
211 

Frappé: An Ultra Lightweight Mobile UI Framework for Rapid 
API-based Prototyping and Environmental Deployment 

ADIL RAHMAN, University of Virginia, USA 

SEONGKOOK HEO, University of Virginia, USA 

��������������

������������

����������
����������

����������
���������
�������
�

	����������
~10MB+


�������


	��������

�

<10MB

������������
���������


	��������

�

~100KB+

��������
���

���������
�

��������������������


�����

�������


���������������
�����
����

���������
~<1KB/Request

�������
Visual Delivery

�����������

���

���������
�������

����������������

���

���������

��������������

Fig. 1. QR codes are typically limited in their interactive capabilities and can only redirect users to other 
sources. Frappé augments the interactive capabilities of QR codes, allowing them to directly serve ultra 
lightweight and functional mobile UIs. 

QR codes have been used as an inexpensive means to connect users to digital platforms such as websites and 
mobile applications. However, despite their ubiquity, QR codes are limited in purpose and can only redirect 
users to the URL contained within it, thereby making their use heavily network dependent, which can be 
unsuitable for use in ephemeral scenarios and areas with limited connectivity. In this paper, we introduce 
Frappé, a framework capable of deploying ultra lightweight UIs to mobile devices directly through QR codes, 
without requiring any network connectivity. This is achieved by decomposing the UI into metadata and 
storing it inside the QR code, while offloading the UI functionality to API calls. We also introduce enFrappé, a 
WYSIWYG tool for building Frappé UIs. We demonstrate the lightweight nature of our framework through a 
technical evaluation, whereas the usability of our UI builder tool is demonstrated through a user study. 
CCS Concepts: • Human-centered computing → User interface toolkits. 
Additional Key Words and Phrases: Lightweight Mobile UI Framework; Rapid Application Prototyping; Mobile 
User Interface; Functional Prototyping; Mobile UI Builder 
ACM Reference Format: 
Adil Rahman and Seongkook Heo. 2023. Frappé: An Ultra Lightweight Mobile UI Framework for Rapid API-
based Prototyping and Environmental Deployment. Proc. ACM Hum.-Comput. Interact. 7, MHCI, Article 211 
(September 2023), 23 pages. https://doi.org/10.1145/3604258 

1 INTRODUCTION 

With the proliferation of smart devices, almost everything we interact with has adopted a digital 
presence. There is a mobile app for everything we interact with, augmenting these interactions with 

Authors’ addresses: Adil Rahman, University of Virginia, Virginia, USA, adil@virginia.edu; Seongkook Heo, University of 
Virginia, Virginia, USA, seongkook@virginia.edu. 

This work is licensed under a Creative Commons Attribution International 4.0 License. 

© 2023 Copyright held by the owner/author(s). 
2573-0142/2023/9-ART211 
https://doi.org/10.1145/3604258 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 

https://doi.org/10.1145/3604258
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3604258
mailto:seongkook@virginia.edu
mailto:adil@virginia.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604258&domain=pdf&date_stamp=2023-09-13


211:2 Adil Rahman and Seongkook Heo 

a unique digital experience. However, such experiences come with the overhead of downloading and 
installing the apps, often creating a usability barrier [9, 47]. Web apps have been the most obvious 
choice for addressing this usability barrier since they can be loaded directly on a browser without 
requiring any installation [12, 47]. Moreover, Google and Apple recently introduced their own mini-
app frameworks, Instant Play [17] and App Clips [24], respectively, which allow developers to create 
a minified version of their full-scale applications that can be launched directly on smartphones. 
There also exist services that allow users to stream applications directly over the cloud to their 
personal devices [39, 40, 46], or download app slices based on their requirement [9]. However, 
while all of these methods allow users to access apps without the overhead of downloading and 
installing them, they are heavily dependent on the network connectivity for loading the apps which 
may limit their ubiquity. Furthermore, these techniques might pose a usability barrier if there is 
limited network connectivity, or if the app or service is ephemeral in nature, e.g., one-time use. For 
instance, if one is traveling to remote areas where there might be limited network connectivity, 
such as national parks or other countries, accessing these apps can be challenging. Thus, there 
needs to be an interaction medium to support such ephemeral use cases in areas with limited 
network connectivity. 

QR codes have been used as an inexpensive means for connecting users to digital platforms [3, 27]. 
However, QR codes have been typically associated with a one-dimensional usage – storing URLs 
to redirect users to other sources such as websites and mobile apps [3] – owing to their limited 
storage capacity. However, despite this, QR codes have several positive attributes – they do not 
require network connectivity to be read; they are easily accessible; contactless; cheap to produce; 
and ubiquitous. Furthermore, another important characteristic of QR codes is its locality – the 
placement of QR code can be directly associated with its use case. For example, if there is a QR 
code on a smart light, it can be inferred that the QR code contains the URL for the associated smart 
light controller app. However, despite these attributes, typical QR code interactions today are static 
and rely heavily on network connectivity. 

In this paper, we present Frappé 1 , a framework for deploying ultra lightweight functional mobile 
user interfaces, frApps (short for Frappé Apps), which can be delivered directly through QR codes 
without requiring any network connectivity (Figure 1). Frappé achieves this by decomposing the 
UI into its essential metadata and corresponding API linkages and then encoding them within a 
QR code, while offloading the UI functionalities to API calls. We developed a Frappé reconstructor 
Android application, reFrappé, capable of reconstructing the UI from the metadata ad-hoc on the 
user’s device when the user scans any QR code encoded with a frApp. Finally, we integrated our 
Frappé framework within a WYSIWYG UI builder, enFrappé, to streamline the process of creating 
frApps. Using enFrappé, developers can design frApps through simple drag-and-drop gestures and 
then deploy them in the form of QR codes. 

We envision Frappé as a building block for augmenting the interactive capabilities of QR codes. 
While the user interfaces designed using our Frappé framework are not meant to be a replacement 
for full-featured native apps, we believe its quick and network-free deployment makes it ideal 
for ephemeral usage scenarios in areas with sparse network connectivity, such as guide apps for 
national parks and information systems at airports. Beyond that, Frappé can also serve as a quick 
gateway to enhance the way we interact with everyday objects by allowing easy integration of 
software with physical objects. For example, Frappé can be used to create lightweight controllers 
for smart devices, allowing users to control them directly without installing any device-specific 
application. 

