires a time-series model to address the temporal dependence across timesteps. Section 2.2 introduces
several such time-series models. Moreover, our approach considers the transformed RV as latent variables; Section 2.3
compares our approach with existing latent-variable models.

2.1 Realized Volatility Prediction with Analytical Transformations

The use of distributional transformations dates back to Fisher [16], where a Student’s 𝑡 variable was expanded as an
infinite series of normal variables. In another early work, Wallace [39] proposed a simple approximation form that was
found to work exceptionally well transforming between Gaussian and Student’s 𝑡 distributions [28].

A transformation can be used to improve the Gaussianity of a dataset that significantly deviates from a Gaussian
distribution. This is often beneficial as Gaussianity occurs as an assumption underlying many statistical and econometric
models.

The modern research on distributional transformation for economic data is largely based on Box and Cox [4]’s
seminal work, which introduced a family of power transformations now called Box-Cox transformations. Box-Cox
transformations include the identity transformation (i.e., 𝑓 (𝑥) = 𝑥) and the log transformation as two special cases.
Box-Cox transformations are applied widely, but they only allow positive inputs. Yeo-Johnson transformations [41]
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were later introduced to generalize Box-Cox to include zero and negative inputs. Apart from power transformations,
numerous alternatives have been proposed. Hoyle [23] summarized 18 different analytical transformations. Other
choices include the Tukey 𝑔-and-ℎ [38], the Lambert W function [19], and exponential functions [40].

While the improvement via a Gaussianizing transformation is frequently observed for cross-sectional data (i.e., a
collection of samples at a given time), it does not apply to sequential data. Proietti and Lütkepohl [29] tested Box-Cox
transformations on various real datasets with other transformations and found that Box-Cox transformations showed
advantages only in a fifth of all cases. Taylor [35] investigated the use of Box-Cox transformations for RV prediction.
Among several pre-defined choices of the parameter 𝜆 of the Box-Cox transformation, 𝜆 = 1/4 performed the best.
However, as mentioned in the Introduction, the “correct” shape of the transformed distribution is influenced by the
time-series prediction model. The optimal parameter in one scenario might be sub-optimal in other scenarios.

This study uses neural networks for the transformation. Simple neural-network transformations have been considered
previously for time-series modeling. Snelson et al. [32] proposed using an additive mixture of tanh functions, a two-layer
feed-forward neural network. The parameters in the neural network were restricted to be positive, so that the neural
network remains invertible. Recent state-of-the-art techniques are with normalizing flows [13, 31, 34], which provide
more powerful choices than the mixture-of-tanh approach in Snelson et al. [32].

2.2 Realized Volatility Prediction Models

Realized volatility, like other volatility measures, exhibits long-memory characteristics often referred to as “volatility
clustering” [10]. Based on this finding, many models have been proposed to predict RV, among which two are especially
popular. The first is the heterogeneous auto-regressive (HAR) model by Corsi [8], which uses a linear combination of
past volatility terms defined over different time periods to predict future volatility. HAR is simple but performs well in
practice; therefore, we use it as the prediction model in this paper. The other prevalent model is the auto-regressive
fractionally integrated moving average (ARFIMA) [22], which utilizes fractional differencing operators to enable long
memory.

It must be noted, however, that RV prediction is closely related to the fat tail problem in financial returns. Research
on the fat tails in financial returns dates to Mandelbrot [26] and Fama [15], who noticed that substantial price changes
occur more frequently than a Gaussian predicts; thus, the observed return distribution shows a larger kurtosis than a
Gaussian (i.e., it has a fat tail). This observation was further validated on large-scale measurements of high-frequency
price data [17, 20, 21, 27]. Volatility prediction models have been developed to account for the fat-tailed distribution of
returns. But as we will show via baselines in Section 6, this implicit approach via volatility models is often insufficient
to fully capture the fat tail.

2.3 Latent Sequential Models

The modeling of a transformed time series can be seen as a kind of latent-variable model. Realized volatilities are
“observable” variables while the transformed values are seen as “latent.” Because of the long-memory nature of price
time-series, the long-range dependence between the latent variables must be addressed. How to integrate financial
econometrics methods into the latent-variable framework of machine learning remains a question.

Several latent-variable methods are considered relevant to our approach. The first is the Kalman filter [24], which
assumes that all latent variables are Gaussian and governed by a linear Markovian process. A Kalman filter is estimated
by making an initial guess of the earliest latent variable and then progressively gets refined by incorporating new
observations at later timesteps.
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The second is the hidden Markov models (HMMs) [3]. HMMs are more elaborate latent-variable models that have
been used widely in various fields [5]. Kalman filters can be viewed as special cases of HMMs, even though they were
studied in different research streams for a long time [5].

