
Multi-Modal Financial Time-Series Retrieval Through Latent
Space Projections

Tom Bamford∗
J.P. Morgan AI Research

Andrea Coletta∗
J.P. Morgan AI Research

Elizabeth Fons∗
J.P. Morgan AI Research

Sriram Gopalakrishnan∗
J.P. Morgan AI Research

Svitlana Vyetrenko
J.P. Morgan AI Research

Tucker Balch
J.P. Morgan AI Research

Manuela Veloso
J.P. Morgan AI Research

ABSTRACT
Financial firms commonly process and store billions of time-series
data, generated continuously and at a high frequency. To sup-
port efficient data storage and retrieval, specialized time-series
databases and systems have emerged. These databases support in-
dexing and querying of time-series by a constrained Structured
Query Language(SQL)-like format to enable queries like "Stocks
with monthly price returns greater than 5%", and expressed in rigid
formats. However, such queries do not capture the intrinsic com-
plexity of high dimensional time-series data, which can often be
better described by images or language (e.g., "A stock in low volatil-
ity regime"). Moreover, the required storage, computational time,
and retrieval complexity to search in the time-series space are
often non-trivial. In this paper, we propose and demonstrate a
framework to store multi-modal data for financial time-series in a
lower-dimensional latent space using deep encoders, such that the
latent space projections capture not only the time series trends but
also other desirable information or properties of the financial time-
series data (such as price volatility). Moreover, our approach allows
user-friendly query interfaces, enabling natural language text or
sketches of time-series, for which we have developed intuitive in-
terfaces. We demonstrate the advantages of our method in terms
of computational efficiency and accuracy on real historical data
as well as synthetic data, and highlight the utility of latent-space
projections in the storage and retrieval of financial time-series data
with intuitive query modalities.

KEYWORDS
Time-series, datasets, neural networks, text tagging

ACM Reference Format:
Tom Bamford, Andrea Coletta, Elizabeth Fons, Sriram Gopalakrishnan,
Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso. 2023. Multi-Modal

∗All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICAIF ’23, November 27–29, 2023, New York, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Financial Time-Series Retrieval Through Latent Space Projections. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation emai (ICAIF ’23). ACM, New York, NY, USA, 9 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The increasing usage of data-hungry applications, including AI/ML
algorithms, has brought significant changes to storage systems
required to accommodate the growing volume, velocity, variety
of data and queries. In particular, financial firms are required to
process and store billions of time-series (TS). These TS are stored
to satisfy compliance requirements, to provide business and clients
with historical data, and to support data-driven algorithms. Such TS
are frequently accessed with varying requirements, and correspond-
ingly, queries. To support efficient data storage and retrieval, special-
ized TS databases and systems have emerged [15, 18, 19, 22, 32, 40].
While these databases support efficient indexing and querying of
TS, they do not directly target two important aspects of financial
TS: the intrinsic complexity of high-frequency financial data; and
the required retrieval modalities and difficulty for the end users. In
fact, such databases commonly offer queries based on some fixed
set of properties and using SQL style queries; for example, "Stocks
with daily price returns ≤ 5%". However, statistical properties of
real price series can be non-trivial and challenging for users to
express in such rigid formats [6]. Therefore, financial users would
require a fast and easy range of query modalities that facilitate the
input of financial TS features, called stylized facts (e.g., volatility or
correlation) [35].

Some academic work proposes methods to: analyze and retrieve
massive heterogeneous datasets; manage TS data streams from
Internet of Things (IoT) devices; or find uncommon and interesting
patterns w.r.t. historical database [5, 21, 41]. However, to the best of
our knowledge, these works focus on their specific applications or
problems. They do not target or apply to financial TS, which have
their own specific statistical properties and requirements [6].

Motivated by the lack of dedicated solutions for the financial
domain, and by leveraging the recent advancements in machine-
learning techniques, we propose a framework for efficient and easy
multi-modal TS retrieval using latent space projections for financial
TS. In particular, our main contribution is a framework for using
Deep Encoder Networks for storing and retrieving financial TS
data across different modalities, and retaining finance-pertinent
information in the latent space. Our approach enables one to learn a

Best Industry Paper Award at the International Conference on AI in Finance (ICAIF) 2023

ar
X

iv
:2

30
9.

16
74

1v
2

 [
cs

.L
G

]
 2

 J
an

 2
02

4

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICAIF ’23, November 27–29, 2023, New York, NY Tom Bamford, Andrea Coletta, Elizabeth Fons, Sriram Gopalakrishnan, Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso

shared embedding space between multi-modal data (e.g., text to TS),
and allow retrieval to be carried out using different query-modes
(natural language, TS sketches, images, etc). We use such a learned
embedding space to index the historical TS data (i.e., we create a
database of <encoding, historical data>). The database can then be
used to retrieve TS using the different input modalities, and we
evaluate our methods using real historical data and synthetic data.
We demonstrate our framework in two instances of the general
approach of using deep encoders; one for queries by natural lan-
guage (text-based retrieval), and one for queries by sketches of
TS (sketch-based retrieval). Interfaces for these modalities are
shown in Figure 1. The user can search historical TS by textual
queries: "A stock with high volatility and increasing price"(Figure 1a,
and our encoder is trained to pay attention to pertinent-financial
descriptors like “high volatility”. Alternatively, one can draw the
general sketch of the TS as a search input as it is often the easiest
to visualize a trend of the TS of interest (Figure 1b for example).

Our text-based retrieval method leverages a pre-trained language
encoder and a pre-trained visual encoder to combine visual and tex-
tual features, whose latent space are aligned using cosine similarity
in the fine-tuning phase. The proposed system is derived from the
OpenAI CLIP network [28] which has shown state-of-the-art per-
formance in content based image retrieval. In order to incorporate
sketch-based functionality, our second model uses autoencoders to
encode a TS sketch and the volatility trend seen in the sketch into
a latent-space, so subsequent queries can be matched with more
than just the trend information. This is not limited to just volatility,
but extensible to different properties of price TS data.