1Frappé = Framework for Rapid API-based Prototyping and Environmental Deployment 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:3 

We conducted a technical evaluation of our Frappé framework where we measured the size, 
network usage, and load times of sample frApps against a benchmark of identical web and native 
applications. Our findings indicate that frApps exhibit a notable performance advantage when 
compared to its web and native app counterparts. Furthermore, we conducted a user study with 
16 participants of various app designing backgrounds to evaluate the usability and utility of our 
framework. Both expert and novice participants found the framework easy to use and reported 
high learnability of the system. Participants also reported a high utility value of our framework 
and suggested several real-life use-case scenarios for Frappé. 
We summarize our contribution as follows: 
(1) We present Frappé, a framework for deploying ultra lightweight UIs directly to mobile devices 

through QR codes, without requiring any network connectivity. 
(2) We also introduce enFrappé, a WYSIWYG UI builder for developing frApps. 
(3) We perform a technical evaluation to measure the performance of frApps while keeping 

identical web and native app counterparts as benchmark. Furthermore, we evaluate the 
usability and utility of our framework in allowing developers to design, deploy, and use these 
lightweight functional mobile UIs. 

2 RELATED WORK 

Our research draws inspiration from the related works in three categories - (1) on-demand applica-
tion delivery techniques, (2) interactive uses of visual markers, and (3) rapid application prototyping 
techniques. 

2.1 On-Demand Application Delivery 

Prior works from both industry and academia have explored on-demand delivery of mobile appli-
cations to allow users to quickly use various apps without downloading and installing them on 
their devices. Google’s Play Instant [17] and Apple’s App Clips [24] allow developers to create a 
smaller version of their application with limited features which can be loaded on the end-user’s 
device almost instantly. These instant apps offer a rich UI and a native-app-like experience, but 
have limited access to device resources and cannot perform background activities [9, 18, 25, 36]. 
Moreover, they require significant effort on the developer’s side to refactor the preexisting full-sized 
app into its smaller counterpart [9]. 

Full-scale native Android applications usually feature multiple functionalities. However, during a 
single use, an end-user may not need all the functionalities that the application provides. Based on 
this premise, Bhardwaj et al. [9] proposed the use of app slices to deliver lightweight mobile apps to 
end-users. They implemented AppSlicer, a script to automatically fragments full-scale native apps 
into several lightweight slices containing individual app functionality, without any development 
overhead. These slices can be dynamically served over a content delivery network (CDN) based 
on the user’s needs, thus preventing the need for downloading the entire application. However, 
loading these app slices dynamically requires a fast connection to the CDN for an uninterrupted 
user experience. 

Standard user-centric Internet of Things (IoT) devices require users to have device-specific mobile 
applications. This approach becomes unscalable as the number of such devices increase [47]. IoT 
ecosystems such as Google Home [16], Apple Homekit [23], Alexa Smart Home [1] and Samsung 
SmartThings [43] attempt to solve this problem by grouping controls for compatible devices under 
a single unified application. Thus, instead of having several individual apps for each device, a single 
app can dynamically load the control for all the compatible smart devices that are connected to 
the ecosystem. However, this integration is mostly limited to smart devices in home and office 
environments [47, 48]. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:4 Adil Rahman and Seongkook Heo 

The Web of Things (WoT) uses and extends pre-existing web standards defined by the World 
Wide Web Consortium (W3C) to promote interoperability and enable communication between 
smart things and web applications [19, 20, 49]. Furthermore, Progressive Web Apps (PWAs) allow 
for a rich, native-app-like experience and can run directly on web browsers without the download 
and installation overheads [12]. Zachariah et al. proposed an architecture for enabling BLE-enabled 
smart devices to advertise their controls through web apps [47]. They implemented Summon, an 
Android app that scans for available BLE-enabled smart devices and integrates their web apps 
within the native application environment, allowing for both persistent and ephemeral use. Web 
apps have also been combined with augmented reality (AR) to provide a more intuitive control for 
smart devices [6, 48]. Such techniques involve localizing the smart devices in the environment, and 
then overlaying their corresponding web app over a floating WebView component inside the AR 
environment. Web apps are ideal for ephemeral use cases where the user does not need to download 
and install anything permanently, but they are limited by their ability to access device resources 
and background services. While service workers in PWAs solve this problem by allowing rich 
interactions such as background script execution and push notifications, they introduce new attack 
vectors which could allow for resource abuse [33]. Moreover, the iOS WebKit does not allow access 
to a majority of device hardware components, including the Web Bluetooth and NFC API [26], thus 
restricting the ubiquity of such approaches. 
Cloud-based application virtualization services such as Numecent Cloudpager [40], Microsoft 

Azure Virtual Desktop [39], and VMware Horizon [46] allow users to offload desktop applications 
on the cloud and stream them directly to their devices. However, these services are expensive in 
terms of cost, network, and power usage, and they do not have access to on-device sensors and 
background services which significantly reduces their scope of use [9]. AppFlux [7] and Ephemeral 
Apps [8] improves the loading time for streaming native Android apps, allowing the end-users to 
try out the app before installing it. 
All the approaches for on-demand application delivery discussed above are heavily reliant on 

internet connectivity to load the application. IoT ecosystems and app streaming services require 
the user’s smartphone to be always online for proper operation, whereas instant apps and app 
slices are typically limited to a few MBs, which is further reduced in the case of web apps (~100KBs). 
While these solutions significantly reduce the network connectivity overheads while supporting a 
rich set of features, the network demands may still be too high for ephemeral usage scenarios and 
for areas with limited network connectivity, which can act as a barrier to app acceptance, or even 
worse, prevent access to essential services. Frappé can generate UIs weighing less than a kilobyte 
which can be encoded entirely into a QR code. Unlike the previous works, Frappé does not require 
an internet connection to load the application’s UI, and will require internet only if it is needed 
by the app’s functionality. Moreover, since an uncompressed web request header typically weighs 
around 700-800 bytes [15], Frappé’s network usage, if any, will be significantly less than loading 
entire web apps. 

