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Abstract

We propose a framework to construct statistical arbitrage portfolios with graph clustering al-

gorithms. First, we use various clustering methods to partition the correlation matrix of market

residual returns of stocks into clusters. Next, we construct and evaluate the performance of

mean-reverting statistical arbitrage portfolios within each cluster. We explore five clustering

algorithms and demonstrate that our proposed framework generates profitable trading strate-

gies with over 10% annualized returns and statistically significant Sharpe ratios above one.

The performance of our statistical arbitrage portfolios is neutral to the market and cannot be

fully explained by intra-industry mean-reversion effects.
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1 Introduction

Statistical arbitrage encompasses investment strategies that use statistical and quantitative meth-

ods to identify and exploit temporal price deviations among a group of similar assets. An ex-

ample of a classical statistical arbitrage strategy is pairs trading Elliott et al. (2005); Cartea and

Jaimungal (2016); Cartea et al. (2019), which takes a long position in one security and a short

position in another security with the expectation that the spread between their prices will revert

back to an anticipated level. While works such as Bergault et al. (2022); Bertram (2010) use the

Ornstein-Uhlenbeck process to model stock prices, we focus on a model agnostic statistical arbi-

trage framework that consists of two steps, (1) identify a group of assets that share similarities,

and (2) construct an arbitrage portfolio within the group of assets.

In this paper, we propose a framework where we employ graph clustering algorithms to identify

groups of correlated stocks that co-move. Then, we construct mean-reverting arbitrage portfolios

within each cluster to evaluate if the clustering methods enable statistical arbitrage strategies that

deliver economically significant profits.

In the first step, we compute market residual returns, which are given by the difference between

the stock returns and the product of the stock’s CAPM Fama and French (2004) equity beta and

the market return.1 Next, we compute the correlation matrix of residual returns, interpret it as a

weighted signed network, and use graph clustering algorithms to partition the stocks into groups

such that on average, the correlation between stocks that are in different groups is low and the

correlation between stocks in the same group is high. In this paper, we employ five clustering

algorithms to construct statistical arbitrage portfolios. The clustering algorithms include two vari-

ants of SPONGE clustering Cucuringu et al. (2019), a modified variant of Spectral clustering Ng

et al. (2002), and two variants of the Signed Laplacian clustering Kunegis et al. (2010).

In the second step, we employ a rolling window to identify stocks whose returns are above

and are below the mean returns of the cluster, which we label ”previous winners” and ”previous

losers”, respectively. Next, we construct a contrarian portfolio that consists of a long position on

1In this paper, we use the return of the SPY ETF as a proxy for market returns.
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the previous losers and a short position on the previous winners within each cluster. We use this

portfolio to evaluate if the stocks in each cluster exhibit mean-reversion patterns, i.e., the returns

of stocks in each cluster revert to the mean return of the cluster.

There is an active strand of literature that applies clustering methods in portfolio management.

Also, there are two main approaches to construct portfolios after grouping securities into clusters,

which we detail below.

One approach uses all stocks in each identified cluster to construct mean-variance Markowitz

portfolios Markowitz (1952). For example, León et al. (2017); Tola et al. (2008) first cluster the

correlation matrix, then group the stocks according to the corresponding entries in the correlation

matrix, and afterwards construct Markowitz portfolios within each cluster. Alternatively, Gatta

et al. (2023) uses regression coefficients of asset returns on various factors to cluster securities,

and then constructs a variance minimizing portfolio in each cluster.

A second approach in the literature clusters the correlation matrix as in the first approach, and

then selects one asset from each of the clusters to construct a single Markowitz portfolio. For

example, Tolun Tayalı (2020) constructs a Markowitz portfolio with the medoids of each cluster.

Other lines of work that follow this second approach employ various clustering methods and se-

lection mechanisms to identify the representative stock in each cluster. For example, Wang et al.

(2022) selects the stock with the lowest volatility within each cluster, and Tang et al. (2021) selects

the stock with the highest Sharpe ratio in each cluster.

To the best of our knowledge, ours is the first work that applies clustering algorithms in the

design of statistical arbitrage strategies.