We experimentally evaluate our approach and show its benefits
in terms of computational time and accuracy. We compare it against
multiple baselines including standard TS retrieval approaches, and
latent-space retrieval using other dimensionality reduction meth-
ods, specifically Uniform Manifold Approximation and Projection
(UMAP) [25]. We show that our approach can reduce the retrieval
time, and provide competitive if not better accuracy than the base-
lineswhile supporting user-friendlymodalities for querying. Finally,
it is worth mentioning the flexibility of our approach, which can
support additional modalities.

In summary the contributions of our work are as follows:
• We introduce a deep encoding framework for multi-modal re-
trieval that is focused on financial TS. Our framework is adapted
to the financial domain by encoding stylized facts of financial TS
explicitly.
•We demonstrate the functionality of our framework for text-based
and sketch-based retrieval modalities
• We evaluate and show the benefits of our work in terms of com-
putational time and accuracy by comparing them against existing
baselines and approaches.

2 RELATEDWORK
In this section we briefly survey existing, academic and commercial,
work on TS retrieval.

Commercial and open-source TS databases. Among the most
famous TS oriented databases we find InfluxDB [19], a popular
open-source database with high-performance storage and retrieval

for TS, providing continuous SQL-like queries and additional spe-
cific TS features like downsampling. TimescaleDB [18] is an open-
source database built on top of PostgreSQL to have its reliability
and robustness while providing new storage optimization for TS.
One of the most famous commercial TS database is KDB+ [22],
which supports high-frequency data analytics by organizing data
into a hierarchical memory, which enables state-of-art performance
and lower hardware cost [4]. Finally, Amazon recently introduced
Timestream [40], a cloud serverless TS database service to optimize
in-memory and historical data, while also providing TS analytical
tools including smoothing, approximation, and interpolation for
users. Most of these databases focus on efficient indexing and stor-
age of TS data. They store most older TS in more resilient and high
capacity memories, while they keep only more recent and partial
data in-memory. However, in contrast to us, they do not focus on
providing multi-modal queries to ease the end users in retrieving
complex financial TS data. In fact, existing databases often only sup-
port complex and slow queries, while our work aims at providing
intuitive modalities for financial TS retrieval like natural language
input and trend sketches.

Research Literature. Existing work on multi-modal search con-
siders how to incorporate different modalities like text, and images
to query databases [34] [37]. However, to the best of our knowl-
edge, our work is the first to target multi-modal TS retrieval specif-
ically for financial TS data. The general approach we take in our
methods – which is deep encoders with modifications to encode
pertinent information for financial TS– allow one to query with
natural language text or sketches of TS. Existing literature work
mostly focus only on specific problems (e.g., multi-variate binary
encoding and retrieval [33, 43], or tree index structure [3]) or target
specific domain-related issues [2, 23]. L. Bitincka et al. [5] propose
a database that can be used to index, search and analyze massive
heterogeneous datasets; Y. Yang et al. [41] focus on TS data streams
from Internet of Things (IoT) devices and their management on
edge nodes; and E. Keogh et al. [21] discuss the analysis of TS to
find uncommon or interesting patterns w.r.t. historical database.
However, to the best of our knowledge, previous work does not
target or apply to multi-modal financial TS retrieval, which has
specific requirements such as incorporating pertinent statistical
properties of financial data [6] such as price volatility.

For text-based retrieval of TS, very little prior work has been
done in this area. However, a couple of relevant attempts to tackle
this problem have been made [1, 17]. In both cases a limited, pre-
defined vocabulary is introduced which is associated with specific
numeric features of the TS. Such a pre-defined dictionary can then
be used to convert textual queries into numeric searches to retrieve
relevant TS. The limited nature of the vocabulary used, alongside
the clunky nature and relative unintuitveness render these methods
distinctly lacking when compared to our deep encoding approach
in the scope of queries encompassed, particularly with regards to
out-of-sample or ad-hoc querying. In addition, the approaches put
forward were domain-agnostic; our approach can be applied both in
a domain-agnostic fashion and tailored to financial TS specifically.

With respect to sketching-based retrieval for TS, there is
prior work that targeted this problem [38] [24]. However, in these
methods, the approaches only match trends and artefacts (shapes)

Multi-Modal Financial Time-Series Retrieval Through Latent Space Projections ICAIF ’23, November 27–29, 2023, New York, NY

(a) Prototype interface for text-based TS retrieval; allows user to
describe the TS properties when searching historical data

(b) Prototype interface for sketch-based TS retrieval; allows user
to draw a sketch of a hypothetical TS to search historical data

Figure 1: Interfaces developed for natural language and sketch based queries.

and do not consider any additional properties such as volatility of
the TS (which we do). Our baseline methods cover the methods
used in the aforementioned work and wemodify the baselines to try
and incorporate volatility into those methods in the experiments.

3 PROBLEM DESCRIPTION
We first define the TS space as 𝜒 = R𝐿 where 𝐿 is the length of
each TS. Our problem focuses on the retrieval of TS from a large
input dataset D = {x𝑖 }𝑁

𝑖=1 of 𝑁 time series (x𝑖 ∈ 𝜒, 𝑖 ∈ [1..𝑁]),
using different modalities. Formally, our goal is to learn a function
𝑓 (𝑞 ∈ 𝜒,D, 𝑘) → 𝑅 ⊂ 𝐷 that, given an input query 𝑞, retrieves
the best 𝑘 matching TS from D. For example, a text based input "A
stock with high volatility and increasing price" should retrieve a TS
with such described statistical properties. In particular, financial TS
have specific statistical properties; price series data (which we focus
on) in particular has non-trivial properties that emerge from the
mechanisms of individual actions and interactions in market micro-
structure. Such statistical properties are often referred to as stylised
facts [6, 35]. These can be challenging to express with existing
query frameworks for TS data. Our goal is to support efficient and
intuitive query modalities to enable users to retrieve TS that match
not just the trend but also financially-relevant properties, such as
price volatility. Most importantly, we tackle the problem of multi-
modal retrieval to empower users to retrieve TS using different
types of input (e.g. text, sketches, images, and more).