Nevertheless, the Markovian nature of Kalman filters and HMMs makes it hard to capture the long memory in RV
time-series data [8]. In contrast, a simpler HAR can easily access a timestep far back (e.g., 22 timesteps previous to
current), which is much more straightforward than HMMs in incorporating the long memory and has been found to
work well.

In this paper, we use normalizing flows (NFs) to assist HAR models in capturing the complex RV distribution. NFs
were proposed for variational inference [31], which is a method frequently used for latent-variable modeling. Thus far,
normalizing flows have been shown to be effective in various applications, such as density estimation [34], generative
modeling [13], variational inference [31], noise modeling [1], and time-series modeling [12].

In a recent work by Deng et al. [12], normalizing flows were used to transform a time series into a Brownian motion.
As Brownian motions are Markov processes, the model by Deng et al. [12] can be seen as a hidden Markov model in
which the latent Gaussian variables are estimated using a normalizing flow. In contrast, the latent process in this work
must capture the long-memory phenomena observed in real RV data [8].

3 REALIZED VOLATILITY PREDICTION VIA TRANSFORMATION

Daily RV is the root sum of quadratic price variations during a trading day. RV measures the amount of financial risk
during the day and is calculated using high-frequency price records. Let 𝑝𝑡,𝑖 denote the 𝑖-th high-frequency price of a
stock of day 𝑡 (𝑡 = 1, · · · ,𝑇 ). Then, the daily RV, 𝑥𝑡 , is calculated as follows:

𝑥𝑡 =

√√√ 𝑛𝑡∑︁
𝑖=2
(log𝑝𝑡,𝑖 − log𝑝𝑡,𝑖−1)2, (1)

where 𝑛𝑡 denotes the number of high-frequency prices within day 𝑡 .
The prediction of daily RV is to estimate 𝑥𝑡+1 using the previous values 𝑥≤𝑡 ≡ [𝑥1, · · · , 𝑥𝑡 ]. Let 𝑦𝜷 denote a RV

prediction model with parameters 𝜷 . The aim is to find the best parameters that minimize the root-mean-square error

(RMSE) between the prediction and the true values, as follows:

min
𝜷

RMSE(𝜷) =

√√√
1

𝑇 − 1

𝑇−1∑︁
𝑡=1
(𝑥𝑡+1 − 𝑥𝑡+1)2, (2)

where 𝑥𝑡+1 = 𝑦𝜷 (𝑥≤𝑡 ) denotes the predicted value.

3.1 Prediction with Transformed Time Series

In this paper, we study the task of predicting RVs with a learnable monotonic transformation 𝑓𝜽 : R→ R parameterized
by 𝜽 . At every timestep 𝑡 , realized volatility 𝑥𝑡 is transformed into 𝑧𝑡 = 𝑓𝜽 (𝑥𝑡 ), which follows a latent distribution.
Instead of predicting 𝑥𝑡+1 directly, 𝑧𝑡+1 is predicted as 𝑧𝑡+1 using 𝑧≤𝑡 , and the realized volatility 𝑥𝑡+1 is then estimated
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from 𝑧𝑡+1. The entire prediction procedure is as follows:

𝑥𝑡+1 = E[𝑓 −1𝜽 (𝑧𝑡+1)], (3)

𝑧𝑡+1 = 𝑦𝜷 (𝑧≤𝑡 ), (4)

𝑧𝑠 = 𝑓𝜽 (𝑥𝑠 ) 𝑠 = 1, 2, · · · , 𝑡, (5)

where 𝑦𝜷 denotes the RV prediction model; E means to take the average when 𝑧𝑡+1 is a random variable. Here, we
assume that 𝑧𝑡+1 is non-stochastic and E[𝑓 −1 (𝑧𝑡+1)] reduces to 𝑓 −1 (𝑧𝑡+1).

Using the transformation 𝑓𝜽 has multiple advantages. First, the transformed realized volatilities better approximate
Gaussian distributions, an implicit assumption that underlies many prediction models. Thus, the prediction model
is estimated with less bias. Second, for a linear prediction model 𝑦𝜷 , the use of nonlinear transformation 𝑓𝜽 enables
capturing nonlinear temporal dependency.

3.2 Normalizing Flow

In this paper, we propose implementing the invertible transformation 𝑓𝜽 with normalizing flow, a deep-learning
technique. Normalizing flow refers to invertible neural networks for which the inverse can be efficiently computed.
Specifically, we use neural ordinary differential equations (NODE) [6], a special kind of normalizing flow.