Our approach draws from the literature on clustering algorithms. In particular, we use signed

clustering algorithms that handle negative weights because the correlation matrix of residual re-

turns we employ consists of both positive and negative entries, so one cannot apply many of the

classical graph clustering algorithms proposed in the literature. Previous lines of work, includ-

ing Aghabozorgi et al. (2015); Focardi (2005); Ziegler et al. (2010); Pavlidis et al. (2006), use

signed clustering methods to analyze financial time series such as macroeconomic variables and
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time series of large baskets of stock returns.

2 Mathematical Model and Problem Setting

2.1 Signed & Directed Graph Clustering

Clustering is a widely used technique in data analysis. A clustering algorithm identifies groups of

nodes in a network that exhibit similar behavior or features. In this paper, we focus on a strand

of clustering algorithms that operates on the spectrum of suitably defined matrix operators that are

built directly from the data. Such methods, often referred to as ”spectral methods”, are the subject

of a growing body of literature in the last decade, mainly motivated by their computational efficacy,

robustness to noise, and amenability to theoretical guarantees that rely on results from the random

matrix theory and matrix perturbation literature.

This section introduces the clustering methods we use to construct statistical arbitrage port-

folios. In particular, it introduces clustering methods that operate on signed networks (i.e., with

adjacency matrices that are symmetric and contain both positive and negative entries).

We partition a signed network into K clusters such that most edges within clusters are positive,

and most edges across clusters are negative. To achieve this, we seek a partition that minimizes the

number of violations; i.e., negative edges within each cluster and positive edges across clusters, as

illustrated in Figure 1.

2.1.1 Spectral Clustering

Spectral clustering Ng et al. (2002) is one of the simplest and most popular spectral methods that

clusters a network based on the adjacency matrix of the network. Here, we apply spectral clustering

on a correlation matrix of stock market residual returns.

In our approach, the input data is the correlation matrix of stock market residual returns. Each

stock corresponds to a node in the network, and the correlation between stock returns represents

the co-movement similarity between the nodes. We use the correlation matrix to build the graph
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Figure 1: Signed clustering minimizes the number of violations in the constructed partition. A
violation, as in this figure, is when there are negative edges in a cluster and positive edges across
clusters.

Laplacian matrix L, defined as the difference between the degree matrix D and the adjacency ma-

trix A of the similarity graph. The degree matrix D is a diagonal matrix that captures the degree

or total strength of connections for each node in the graph, while the adjacency matrix A encodes

the pairwise similarities between nodes, as determined by the edge weights. The Laplacian ma-

trix measures the difference between the sum of similarities connecting a node to the rest of the

network, and it measures the node’s total strength of connections. For the Spectral clustering algo-

rithm, the entries of the similarity matrix must be positive; therefore, we take the absolute value of

the correlation matrix and use this modified correlation matrix as the adjacency matrix in the Spec-

tral clustering algorithm. In Knyazev (2017), the author uses the standard graph Laplacian matrix

to perform Spectral clustering ignoring that some of the edge weights are negative; however, later

works, including Cucuringu et al. (2019), report poor performances of this approach. Therefore,

in this paper, we employ the unsigned Spectral clustering algorithm which considers the absolute

value of the correlation matrix.

Formally, the Laplacian matrix L is defined as

L = D−A , (1)
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and recall that D is the diagonal degree matrix and A is the adjacency matrix. The diagonal

elements of D are the sums of the weights (similarities) of the edges that are connected to each

node, while the off-diagonal elements of A represent the pairwise similarities between nodes. In

our case, A is the absolute value correlation matrix and Dii =
∑n

i=1Aij .

Next, we find the K smallest eigenvectors of the Laplacian matrix to obtain a low-dimensional

embedding, from which we subsequently extract K clusters. These K eigenvectors, which corre-

spond to a K-dimensional Euclidean space, are the input for k-means++ clustering that partitions

the nodes into disjoint clusters.

2.1.2 Signed Laplacian Clustering

The Signed Laplacian clustering algorithm operates on the Signed Laplacian matrix, in contrast

to the unsigned Laplacian in the case of Spectral clustering. Mathematically, the graph Signed

Laplacian is defined in a similar way to the graph Laplacian. The differences are that the adjacency

matrix A can take negative values and that the degree matrix D̄ is D̄ii =
∑n

i=1 |Aij|.

In Kunegis et al. (2010), the authors use the spectrum of the Signed graph Laplacians to perform

clustering. Specifically, they extend the ratio cut and normalized cut functions from the unsigned

literature to signed graphs and use the Signed Laplacian matrix to perform clustering.