In the next section, we describe the general approach we take to
enable multi-modal retrieval. For simplicity, we will consider only
univariate TS, although the approach can be generalized to multi-
variate TS. Likewise, we restrict the retrieval modalities to text-
based search using natural language and TS sketch-based search,
although the same approach we employ here can be applied to
other modalities like images.

4 DATASET CONSTRUCTION
4.1 Synthetic stock price time series dataset
There are no existing datasets that have financial TS paired with
corresponding textual descriptions. This type of dataset is cru-
cial to train a text-based retrieval model that can effectively ex-
tract meaningful information and establish a connection between

these two data types. Therefore, we could generate synthetic TS
and their corresponding textual descriptions by simulating stock
prices [6, 10, 12], for example using deep generative models [11, 42].
Specifically, to generate synthetic stock data we utilize the discrete
mean-reverting TS which is frequently used to model financial mar-
kets [36] as well as biological processes [27] and is described by
the equations below:

𝑟𝑡 = max{0, 𝜅𝑟 + (1 − 𝜅) 𝑟𝑡−1 + 𝑢𝑡 }, 𝑟0 = 𝑟,

where 𝑟 is a mean value of the TS, 𝜅 is a mean-reversion parameter
and 𝑢𝑡 ∼ N(0, 𝜎2) is random noise added to the TS at each time
step 𝑡 . We bring stock directionality and a possibility of a large
shock occurrence to the above generating process by introducing
the concepts of trend and megashocks. Trend 𝑇 is added to 𝑟𝑡 at
each time step 𝑡 to indicate the incline or decline of the stock value.
As in [9], megashocks are intended to represent the exogenous
events that occur infrequently and can have significant impact on
the generating process. Mathematically, megashocks can arrive
at any time 𝑡 with probability of occurrence 𝑝 , and are drawn
from N(0, 𝜎2

𝑠ℎ𝑜𝑐𝑘
) where 𝜎𝑠ℎ𝑜𝑐𝑘 >> 𝜎 . Once the time series are

generated, they are converted into 224x224 images by plotting on a
pre-defined domain. We test three different approaches for auto-
generation of captions.

Unfiltered. We associate the numerical value of each parameter
𝑟 , 𝜅 , 𝜎 , 𝑇 , 𝑝 , 𝜎𝑠ℎ𝑜𝑐𝑘 with a sentiment that describes it. For instance,
close to zero values of trend𝑇 can be described as "neutral, horizon-
tal, non-increasing, flat, stable, unchanged"; larger positive values
of 𝑇 can be described as "upward, growing, positive, increasing,
rising, climbing, advancing"; smaller negative values of 𝑇 can be
described as "declining, falling, sliding, sinking, plummeting, down-
ward". Similarly, for high values of 𝜎 , the stock price TS can be
described as "has strong variability", "has significant variations",
"has aggressive variations", "is unstable", "has high fluctuation", "is
noisy", "is variable"; whereas, for the low values of 𝜎 , the generated
TS can be labeled as "has small volatility", "the stock shows a slight
variability", "the stock has negligible volatility", "has low volatility",
"the price remains stable". For a given image, we sample from a list
of 3-5 semantically similar phrases to generate a specific phrase

ICAIF ’23, November 27–29, 2023, New York, NY Tom Bamford, Andrea Coletta, Elizabeth Fons, Sriram Gopalakrishnan, Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso

for each corresponding ground truth regime; each chosen feature
phrase is then concatenated to give the final ground truth caption.

Filtered. Due to the stochasticity and inter-dependence between
parameters in our synthetic model, auto-generation of captions
based on parameter value in some instances leads to surprising cap-
tioning results relative to expectations based on a simple ‘eye-test’.
We found this particularly prominent in higher volatility settings.
In order to ensure consistency in captioning, we carry out a post-
process filtering step, in which generated TS are re-labelled in trend
and shock probability regimes dependent on mathematically pre-
defined conditions. For the trend, we fit a linear curve to the series
and evaluate the appropriate regime based on the fitted gradient
with respect to a threshold value. For shock regime filtering, we
evaluate the gradient of the generated TS at each point and assign
the shocked regime based on the presence of any gradient values
above a threshold magnitude.

For the historic dataset we extend the filtering process to include
also a volatility post-processing check. In this case, the volatility
regime is assigned based on the average deviation with respect
to the running TS value. This was found to give more consistent
captioning than the traditional volatility definition in finance which
uses the standard deviation of returns.

Filtered+. Given that the number of hand-crafted text descrip-
tions for each configuration of parameters is limited, we augmented
the text descriptions using ChatGPT. We did this by feeding Chat-
GPT a few pre-defined sentences for each feature regime, and asking
it come up with a large number of semantically similar phrases.
These were than saved to text files from which alternative captions
could be drawn. In total this augmented the dataset by around 60-
80 phrases for each feature regime, increasing the total number of
phrases from 36 to over 500. This enables us to correspondingly
increase the size of the TS dataset and reduce the possibility of
overfitting. Due to the synthetic nature of the dataset creation, we
are able to easily scale up to larger dataset sizes, going from 4000
to 16000 samples for training.

It is well known that low liquidity stocks have high volatility,
while high liquidity stocks have low volatility [6]. Therefore, we
can expand the captioning of the dataset generated above to differ-
entiate between "high liquidity" and "low liquidity" stocks based on
their volatility profiles. Note finally that the format of the caption
attached to each image is a comma-separated statement about each
feature of interest.

4.2 Historical price time series dataset
For our text-based retrieval method, we collected historical stock
data from Yahoo Finance using their open-source Python package.
The stock tickers selected were GOOG, AMD, INBX and DAWN
for high volatility, medium volatility and low volatility (latter two)
regimes respectively.We constructed a dataset of TSwith 60 timesteps,
using overlapped sampling with a specified window size. For the
smaller dataset, we use only GOOG, AMD and INBX stocks to give
1500 TS in total, whilst for the larger dataset we include the ad-
ditional DAWN data for the low volatility setting and modify the
window size to double the number of TS to 3000. As with the syn-
thetic dataset, assigned captions are comma-separated statements

about each feature of interest, and TS are converted to 224x224
images through plotting using a fixed format.