A NODE is a first-order ordinary differential equation parameterized by a neural network:

d𝑔(𝑥, 𝜉)
d𝜉

= NN𝜽 (𝑔(𝑥, 𝜉), 𝜉) . (6)

When used as a normalizing flow, the input is set to 𝑔(𝑥, 0), and the value of 𝑔(𝑥, 𝜏) (𝜏 > 0) acquired as follows is used
as the output. For 𝑡 = 1, · · · ,𝑇 ,

𝑥𝑡 = 𝑔(𝑥𝑡 , 0) (7)

𝑧𝑡 = 𝑓𝜽 (𝑥𝑡 ) = 𝑔(𝑥𝑡 , 𝜏), (8)

where 𝜏 is a hyperparameter that controls the complexity of the transformation. The existence and uniqueness of
𝑔(𝑥, 𝜏) given 𝑔(𝑥, 0) is guaranteed by the Picard-Lindelöf theorem, as is 𝑔(𝑥, 0) given 𝑔(𝑥, 𝜏) for the case of computing
𝑓 −1𝜽 . Chen et al. [6] proposed efficient numerical methods to calculate the gradient ∇𝜽 𝑓𝜽 (or 𝑓 ′𝜽 in our case with 1D
transformations), which is used for gradient-based optimization of 𝜽 .

3.3 Heterogeneous Auto-Regression

For the prediction model 𝑦𝜷 , we use the heterogeneous auto-regressive (HAR) model [8]. HAR is one of the most common
models for RV prediction.

HAR is a linear regression model that incorporates RV components during three different periods, as follows:

𝑧𝑡+1 = 𝛽0 + 𝛽 (d)𝑧(d)𝑡 + 𝛽
(w)𝑧(w)𝑡 + 𝛽 (𝑚)𝑧(m)

𝑡 + 𝜀𝑡+1, (9)

where 𝑧(d)𝑡 ≡ 𝑧𝑡 , 𝑧
(w)
𝑡 ≡ 𝑧𝑡−4 + · · · + 𝑧𝑡 , and 𝑧(m)

𝑡 ≡ 𝑧𝑡−21 + · · · + 𝑧𝑡 represent the previous day, the previous week, and
the previous month, respectively. 𝜀𝑡+1 is the residual. The parameters can be estimated with an ordinary least-square
estimator. When HAR is used without a transformation or with an identity transformation 𝑓 (𝑥) = 𝑥 , the residuals 𝜀𝑡+1
typically follow a skewed distribution.
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Although this paper focuses on HAR, the proposed method can be applied to prediction models other than HAR.
Because normalizing flow specifies a wide family of continuous functions, it requires little knowledge about the
prediction model to effectuate the prediction in Formulas (3) through (5). The universality of our method with different
prediction models remain a future work.

4 CO-TRAINING TRANSFORMATIONWITH PREDICTION MODEL

Previously, the estimation of transformation parameters was done prior to that of the prediction model, following some
sub-optimal objectives, such as the presumed Gaussianity of the transformed data.

In the following, we propose a method to co-train (i.e., jointly train) the transformation with the prediction model.
A primary challenge in this approach arises when the transformation and prediction components employ different
techniques, like neural networks and linear regression in our case. Existing literature has yet to present a unified
framework that optimizes both components together. This section details our solution to address this challenge.

4.1 Parameter Estimation via Expectation Maximization

Let 𝑋 = [𝑋1, 𝑋2, · · · ] and 𝑍 = [𝑍1, 𝑍2, · · · ] denote the random processes underlying the raw and the transformed
realized volatilities, respectively, where 𝑍𝑠 = 𝑓𝜽 (𝑋𝑠 ) (𝑠 = 1, 2, · · · ). The normalizing flow 𝑓𝜽 is optimized subject to a
maximum-likelihood objective as follows:

max
𝜽

log P(𝑋 | 𝜽 ) = log
∫
𝑍

P(𝑋,𝑍 | 𝜽 ) d𝑍 (10)

= log
∫
𝑍

P(𝑋 | 𝑍, 𝜽 ) P(𝑍 | 𝜽 ) d𝑍 (11)

= log E
𝑍∼P( · |𝜽 )

P(𝑋 | 𝑍, 𝜽 ), (12)

which is estimated with the empirical average of P(𝑋 | 𝑍, 𝜽 ) with respect to sample sequences 𝑍 drawn from P(· | 𝜽 ).
However, without knowing the true parameters 𝜽 , the calculation is intractable. A common way to handle this problem
is via the expectation maximization (EM) algorithm [11], which starts from a raw estimate 𝜽 (0) and refines the estimate
iteratively as follows:

𝜽 (𝑖+1) = argmax
𝜽

E
𝑍∼P( · |𝑋,𝜽 (𝑖 ) )

log P(𝑋 | 𝑍, 𝜽 ) . (13)

The right-hand-side of Formula (13) is a lower bound of Formula (12) because of the concavity of the log function and
Jensen’s inequality. In other words, The maximization of the log-likelihood in Formula (12) is effectuated through a
maximization of an lower bound of the log-likelihood as presented in Formula (13).

