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ABSTRACT

Developing a generative model of realistic order flow in financial
markets is a challenging open problem, with numerous applications
for market participants. Addressing this, we propose the first end-
to-end autoregressive generative model that generates tokenized
limit order book (LOB) messages. These messages are interpreted
by a Jax-LOB simulator, which updates the LOB state. To handle
long sequences efficiently, the model employs simplified structured
state-space layers to process sequences of order book states and
tokenized messages. Using LOBSTER data of NASDAQ equity LOBs,
we develop a custom tokenizer for message data, converting groups
of successive digits to tokens, similar to tokenization in large lan-
guage models. Out-of-sample results show promising performance
in approximating the data distribution, as evidenced by low model
perplexity. Furthermore, the mid-price returns calculated from the
generated order flow exhibit a significant correlation with the data,
indicating impressive conditional forecast performance. Due to the
granularity of generated data, and the accuracy of the model, it
offers new application areas for future work beyond forecasting, e.g.
acting as a world model in high-frequency financial reinforcement
learning applications. Overall, our results invite the use and exten-
sion of the model in the direction of autoregressive large financial
models for the generation of high-frequency financial data and we
commit to open-sourcing our code to facilitate future research.
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1 INTRODUCTION

Ever since OpenAl opened access to ChatGPT, generative large lan-
guage models (LLMs) have skyrocketed in popularity. Part of their
appeal is due to their impressive few-shot learning and in-context
learning abilities [6]. Besides LLMs, generative diffusion models
have had a similar rise in popularity for image generation [17].
Financial applications similarly benefit from generative models for
various applications, from data augmentation [38, 40], over anom-
aly detection [21, 27], to forecasting [56]. Most current financial
machine learning approaches employ training paradigms based
on generative adversarial networks (GANs) [18, 22], which usu-
ally generate series of price returns directly. Just a few years ago,
Takahashi et al. [46] stated that “Building auto-regressive models
of financial time-series meets insurmountable difficulties” Only
very recently has there been work on bottom-up generators of limit
order book (LOB) market micro-structure data [29]. Our paper pro-
poses to take the next step towards more powerful autoregressive
financial micro-structure generative models, which do not suffer
from problems commonly encountered with GANs, such as mode
collapse [2, 53]. Autoregressive models enable generating sequences
of variable length and allow for improved interpretability, as the
model learns conditional distributions of the next sequence token
by design. The trained model, in conjunction with a replay simula-
tor [20], which processes generated messages, is used to generate
a realistic order flow. Such a conditional simulation model consti-
tutes an interactive world model, which, in principle, can be used
in downstream tasks, such as trading, order execution, or market
making, potentially using a reinforcement learning algorithm [11].
We leave these applications to future work.

We propose the use of a deep state space model composed of
simplified structured state space layers for sequence modeling (S5)
[45], which are computationally efficient and excel at learning long-
range dependencies. Recognizing the similarity between sequences
of order book messages and natural language, our model learns the
conditional data distribution of tokenized message sequences in a



cross-entropy minimization task, accurately predicting the next to-
ken in the sequence. A token in a natural language task corresponds
to a part of a word or a sequence of successive digits, whereas here
it is the latter. The autoregressive setup has numerous virtues, com-
pared to GANs, such as model scalability - as evidenced by LLMs —
but also wins in model interpretability, as the model defines a distri-
bution over all message sequences of arbitrary length. Challenges
include modeling extremely long sequences (>10,000 tokens), as
we need to represent sequences of sequences, since each message is
itself a sequence of tokens; and long-range data referentiality.

To our knowledge, this is the first paper to propose an autore-
gressive end-to-end generative model for micro-structure messages.
Furthermore, we develop a tokenizer, converting LOB messages to
a finite vocabulary of tokens. Model performance is quantified by
calculating perplexity scores and by evaluating conditional distri-
butions of generated data in an inference loop (see section 6) with
a custom error correction mechanism (see section 5.2). We utilize
the Jax framework [5] for hardware acceleration of both the model
and simulator, accelerating training and model inference.