For our sketch-based retrieval method, we similarly collected
stock data for GOOG, AMD, and INBX with each trace of being
of length 30 (corresponds to 1 month) and successive traces are
obtained in increments of 5 time-steps. The dataset had 1516 traces
which we found sufficient to show the relative performance costs
between the baseline methods and using an autoencoder (AE).

5 METHODOLOGIES
In this section we introduce our approach for text-based retrieval
and sketch-based retrieval of TS. Figure 2 shows the overall pro-
posed framework. In particular, we propose the use of Deep En-
coder Networks [14] that are trained to learn a multi-modal shared
latent-space. Such latent-space projection is learned to enable the
translation between different modalities, and thus retrieval of TS
from different query modalities (Figure 2 - Training). We can create
a dedicated database, indexed using such latent-space projections,
which we later use to enable user queries (Figure 2 - Database).
By training encoders to project different input modalities to the
same latent space in which the target database TS are stored, we
can support diverse query modes (like text, images, sketches) and
retrieve matching TS (Figure 2 - Retrieval).

5.1 Text-based retrieval
In our text-based retrieval method, our model allows users to
perform TS retrieval via natural language descriptions of desired
properties. We will now describe our approach for this.

5.1.1 Architecture. To support retrieval functionality across dif-
ferent modes of data, we require an approach to learn consistent
representations across modalities. To do this, we implement the
CLIP model proposed by [28] as the deep encoder, and it lever-
ages a set of uni-modal, neural net encoders, pre-trained on large,
generalised datasets. The encoders output variable-sized feature
representations of their input data, which in this work corresponds
to a description of a given TS in the relevant modality. These feature
representations are then input into a single layer projection head,
which transforms the representations to a consistent dimension-
ality, as well as allowing fine-tuning through parameter updates
during training. Taken together, we can then use a contrastive loss
to learn a shared space across the different modalities.

Note that one of the advantages of our model is that for a given
entry in the database, the embeddings output by the encoder re-
mains fixed. This means these embeddings can be saved to a look-up
table after first evaluation. On retrieval, the single query embed-
ding is calculated and cosine similarities calculated very quickly
on-the-fly in a single vectorized operation, which speeds up the
retrieval calculation significantly.

For this text-based retrieval method, we needed to project TS
data and natural language text into the same space. We do this by
encoding TS data as images, and embedding it in the same space as
the text. We will now go over the two encoders that do this.

Multi-Modal Financial Time-Series Retrieval Through Latent Space Projections ICAIF ’23, November 27–29, 2023, New York, NY

Figure 2: General model architecture for both retrieval methods. The Deep Encoders are trained with different modes of data against the loss
to create a shared latent-space. A database containing the TS and the latent-space indexing is created. Finally, the user query is converted
through the trained encoder into the latent space to query the database, and matching TS are retrieved.

Image Encoder. By representing our TS data as images, we can
leverage the capabilities of the pre-trained deep convolutional net-
works (CNN) which have shown remarkable performance on image-
based learning tasks. In this work, we use the readily-available
ResNet model, introduced in 2015 [16]. Its architecture consists of
a series of residual blocks, where each block corresponds to a small
CNN followed by an element-wise addition with the input (thus
learning residual functions), implemented via a skip connection.
This aids the stability of the optimisation process - with residual
functions being easier to learn than unreferenced functions - and
allows a depth of network previously unseen in computer vision.
Multiple variants of ResNet exist dependent on their depth; here
we use the ResNet50 model, which is made up of 50 layers and
strikes a compromise between computational efficiency and model
performance. The model was trained on the ImageNet classification
dataset [30], which consists of 1.28 million training images sepa-
rated into 1000 classes. It takes as input a 224 × 224 pixel image, and
outputs a corresponding 2048-dimensional vector representation.

Text Encoder. For the text encoding, we utilise Sentence-BERT
([29]) which aims to learn semantically meaningful sentence em-
beddings, through its sentence transformer models which map
collections of words (sentences and paragraphs) to individual em-
beddings, using a combination of Siamese networks [8] and triplet
loss [31]. The model is an alternative to the more widely-known
BERT (Bidirectional Encoder Representations from Transformers,
[13]), carrying out tokenization at the sentence-level rather than the
original word/sub-word based approach. Through this architecture,
the model is able to learn text embeddings in which semantically
similar sentences are close together. We use a pre-trained SBERT
model, which has been initialised on an English Wikipedia dataset
of over 2500M words (through the underlying pre-trained BERT
models), and further fine-tuned for meaningful sentence-level em-
beddings through the SNLI [7] and Multi-Genere NLI [39] datasets.

5.1.2 Training. Next we discuss how the encoders were trained.
For a given batch of image, caption pairs and their corresponding
embeddings v and t, we first calculate the scaled cosine similarity
between all image-text pairs

S ≡ S(t, vT) = t · vT
𝜏

,

to evaluate the closeness S of the respective modalities of data
in embedding space. The respective uni-modal similarity for each
element is then calculated

S(t, tT) = t · tT
𝜏

and S(v, vT) = v · vT
𝜏

,

which are averaged over to give the target similarity

Starget = softmax
(
S(t, tT) + S(v, vT)

2𝜏

)
.

The final loss L is calculated averaging over the cross-entropy
between each uni-modal embedding and this target similarity

L =
LCE (S, Starget) + LCE (ST, STtarget)

2
.

which acts to drive the embedded space of each modality to a
consistent, shared space. Note the scaling parameter 𝜏 (temperature)
used in the above calculation; this is used to scale the similarities
such that the sharpness of their predictions can be tuned during
validation. Note also that we hold out 10% of each dataset during
training for validation.

5.2 Sketch-based retrieval
Now we discuss how encoding was done for sketch-based retrieval.
Our sketch-based retrieval enables users to draw a TS, and retrieve
a similar one based on the drawn trend and the properties in it (as
shown in Figure 1.b). While the sketch-based approach can incor-
porate any statistical property 𝜉 (x) in the trend into the search, for
simplicity of discussion we focus only on search that incorporates
price volatility from the sketch, in addition to matching the price
trend. We use the standard deviation of prices as the measure of
volatility.We incorporate volatility information into the latent space
by computing an additional TS associated to the desired property;
we compute the volatility in a fixed window of the input TS, and
slide the window across the original TS to generate a new “volatility
TS". By doing this we can use the same encoding architecture used
on the original TS. This idea of displaying information in derived
TS is seen in analytics for finance with properties like moving aver-
ages, and Relative Strength Index (RSI). We apply use it to encode
and store such information. In this way we can preserve it explicitly
into the latent space for informing subsequent database retrieval.