To ensure the Signed Laplacian matrix is symmetric and positive semi-definite, the algorithm

normalizes the Signed Laplacian in two alternative ways. One, the random-walk normalized Lapla-

cian is constructed as L̄rw = I−D̄−1A. Two, the symmetric normalized graph Laplacian is defined

as L̄sym = I− D̄−1/2AD̄−1/2. We employ both normalization methods in our empirical study.

After normalizing the Signed Laplacian, the algorithm solves an optimization problem on the

normalized cut functions. First, it computes the K smallest eigenvectors of the normalized Signed

Laplacian and then performs k-means++ clustering on the Euclidean space of eigenvectors.
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2.1.3 SPONGE — a generalized eigenproblem

SPONGE (Signed Positive Over Negative Generalized Eigenproblem) is a generalized eigenvalue

formulation of the signed clustering problem, which outperforms many benchmarks in the litera-

ture Cucuringu et al. (2019). The algorithm is particularly effective when the number of clusters

K is large or when the underlying graph is very sparse.

The algorithm first decomposes the adjacency matrix A = A+ − A−, with A+
ij > 0 and

A−
ij > 0. Next, it constructs two Laplacian matrices L+ and L−, with corresponding diagonal

degree matrices D+ and D− based on A+ and A−, respectively. The algorithm minimizes the

ratio between the positive cuts and negative cuts, while adding regularization terms to promote

clusterizations that avoid small-sized clusters. The approach extends to multiple clusters, and, un-

der appropriate assumptions and changes of variables, it leads to a generalized eigenvalue problem

which can be solved efficiently using pre-conditioners Knyazev (2001).

In practice, the SPONGE algorithm finds the K smallest generalized eigenvectors of (L+ +

τ−D−,L− + τ+D+), where τ+, τ− > 0 are regularization parameters. The algorithm then per-

forms k-means++ clustering on the induced K-dimensional Euclidean space.

We also employ the variant SPONGEsym of the SPONGE algorithm, which relies on the sym-

metric graph Laplacian L̄sym. This variant first finds the smallest K generalized eigenvectors of

(L+
sym+τ−I,L−

sym+τ+ I), where L+
sym = (D+)−1/2 L+ (D+)−1/2 is the symmetric Laplacian

of A+ (and similarly for L−
sym). This symmetric Laplacian is useful for networks with skewed de-

gree distributions. Under suitably defined signed stochastic block models, Cucuringu et al. (2019,

2021) provide theoretical cluster recovery guarantees (upper bound on the misclustering rate) for

the SPONGE family of algorithms as a function of the noise and edge sparsity levels.

2.2 Portfolio Construction

We construct K zero-cost statistical arbitrage portfolios within a universe of N stocks, where K is

the number of clusters we identify. There are four steps:
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1. Data pre-processing,

2. Group stocks into disjoint clusters,

3. Identify a collection of stocks within each cluster such that a linear combination of them is

likely to mean-revert to zero,

4. Assign portfolio weights to the selected stocks in each cluster.

2.2.1 Data Pre-processing

First, we compute the market residual return Rres
i,t of stock i at time t, which is given by

Rres
i,t = Ri,t − βiRmkt,t , (2)

and where Ri,t is the raw return of stock i at time t, βi is the beta coefficient of stock i, which

measures its sensitivity to market movements, and Rmkt,t is the market return at time t. In our

empirical study below, the market is the SPY ETF and we use a 60 trading day rolling window to

estimate β and compute the market residual return.

The market residual return represents the component of the stock’s return that is not explained

by overall market movements, i.e., the idiosyncratic dynamics of each stock. In our case, we use

the market residual return to focus on the portion of the stock returns that are specific to the stock

themselves and to study the commonalities in their idiosyncratic dynamics.

After computing the market residual return of each stock, we construct the correlation matrix

of market residual returns, which we use as the input of the later steps of portfolio construction.

Suppose at time T we want to construct the correlation matrix of market residual returns for N

stocks, we first obtain the market residual return of stocks from time T −W to T − 1, inclusive.

Next, we organize these residual returns into a matrix Rres of dimension w days by Nt stocks.

Each element Rres
t,i in this matrix corresponds to the residual return of stock i on day t.