2 RELATED LITERATURE

The generation of synthetic financial data and LOBs is an active
topic of research, with a variety of approaches employed, including
deep learning methods [1, 44]. Traditional methods focus on compu-
tational statistical methods to generate probabilities of LOB events
but are often limited, as they make strong assumptions [16] and
are not accurate enough to be used in many practical applications.
Another approach is agent-based modeling (ABM). In ABMs, simu-
lations are used to understand how the interaction of autonomous
agents leads to aggregate statistics and emergent behavior in a sys-
tem [7, 36]. Recently, generative neural networks have been used
as black-box models of the dynamics of LOBs [12, 13, 29]. Recent
work has focused on the use of LSTMs [29, 43] and generative ad-
versarial networks (GANSs) [22], such as Coletta et al. [12, 13]. Many
variations of GANs have been developed, including autoregressive
implicit quantile networks [41], ExGAN [3], TimeGAN [51] and
CGAN [39], making GANs more easily applicable to financial data.

Examples of GAN’s applications to probabilistic forecasting of
financial time series include Tail-GAN [14] and FinGAN [50]. Both
use custom economics-driven loss functions, making them better
suited for financial applications. Vuleti¢ et al. [50] adapt FOR-GAN
[35], a combination of CGANs and RNNs used in probabilistic fore-
casting. Cont et al. [14] simulate multivariate prices with the goal of
producing accurate tail risk statistics for a set of benchmark strate-
gies. To do this, they combine GANs with Principal Component
Analysis (PCA), allowing the architecture to scale effectively to a
large number of assets. Their loss function is a bi-level optimization
equivalent to a max-min game, where the discriminator’s goal is to
predict Value-at-Risk and Expected Shortfall.

An attempt at generating LOB messages directly on a granular
level is Hultin et al. [30]. They model the LOB as a continuous-time
Markov chain with volumes across price levels defining the state,
extending the model of Cont et al. [16]. For each state transition, ev-
ery feature (event type, order size, and price) is modeled separately,
using a dedicated RNN per feature. The joint probability is then ob-
tained from the product of the individual conditional probabilities.
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Instead of tokenizing messages, large numerical values — such as
order sizes or timestamps — are binned, leading to a loss of precision.
In contrast, our approach models the full level-3 representation,
referencing individual orders, rather than the level-2 aggregation.

3 BACKGROUND
3.1 Limit Order Books (LOBs)

The LOB contains a set of all unmatched limit orders submitted to an
exchange and a mechanism by which incoming orders are matched
[23]. In a price-time priority book, limit orders are ordered, first by
their price, and second by their arrival time. For buy orders (bids),
the orders with the highest price are prioritized, and for sell orders
(asks) the lowest prices are. When an incoming order “crosses the
spread”, i.e. accepts a lower (higher) price than the best bid (ask),
the incoming order is matched with the existing orders according
to price-time priority. Upon matching two orders, a trade occurs,
and the ownership of the underlying security is transferred. The
evolution of the state of the LOB can be wholly reconstructed given
an initial book state and the total set of arriving order messages in
a time interval. LOB messages types are described in Section 4.

3.2 State-Space Models

Recently, transformers [49] have been the most successful and
widely used approach to long-range sequence modeling [10, 31, 42],
despite their quadratic complexity O(L?) in sequence length L. The
S4 architecture [26] (and subsequent variants S4D [25] and S5 [45])
achieve state-of-the-art performance in the Long Range Arena task
[47], which is designed to measure long-range reasoning abilities,
while maintaining linear complexity in L at inference time. The S4
architecture employs the state-space model (SSM), commonly used
in control theory. The SSM is defined as:

x'(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(?). W
The state vector x(t) denotes the current state of the system
and u(t) the input vector, which is the set of variables affecting
x(t). Combined with deep learning and the HiPPO framework [24],
matrices A, B, C and D can be learned through standard gradient
descent to achieve high performance. While the SSM equations are
defined in continuous-time, they can be easily discretized using
either the bilinear method [48], or zero-order hold (ZOH), using a
fixed time step. S4’s features allow it to be extremely computation-
ally efficient: it is easily parallelizable during training by “unrolling”
it as a convolution using fast Fourier transform (FFT), and has
O(H?) complexity per step at inference time (where H is the hid-
den dimension). The S5 model further improves on its predecessor
by employing a parallel scan operation to compute the hidden state
each step and using matrix multiplication instead of applying a con-
volutional kernel. This is facilitated by S5’s use of one multi-input,
multi-output SSM instead of the many single-input, single-output
SSMs in S4, and the approximate diagonalization of the HiPPO
matrix. This allows the model to maintain linear complexity over
sequence length while also being able to model time sequences
with varying sampling time steps [45].
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3.3 Autoregressive Models

An autoregressive generative model, for example an LLM, defines
a (conditional) probability distribution over entire sequences of
tokens. Model quality can thereby be measured by evaluating the
probability the model assigns to the test data. One such statistic
that is often applied in NLP is perplexity (PPL) [8]. PPL measures
the expected per-token surprisal by the data. It is the exponential
of the per-token cross-entropy loss:

1
PPL = exp N Z —log p(y|m, b)
{m,b,y}

@

1
=expir D, ~logdizy) -
{m,b,y}
where ; = p(y;|m, b) denotes the conditional probability of token
i under the model. Perplexity for individual sequences is calculated
as the exponential of the mean loss over autoregressive one-step-
ahead predictions of all tokens of that sequence. This is because
log probabilities of sequences are conditionally separable:

log p(y1y2 ... yn) = log p(y1) + log p(y2ly1) + log p(y3ly2,y1)
+...+1log p(Ynlyn-1,.--,41)-

4 DATA

We use the LOBSTER data of LOBs of NASDAQ cash equities [28].
In particular, we train and evaluate our model separately on data
from Alphabet (GOOG) and Intel (INTC). For each stock, we use
102 days of training data (1 July 2022 to 11 November 2022), and 12
days of validation (28 November to 13 December 2022) and test data
(14 December to 30 December 2022). These two stocks represent
examples of small-tick (GOOG) and large-tick LOBs, which exhibit
different dynamics [19]. Large-tick stocks, those where the tick size
of $0.01 is large relative to the stock price, tend to have less sparse
LOBs and a more constant spread over time. We only use data during
regular NASDAQ trading times, on working days between 09:30
and 16:00 US East Coast time. We utilize level-3 messages pertaining
to the best [ price levels recorded at any given moment in time. In
contrast to level-2 data, where only aggregate open volumes are
recorded per price level, level-3 messages allow for a full-fidelity
reconstruction of LOB dynamics within certain constraints. For
each new message, the data set also contains a snapshot of prices
and volumes at the best [ price levels, for both buy orders (bids)
and sell orders (asks). We use [ = 10 levels of LOB data, which is a
common threshold for full LOB investigations [15].

LOBSTER data contains 7 message types: new limit orders, par-
tial order cancellations, full order deletions, visible order executions,
hidden order executions, auction trades, and trading halts. However,
we only use the first 4 types, ignoring hidden orders, which do not
affect the visible dynamics of the LOB, and trading halts. Auction
trades only occur outside regular daily trading times, and are there-
fore not contained in our data. Each message has 6 constituting
elements: a timestamp in nanoseconds after midnight, the event
type (1-4), the order ID, the order size, the price, and the trading
direction (buy or sell). An example order is shown in Figure 1.