ICAIF ’23, November 27–29, 2023, New York, NY Tom Bamford, Andrea Coletta, Elizabeth Fons, Sriram Gopalakrishnan, Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso

This gives us a general way of storing other such properties(𝜉 (x))
that can be computed from the TS.

5.2.1 Training. All input historical TS x are normalized to be
between [0, 1] using a Min-max scaler. Additionally, given a TS
x, we define its price volatility in terms of a new TS 𝒗 ∈ [0, 1] [𝐿]
where each data point 𝑗 ∈ 𝒗𝑖 is the volatility of the neighboring
2 ∗𝑚 points (we use𝑚 = 4): 𝒗𝑖 = 𝜎 (x𝑖−𝑚:𝑚+𝑖) We will refer to the
price trend(original) TS as simply “TS”, and the price volatility TS
computed from it as volatility-TS.

For searching based on the trend and the volatility, we train two
identical (and separate) fully-connected auto-encoders for the TS
and volatility-TS. To incorporate the trend information, we train a
classic fully-connected autoencoder(AE) 𝐸𝑡 (x) that encodes the TS
x into the latent-space with the following reconstruction loss:

min
𝑖∈D

|x𝑖 − x̄𝑖 |22

where x̄ is the reconstructed TS. To include volatility information
into the search, we train another deep AE 𝐸𝑣 (𝒗) to encode 𝒗 into
the latent-space, with a similar reconstruction loss:

min
𝑖∈D

|𝒗𝑖 − 𝒗𝑖 |22

where 𝒗 is the reconstructed volatility TS.
The overall encoder 𝐸 for the sketch-based retrieval simply con-

catenates and normalizes the embeddings from 𝐸𝑡 (x) and 𝐸𝑣 (𝒗).
With respect to the network structure of the AE, the input size is
30, and there are 3 hidden layers in the encoder of size 512, 256,
and 16; the last layer is the latent space of size 16. We normalize
the latent space before decoding in the AE using the same structure
as the encoder albeit in reverse. All layers include trainable bias
weights, and use ReLU (Rectified Linear Unit) as the non-linearity
function, except for the last layer of the decoder which does not
include ReLU computation.

5.2.2 Database. In the database construction we compute the
AE output (latent space) for each TS x𝑖 ∈ D. In particular, for
each TS we can compute its embedding 𝑒 , being the concatenation
of 𝐸𝑡 (x𝑖) and 𝐸𝑣 (𝒗𝑖), and we store it into a database structure.
The database maintains the embedding and original TS < 𝒆, x > to
provide a subsequent efficient search. In particular, we use Facebook
AI Similarity Search (FAISS) [20], a library for very fast searching
over vector spaces, for indexing and lookup.

5.2.3 Retrieval. To retrieve TS using trend and volatility infor-
mation in the input TS, we use the AE to generate a query vector to
search the FAISS index. Given a user sketch that contains a trend x,
we compute the volatility TS 𝒗, and then compute the embedding 𝒆
for the query using the encoders. We can then use this embedding
to efficiently retrieve a subset of TS x𝑖 ∈ Dwhose cosine similarities
are the highest in the database.

In the experimental section we show how these encoders can
preserve information for both trend and volatility. We also show
how this approach is much faster than existing baseline approaches
for comparable TS retrieval using the same modality (TS sketches).
Most importantly, while existing consumer TS databases require
the user to specify a rigid definition for matching properties such as
a trend approximation (e.g., second-degree polynomial) we found
that our AEs naturally approximate and match any trend in the

input sketch TS. This provides not only a faster retrieval mode, but
also more flexibility to the end user.

6 EMPIRICAL ANALYSIS
6.1 Evaluation Measures
6.1.1 Text-Based Retrieval Measures. We use three metrics to de-
termine performance, with evaluation carried out on the validation
set of unseen TS images for both in-sample (used during training)
and out-of-sample queries. Each query is a single statement about
a particular feature, with a roughly equal number of queries for
each regime. We evaluate retrieval accuracy using Rank@9. This is
recorded for both in-sample and out-of-sample settings. In addition,
we define a diversity metric, which measures the number of distinct
TS images returned across all queries relative to the total number
of images returned. Thus a higher measure of diversity implies a
greater fraction of images in the database are able to be retrieved
through prompt variation. For this metric we record the aggregated
value across both querying settings.

6.1.2 Sketch Based Retrieval Measures. To evaluate the sketch-
based retrieval method, we automatically generate TS queries (as
stand-ins for sketch TS) by using 302 TS queries from the test-set
(not given during training to the AE). To these, we also added noise
and a circular shift to the right by 5 steps to generate TS that are less
similar to training data, and query for best matches. For evaluating
the retrieval performance of each method, we consider measures
that match the query sketch with the returned TS. The measures
we compute to compare the performance between baselines and
AE are as follows: (1) MAPE: Is the Mean Absolute Percentage
Error(MAPE) between the trend and retrieved TS. This computes
the average ratio between point-wise error and the true value. Note
that we display it as a ratio, and not as a percentage. For each
method, we average this value over all the test queries (all top-k
results returned per query). (2) CORR: Is the Pearson’s correlation
coefficient which is between [−1, 1], and measured between the
query TS and retrieved TS. We average the values over all queries.
(3) Computational Time (mean and standard deviation): This is
computed over all queries. This time includes the time taken to
compute the embedding of each query if the method requires an
embedding.