Then, we compute the entries of the correlation matrix C as follows
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Ci,j =

∑T−1
t=T−w

(
Rres

t,i − R̄res
i

) (
Rres

t,j − R̄res
j

)
(w − 1)σi σj

, (3)

where R̄res
i denotes the mean of the residual returns of stock i, σi and σj are the standard deviations

of returns for stocks i and j over the w days. The resulting correlation matrix C is of size N ×N

and contains the pairwise correlation coefficients between all stocks in the matrix Rres.

2.2.2 Group stocks into clusters

We employ the clustering algorithms outlined in Section 2.1 to partition the correlation matrix of

stock market residual returns into K distinct and non-overlapping clusters. Next, we group stocks

according to the clusters we obtain from the correlation matrix which groups stocks based on their

residual returns while remaining agnostic to market factor moves.

2.2.3 Identify stocks to trade

After computing the clusters, we extract arbitrage signals for each stock. Within each cluster, we

compute the mean raw return of stocks over a lookback period of w days, and we measure the

cumulative deviation of each stock’s raw returns from the cluster mean over the past w days.2

Consider the returns of stocks R1,t, ...Rjn,t in cluster j, define the cluster mean return at time

T over the lookback period of w days as

R̄j,t =
1

jn

jn∑
i=1

Ri,t . (4)

Recall that we identify stocks that outperform the cluster mean over the past w days as previous

winners, and stocks that underperform the cluster mean over the past w days as previous losers. In

particular, we set a threshold p such that stocks whose returns cumulatively deviate by more than a

threshold p from the cluster mean are believed to be more likely to revert back to the cluster mean.

We expect the previous winners to revert down to the cluster mean and the previous losers to revert

2Empirical results show that our portfolio is market-neutral despite using raw returns.
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up to the cluster mean over the next T days.

We identify stock ji with return Rji,t in cluster j where the deviation
∑T−1

t=T−w(Rji,t−R̄j,t) > p

as a previous winner; similarly, if
∑T−1

t=T−w(Rji,t − R̄j,t) < −p, we identify stock ji as a previous

loser.

2.2.4 Assign weights to stocks

After identifying the previous winners and the previous losers in each cluster, we assign weights

to these stocks and execute a contrarian trading strategy over the next ℓ days.

Within each cluster, we short-sell the previous winners, while simultaneously initiating long

positions on previous losers. Portfolio weights are the same for all stocks. Specifically, we nor-

malize the portfolio weights such that the total dollar value of both long and short positions sums

up to one within each cluster, which guarantees a zero-cost arbitrage portfolio at inception. For

example, if there are two previous winners and four previous losers in a cluster, we construct a

portfolio that short-sells fifty cents on each of the previous winners and bets twenty-five cents on

each of the previous losers. This approach aligns with our objective of capturing mean-reversion

opportunities, while maintaining a cost-neutral trading strategy.

At the end of ℓ days, we re-balance the portfolio. We first re-compute the correlation matrix

of market residual returns over the w day lookback window; then re-compute the clusters and

re-construct the portfolio.

To manage risk and optimize performance, we introduce a stop-win threshold at q. Should our

portfolio realize a return of q before the completion of the ℓ days, we interpret this as evidence of

successful mean-reversion. In that case, we immediately re-balance the portfolio in the same way

as if the ℓ-day trading period had ended. With this stop-win mechanism, the portfolio is exposed

to profitable mean-reversion events, while mitigating downside risk.

Below, we discuss the choice of the number of clusters K we find to construct the portfolios.
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2.3 Choosing the Number of Clusters

Determining the number of clusters to partition the network is not straightforward; the literature

explores various approaches. Here, we employ methods from random matrix theory and standard

statistical analysis to dynamically determine how many clusters to extract every time we construct

the arbitrage portfolios.

Consider a universe of N stocks over T days, and store the market residual returns of these

stocks in an T by N matrix denoted X. Let C = 1
N
XT X be the N -by-N empirical correlation

matrix of X. The Marchenko–Pastur theorem characterizes the limiting behavior of the eigenvalues

of C. It states that, if the entries of X are independent identically distributed random variables with

mean 0 and finite variance, then as N, T → ∞, with ratio ρ = N/T fixed, the empirical distribution

of the eigenvalues of C converges to the Marchenko–Pastur distribution.