2.2 Interactive Uses of Visual Markers 
QR codes can encode a relatively high capacity of data (up to 2953 bytes with low error correction 
level), are cheap and easy to produce, and can be easily read by modern smartphones [27]. They 
are ubiquitously used today to serve as a portal to digital media [3]. Organizations advertise 
their websites by embedding their hyperlinks in QR codes. During the COVID-19 pandemic, 
several restaurants digitized their menus through QR codes to enable contactless menu browsing. 
Advancements in mobile deep linking allow the use of uniform resource identifiers (URIs) to link 
directly to specific parts of a mobile application. These deep links have been integrated within QR 
codes to enable mobile payment systems and to connect smart devices with their native apps. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:5 

Visual markers have also been used for more interactive purposes, such as enabling mobile 
devices to be used as input devices and storing and transmitting user interfaces. As the visual 
markers’ shape seen by a camera reflects the relative position and orientation of the camera, 
researchers demonstrated the use of such markers to allow users to control virtual content on 
a digital display [4, 5] and physical paper [38] using a mobile device. The visual markers’ high 
information capacity also enabled storing various types of user interface controls, such as menus, 
buttons, and sliders, so that the users can access and manipulate them on their mobile devices 
without using Bluetooth or mobile network [42]. 

Researchers and developers have also shown that the QR code can store a simple working program 
for the users to launch the program on their mobile device without using the internet to download 
it. [11, 37, 44] For example, a Microsoft Windows executable for the traditional snake game was 
encoded entirely into a QR code, allowing users to launch the game directly upon scanning it [37]. 
This approach was, however, exclusive to this instance and does not offer a generalized framework 
for creating and deploying other kinds of apps using a QR code. On the other hand, Rewtro [11] 
and QRGame [44] featured a generalized game development framework that can allow users to 
create and encode their own games entirely in a QR code for an internet-free deployment. These 
techniques are able to encode the games directly into the QR code due to the lightweight nature of 
the 8-bit-esque games, which are usually of a few KBs. They also showed that using multiple visual 
markers [11, 35] can further increase the data capacity for larger programs and media content. 
Previous research has shown the potential of utilizing visual markers to store UI controls and 

applications, which can then be deployed by placing the markers in the environment. However, the 
challenge of creating applications optimized for QR code-based deployment remains, as it would 
require careful implementation from scratch by a skilled software developer. Our framework builds 
upon these existing works and offers an easy and efficient solution for designing, developing, and 
deploying functional mobile user interfaces without the need for a network connection. 

2.3 Rapid Application Prototyping 

It is critical for developers to be able to prototype and evaluate app designs quickly, and prior 
works have explored various techniques for such rapid prototyping of design ideas. For instance, 
Mallard [50] allows users to test and prototype pre-trained machine learning models directly on 
a browser by manipulating and scaffolding readily-available data from webpages. Stylette [30] is 
another system that accepts natural language speech commands to interpret the intent of develop-
ers and suggest a palette of relevant CSS properties and values. Programming by demonstration 
(PBD) has been extensively explored to allow developers to rapidly develop functional proto-
types [10, 21, 22, 29, 34]. Sketch-n-sketch [22] explores a variety of output-directed techniques to 
allow dynamic code generation for scalable vector graphics (SVGs) through direct object manipu-
lation. Umitation [10] allows web developers to mimic UI behaviours from pre-existing websites. 
SUGILITE [34] accepts natural language speech commands from users to automate arbitrary tasks 
in any Android app. d.mix [21] is a tool for creating website mashups by enabling users to browse 
annotated websites and select elements for d.mix to sample. Mobile application development can 
also benefit from rapid application prototyping. On a more general level, X-Droid [29] allows 
developers to borrow functionality from other pre-existing Android applications, significantly 
reducing development effort. Lastly, there are several low-code/no-code online tools that allow 
users to build mobile apps by simply dragging and dropping the UI controls from a toolbox to the 
app screen [2, 41, 45]. Our framework draws inspiration from such methodologies to facilitate rapid 
application prototyping with the consideration for generating ultra-lightweight applications that 
require minimal network connectivity to function. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:6 Adil Rahman and Seongkook Heo 

3 FRAMEWORK DESIGN PRINCIPLES 

Following our literature review, we based the design of our framework on the following principles: 

Scope. Frappé is not meant to act as a replacement for the rich functionalities offered by traditional 
native apps, but instead serve as an extremely lightweight access point to access essential services 
dynamically without the barriers of extensive internet bandwidth consumption, memory usage, or 
performance penalties. 

Minimal Internet Dependence. Frappé should not require internet to load the user interface. 
Internet connectivity should only be used for the purpose of functionality, if necessary, to make 
API calls. Furthermore, if the API call is done over LAN, BLE, or NFC, internet bandwidth should 
not be used at all, making the user interface completely independent of the internet connectivity. 

Minimal Usage Barrier. Frappé should allow users to instantly access the services provided by 
its apps without the overhead of downloading and/or installing the app. Frappé-compatible apps 
should not consume any significant amount of disk space or require any specific hardware beyond 
a standard smartphone. 

Optimized for Transient Use. Frappé-compatible apps should not clutter the user’s app drawer. 
If an app is designed for a one-time use case scenario, e.g., app for registering entry to an event, it 
should be removed as soon as it serves its purpose. If an app is designed for a transient use case 
based on the user’s environmental context, e.g., an information app for a national park, such apps 
should be directly available to the user if the user is present within that environmental context, 
whereas if the user is away, such apps should hide itself from direct view but can still be accessed if 
the user specifically searches for it. The same idea can also be extended to repeated transient use 
based on the user’s environmental context. For example, an app for controlling a specific smart 
light bulb may be visible to the user when the user is present near the smart light, and remain 
hidden if the user is away. 