6.2 Baselines
6.2.1 Text-Based Retrieval Baselines. Given the limited number of
previous works in this area, no benchmarks have yet been estab-
lished. A key contribution of this work is therefore to provide an
appropriate benchmark for comparison in future studies. Given the
lack of such approaches here, we implement two simple baselines
which leverage traditional NLP approaches for calculating embed-
dings with text.
(1) Neural Net Classifier (Classifier): Here we re-formulate the
retrieval problem as a classification problem. We first compute
100-dimensional embeddings for all the words in our vocabulary,
through the use of a traditional NLP encoding algorithm -Word2Vec
[26] - which is pre-trained on the Text8 dataset of 100 million bytes
of plain text taken from Wikipedia. Ground truth image captions
are then converted into numeric vector representations through

Multi-Modal Financial Time-Series Retrieval Through Latent Space Projections ICAIF ’23, November 27–29, 2023, New York, NY

Method Rank@9
In-sample

Rank@9
Out-sample

Diversity

Classifier 0.59 0.43 0.40
Word2Vec-UMAP 0.37 0.35 0.05
Ours (no filtering) 0.65 0.51 0.18
Ours (filtered) 0.92 0.71 0.50
Ours (filtered+) 0.96 0.89 0.30

Table 1: Retrieval results on the synthetic dataset for the follow-
ing methods: neural classifier, outputting retrieval probabilities for
all TS in a database given a text embedding; contrastive learning
with traditional representation learning approaches (UMAP and
Word2Vec); Deep Encoding Networks with three filtering variants.
Filtered+ denotes a post-process filtering step alongside GPT aug-
mentation of captions.

averaging over the respective word embeddings, from which cosine
similarities are calculated for each text-based query embedding in
the training set. Given an input query vector, the network outputs
the predicted cosine similarities for each sample in the database. We
optimise the network with respect to the MSE loss during training.
The output similarities can then be sorted into descending order
and retrieval carried out. Since the network architecture is fixed
such that each output node corresponds to a specific sample in the
database only in-sample retrieval is applicable; we therefore carry
out both training and retrieval on the validation set.
(2) Word2Vec-UMAP: As an alternative baseline, we replace our
SOTA deep learning encoders with traditional approaches to repre-
sentation learning. The respective uni-modal encoders are replaced
with the following: Text encoder→Word2Vec and Image encoder
→ UMAP.
As with our encoder-based model, we align the embedding using
the contrastive loss and a single layer MLP projection head for each
modality. The final aligned space has a dimensionality of 64, with
the text and image embeddings being 100 and 2048-dimensional
respectively.

6.2.2 Sketch Based Retrieval Baselines. We evaluate our sketch-
based retrieval against 3 baseline methods which are as follows :
(1) Brute Force Search (BF): this method takes a query TS, and
compares it against all entries in the dataset. It chooses the top-k
best matches by Euclidean distance between the query and each
TS of the database; this is the L2-norm of the error. We ignore the
volatility information for this baseline.
(2) Brute Force Search over TS and Volatility-TS (BF_avg): In this
method, we repeat the brute force search, except we compute
Euclidean distance of the error for both the original TS and the
volatility-TS, and average the distances. This averaged distance is
used to find the top-k closest matches from the database.
(3) UMAP: We compute UMAP embeddings for TS and Volatility-TS
for the dataset and store it in the FAISS index for lookup by con-
catenating and normalizing the vectors of both embeddings. The
dimensionality of the embedding space matches that of the AE (16).
After indexing, each query is converted into the umap embedding
of it’s TS and volatility-TS and that is used to search in the FAISS
index. In this work, all TS are of the same length, so we do not
use dynamic time warping (DTW), as it reduces to just euclidean
distance for same-length TS, which is what the BF methods use.

Method Dataset
Size

Rank@9
In-sample

Rank@9
Out-sample

Unfiltered 1500 0.56 0.59
Unfiltered-Retrained 1500 0.69 0.60
Filtered 1500 0.59 0.51
Filtered-Retrained 1500 0.48 0.48
Unfiltered-Retrained 3000 0.75 0.62
Filtered-Retrained 3000 0.55 0.51

Table 2: Retrieval results on the historic dataset with our Deep
Encoding Networks. Note Filtered/Unfiltered here refers to GPT-
augmented filtering of trend, volatility and shock probability.

6.3 Results
We present results of our two query modalities (natural language,
and sketch TS) and compare them with results from baselines.

6.3.1 Text Based Retrieval Results.

Synthetic Data. The retrieval results on the synthetic dataset are
shown in Table 1. We evaluate three variations of our model against
the text-based retrieval baselines (Classifier, Word2Vec-UMAP); all
three variations of our Deep Encoding Network TS retrieval ap-
proach outperform the baselines. In addition, both baseline models
are considerably less flexible than our proposedmethod. For the clas-
sifier network, this lack of flexibility is due to the requirement for a
fixed network architecture, with each output node corresponding to
a single entry in the retrieval database. As such, any new entries in
the database can only be incorporated through complete re-training
with the augmented data. On the other hand, the Word2Vec-UMAP
baseline is limited not by any structural constraints but rather due
to the computational expense of the UMAP approach to representa-
tion learning in a very high-dimensional space. As such, we could
only train the embedding on 4000 images, with each flattened im-
age being represented by a 50,176-dimensional vector. We varied
each of the nearest neighbours, minimum distance and number
of components parameters of the UMAP model, but all had little
impact on final performance.

Historical Data. Table 2 shows the results for the historical dataset.
These are evaluated for both the pre-trained model from the syn-
thetic data study, and when re-trained on the new dataset. Each
stock is associated with a volatility regime determined by the liq-
uidity [6]. For comparison, an alternative dataset is constructed
in which volatility ground truth is determined by the filtering ap-
proach discussed in section 4, rather than liquidity. We find that
carrying out volatility filtering on the dataset prior to evaluation
is not essential, and often hinders accuracy, even when evaluating
on the original model trained on the synthetic dataset. Whilst the
performance is competitive for the pre-trained model, re-training
on the new data is found to yield better results, particularly as
the dataset size is increased. Given the performance improvement
when increasing the dataset size, we see no reason to think the
model will not perform comparably on historic stock data to that
seen in the synthetic case as the dataset is scaled.