The Marchenko–Pastur distribution characterizes the limiting distribution of eigenvalues of

Wishart matrices, and is defined by the density function

f(λ) =


√

(λ+−λ) (λ−λ−)

2π λσ2 ρ
, for λ ∈ [λ−, λ+] ,

0, otherwise,
(5)

where λ− = (1−√
ρ)2 and λ+ = (1 +

√
ρ)2.

To determine the number k of eigenvalues that provides the dimension of the low-dimensional

embedding, we select the eigenvalues of the correlation matrix that exceed the threshold λ+, which

are the eigenvalues associated with dominant factors or patterns in the stock returns. Therefore, k

and the number of clusters K are the same, as detailed in Section 2.1.

An alternative, and more classical approach, is to consider the total variance explained by the

eigenvalues and select the number of largest eigenvalues needed to account for a specific proportion

P of the total variance. Specifically, sort the eigenvalues λ1, λ2, . . . , λN of the correlation matrix C

in decreasing order, such that λ1 is the largest eigenvalue and λN is the smallest. To determine the

number of eigenvalues needed to account for a proportion P of the total variance of C, compute
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the cumulative sum of the eigenvalues and divide by the sum of all eigenvalues, i.e.,

∑k
i=1 λi∑N
i=1 λi

≥ P . (6)

Here, k is the number of eigenvalues required to reach or exceed the threshold P , which is also the

number of clusters used to partition the network.

For both methods above, we recompute the desired number of clusters every time we construct

the mean-reverting portfolio, and use a twenty-day lookback window on stock returns to determine

the number of clusters. As a benchmark, we also include performance results when the number of

clusters is fixed to 30.3

2.4 Benchmarks and Evaluation Criterion

We compare the performance of each cluster-driven portfolio with two benchmarks. The first

benchmark is the SPY ETF. The second benchmark is an arbitrage portfolio based on the Fama–

French 12 industry classifications, which is constructed by building statistical arbitrage portfolios

within each of the Fama–French 12 industries in the same way as our cluster-driven portfolios.

The second benchmark compares intra-cluster mean-reversion effects to the mean-reversion effect

discovered by the cluster-driven portfolios.

To evaluate the performance of our portfolios, we use metrics including annualized return,

Sharpe ratio, and Sortino ratio Sortino (1994). The Sharpe ratio measures the risk-adjusted return.

It considers the market residual return generated per unit of standard deviation of returns as a

measure of risk. A higher Sharpe ratio indicates better risk-adjusted performance, i.e., a higher

return relative to the amount of risk taken.4

On the other hand, the Sortino ratio focuses on the downside risk of the portfolio with the intu-

ition that high upside standard deviation does not negatively impact portfolios and is not a concern

3The dynamic algorithms pick 10 to 20 sectors in most days; we choose 30 clusters to differentiate from the
number that we choose dynamically.

4For convenience, in this paper, the risk-free rate is set to zero.
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for investors. It takes into account only the standard deviation of negative returns, providing a

measure of risk-adjusted returns targeting the downside volatility, and is defined as

Sortino Ratio =
Portfolio Return − Risk-Free Rate

Downside Deviation
. (7)

Here, the downside deviation represents the standard deviation of negative returns. A higher

Sortino ratio implies better risk-adjusted performance because it indicates higher returns relative

to the downside volatility of the portfolio.

3 Empirical Results

3.1 Data

Stock price data are from the Center of Research in Security Prices (CRSP) daily returns database

WRD (2023). The sample period is from January 2000 to December 2022. We include stocks

listed on the NYSE, Amex, and NASDAQ exchanges. For each trading day, to ensure that the

trading positions we take are realistic, we only include stocks in the top 25 percentile of market

capitalization, which is defined as the product of the price of stock at the end of the day (i.e., close

price) and the number of shares outstanding. The stock universe we include consists of around 600

stocks in each trading day. We use close prices adjusted for splits and dividends when computing

forward-looking returns.