In this work, the dependence of 𝑍𝑡 on 𝑋𝑡 is deterministic via the normalizing flow, while that of 𝑋𝑡+1 on 𝑍𝑡 can be
random. Hence, the sampling procedure of 𝑍 ∼ P(· | 𝑋, 𝜽 (𝑖 ) ) in Formula (13) is simply to apply 𝑓𝜽 to every timestep of
𝑋1, 𝑋2, · · · , and the expectation average is taken over the RV time series of multiple stocks. On the other hand, the term
within the expectation operation of Formula (13) decomposes into the following due to the change-of-variable theorem:

log P(𝑋 | 𝑍, 𝜽 ) =
∑︁
𝑠

log P(𝑋𝑠+1 | 𝑍≤𝑠 , 𝜽 ) (14)

=
∑︁
𝑠

log
[
P(𝑍𝑠+1 | 𝑍≤𝑠 ) ·

��𝑓 ′𝜽 (𝑋𝑡+1)
��] , (15)

where 𝑓 ′𝜽 represents the first derivative of the transformation, which a normalizing flow typically provides at a small
cost.
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Notice that in Formula (15), P(𝑍𝑠+1 | 𝑍≤𝑠 ) represents the prediction model 𝑦𝜷 applied to the latent process, and it
does not specify how the parameters 𝜷 should be estimated. Therefore, optimization of the parameters in the prediction
model (i.e., 𝜷 ) can be effectuated via a different objective function from that in Formula (13). This is important because
HAR and many other financial time-series models are conventionally estimated with a least-square objective function,
which imposes a weaker assumption on the distribution of residuals and often shows better robustness. The probability
density P(𝑍𝑠+1 | 𝑍≤𝑠 ) is obtained via an estimation, which is detailed in Section 4.2.

Hence, the co-training procedure of 𝑓𝜽 and 𝑦𝜷 is via iterative updates as follows: at each iteration, the sampling step
𝑍 ∼ 𝑃 (· | 𝑋, 𝜽 (𝑖 ) ) in Formula (13) is conducted as a random sampling of 𝑋≤𝑡 from the RV time series of stocks and then
transforming 𝑋≤𝑡 into 𝑍≤𝑡 . Using the samples of 𝑍≤𝑡 , the parameters of the prediction model (i.e., 𝛽) can be estimated
via any adequate method; here for HAR, we used the Python package arch1 to estimate 𝜷 . Then, 𝑍𝑡+1 is predicted, and
the expectation of log-likelihoods log 𝑃 (𝑥𝑡+1 | 𝑍≤𝑡 , 𝜃 ) is calculated using Formula (15). Finally, the argmax operation
in Formula (13) is approximated by a mini-batch gradient ascent step over the expectation of the log-likelihoods.

4.2 Residual Density Estimation

The conditional probability density P(𝑍𝑠+1 | 𝑍≤𝑠 ) is determined by the prediction model𝑦𝜷 , which produces an estimate
𝑍𝑠+1 = 𝑦𝜷 (𝑍≤𝑠 ) based on previous latent states. Thus, the conditional probability density is equivalent to the density of
the prediction residual:

P(𝑍𝑠+1 | 𝑍≤𝑠 ) = P(𝜀𝑠+1 | 𝑍≤𝑠 ), (16)

where 𝜀𝑠+1 = 𝑍𝑠+1 − 𝑍𝑠+1 denotes the residual at time 𝑠 + 1.
The distributions of residuals are usually unknown in practice. In this paper, we assume they are Gaussian. This

assumption could be inappropriate if the prediction is with the raw RV or when the transformation 𝑓𝜽 is as simple as a
Box-Cox transformation [29]. Nevertheless, we find empirically that a Gaussian distribution is a good approximate for
the residuals after the normalizing flow is optimized, which could be due to the larger capacity of the normalizing-flow
neural network. In addition, we assume the residuals to be homogeneous across time (i.e., 𝜀𝑠 follows the same Gaussian
distribution for every timestep 𝑠). Using a more advanced time-series model would improve the homogeneity of the
residuals, which is left to future work.

Therefore, the residuals 𝜀𝑠 ∼ 𝑁 (𝜇, 𝑣) (𝑠 = 1, 2, · · · , 𝑡 ), where 𝜇 and 𝑣 are the mean and variance of the Gaussian
distribution. 𝜇 is set to zero2 and 𝑣 is estimated as the empirical variance: 𝑣 =

(∑𝑡
𝑠=1 (𝜀𝑠 − 𝜇)2

)
/(𝑡 − 1). Notice that 𝑣

involves the whole period 1, 2, · · · , 𝑡 , but is used for calculating P(𝜀𝑠+1 | 𝑍≤𝑠 ) for 𝑠 < 𝑡 , which means the calculation
involves “further information” at timestep 𝑠 < 𝑡 . Nevertheless, it does not invalidate our approach because the calculation
of P(𝜀𝑠+1 | 𝑍≤𝑠 ) is only required in parameter estimation; that is, making out-of-sample prediction on 𝑍𝑡+1, 𝑍𝑡+2, · · ·
does not involve the calculation of P(𝜀𝑠+1 | 𝑍≤𝑠 ).