ICAIF ’23, November 27–29, 2023, New York, NY Tom Bamford, Andrea Coletta, Elizabeth Fons, Sriram Gopalakrishnan, Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso

noise,shift,k measure BF BF_avg UMAP AE

TS-(MAPE,CORR) (8.41E-02, 9.83E-01) (8.41E-02, 9.83E-01) (2.28E-01, 8.43E-01) (9.98E-02, 9.71E-01)
0.05, 0, 1 Vol-(MAPE,CORR) (2.20E-01, 8.02E-01) (2.20E-01, 8.02E-01) (2.17E-01, 7.34E-01) (2.09E-01, 8.04E-01)

Time-(mean,std-dev) (4.27E-02, 1.48E-02) (5.08E-02, 1.61E-02) (7.71E+00, 6.60E-01) (1.90E-02, 8.16E-03)
TS-(MAPE,CORR) (2.11E-01, 8.96E-01) (2.17E-01, 8.95E-01) (3.61E-01, 7.49E-01) (2.76E-01, 8.24E-01)

0.05, 5, 1 Vol-(MAPE,CORR) (3.77E-01, 5.73E-01) (3.37E-01, 5.97E-01) (3.30E-01, 5.30E-01) (3.20E-01, 5.44E-01)
Time-(mean,std-dev) (1.97E-01, 1.33E-02) (2.32E-01, 1.35E-02) (7.82E+00, 8.29E-01) (1.87E-02, 7.66E-03)
TS-(MAPE,CORR) (1.94E-01, 8.92E-01) (1.99E-01, 8.86E-01) (3.07E-01, 7.46E-01) (2.33E-01, 8.33E-01)

0.05, 0, 3 Vol-(MAPE,CORR) (3.57E-01, 5.37E-01) (3.00E-01, 6.00E-01) (2.64E-01, 6.24E-01) (2.66E-01, 6.25E-01)
Time-(mean,std-dev) (1.97E-01, 1.38E-02) (2.34E-01, 1.55E-02) (7.64E+00, 1.13E+00) (1.81E-02, 8.52E-03)
TS-(MAPE,CORR) (2.60E-01, 8.53E-01) (2.66E-01, 8.50E-01) (3.79E-01, 7.18E-01) (3.04E-01, 7.93E-01)

0.05, 5, 3 Vol-(MAPE,CORR) (4.21E-01, 4.64E-01) (3.78E-01, 5.00E-01) (3.36E-01, 5.37E-01) (3.41E-01, 5.16E-01)
Time-(mean,std-dev) (1.87E-01, 8.90E-03) (2.22E-01, 9.51E-03) (7.66E+00, 1.19E+00) (1.86E-02, 8.80E-03)

Table 3: Average of a set of TS matching measures over test-set queries with Gaussian noise (N(𝜇 = 0, 𝜎 = 0.05)) and circular shifts for the
baseline methods (BF, BF_avg,UMAP) and AE method.

6.3.2 Sketch Based Retrieval Results. With respect to our sketch-
based retrieval approach, we present the results of the baseline
methods (BF,BF-avg, UMAP) and the Auto-Encoder (AE) method
in Table 3. For the measure MAPE, lower is better, while for CORR
(correlation) higher is better. The first column describes the test
scenario defined by the noise added, the circular-shift steps (shift)
which is the number of steps by which the TS is rotated, and the
number of best matches returned (k).

From the data, we can see that the best fit in terms of match-
ing the TS-trend data (“TS-(MAPE,CORR)” measures) comes from
the BF method, which is no surprise since it painstakingly com-
putes the Euclidean distance between query TS and every TS in
the database before taking the least distant (least error) one. How-
ever, this distance between TS does not translate to matching the
volatility information, and this is seen in the results; the other meth-
ods which consider volatility during search do better in matching
the volatility-TS measures (“Vol-(MAPE,CORR)”). Our AE typically
does better than the baseline methods in matching the volatility
TS (for MAPE and CORR measures), and when it is not the best,
it is very close to the best value by UMAP. Importantly, the AE
method takes significantly less time than all the other methods. The
UMAP process takes the most time, despite UMAP and AE both
using FAISS with the same sized latent space. This time difference
between UMAP and AE is due to the UMAP encoding time; the time
to project a new query into the same latent space as the database.

7 CONCLUSIONS
In summary, our paper presented a framework for multi-modal
storage and retrieval of financial TS data such that pertinent in-
formation for finance is preserved. In particular, we developed
user-friendly query interfaces that accept natural language text
or TS sketches for retrieval. Our methods use deep encoder net-
works to map the multi-modal data into a lower-dimensional latent
space, and preserve essential TS properties. Experimental results
support the approach’s computational efficiency and retrieval accu-
racy. Thus we demonstrated the utility of latent-space projections
for retrieval of financial time-series data while supporting more
intuitive query modalities.

DISCLAIMER
This paper was prepared for informational purposes by the Ar-
tificial Intelligence Research group of JPMorgan Chase & Coȧnd
its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase
or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of par-
ticipating in any transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

REFERENCES
[1] Rakesh Agrawal, Giuseppe Psaila, Edward L. Wimmers, and Mohamed Zaït. 1995.

Querying Shapes of Histories. In Proceedings of the 21th International Conference
on Very Large Data Bases (VLDB ’95). 502–514.

[2] Mohammad M Al-Khaldi, Joel T Johnson, Andrew J O’Brien, Anna Balenzano,
and Francesco Mattia. 2019. Time-series retrieval of soil moisture using CYGNSS.
IEEE Transactions on Geoscience and Remote Sensing 57, 7 (2019), 4322–4331.

[3] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. 2008. The TS-tree:
efficient time series search and retrieval. In Proceedings of the 11th international
conference on Extending database technology: Advances in database technology.

[4] Fazl Barez, Paul Bilokon, and Ruijie Xiong. 2023. Benchmarking Specialized
Databases for High-frequency Data. arXiv preprint arXiv:2301.12561 (2023).

[5] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, and Steve Zhang. 2010.
Optimizing data analysis with a semi-structured time series database. InWorkshop
on Managing Systems via Log Analysis and Machine Learning Techniques.

[6] Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. 2018.
Trades, quotes and prices: financial markets under the microscope. Cambridge
University Press.