Minimized Development and Deployment Overheads. Adoption of the Frappé framework 
should not introduce additional development and deployment overhead. Developing Frappé-
compatible apps should be easy and should not require the developer to refactor preexisting 
code. Instead, Frappé should support the use of preexisting services through API calls. The deploy-
ment of Frappé-compatible apps should be easy and should not introduce additional hardware 
dependencies such as BLE beacons or NFC sensors. 

4 FRAPPÉ 

We designed Frappé to augment the interactive capabilities of QR codes by allowing them to 
serve ultra lightweight mobile UIs, frApps, directly to the end-user’s device, without the need 
for any network connectivity. Our framework can significantly minimize the size of the designed 
UIs by reducing its user interface elements to a set of fundamental metadata, while offloading 
the functionality to external API calls. For example, a Button component can be deconstructed 
into a set of discrete properties such as label and onPressEvent. While optional, properties such 
as textColor and backgroundColor can also be included to enable some degree of customization. 
Conversely, our framework can reconstruct the UI from these reduced metadata, ad-hoc. While this 
concept of reconstructing elements from metadata is common in many cross-platform application 
development frameworks such as Xamarin and React Native, UIs created using Frappé are extremely 
lightweight, typically in the scale of a few hundred bytes. This lightweight nature allows us to 
encode and deploy frApps directly through QR codes. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:7 

Program API
Endpoints

Development

Link UI Events
to API Endpoints

Design UI
with enFrappé

Print
QR Code

Upload
QR Code

Isolate UI
Components

Decomposing UI & Encoding frApp Deployment

Metadata
Extraction (JSON)

Compression
(zlib + base64)

Encoding to
QR Code

SUBMIT

Deployed frApp

frApp
Ready Decoding frApp & Reconstructing UI

UI
Reconstruction

Metadata
Extraction (JSON)

Decompression
(zlib + base64)

Scan
QR Code

Fig. 2. System workflow for designing, deploying, and executing frApps using the Frappé framework 

The highlight of our framework is its ability to execute UI functionality while requiring minimal 
network bandwidth. Frappé achieves this by leveraging the ultra lightweight nature of RESTful 
API calls, which typically only cost a few hundred bytes to be triggered [15]. Thus, by entirely 
offloading functionality to API calls and reducing the UI to its bare essentials, Frappé is able to 
serve the UI free of network-connectivity, while costing the minimum network bandwidth only 
for the functionalities required by the user. Finally, Frappé can support a completely network-free 
experience by queuing requested API calls in case the user is in an area with limited network 
connectivity, and scheduling it when the user has better network coverage, making our framework 
ideal for use in areas with sparse network coverage. 

4.1 System Design and Implementation 

We realize our framework through two components - (i) enFrappé, a tool for developers to design 
frApps, and (ii) reFrappé, a system for the end-users to access the designed Frappé apps. Our system 
has been made open-source on GitHub2 . Figure 2 illustrates the workflow of our framework. 

4.1.1 enFrappé – UI Designer Tool. We created a WYSIWYG UI builder tool, enFrappé, for stream-
lining the process of designing UIs using our Frappé framework (Figure 3). enFrappé’s user interface 
resembles traditional IDEs for building mobile apps, such as Android Studio and Xcode. enFrappé has 
a toolbar for displaying all available UI components (Figure 3a), a panel for displaying the properties 
of any selected UI component (Figure 3b), a prototyping area (Figure 3c), and a panel for configuring 
application settings (Figure 3d). However, unlike traditional IDEs, enFrappé does not provide any 
environment for writing code. Instead, it features a simple drag-and-drop interface for arranging 
the UI components and uses API links to connect the UI events to the functionalities offloaded 
on a server (Figures 4a and 4b). While the API server can be manually written by the developer, 
enFrappé also supports automatic generation of a custom Flask server capable of receiving and 
displaying inputs from all API endpoints defined in the designed app (Figure 4c). This design choice 
allows enFrappé to be beginner-friendly while also providing expert developers with the ability 
to integrate custom functionality into their apps. enFrappé allows the developer to encode the 
designed user interface into a QR code. Given the limited storage capacity of QR codes, enFrappé 

2enFrappé: https://github.com/adildsw/enfrappe 
reFrappé: https://github.com/adildsw/refrappe 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 

https://github.com/adildsw/enfrappe
https://github.com/adildsw/refrappe


211:8 Adil Rahman and Seongkook Heo 

Fig. 3. enFrappé, a WYSIWYG UI builder for designing ultra lightweight mobile UIs using the Frappé frame-
work. The interface can be divided into five sections: (a) toolbar panel containing available UI components, 
(b) properties panel containing properties of the selected component, (c) prototyping area for designing and 
visualizing the app, (d) application details panel containing app metadata, and (e) testing and deployment 
panel for running simulations, and generating QR codes and custom server. 

first compresses the designed UI metadata using zlib compression [13], and then performs a Base64 
encoding on it before storing it in the QR code. For complex UIs with several components, the size 
of the compressed UI metadata may exceed the QR code data capacity. In such cases, enFrappé 
splits the metadata into multiple QR codes. 

4.1.2 reFrappé – Frappé Reconstructor Application. We developed an Android application, reFrappé, 
for reconstructing the UI of the frApp from the QR code. To launch a frApp, the end-user can 
simply use the camera app on their phone, or use the QR code scanner provided within reFrappé 
to scan the QR code. Upon successful scanning, reFrappé reconstructs the user interface of the 
frApp on the user’s device. reFrappé also stores the metadata of all the previously scanned frApps, 
and users can easily access them using a frApp list, without having to rescan the QR code. When 
the user selects a frApp from the list, it gets reconstructed immediately on an ad-hoc basis, and 
once the frApp is no longer in use, it gets deconstructed, thereby releasing the consumed device 
resources. Figure 4b illustrates a reconstructed frApp designed in enFrappé (Figure 3) running on 
the user’s device. 

4.2 Designing and Deploying frApps 
In this section, we demonstrate the workflow of designing and deploying frApps using enFrappé. 