We compare the performance of our portfolios built with various clustering algorithms with

a portfolio built with industry classification data. The industry classification information maps

each firm’s SIC code to a single, non-overlapping Fama–French 12 industries sector label. The

industries are nondurables (1), durables (2), manufacturing (3), energy (4), chemicals (5), business

equipment (6), telecommunications (7), utilities (8), shops (9), healthcare (10), finance (11), and

other (12).
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3.2 Performance of Portfolios

In this subsection, we investigate if the performance of the portfolios constructed with clustering

algorithms is economically significant. The number of days used to estimate the number of clusters

is 20 days, and the rolling window we use to estimate β and to compute the market residual return is

60 days. We set w = 5 days for the number of lookback days to construct the correlation matrix and

to compute the cluster mean returns; the rebalance period to re-compute the correlation matrix, re-

compute the clusters, and re-balance the portfolios is ℓ = 3 days. The threshold to identify whether

a stock is a previous winner or is a previous loser is p = 0, and we set the threshold q = 5% to

consider that the portfolio mean-reverted. When we do not dynamically change the number of

clusters, we fix the number of clusters to K = 30.

Table 1: Performances of statistical arbitrage portfolios with various clustering algorithms

MP 90% Eigen Fixed K

Model AR SR ST AR SR ST AR SR ST

SPONGE 10.99 1.02 1.81 11.90 1.07 1.89 10.21 1.01 1.80
SPONGEsym 12.05 1.11 2.01 12.20 1.10 2.01 10.40 1.03 1.80

Spec 10.96 1.03 1.82 10.84 0.98 1.75 10.03 0.99 1.72
Lapsym 11.19 0.91 1.60 11.24 0.88 1.55 11.10 0.97 1.66
Laprw 10.38 0.85 1.47 11.26 0.90 1.56 10.95 0.96 1.64

FF12 - - - - - - 10.13 1.08 1.90
SPY - - - - - - 6.59 0.32 0.50

Table 1 presents the performance of the statistical arbitrage portfolios constructed with various

clustering algorithms. The tabs ”MP”, ”90% Eigen”, and ”Fixed K” represent methods for dy-

namically determining the number of clusters. For ”MP”, we use the number of eigenvalues that

exceed the upper boundary λ+ of the Marchenko–Pastur distribution. This evaluation is performed

on the correlation matrix derived from the returns matrix of dimension T by N . For ”90% Eigen”,

the number of largest eigenvectors of the correlation matrix required to account for 90% of the

total variance is the number of clusters we extract. For ”Fixed K”, we compute 30 clusters. In the

table, ”AR” is annualized return, ”SR” is Sharpe ratio, and ”ST” is Sortino ratio.
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Figure 2: Historical number of clusters chosen by the Marchenko–Pastur distribution and total
variance explained methods.

Figure 2 presents the number of clusters chosen by various methods. For ”MP distribution”,

we use the number of eigenvalues that exceed the upper boundary λ+ of the Marchenko–Pastur

distribution. For ”90% Eigen”, we use the number of largest eigenvectors of the correlation matrix

required to account for 90% of the total variance. Both methods provide relatively stable number

of clusters, but both methods undergo drops in the number of clusters they find during financial

hardships of the United States. For example, both methods experience a large drop in number of

clusters they find during the 2008 financial crisis, August 2011 when U.S. credit rating was down-

graded for the first time in history, and COVID in 2020. This observation shows that the methods

that dynamically determine the number of clusters can capture changes in market dynamics, espe-

cially when there is significant downside risks in the market.

The annualized returns of all portfolios are higher than 10%, where the SPONGEsym cluster-

ing portfolio delivers the highest overall performance in terms of annualized return, Sharpe ratio,

and Sortino ratio. In particular, for the two methods where we dynamically determine the number

of clusters, the SPONGEsym clustering portfolio has a Sortino ratio of 2.01. Overall, Our port-

folios have similar Sharpe ratio and Sortino ratio as that of the Fama–French benchmark portfolio
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Figure 3: Cumulative returns of various strategies. The number of clusters is determined by the
Marchenko–Pastur distribution. The cumulative returns are the sum of the daily returns without
compounding.

that uses the Fama–French 12 sectors.

We test the statistical significance of the Sharpe ratios obtained by the strategies, see Bailey and

López de Prado (2014). Specifically, the Sharpe ratios of all arbitrage strategies are statistically

significant at the 0.01% confidence level, while the Sharpe ratio of the SPY is not statistically

significant at the 10% confidence level.

The performance of strategies in Table 1 is similar across various choices of number of clusters;

thus, choosing the number of clusters dynamically does not significantly change the performance

of portfolios. This observation lends strong support to the idea that the construction of arbitrage

portfolios within each cluster is robust to the number of clusters.