4.1 Pre-processing

The data is pre-processed to make it better suited for a deep learn-
ing task, such as generative modeling. However, our choice of data
representation is general enough for other machine learning tasks.
Our proposed model architecture uses both order flow information,
in the form of messages, and sequences of level-2 order book states.
While some models use LOB data in a price-volume representation,
e.g. DeepLOB [55], transforming the data into a more stationary
representation can considerably improve performance [34]. We
propose and use a sparse representation of liquidity in the book
as P separate volume features around the mid-price, coupled with
one feature representing mid-price changes from the previous ob-
servation. This results in a P + 1 dimensional vector at each point
in time, which is sparse when the LOB’s price levels are sparsely
populated. This representation fixes a dollar-range volume image,
which also preserves price levels in the price range without any
volume. Empty levels can carry important information, such as the
size of the bid-ask spread, or the shape of book volume at deeper
levels, which are usually squashed in other data representations.
Furthermore, our representation is especially useful for a genera-
tive model, since the model can place orders at a new price level
without changing the absolute price a specific book feature refers
to. Since we do not generate order book states directly, but message
sequences, there is no need to tokenize the book data. Instead, these
can be input directly into the model as continuous features.

Before messages are encoded as token sequences, we convert
them to a more stationary data representation and a finite token
vocabulary. After filtering the data to the relevant order types,
prices are converted from dollar values to ticks (cents) from the
previous mid-price. In case the mid-price lies between valid ticks,
it is rounded down to the next tick. Modified prices can thus be
represented as integers and become more stationary over time.
We then truncate modified prices below -999 and above 999 ticks
around the mid-price to enable encoding the data with a finite and
fixed vocabulary. Similarly, extremely rare individual large orders
are truncated to an order size of 9999. In practice, these thresholds
affect less than 0.1% of the data.

Besides new limit orders, all other message types are referential,
as they subtract liquidity from an existing open order in the book.
This might be obvious for partial order cancellations or full dele-
tions, but it is modeled analogously for order executions. Execution
messages must therefore refer to the order ID of the highest priority
bid or ask order in the book. A challenge arises in encoding this
referentiality in the message data, since numeric order IDs are a
poor choice, due to their arbitrary nature and non-stationarity. As
an alternative, we append information about the referenced origi-
nal message as additional features to all messages. These fields are
the original modified price, size, and timestamp, which we use to
identify the referenced limit order.! Since arrival times are mono-
tonically increasing, and thus a difficult distribution to generate
from, we also add inter-arrival times between messages as addi-
tional features. Finally, we reorder the message features so that
longer fields, corresponding to higher-entropy token distributions,
occur later in the message and can thus condition on previous fields

!In the rare case of exactly identical orders, recorded at the same nanosecond, we
choose the last order in the list.



in our target task of left-to-right “causal” prediction. The order of
features is: event type, direction, price, size, inter-arrival time At,
arrival time; followed by the reference fields: price, size, and time of
the original message. In the case of a new limit order, the reference
fields receive an NA value.

4.2 Encoding

new
message

referenced
message

type direction  price size Atime time price Asize time

1005 | 12010 | 1200711016 | 1107 | 3101543240

37536 649 827 771 {1200711015 ‘1107

~ T x _

sign & rel. price shared cancelled
level vocabulary size

Figure 1: Schematic of message tokenization of a limit order
deletion message. Each field of the pre-processed message at
the top corresponds to a sequence of tokens in the encoded
message at the bottom. The grey message part corresponds
to the new message arriving at the exchange, while the blue
part encodes the referenced message to be deleted.