[7] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. 2015. A large annotated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Lisbon, Portugal, 632–642.
https://doi.org/10.18653/v1/D15-1075

[8] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature Verification Using a "Siamese" Time Delay Neural Network. In
NeurIPS (NIPS’93). 737–744.

[9] David Byrd. 2019. Explaining Agent-Based Financial Market Simulation.
arXiv:1909.11650 [cs.MA]

[10] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. 2020. ABIDES: To-
wards high-fidelity multi-agent market simulation. In Proceedings of the 2020
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. 11–22.

https://doi.org/10.18653/v1/D15-1075
https://arxiv.org/abs/1909.11650

Multi-Modal Financial Time-Series Retrieval Through Latent Space Projections ICAIF ’23, November 27–29, 2023, New York, NY

[11] Andrea Coletta, Sriram Gopalakrishan, Daniel Borrajo, and Svitlana Vyetrenko.
2023. On the Constrained Time-Series Generation Problem. arXiv preprint
arXiv:2307.01717 (2023).

[12] Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, and Tucker Balch. 2022.
Learning to simulate realistic limit order book markets from data as a World
Agent. In Proceedings of the Third ACM International Conference on AI in Finance.
428–436.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning.
[15] Yuanzhe Hao, Xiongpai Qin, Yueguo Chen, Yaru Li, Xiaoguang Sun, Yu Tao, Xiao

Zhang, and Xiaoyong Du. 2021. Ts-benchmark: A benchmark for time series
databases. In 2021 IEEE ICDE. IEEE, 588–599.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[17] Shima Imani, Sara Alaee, and Eamonn J. Keogh. 2019. Putting the Human in the
Time Series Analytics Loop. Companion Proceedings of The 2019 World Wide Web
Conference (2019). https://api.semanticscholar.org/CorpusID:153314304

[18] Timescale Inc. 2022. Time-series data simplified | Timescale. https://www.
timescale.com/

[19] InfluxData. 2022. influxdb: open source time series database. https://www.
influxdata.com/products/influxdb-overview/

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[21] EamonnKeogh, Stefano Lonardi, and Bill’Yuan-chi’ Chiu. 2002. Finding surprising
patterns in a time series database in linear time and space. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. 550–556.

[22] KX. 2022. Developing with kdb+ and the q language - Kdb+ and q documentation.
https://code.kx.com/q/

[23] Jia Liu, Yong Xue, Kaijun Ren, Junqiang Song, Christopher Windmill, and Patrick
Merritt. 2019. High-performance time-series quantitative retrieval from satel-
lite images on a GPU cluster. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 12, 8 (2019), 2810–2821.

[24] Miro Mannino and Azza Abouzied. 2018. Expressive time series querying with
hand-drawn scale-free sketches. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–13.

[25] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[26] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In International Conference
on Learning Representations.

[27] Bernt Oksendal. 1998. Stochastic Differential Equations, , An Introduction with
Applications. Springer.

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning, Vol. 139. PMLR, 8748–8763.

[29] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. arXiv:1908.10084 [cs.CL]

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
arXiv:1409.0575 [cs.CV]

[31] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
unified embedding for face recognition and clustering. 2015 IEEE CVPR (2015),
815–823.

[32] Bonil Shah, PM Jat, and Kalyan Sashidhar. 2022. Performance Study of Time
Series Databases. arXiv preprint arXiv:2208.13982 (2022).

[33] Dongjin Song, Ning Xia, Wei Cheng, Haifeng Chen, and Dacheng Tao. 2018.
Deep r-th root of rank supervised joint binary embedding for multivariate time
series retrieval. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2229–2238.

[34] Ivona Tautkute, Tomasz Trzciński, Aleksander P Skorupa, Łukasz Brocki, and
Krzysztof Marasek. 2019. Deepstyle: Multimodal search engine for fashion and
interior design. IEEE Access 7 (2019), 84613–84628.

[35] Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Der-
vovic, Manuela Veloso, and Tucker Balch. 2020. Get real: Realism metrics for
robust limit order book market simulations. In Proceedings of the First ACM
International Conference on AI in Finance. 1–8.

[36] Elaine Wah, Mason Wright, and Michael P. Wellman. 2017. Welfare Effects of
Market Making in Continuous Double Auctions. (2017).

[37] WeiWang, Xiaoyan Yang, Beng Chin Ooi, Dongxiang Zhang, and Yueting Zhuang.
2016. Effective deep learning-based multi-modal retrieval. The VLDB Journal 25
(2016), 79–101.

[38] Martin Wattenberg. 2001. Sketching a graph to query a time-series database. In
CHI’01 Extended Abstracts on Human factors in Computing Systems. 381–382.

[39] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
1112–1122. https://doi.org/10.18653/v1/N18-1101

[40] Philip Winston. 2022. Time-Series Databases and Amazon Timestream. IEEE
Software 39, 03 (2022), 126–128.

[41] Yang Yang, Qiang Cao, and Hong Jiang. 2019. EdgeDB: An efficient time-series
database for edge computing. IEEE Access 7 (2019), 142295–142307.

[42] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. 2019. Time-series
generative adversarial networks. Advances in neural information processing
systems 32 (2019).

[43] Dixian Zhu, Dongjin Song, Yuncong Chen, Cristian Lumezanu, Wei Cheng, Bo
Zong, Jingchao Ni, Takehiko Mizoguchi, Tianbao Yang, and Haifeng Chen. 2020.
Deep unsupervised binary coding networks for multivariate time series retrieval.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1403–1411.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1512.03385
https://api.semanticscholar.org/CorpusID:153314304
https://www.timescale.com/
https://www.timescale.com/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://code.kx.com/q/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1409.0575
https://doi.org/10.18653/v1/N18-1101

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Dataset Construction
	4.1 Synthetic stock price time series dataset
	4.2 Historical price time series dataset

	5 Methodologies
	5.1 Text-based retrieval
	5.2 Sketch-based retrieval

	6 Empirical Analysis
	6.1 Evaluation Measures
	6.2 Baselines
	6.3 Results

	7 Conclusions
	References