4.2.1 Designing User Interface. When the developer launches enFrappé, the prototyping area is 
initialized with a blank white activity (page) called Main Activity. Since no component is selected at 
the beginning, the user interface shows an empty toolbar and properties panel. The developer can 
populate the toolbar and properties panels with relevant items upon selecting the component of 
interest in the prototyping area. Clicking on the Main Activity populates the properties panel with 
Activity properties such as Activity Name and Background Color. However, the developer still does 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:9 

Fig. 4. Linking UI Components with API Calls. (a) The On Press Event is defined to make an API call with 
the required parameters; (b) the register button in the UI is linked to the defined On Press Event; (c) custom 
server generated by enFrappé receives and visualizes the API call requests made to the server. 

not have access to basic UI elements such as Buttons, Checkboxes, and Radio Buttons. The Activity 
component supports only Section components to be placed within it, which serve as containers 
for all the other UI elements. Thus, before the developer can begin adding basic elements to their 
UI, they need to drag and drop a section component from the toolbar panel into the activity. The 
developers now have access to all the other UI elements which they can add to the section. All 
the UI components that are currently supported by enFrappé, and the properties panels for some 
of the UI components are illustrated in the appendix. enFrappé only allows components within 
the same section to be stacked vertically. The developer can add multiple sections to an activity. 
The developer also has the option of adding additional activities by pressing the “+” button at 
the bottom of the prototyping area. However, the Main Activity serves as the starting point of 
the UI and will be the first thing that appears when the UI is launched on the end-user’s device. 
Using these features of enFrappé, the developer can drag and drop components and modify their 
properties to design their required user interface. 

4.2.2 Connecting User Interface to Functionality. enFrappé integrates functionality with the user 
interface by linking API calls to UI events. The current build of enFrappé only supports the OnPress 
event for the Button component, and the OnLoad event for the Chart and DataViewer components. 
To make an API call, three parameters must be defined: API Endpoint/URL, API Call Type (GET/POST), 
and API Call Parameters (data that needs to be sent along with the API call) (Figure 4a). enFrappé 
binds component data values with API parameters through a property called Parameter Name. 
Every UI component that can take user input such as Input Fields, Dropdowns, and Radio Buttons has 
the Parameter Name property, which is used as an identifier for referring to their stored values. To 
add a parameter to an API call, the developer can simply click on the API Call Parameter property, 
which reveals the Parameter Names of all the components that exist in the designed user interface. 
The developer can then select the parameter values that they want to send along with the API call. 
enFrappé also allows the end-users to see the response of the API calls through either a Toast, or 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:10 Adil Rahman and Seongkook Heo 

a Prompt. In addition to making API calls, the Button’s OnPress event can also be used to switch 
between activities. 

While developers can code their own API servers for Frappé apps, enFrappé also allows users to 
generate their custom servers without writing any code. To generate a custom server, the developer 
can first populate the event properties of all relevant components in the interface with the required 
API Endpoints, Parameters, and Call Types. Then, the developer can simply click the Generate Custom 
Server button under the Testing & Deployment section (Figure 3e). enFrappé generates a custom 
Flask back-end server designed to receive and store all requests made to the APIs defined above, 
and a front-end web app to visualize API requests. A sample OnPress API configuration and the 
generated custom server interface are illustrated in Figure 4. 

4.2.3 Deploying Application. In the Application Details panel (Figure 3d), the developer needs to 
provide the App ID, App Name, and App Version for the application. If their application makes 
API calls, they also need to provide the Server Address and Server Port. enFrappé also provides 
the option of specifying whether the frApp is intended to be a Single Use or Location-Linked to 
facilitate transient app usage. If a frApp is meant to be used only once, such as a registration 
app, then the end-user has no requirement for it once its purpose has been served. Such frApps 
can be marked as Single Use, and doing so will not store the frApp metadata on the end-user’s 
device. Similarly, Location-Linked frApps are expected to be used only when the end-user is in the 
proximity of a certain location, such as controlling the smart light of the bedroom. If a frApp is 
marked as Location-Linked, that frApp does not appear in the frApp list until the user is in the 
required proximity. Furthermore, Location-Linked frApps can also be configured to Notify User if 
the frApp is available for use. 
enFrappé allows the developer to test their frApp directly in the enFrappé environment by 

clicking the Start Simulation button under the Testing & Deployment section. Once the developer 
is satisfied with their frApp, they can click on the Download/Print QR Code button to generate a 
QR code of their frApp’s compressed UI metadata. The frApp can be deployed by releasing a copy 
of the generated QR code to the end-users. This can be accomplished on various scales - for local 
deployment, printed copies of QR codes can be pasted on accessible surfaces such as walls and 
notice boards; alternatively, for a larger outreach, the QR code can also be hosted on any online 
platforms such as personal websites. 

5 APPLICATION SCENARIOS 

While Frappé is not designed for developing applications with rich user interfaces, there are several 
scenarios that can benefit from Frappé’s lightweight nature and rapid deployment technique. We 
group our proposed application scenarios under three categories: (i) data collection, (ii) interfacing 
with physical objects, and (iii) controlling virtual systems. 

5.1 Data Collection 

If a user wants to sign up for a service or register for an event, they are typically required to 
access online form services such as Google Forms. However, limited network connectivity can 
pose a challenge for the user to access these services. Form apps typically require only a basic 
set of UI components (such as input fields, checkboxes, and radio buttons) to accept user input 
and pass it to the server, making it one of the most obvious use cases for Frappé. Using enFrappé, 
anyone can easily design a form app and generate a server capable of receiving and storing the 
input without writing a single line of code. Moreover, developers can easily integrate the output 
generated by the form app with their custom code, which usually requires several steps for typical 
online form services. Frappé is ideal for this use case as the user can access the form instantly 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:11 

Fig. 5. Some application scenarios for UIs designed using Frappé. (a) Registering for an event; (b) Controlling 
a smart light; (c) Controlling a robot; (d) Reading sensor values; (e) Playing a 2-player Pong game. 

by simply scanning the QR code with their device, and minimal network bandwidth is required 
to submit their response to the server. Furthermore, in case of no network connectivity, Frappé 
can queue the response submission for whenever the user reaches an area with better network 
coverage. Figure 5a illustrates an event registration app made using Frappé. 