Analogously to a generative language model, we propose a token-
based encoding scheme for LOB messages. This allows the model to
be trained using cross-entropy loss on flattened token sequences
so that it learns the conditional distribution over a target token.
Figure 1 illustrates the encoding mechanism of a pre-processed
order deletion message. Here, each field of the pre-processed mes-
sage corresponds to a sequence of tokens in the encoded message.
The message vocabulary contains 12011 distinct tokens, which are
represented as integer values. Event type, direction, and size fields
are each encoded with a single token, while prices are split into two,
the first corresponding to the sign (above or below the mid-price)
and the second to the tick distance from the mid-price. A difference
to language encoders is that we use non-overlapping token ranges
for some fields. For example, even though event type and price level
might have the same raw numerical value, they are encoded using
different tokens to make effective use of our a priori knowledge
of their semantic difference. Due to their similarity, arrival times
and inter-arrival times (At) share the same vocabulary and are tok-
enized in groups of 3 digits. A timestamp with nanosecond precision
(15 digits) thus corresponds to a 5-token sequence and the 9 fields
of the pre-processed message are converted to 22 tokens. While
we conduct all data pre-processing for our entire data set before
model training and inference, message encoding and decoding are
done dynamically when loading the data. Dynamically decoding
messages is required for generated messages to be submitted to the
simulator during model inference. This is done computationally
efficiently by relying on just-in-time (JIT) compilation on hardware
accelerators (such as GPUs) using the Jax framework [5].
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5 MODEL
5.1 Model Architecture

The model architecture uses a deep network of simplified structured
state-space layers (S5) [45] (see section 3.2). Model inputs are flat-
tened sequences of n tokenized LOB messages m € V22" and of n
volume images of the level-2 LOB statesb € 8", where V C Nis the
token vocabulary and B the space of transformed book snapshots
containing P volumes € R, and the previous mid-price change € Z.
This way, message m; at sequence location i € [0, n — 1] acts upon
order book state b; and transitions it to bj;1. So, for each book state,
the model receives the corresponding successor message.

Similarly to masked language modeling [32], during training, we
mask a random token in the last message, using a MSK token, and
replace all tokens to the right of this with HID tokens, so the model
does not condition on those fields. Time tokens of new messages are
not predicted but instead calculated from generated inter-arrival
times At. Therefore, these are not selected to be masked during
training. Time tokens do however remain part of input sequences
and time tokens of referenced messages are prediction targets as
these are essential in identifying original messages. These are easier
targets, as they are already part of the message sequence when the
referenced limit order had been submitted, which is often contained
in the input sequence.

We define the model fy : (m,b) — ¥, parametrised by 0, as
mapping a message sequence m and a book sequence b to a vector
of logits § € R” where v = |'V| is the size of the token vocabulary.
By requiring that }.7_; exp(§;) = 1 the model defines a distribution
over V, which learns the distribution of the masked token, condi-
tional on the input sequences. To achieve this, the model parameters
0 are trained by minimizing cross-entropy loss

o1 . 1 N
min Z L(y.¥) = min = Z —log §(i=y}.
{mb,y} {mb,y}
where ¥ = fg(m,b),

over N tuples of training data {m, b, y} using gradient descent with
the Adam [33] optimizer. The scalar y € V denotes the target token
from the data. In practice, tokens are one-hot encoded, so that the
model learns an input embedding.

S5 Message Module
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orterbook [ | S5 ‘, ga’ S5 }_} Detes) Combined S5 Module
b(H) °

S5 Book Module
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message
sequence
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(H)
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Figure 2: Schematic of model architecture. Book sequences
and flattened tokenized message sequences are initially pro-
cessed separately before being processed by a combined S5
module (using 6 S5 layers, resulting in ~ 6.3x10° parameters).
Sequence outputs from the last S5 layer are averaged along
the sequence dimension to produce token logits.
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The model architecture is shown in Figure 2. The network has
two separate input branches, one receiving the masked message se-
quences, and the other the book state sequences. Both are processed
separately for a few layers, combining S5 with dense layers, before
projecting both sequences to a common sequence length L. The
concatenated sequences are then further processed by a stacked
block of S5 layers, before projecting the output to v output neurons.
The message branch starts with a linear embedding layer, project-
ing each one-hot token vector to the model’s hidden dimension H,
followed by S5 layers. The book branch, on the other hand, first
passes each (P + 1)-dimensional observation through an S5 layer
before also projecting it to the embedding dimension H.

We trained the model on input sequences of n = 500 messages
and LOB states, corresponding to encoded sequence lengths of
11,000 tokens for the messages (22 tokens per message), and 500
observations for the book states as these are not tokenized. To
vary the exact input sequences and MSK token location, in every
training epoch, a random number of observations — between 0 and
n — 1 - are skipped from the start of each day.