5 EXPERIMENT

5.1 Data

The proposed method is evaluated on a dataset of 100 major stocks listed on the New York Stock Exchange. The dataset
covers a continuous time period of 480 trading days from December 1st, 2015, to October 25th, 2017. The daily RV
values were calculated according to Formula (1) for every stock. Thus, 100 RV time series of 480 timesteps were acquired.

1https://github.com/bashtage/arch
2One may alternatively relax the prior of 𝜇 = 0 and set 𝜇 to be empirical mean instead; however, we did not observe improvements by doing so, as the
empirical mean is usually close to zero.

https://github.com/bashtage/arch
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In computing the daily RV, we followed Corsi [8] and did not include the overnight price variation. That is, we did not
include 𝑝𝑡+1,1 − 𝑝𝑡,𝑛𝑡 in the summation of Formula (1), where 𝑛𝑡 denotes the number of high-frequency prices within
day 𝑡 as mentioned in Section 3.1.

In this paper, the RV of a day is calculated with high-frequency prices that are recorded every five minutes. That is,
𝑝𝑡,𝑖+1 was taken five minutes later than 𝑝𝑡,𝑖 . The value of high-frequency price is calculated as the mid-price [33] of the
order book, which is an average of the highest bid price and the lowest ask price weighted by their volumes, as follows:

𝑝𝑡,𝑖 = 𝛼𝑡,𝑖𝑝
bid
𝑡,𝑖 + (1 − 𝛼𝑡,𝑖 )𝑝

ask
𝑡,𝑖 , (17)

𝛼𝑡,𝑖 =
Vol(𝑝bid

𝑡,𝑖
)

Vol(𝑝ask
𝑡,𝑖
) + Vol(𝑝bid

𝑡,𝑖
)
, (18)

where 𝑝bid
𝑡,𝑖

and 𝑝ask
𝑡,𝑖

denote the highest bid and the lowest ask prices (𝑝bid
𝑡,𝑖

< 𝑝ask
𝑡,𝑖

), respectively, at the end of the 𝑖-th
five-minute interval; Vol(·) denotes the volume (i.e., number of shares) of bid or ask quotes at a certain price. Every
RV time series was z-score standardized (i.e., 𝑥𝑡 ← (𝑥𝑡 − 𝜇)/

√
𝑣), where 𝜇 and 𝑣 are the empirical mean and variance,

respectively, of the times series.

5.2 Settings

The RV time series were split into training, validation, and test sets chronologically, at a ratio of 300, 60, and 120 days.
We conducted the experiments in a univariate time-series setting by viewing all 100 RV time series as independent

samples drawn from the same random process 𝑋1, 𝑋2, · · · . Thus, this accommodates the notion of taking an expectation
over IID samples in Formula (13). The normalizing flow 𝑓𝜽 was optimized on the training set (i.e., the first 300 days of
the RV history of all stocks). Using an Adam [25] optimizer, we conducted 200 iterations of parameter updates and
evaluated the model on the validation set at every five training iterations, thus producing 40 different snapshots of
parameters. The snapshot that achieved the highest log-likelihood in Formula (15) was regarded as the best. In the
following, we report the performance of this best snapshot on the test set.

For the neural network NN𝜽 used in the NODE (see Formula (6)), we used a simple multi-layer perceptron with two
hidden layers. Each hidden layer had four hidden units. Formally,

NN𝜽 (𝑥) =𝑊3𝜎 (𝑊2𝜎 (𝑊1𝑥 + 𝑏1) + 𝑏2) + 𝑏3, (19)

where𝑊1 ∈ R4×1,𝑊2 ∈ R4×4,𝑊3 ∈ R1×4,𝑏1 ∈ R4,𝑏2 ∈ R4, and𝑏3 ∈ R1 are parameters. Thus,𝜽 = {𝑊1,𝑊2,𝑊3, 𝑏1, 𝑏2, 𝑏3}
and the transformation has 33 parameters in total. 𝜎 is an elementwise nonlinear activation function, and we set it to
the swish function [30] as follows:

𝜎 (𝑥) = 𝑥

1 + exp(−𝑥) . (20)

Compared with other popular choices, such as the sigmoid or the tanh, the swish function has two advantages as
follows. First, it has an unbounded range and thus learns a more natural transition to transforming large RV values.
Second, the swish function is asymmetric around zero, which facilitates modeling the strong skewness in RV data.

5.3 Baselines

We considered different baseliens by varying the transformation 𝑓𝜽 and the distribution for the residuals 𝜀𝑠 (see Formula
(9)).