5.2 Interfacing the Physical Objects 
Frappé’s network-free rapid deployment technique can potentially allow seamless interfacing with 
physical objects. Smart home devices, such as smart light bulbs, usually require a device-specific 
app to control them. Moreover, different brands of smart devices may require installing separate 
apps, leading to increased network bandwidth consumption. This can be particularly challenging 
for users in unfamiliar environments, who may be locked out of the smart device features for 
not having the associated apps pre-installed on their smartphones. Frappé can be used to create 
lightweight UIs that can control these smart devices (Figure 5b). Since Frappé can serve UIs instantly, 
it can find significant applicability in making museums and exhibits more interactive by allowing 
users to interact with demonstrations seamlessly through frApps. Frappé can also be extended to 
create UIs that can interface with IoT sensors and actuators. Consider a temperature sensor – by 
simply scanning a QR code, a user can visualize the temperature trends over the last week through 
a chart (Figure 5d). Controls for physical devices such as toys and robots can also be offloaded 
to buttons on frApps, providing immediate access to the control to users without downloading 
device-specific controller apps (Figure 5c). 

5.3 Controlling Virtual Systems 
Since Frappé connects the UI with functionality through API calls, frApps can be used to trigger 
remote actions. For instance, Frappé can be used to make a gamepad for a computer game, or 
as a media controller for controlling music playback on remote speakers. In essence, UIs made 
using Frappé can be linked to any pre-existing system’s code through API calls, allowing users to 
remotely trigger such functionalities. Figure 5e shows two players playing the Pong game using 
Frappé apps. 

6 TECHNICAL EVALUATION 

We performed a series of technical evaluations to measure the network, memory, and performance 
overheads of using Frappé. All technical evaluations were performed using 5 sample frApps: (i) basic 
hello world app, (ii) temperature sensor value reader, (iii) virtual pong paddle controller, (iv) smart 
light controller, and (v) event registration app. To benchmark the load times and network usage 
of frApps against similar web and native apps, we created identical versions of these five frApps 
using ReactJS and Android Studio. The size of the Android app bundle for the Frappé reconstructor 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:12 Adil Rahman and Seongkook Heo 

Hello World 
Application 

Sensor Value 
Reader 

Virtual Paddle 
Controller 

Smart Light 
Controller 

Event Registration 
Application 

0 

500 

1000 

1500 

2000 

2500 

S
iz

e 
(b

yt
es

) 

QR Code Capacity 

Raw JSON 

JSON Compressed 

Custom Compressed 

Fig. 6. Compressed and uncompressed UI metadata sizes of 5 sample frApps 

app is 4.9 MB, and its load time was recorded as 783 ms on a Google Pixel 3a smartphone running 
Android 11. All subsequent tests were conducted on the same device. 

6.1 Frappé App Size Analysis 
Figure 6 illustrates the raw and compressed sizes of the UI metadata required to reconstruct the 
frApps on the user’s device. The compressed data size of all our sample frApps remain below the 
maximum capacity of a QR code with medium level error correction capability (2331 bytes). From 
our results, we can observe that as the raw JSON data size increases, there is also an increase 
in the compression ratio. For large raw JSON data sizes, we achieve a compression ratio of over 
2:1 by performing a simple Base64 encoding over a zlib compression. In our implementation, we 
used JSON for its convenience. However, considering the redundancy of the JSON data format, 
switching to a custom data format can help us further reduce the data size. For example, eliminating 
all redundancies (e.g., removing keys and using enumerations) in the event registration app data 
results in a compressed data size of only 504 bytes (24.0%) from its original size of 2098 bytes, 
whereas our currently employed compression technique only reduces the size to 1012 bytes (48.2%). 

6.2 Network Usage 

Figure 7a illustrates the network usage of the aforementioned apps across the three platforms. In 
our measurements, we consider the network usage incurred in obtaining the app on the device and 
using its functionalities. This means, for web apps we measured the bandwidth spent on loading the 
web app, whereas for native apps we measured the bandwidth spent on downloading the native app. 
Since the frApps are deployed as QR codes, no network bandwidth usage is required for obtaining 
frApps on the device. The network bandwidth usage for API calls is common to all three platforms, 
which is elaborated further in Table 1. 

Our results demonstrate that the network bandwidth consumed by frApps is less than that of 
web apps and native apps by multiple orders of magnitude. While the other platforms consume 
significant amounts of network bandwidth for structural purposes, e.g., loading the user interface, 
frApps only consume network bandwidth for functional purposes, i.e., making API calls. It is worth 
noting that downloading the native apps is a one-time cost, and every successive use of the app 
will result in bandwidth usage similar to that of Frappé apps. Web apps can also be cached, thus 
reducing the total recurring network bandwidth usage. However, the low initial network cost of 
Frappé apps can encourage app acceptance, especially for single-use ephemeral apps. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:13 

Table 1. Analysis of the various API calls made during our technical evaluation 

Application 
Name 

Total API Call 
Network Usage API Call Description 

Hello World 
App 0 bytes No API calls were made. 

Sensor Value 
Reader 248 bytes 1 API call was made for obtaining sensor value. 

Virtual Paddle 
Controller 4500 bytes 20 API calls were made for performing 20 paddle 

movement commands across a 3-life Pong game. 

Smart Light 
Controller 479 bytes 

2 API calls were made, one for switching on the 
smart light, and another for customizing the color 
and brightness of the smart light. 

Event Registration 
App 252 bytes 

1 API call was made for registering user by send-
ing user’s name, age, gender, pursuing degree, and 
agreement to terms and conditions. 