5.2 Inference: Combining Model and Simulator

We learned that training and validation loss drastically improves
when using book data in addition to message sequences. To re-
construct the state of the LOB solely from order flow, extremely
long message sequences need to be combined non-linearly, which
is why both have been found to contain orthogonal information in
prediction tasks [54]. While it is easy to combine both data sources
during training, we require a mechanism to generate new book
states during multi-step autoregressive inference.

Our solution is a LOB simulator, which takes the most recent
LOB state and applies the generated message according to LOB
matching rules. To ensure proper processing by the simulator, the
generated message is initially decoded and subsequently passed
through an error correction mechanism. The simulator is therefore
an essential component of the inference pipeline. We utilize the
novel LOB simulator, introduced in Frey et al. [20], implemented in
Jax [5], and end-to-end just-in-time (JIT) compiled for GPU.

Token Generation Loop

) No
g\"::::;i .| S5Message
Module
sequence | m() .| Combinedss | | sample | -
Module

/ token
b(tL) S -
order book S
sequence [—| S5 Book Module .
0

t=t+1 LOB Simulator Yes
b(t+1) = sim(b(t), m(t))

Error correction

No

Message Generation Loop

Figure 3: Inference Loop. Tokens are generated autoregres-
sively from model logits until a message is complete (Token
Generation Loop). Completed messages are error-corrected
and input to the LOB simulator. The updated book state and
the generated message are then added to the input sequences
to start generation at ¢ + 1. (Message Generation Loop)

The inference pipeline is illustrated in Figure 3. It starts with
the model receiving a tokenized message sequence, where the first
token of the last message is set to MSK, and the remainder to HID.
Tokens are then sampled autoregressively left-to-right using the
softmax over output logits. Once all tokens constituting At have
been sampled, the message’s arrival time ¢ is calculated by adding
At to the previous message’s time stamp. The new arrival time is
then tokenized and inserted into the message sequence. During
sampling, we restrict the distribution to syntactically valid tokens
for the currently masked field but otherwise sample proportionately
to the predicted token scores without truncation or beam-search.

After initializing the simulator with a LOB state, the message
sequence is then replayed to advance the state to the current time
step. This is necessary as the book states are represented as a level-2
image, which means that we only have the aggregate volume of each
individual order at a price level. This initial volume is represented by
the simulator as a single order. By replaying the message sequence,
we can thereby recreate a partial level-3 representation, which is
required to replay referential orders.

The role of the error correction procedure is to correct the oc-
casionally hallucinated message reference components, which do
not exist in the data and the simulator. As new limit orders do not
require a reference component, this is only done for cancellations,
deletions, and order executions. Past limit orders in the sequence,
which are still in the LOB, are first searched for an order direc-
tion, price, size, and time matching the generated reference. If this
matching should fail, the search is repeated excluding the time field
as this field exhibits the highest error rates. Should there still be no
satisfactory match, which would happen if a message references
order flow before the start of the input sequence, cancellations are
applied to the initial volume, if the simulator has any left at the
correct price level. As executions of multiple order blocks at the
same time are modeled as separate events, correct order executions
are easier to guarantee. There is only a single referenced candidate
order on each side of the book, namely the limit order at the best
price with the earliest arrival time.

6 RESULTS

The primary objective of a generative model is to produce data
that closely approximates the target distribution. We propose to
evaluate model performance in three distinct ways.

(1) We compare various unconditional marginal distributions pro-
duced by the model with the corresponding data distributions.
(2) Next, to evaluate the model’s capacity to match conditional
distributions, correlations between generated mid-price returns
and realized returns are calculated. Results indicate that the
model’s significant forecasting horizon is competitive with deep
learning models, trained explicitly to forecast mid-prices [55].
(3) Finally, as a succinct measure of model performance across the
entire distribution, we calculate perplexity scores, which are
common in the evaluation of large language models (LLMs) [8].