For alternative transformations, we considered the following:
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Identity transformation: 𝑓𝜽 (𝑥) = 𝑥 , which is equivalent to not applying a transformation.
Wallace’s transformation [39]:

𝑓𝜽 (𝑥) = ±
8𝑑 + 1
8𝑑 + 3

√︃
𝑑 log(1 + |𝑥 |2/𝑑), (21)

where 𝜽 = {𝑑}.
Yeo-Johnson transformation [41]: a generalization of the Box-Cox transformation [4] to allow non-positive inputs,

defined as follows:

𝑓𝜽 (𝑥) =


((𝑥 + 1)𝜆 − 1)/𝜆 if 𝜆 ≠ 0, 𝑥 ≥ 0,
log(𝑥 + 1) if 𝜆 = 0, 𝑥 ≥ 0,
−((−𝑥 + 1) (2−𝜆) − 1)/(2 − 𝜆) if 𝜆 ≠ 2, 𝑥 < 0,
− log(−𝑥 + 1) if 𝜆 = 2, 𝑥 < 0,

(22)

where 𝜽 = {𝜆}.
tanh(k) transformation [32]: a simplest neural network with a single hidden layer, defined as follows:

𝑓𝜽 (𝑥) =
𝑘∑︁
𝑖=1

𝑢𝑖 tanh(𝑣𝑖𝑥 + 𝑏𝑖 ), (23)

where 𝜽 =
⋃𝑘

𝑖=1{𝑢𝑖 , 𝑣𝑖 , 𝑏𝑖 }. For 𝑓𝜽 to be invertible, 𝑢𝑖 , 𝑣𝑖 (𝑖 = 1, · · · , 𝑘) are restricted to be positive.

As for the distribution of the residuals, we tested the generalized Student’s 𝑡 distribution (in addition to the Gaussian
by default), which is defined by the following probability density function with mean 𝜇, variance 𝑣 , and 𝑑 degrees of
freedom:

P(𝑥 | 𝜇, 𝑣, 𝑑) = Γ((𝑑 + 1)/2)√︁
𝜋 (𝑑 − 2)𝑣Γ(𝑑/2)

(
1 + (𝑥 − 𝜇)

2

(𝑑 − 2)𝑣

)−(𝑑+1)/2
. (24)

The density function of a Student’s 𝑡 distribution decays much slower when 𝑥 goes to infinity; therefore, it is commonly
used for modeling fat-tailed phenomena.

6 RESULTS

6.1 Prediction Accuracy

Table 1 summarizes the overall results over the dataset of 100 stocks acquired with different transformations. Each row
represents a transformation. Our transformation via normalizing flow is shown at the bottom of the table. The third
and fourth columns show the scores concerning HAR prediction accuracy. RMSE was used as the primary evaluation
metric to follow the previous works [8]. A smaller RMSE implies a higher precision.

The third column of Table 1 reports the average RMSE (mean value) over the 100 stocks. One-tailed 𝑡-tests were
conducted to assess the statistical significance of our method (NODE with 𝜏 = 0.25) compared with the other trans-
formations, assuming the null hypothesis that the mean improvement in RMSE is equal to zero. Asterisks (*) in the
third column indicate statistical significance: * (𝑝 < 0.05), ** (𝑝 < 0.01), *** (𝑝 < 0.001). The fourth column shows
the proportion of stocks on which a method achieved the lowest RMSE, or “percentage of the best.” The best scores
are indicated in bold, and the second-best scores are underlined. For a robustness test, we also examined NODE with
𝜏 = 5.00 which has excessive complexity as a transformation; we omitted the 𝑝-value and the “percentage of the best”
value as it serves merely as a robustness test.

Our approach (bottom row) achieved the lowest RMSE score at 0.5620, a clear improvement of 0.0075 compared with
the identity transformation that scored 0.5695. The second-best at 0.5627 was the Yeo-Johnson transformation, which
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Table 1. HAR prediction performance with different transformations on the dataset of 100 stocks.

Transformation Residual distribution
(presumed)

Out-of-sample prediction In-sample residual Gaussianity

RMSE Percentage of best 𝑅2 Skewness

Identity Gaussian 0.5695*** 10% 93.22 1.788

Wallace’s Gaussian 0.5660** 19% 98.12 0.7010
Yeo-Johnson Gaussian 0.5627* 2% 99.09 0.2752
tanh(1) Gaussian 0.5642** 6 % 99.31 0.2059
tanh(5) Gaussian 0.5636** 6 % 99.11 0.2141
tanh(10) Gaussian 0.5638** 11 % 99.20 0.1693

Our approach
NODE(𝜏=5.00) Gaussian 0.5630 - 99.14 0.2141
NODE(𝜏=0.25) Gaussian 0.5620 46% 98.81 0.3928

is a common way of preprocessing non-Gaussian data in practice; nevertheless, our method still outperformed the
Yeo-Johnson transformation. Compared with the baseline transformations, the improvements of NODE in RMSE are
statistically significant at the 5% (Yeo-Johnson), 1% (Wallace’s and tanh transformations), and 0.1% (Identity) levels.
With respect to the “percentage of the best,” the advantage of NODE is more evident. NODE achieved the lowest RMSE
on 46 of the 100 stocks; in comparison, the Yeo-Johnson transformation won on only two stocks.