0 100 101 102 103

Network Usage (KB)

Hello World
Application

Sensor Value
Reader

Virtual Paddle
Controller

Smart Light
Controller

Event Registration
Application

0

0.24

4.4

0.47

0.25

48.1

71.94

76.1

87.27

89.45

2712.5

3583.94

3588.3

3586.67

3585.85

Frappé

Web

Native

(a) Network Usage for each application. (A logarithmic 
scale was used for plotting the network usage results) 

Hello World
Application

Sensor Value
Reader

Virtual Paddle
Controller

Smart Light
Controller

Event Registration
Application

0

100

200

300

400

500

600

700

Lo
ad

Ti
m

e
(m

s)

Web (100Mbps)

Web (4G)

Frappé

Native

(b) Load times for each application 

Fig. 7. Comparison of performance overheads between 5 sample frApps and similar web and native apps 

6.3 App Load Time 

Figure 7b illustrates the load times of the aforementioned apps for the three platforms. For measuring 
the precise impact of each app on the load time, we did not include the load time of the web browser 
(for web apps) and the Frappé reconstructor app (for Frappé apps) in our readings. To get a better 
perspective of load times in different environmental settings, we considered two different network 
speeds for web applications - (i) 100Mbps for an indoor WiFi setting and (ii) 5.1Mbps for an outdoor 
setting with typical 4G connectivity [14]. Additionally, for both the web app network settings, we 
set the network latency to 0ms. 
Our results demonstrate that the loading time of Frappé apps are comparable to those of web 

apps and native apps. We also considered situations such as traveling to remote areas or national 
parks where one might only get a 3G or 2G connection. For network speeds of 1Mbps and 100kbps, 
even the basic Hello World web app takes well over 1s and 4s to load, respectively. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:14 Adil Rahman and Seongkook Heo 

7 USER STUDY 

We conducted a user study to gain initial insights into the enFrappé’s usability and utility in 
designing functional mobile user interfaces using the Frappé framework. The design of this study 
was inspired by the system evaluation of Umitation [10] and the usage evaluation from the Evaluation 
Strategies for HCI Toolkit Research [32]. In this study, we recruited participants with varying 
programming and application design experiences. The purpose of this was threefold: we wanted to 
(1) qualitatively measure the learnability of enFrappé by observing novice UI designers, (2) observe 
how expert UI designers interact with enFrappé, and (3) seek feedback on the utility value of Frappé 
based on their diverse range of experiences in designing UIs and using mobile apps available on 
the market. The study was approved by the institutional review board. 

7.1 Participants 
We recruited 16 participants (5 female, 11 male) from our university and nearby localities through 
email groups and word of mouth, with participants’ ages ranging between 20 and 30 years (M=26.63, 
SD=2.63). Based on the participants’ experience in UI design and programming, we categorized 
them into three groups - novice, intermediate, and expert. Participants who had several years of 
experience in coding and UI design were categorized as experts, whereas participants with little to 
no coding or UI design experience were categorized as novice. Participants who had some coding 
or UI designing experience were categorized as intermediate. Following our categorization, we 
had 6 novice participants (P2, P4, P5, P10, P13, P16), 4 intermediate participants (P6, P11, P12, 
P14), and 6 expert participants (P1, P3, P7, P8, P9, P15). Among the six novice participants, three 
(P2, P13, P16) had absolutely no experience in coding or UI designing, with two of them (P2, P13) 
possessing only rudimentary knowledge of using a computer. Three of our six expert participants 
(P3, P7, P9) had prior experience in developing apps in the industry, and one expert participant 
(P15) was extensively involved in organizing hackathons for the local university. The participants 
were compensated with 25 USD for their time. 

7.2 Study Design 

Each user study session lasted for approximately 50 to 60 minutes. The experiments were conducted 
in-person in a lab using the experimenter’s computer and smartphone. At the beginning of each 
session, the participants’ demographic details were recorded and a short pre-task interview was 
conducted to gauge their coding and UI design experience. The participants were also asked about 
their familiarity with basic UI components (buttons, checkboxes, etc.) and RESTful APIs. Based on 
their response, the experimenter guided the participants through a tutorial of enFrappé that was 
tailored to their level of understanding. 

Following the tutorial, the participants were asked to design three frApps. They were provided 
with a design guideline for each task containing details about the UI requirements and the associated 
API endpoints. The tasks required them to assume the role of a front-end developer, so they were 
only required to design the user interface and link them to the provided API endpoints. The 
participants were not required to code these API functions - they were either autogenerated 
by enFrappé, or pre-coded by the experimenter. Each task was considered complete when the 
participants were able to execute the UI on the mobile device with the desired functionality. 
The participants were allowed to freely explore enFrappé and personalize the apps as per 

their choice. We recorded the time taken by the participants to complete each task. However, 
the participants were not aware of being timed and completed the tasks at their own pace. The 
participants were also allowed to request for assistance as and when required. After the completion 
of all the tasks, we conducted a semi-structured interview with the participants to learn about 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:15 

their experiences with enFrappé. Finally, the participants were debriefed about the features of our 
Frappé framework, and were then encouraged to ideate their own application scenarios for it. 

Fig. 8. UI screenshots of the 4 tasks that were performed during the user study. (a) Course Feedback App 
(Tutorial); (b) Virtual Pong Paddle Controller (Task 1); (c) Smart Light Controller (Task 2); (d) Event Registration 
App (Task 3) 

Table 2. Description of all the tasks performed during the user study 

Task # Application Name 
UI Elements 
Involved 

API Server 
Provided? Task Description 

0 
Course 
Feedback App 

Radio Button 
Input Field 
Button 

No 
Tutorial task performed by the experimenter to demonstrate 
how to design and deploy an application, and how to generate 
a backend server using enFrappé. 

1 
Virtual Pong 
Paddle Controller Button (x2) Yes 

This task required minimal UI elements and was used as the 
first task to allow participants to get acquainted with the 
basic functionalities of enFrappé. 

2 
Smart Light 
Controller 

Radio Button 
Dropdown 
Button (x2) 

Yes 
This task required participants to make parameterized API 
calls by passing the values of dropdown and radio button to 
the button’s on-press event API call. 

3 
Event 
Registration App 

Input Field (x2) 
Dropdown 
Radio Button 
Checkbox 
Button 

No 

The task required participants to incorporate all the basic UI 
components in their app, and create their own backend server 
using enFrappé to receive the inputs made in the designed 
app. 