Figure 3 shows the cumulative sum of returns of various strategies. In the long term, the

statistical arbitrage portfolios tend to perform better when the volatility of the SPY portfolio is large

(e.g., during the 2008 financial crisis). The performance of the Fama–French 12 sector portfolio is

similar to that of the clustering-driven portfolios up until 2008, and the returns of the clustering-

driven portfolios are higher than that of the Fama–French 12 sector portfolio after 2008.
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Figure 4: Correlation between returns of various strategies. The number of clusters of the cluster-
ing portfolios is determined by the Marchenko–Pastur distribution. Correlation coefficients are the
Pearson correlation between the returns of strategies.

Figure 4 shows the correlation between the returns of the strategies we use to construct the

portfolios. The correlation between all statistical arbitrage portfolios and the SPY is close to zero,

which confirms that the arbitrage portfolios are market neutral. When the clusters are computed

with data-driven algorithms, the correlations among strategies are very high; this illustrates that

the mean-reverting patterns that the clusters detect are similar. On the other hand, the correlation

between the data-driven clustering portfolios and the Fama–French sector portfolio is much lower.

The lower correlations with the Fama–French sector portfolio show that the performances of the

clustering arbitrage portfolios cannot be fully explained by the underlying intra-sector relationships

of the securities.

Figure 5 compares the clusters detected with SPONGE clustering and the stocks of the under-

lying Fama–French 12 industries. From 2019 to 2022, there are 377 stocks that are traded on every

trading day. The SPONGE algorithm detects clusters that have large overlap with the following

sectors: Utilities, Energy, Business Equipment, and Healthcare. Other clusters detected by the
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Figure 5: Comparison between the clusters created with the SPONGE algorithm on the correlation
matrix of stocks to detect 12 clusters and the underlying Fama–French sector labels from 1 January
2019 to 31 December 2022. The area between black vertical dashes represents each cluster formed
with SPONGE clustering. There are 377 stocks that are traded every day in this time period.

SPONGE algorithm do not show strong alignment with any particular sectors; in particular, there

is a large cluster that the SPONGE algorithm detects which contains stocks from all sectors except

for Utilities and Energy. This observation further supports that the performance of the clustering

statistical arbitrage portfolios cannot be fully explained by intra-industry mean-reversion behavior.

Table 2: Adjusted Rand Index between Clusters from various algorithms and the Fama–French 12
Sector labels from 1 January 2019 to 31 December 2022.

ARI(%)

SPONGE 14.9
SPONGEsym 13.5
Spectral 15.2
Laplacianrw 14.5
Laplaciansym 13.2

Finally, we use the Adjusted Rand Index (ARI) to measure the similarity between the clusters

we detect using clustering algorithms and the Fama–French 12 sector labels, see Table 2. The ARI

between the clusters of the algorithms and the Fama–French 12 sector labels is low. The similarity
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between clusters found by the clustering algorithms and the sector labels is less than 15%. This

observation supports the observation that the returns of our statistical arbitrage portfolios cannot

be fully explained by industry memberships. Our portfolio discovers new mean-reversion patterns

among various partitions of stocks.

4 Conclusion

In this paper, we presented a novel framework for constructing statistical arbitrage portfolios that

uses state-of-the-art graph clustering algorithms. Our empirical results demonstrated that our ap-

proach generates economically significant, profitable portfolios. In our study with historical data,

we also showed that our framework is robust to the choice of number of clusters and the choice

of clustering algorithms. Our study fills a gap in the literature by exploring the potential of clus-

tering methods to create profitable statistical arbitrage strategies and by applying signed clustering

algorithms to financial time series analysis. Our framework serves as a new evaluation criterion to

assess if a clustering algorithm can accurately group stocks into clusters of similar returns.

Several graph clustering algorithms were introduced in the last decades, but the number of

downstream tasks which employs the recovered clusters is limited, especially in a financial con-

text. Our work opens further lines of investigation. For example, one can explore clustering and

statistical arbitrage for cross-asset correlation matrices, or one can instead use other matrices as

inputs to our framework (e.g., matrix of co-movement upon reacting to events). Exploring a variant

of our framework on higher-frequency data (e.g., intraday minutely returns) could potentially also

lead to interesting findings and profitable trading strategies with significant economic benefits.
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