For evaluation purposes, we sample 1000 random test sequences,
each comprising 600 messages and corresponding LOB states, which
temporally follow the training and validation period. From each
sequence, we extract the first n = 500 observations between time
steps t — n+ 1 and t as the model input. The model generates the



succeeding 100 messages from time steps t + 1 to t + 100. We then
compare the generated data against the actual 100 realized messages
from the data.

The mid-price p; at time ¢ is the mean of the best bid pf(l) and
the best ask price p?(l), at the most recent time s when there are
orders on both sides of the book:

pe +pt
2 4
(1) and 20

and p,, ’ exist.

pr=

b

where s=maxu s.t.p,
ust

The mid-price returns s messages into the future r;,s between time
t and t + s is then defined as
Fras = St )
Tt
Figure 4 compares the generated and realized return distributions
for 100 future messages. This shows that the model reproduces
mid-price return distributions without this being an explicit part of
the training loss. The mean returns do not exhibit any obvious drift
or trend, and the shaded intervals, covering 95% of the distribution,
overlap approximately.
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Figure 4: Generated (red) and realized (blue) mid-price return
distributions show how well the model matches the uncon-
ditional distribution’s mean (solid lines) and 95%ile intervals
(shaded regions). Returns are calculated between the mid-
price s messages after, and the mid-price just before the start
of generation. (n=1000 test sequences)

Another desirable distribution to match is the relative frequency
of message types (see Figure 5). Partial cancellations and full dele-
tions are aggregated as the simulator only tracks individual orders if
they are contained in the input sequence. As the removal of liquidity
from limit orders submitted before the start of the sequence affects
the aggregate initialization volume, a partial cancellation cannot be
differentiated from a full deletion. While both models approximately
match event frequencies, execution events are over-represented in
the generated data. Similar effects can be observed for rare events
in LLMs, and are potentially due to the mode-covering property of
cross-entropy loss [4, 37].

As described in section 4.2, for every message the model gener-
ates 4 inter-arrival time tokens At, which are decoded and added
to the previous message’s time stamp. Figure 6 compares the gener-
ated and realized message inter-arrival time distributions. The top
two panels show probability plots (P-P plots), tracing the points
(Fg(At), Fr(At)) across the support of At, where Fy(-) is the em-
pirical cumulative distribution function (ECDF) of the generative
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Figure 5: Comparison of order type frequency between gen-
erated (red) and realized data. While relative frequencies
produced by the model roughly match magnitudes in the
data, there is still a significant mismatch, with both models
overestimating the probability of execution messages in test
data. n=(1000 sequences)x(100 events) from the test set.

distribution of At and F,(-) the realized ECDF. An equivalent in-
terpretation is that F»(Fy(x)) is shown on the y-axis for x € (0, 1),
where deviations from the diagonal indicate distributional devia-
tions. The lower panels depict corresponding histograms of At on
a log-x-axis, as most observations are close to 0 with a long tail.
Overall the model does a good job of matching the time features.

Realized
Realized
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Generated Generated

e

Frequency
Frequency

1079 107 1075 1073 10-!' 10' 10%
At At

107 107 1075 1073 10! 10' 10%

(a) GOOG (b) INTC

Figure 6: Generated decoded 4-token sequences of At match
message data counterparts well. First row: probability plots
comparing generated and realized inter-arrival times. Second
row: histograms of generated (red) and realized (blue) inter-
arrival times on a log-x scale. The dashed vertical lines plot
the mean and the dotted lines the median of the distributions.