The significant margin between NODE and Yeo-Johnson on the “percentage of the best” is interesting, in contrast
to their relatively close performance in average RMSE. This indicates that on many stocks, NODE and Yeo-Johnson
transformed realized volatilities into close distributions, but NODE performed slightly better in most cases. While power
transformations like Yeo-Johnson are careful choices made by practitioners after decades, NODE was learned from data.
However, NODE “discovered” the power transformations were the best choices and further improved over them.

The transformations denoted by tanh(𝑘) (𝑘 = 1, 5, 10) are the simplest feed-forward neural networks, and 𝑘 represents
the number of hidden units. When 𝑘 was increased from 1 to 5, the average RMSE was improved from 0.5642 to 0.5636.
However, when 𝑘 was further increased to 10, the score degraded to 0.5638.

The degradation at large 𝑘 values might be caused by the increased risk of overfitting to the training set. The tanh
transformations with a large 𝑘 or NODE with a large 𝜏 had a stronger approximation capability, but they overfitted
to the training set. Evidence of this is that on 29 stocks, simpler transformations, including Identity or Wallace’s, had
the best RMSE. On these stocks, the data distribution of the test set shows inconsistency with the training set, which
is common in a financial market that is a non-stationary system. Such overfitting is also seen for NODE when 𝜏 was
increased from 0.25 to 5.00 when RMSE increased from 0.5620 to 0.5630.

As an ablation analysis, we evaluated the robustness of the presumption made in Section 4.2 that the residuals of
HAR (i.e., 𝜀𝑠 in Formula (9)) follow a Gaussian distribution. Instead of assuming that 𝜀𝑠 ∈ 𝑁 (𝜇, 𝑣), the ablated version
assumes a generalized Student’s 𝑡 distribution with an additional parameter 𝑑 denoting the degrees of freedom. Note
that 𝑑 →∞ recovers a Gaussian distribution.

Figure 2 shows the average RMSE scores (vertical axis) when the residual distribution was assumed to be either
Gaussian (white bars) or generalized Student’s 𝑡 (grey bars) grouped by the transformation 𝑓𝜽 . When the residuals are
assumed to follow a generalized Student’s 𝑡 distribution, the probability density in Equation (16) is determined using
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Fig. 2. A comparison between two distributional assumptions (Gaussian or Student’s 𝑡 ) on the residuals 𝜀𝑠 in Formula (9) under
different analytical/neural transformations (horizontal axis), regarding the average RMSE over 100 stocks.

Fig. 3. Comparison between the percentiles of residuals (vertical axes) and the standard normal distribution (horizontal axes). Each
plot represents a transformation. The straight red lines represent linear fits to the data points within each plot.

the PDF of the Student’s 𝑡 distribution, instead of the Gaussian PDF. Consequently, the transformation parameters 𝜽
that are estimated yield an RMSE score that differs from what would be expected under a Gaussian residual assumption.

In Figure 2, the white bars are the values in Table 1 in the third column. Except for the Identity transformation,
we observed increased RMSE scores when the presumed distribution was a Student’s 𝑡 , which means a decrease in
prediction accuracy. The largest increase in RMSE is observed with the tanh(1) transformation, implying tanh(1) to be
sensitive to the distributional assumption. In contrast, NODE still achieved the smallest RMSE score at 0.5643, the same
as with a Yeo-Johnson transformation. The results in Figure 2 suggest the robustness of our approach even under a
generalized Student’s 𝑡 distribution assumption for residuals that is not optimal.

6.2 Qualitative Comparison

Figure 3 provides a comparison between the distribution of residuals 𝜀𝑠 defined in Formula (9) (vertical axes) and the
standard normal distribution (horizontal axes) for the stock “BABA” (i.e., the Q-Q plot). Each plot represents a different
transformation listed in Section 5.3. In each plot, a point represents the residual at a timestep; the vertical axis shows
the residual values, and the horizontal axis shows the theoretical percentiles if the residuals follow a standard normal
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Fig. 4. The graph of 𝑓𝜽 (𝑥 ) vs. 𝑥 within 𝑥 ∈ [−2, 2]. Each plot represents a transformation. For every transformation, 𝑓𝜽 (𝑥 ) was
standardized so that 𝑓𝜽 (−2) = −2 and 𝑓𝜽 (2) = 2. The range [−2, 2] covered most RV values that were z-score standardized in
preprocessing.

distribution. The straight red line is a linear fit of the points, and a better fit implies a higher degree to which the
residuals follow a Gaussian distribution.