Sampling from conditional distributions enables the model to
make forecasts. To evaluate the performance of the model pre-
diction, we calculate the Pearson correlation coefficient between
the generated returns r? +s and the realized returns r;,  for s €
[1,...,100] messages into the future. Figure 8 shows a sustained
positive correlation for both GOOG (p = 0.1) and INTC (p = 0.2).
For INTC, the stock with less liquidity, correlations remain statisti-
cally significant at least 100 messages into the future.
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Figure 7 plots histograms of 100-message test sequence perplex-
ity scores for both stocks. The model trained on GOOG data gets an
overall lower perplexity than INTC with fewer extreme values of
low probability sequences. This could be owed to more GOOG data
being available during training as the stock has a higher trading
volume and more messages in the same time period. Calculating
overall per-token perplexity results in a score of 3.63 (std.err. 0.0047)
for GOOG and 4.04 (std.err. 0.0043) for INTC. Table 1 calculates the
perplexity for each of the token positions generated in a message.
We observe that later digits of inter-arrival times At become harder
to predict as these are higher entropy distributions. In contrast,
reference time tokens are easier to predict as these usually refer to
earlier time tokens in the sequence. Generally, for this reason, ref-
erence tokens have lower perplexity than their counterpart fields
in the new message. Comparing GOOG with INTC we observe,
that the GOOG model has higher perplexity in generating an or-
der’s price level, while INTC has higher uncertainty of order sizes.
The difference in price level predictability agrees with the fact that
INTC, as a small-tick stock, exhibits a denser order book on average
[19], while GOOG order sizes have lower entropy than INTC.
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o
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Figure 7: Per-token sequence perplexity: the GOOG model
exhibits better data fit on average and fewer extreme values.
Both distributions appear benign without much mass in the
right tail. An observation corresponds to the PPL of a single
realized 100-message sequence from the test set. Dotted lines
indicate medians and dashed lines the means.

7 CONCLUSIONS

We develop an end-to-end autoregressive generative model for
electronic exchange message flow, trained on tokenized message
sequences and LOB states, using a custom tokenizer. By embedding
the model in an inference loop with a market replay simulator,
we are able to generate full-fidelity granular trajectories of entire
LOBs. A challenge of predictive machine learning models in finance,
particularly in high-frequency market micro-structure, is market
impact, i.e. the fact that market actions affect dynamics. Modeling
realistic market impact is thus an important open problem, for
which generative models of this kind provide a promising solution.

For tasks in natural language processing, autoregressive LLMs
have proven superior to GAN-based models in cases where suffi-
cient training data is available. Arguably, market micro-structure
provides a similar domain with 2500 different stocks trading on
the NASDAQ exchange alone, each with up to millions of daily
messages. Our results show that such models are reasonable, can
provide good performance, and could potentially be scaled up to
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Figure 8: Top: Pearson correlation coefficient p between gen-
erated and realized returns, indicating directional forecast-
ing performance. The dashed line indicates a 0 correlation.
Bottom: corresponding p-values of t-tests testing H; : p > 0
against Hj : p = 0. The dotted line plots the 5% significance
threshold. The GOOG model stays below or around 5% signifi-
cance for up to 80 messages into the future, while correlation
for INTC remains significant for at least 100 messages.

something like autoregressive large financial environment models,
which could be used for reinforcement learning. Similar approaches
using GANs have not yet been very successful due to agents learn-
ing to exploit model errors [11].

One challenge to generative micro-structure models is posed
by message-arrival times. To our knowledge, we propose the first
generative micro-structure data model, which treats times the same
as other data features and learns a generative distribution, compared
to e.g. binning time intervals as done in [29].

Despite the fact that the model is trained on tokenized micro-
structure messages, we are able to match data distributions, such
as the distribution of mid-price returns. This radical bottom-up
approach, in combination with large neural networks, has been
driving recent successes in LLMs and could similarly usher in the
next generation of generative financial models.

Given these promising results, our work provides many inter-
esting directions for future research. Current model limitations
include errors when generating referential orders and computa-
tionally intensive message error correction. These issues could be
abated by increasing the model and data set size. Besides larger
models, future work could similarly investigate training on longer
sequences. Different architectural choices, either improvements to
the S5 layer [52], or efficient transformer-based networks [9] could
be explored as alternatives.
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