As seen in the first plot of Figure 3 (Identity transformation), the residuals of the raw RV deviate from the linear
fit at large positive quantiles. This shows how HAR fails to fully capture the skewness in RV time series. In contrast,
with a transformation, the Gaussianity of the residuals was largely improved. This improvement is visible for all
the transformations shown in Figure 3. Among the transformations tested, the Yeo-Johnson, the tanh(5), and NODE
produced impressive Gaussianity, and they are indistinguishable within a large range.

The Gaussianity of the residuals is further quantified using two metrics, as shown in the two right-hand columns in
Table 1. The first metric is the 𝑅2 score of the linear fit in the Q-Q plots of Figure 3, and the other is the skewness (i.e.,
the third moment) of the residuals. The two right-hand columns present the average 𝑅2 and the average skewness over
the 100 stocks.

Consistent with the observation of Figure 3, without a transformation (first row), HAR produced residuals with a
low 𝑅2 at 93.22% and a high skewness at 1.7883, implying poor Gaussianity. The Gaussianity was greatly improved by
using a transformation. 𝑅2 was improved to 99.14%, and skewness was reduced to 0.2141 with a NODE having 𝜏 = 5.00
(second to last row).

When 𝑅2 exceeds 99%, an improvement in 𝑅2 or a reduction in skewness did not translate into an improvement in
out-of-sample RMSE. This corresponds with our previous conjecture on overfitting. Nevertheless, even with the same
level of 𝑅2 and skewness, NODE with 𝜏 = 5.00 still outperformed the tanh(5) transformation in out-of-sample RMSE.

Figure 4 provides a visualized comparison between the transformations on the real line. The horizontal axis represents
the input 𝑥 ∈ R to the transformation 𝑓𝜽 , and the vertical axis shows the output (i.e., 𝑓𝜽 (𝑥)). Note that the realized
volatilities were z-score standardized in preprocessing, which produced negative 𝑥 . For visualization, we also linearly
rescaled the transformations so that 𝑓𝜽 (−2) = −2 and 𝑓𝜽 (2) = 2. As HAR is a linear model with a bias term, the
estimation and prediction with HAR are invariant under linear rescaling to the transformation.
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Fig. 5. Pearson’s correlation coefficients between the improvements in RMSE for various transformations over the Identity transfor-
mation, calculated from the results of the 100 stocks.

Each curve in Figure 4 represents a transformation. The straight green line represents the identity function, and
the dotted red plot represents the NODE transformation. The NODE, Yeo-Johnson (in blue), and tanh transformations
(in purple) all showed a concave shape: their slopes gradually decrease as 𝑥 increases. This corresponds with our
expectation that larger realized volatilities are calibrated more than smaller realized volatilities to eliminate skewness.

At large 𝑥 , NODE showed almost perfect consistency with the Yeo-Johnson transformation. However, a discrepancy
is seen at small 𝑥 where NODE grows linearly, similar to the Identity function. In other words, NODE viewed it
“unnecessary” to apply nonlinear calibration to small realized volatilities. With the Yeo-Johnson or tanh transformations,
such local linear growth is not possible, as power and tanh transformations are defined globally over the real line.

Figure 5 presents the Pearson’s correlation coefficients between the transformations on the RMSE improvements
over the Identity transformation, measured for the 100 stocks. The RMSE values were obtained through out-of-sample
evaluations, and the mean value for each transformation has been reported in Table 1, in the third column.

These correlation results align closely with the graph of 𝑓𝜃 (𝑥) in Figure 4. Notably, the Yeo-Johnson and the
tanh(𝑘 = 5) transformations exhibit a correlation coefficient of 0.998. This is unsurprising as they appear nearly
identical in shape in Figure 4 (the purple and blue plots). Furthermore, NODE also demonstrates a high correlation with
the Yeo-Johnson transformation, which validates our conjecture in Section 6.1 that NODE has “discovered” (while also
outperformed) power transformations from the data.

7 CONCLUSION

We proposed a newmethod to enhance the prediction of realized voltility by co-training a simple linear prediction model
with a nonlinear transformation. In contrast to previous methods that estimate the transformation before the prediction
model and use separate objective functions at the two steps, we propose to co-train the two parts following a unified
maximum-likelihood objective function. Additionly, we introduced a method based on the expectation-maximization
algorithm to jointly estimate the parameters for both parts.

For the nonlinear transformation, we incorporated normalizing flows which represent the state-of-the-art in neu-
ral distributional transformations. We demonstrated how the proposed co-training procedure can utilize complex
transformations, a task challenging for prior methods restricted to simple analytical functions.



14 Xin Du, Kai Moriyama, and Kumiko Tanaka-Ishii

On a dataset of the high-frequency price history of 100 stocks for two years (2015-2017), the proposed method
significantly outperformed predictions with the raw time series in average RMSE. Compared with analytical and
neural-network baselines, our method achieved the best RMSE on 46 of the 100 stocks, suggesting its effectiveness and
robustness.
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