7.3 Tasks 
The participants were introduced to enFrappé with a tutorial task that involved making a Course 
Feedback App. After the tutorial, the participants were given three tasks - Virtual Pong Paddle 
Controller, Smart Light Controller, and Event Registration App. Since we had participants of varying 
programming and UI design expertise levels, we designed our tasks in an increasing order of 
difficulty, with the first task serving as an entry point to the enFrappé system, and the last task 
exploring all the features that enFrappé has to offer. The user interfaces for all tasks are illustrated 
in Figure 8, and the task details are summarized in Table 2. 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:16 Adil Rahman and Seongkook Heo 

7.4 Results 
Here we present the quantitative and qualitative analysis of our user study. First, we discuss 
the performance of the users in completing the tasks in terms of time and accuracy. Second, we 
discuss the perception of users towards our framework based on the feedback we received from 
the interview. For this, we conducted an inductive thematic analysis on all comments to identify 
the main themes. We then grouped the comments into three themes: (1) ease of use, (2) learnability, 
and (3) utility. 

Tutorial
Course Feedback

Application

Task 1
Virtual Paddle

Controller

Task 2
Smart Light
Controller

Task 3
Event Registration

Application

0

200

400

600

800

1000

T
a

sk
C

o
m

p
le

ti
o

n
T

im
e

(s
)

Novice

Intermediate

Expert

(a) Time taken by the participants to complete each 
task 

Task 1
Virtual Paddle

Controller

Task 2
Smart Light
Controller

Task 3
Event Registration

Application

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
u

m
b

er
o

f
H

el
p

R
eq

u
es

ts

Novice

Intermediate

Expert

(b) Number of times participants requested for help 

Fig. 9. User study results 

7.4.1 Time and Accuracy. All the participants were able to successfully complete all three tasks. 
We illustrate the time taken for the participants to complete each task, and the number of times 
assistance in Figure 9a and Figure 9b, respectively. Our results conform to the expectation that 
participants with more programming and app design experience could complete the tasks faster 
while requiring fewer interventions. The only outlier to this trend was participant P6 who explored 
our tool beyond the required design specifications and thus required more time to complete the 
third task. 
The mistakes made during task completion were primarily because participants forgot specific 

elements of the instructions. “Anything I messed up with was just me forgetting to do it. It wasn’t 
anything user interface-wise.” (P16). Another common issue among novice and intermediate par-
ticipants was that some of them were not familiar with certain technical terms such as API and 
component parameter names. “I was just trying to understand the mechanism behind the API calls” 
(P6). However, the participants became familiar with the system by the third task, as is evident 
from the decline in the number of help requests observed in Figure 9b. 

7.4.2 Ease of Use. After completing the tasks, all participants reported that developing Frappé 
apps was easy. The participants described their experience of designing apps using our tool as 
“straightforward” (P6, P7, P9, P11), “simplistic” (P1, P8, P15), “seamless” (P12), and “user-friendly” 
(P15). One participant (P16) appreciated the visual nature of our tool and how “you can see what 
you add”. Participant P6 had a similar comment about the user interface - “You don’t have too many 
options, so you can narrow down your manipulation on the design process”. 
Three expert participants (P1, P8, P15) compared their experience of designing apps using our 

tool with that of using traditional app building tools - “I really liked the fact that it worked. I have 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:17 

had many experiences where things didn’t work, and it took forever to debug. This was very simple 
to use.” (P1); “If I were to be actually coding this, I feel like that would be more difficult than doing 
this” (P15); “In traditional Android Studio, you can move components by one-third or one-half, but 
Frappé gets the job done if you’re not developing a huge app” (P8). Participant P8 further commented 
“Testing an app on Android Studio is so annoying - you have to connect it, download it and then install 
it. Then the Android phone freaks out because they’re like, this is untrusted. So just scanning the QR 
code and having the app working there, it’s great! And I guess it’s just easy for everyone to create their 
own apps - they don’t have to have any backend or frontend experience. If you want to send out a 
survey, you can just print a QR code and smack it on the wall, and you’re taking a survey!” 

7.4.3 Learnability. Despite some mistakes made while performing the initial tasks, most partic-
ipants reported that as they progressed through the tasks, they became more comfortable with 
the system. Some participants mentioned being mindful of their previous mistakes while working 
on subsequent tasks - “After a few tries, I figured out what you should put as parameters and what 
should be used as values for different radio groups” (P4). A novice participant (P2) mentioned being 
“nervous towards the beginning, but as I kept progressing through the tasks, I got more confident”. 
Some participants credited the tutorial for easing them into the system - “I think because you gave 
me a demo on how everything worked, it was very easy for me to start off” (P1). To further improve 
the learning curve, some participants suggested using a “tooltip for providing suggestions” (P3), 
“question mark buttons for providing additional information” (P6) or a “hint box for explaining the 
technical terms” (P12). 

7.4.4 Utility. The participants came up with several interesting suggestions for potential use 
cases of Frappé pertaining to their field of interest. Several participants suggested using Frappé 
for form-based applications such as questionnaires (P5), registration apps (P1, P9, P15, P16) and 
apps to collect responses for in-class quizzes (P6). They argued that Frappé apps did not “require 
internet connectivity” (P9) to load and worked without the requirement of “signing in” (P1, P16) 
to an existing account to submit a response, and thus offered a clear advantage over traditional 
online forms such as Google Forms. “If we just had a QR code like this, people could scan and submit 
it - it seems like that could be super helpful because Google Forms is similar, but it’s just a lot more 
work” (P16). Moreover, two participants pointed out that Frappé offered more “customizability than 
Google Forms” (P6, P15) and could even augment the forms with functionalities that go beyond 
simply “collecting the information” (P6), such as “grading the answer” (P6) in quizzes. 
Other miscellaneous use case suggestions included a diagnostic tool for remotely located IoT 

devices - “you just obtain the configuration data like a chart on your device and try figuring out the 
issue” (P7) - and apps for advertising - “changing advertisements in shopping centers by scanning 
the QR code and changing their advertisement on the IoT devices” (P3). Participant P11 suggested 
designing a lightweight UI to control robots in his lab instead of purchasing “a bunch of joysticks” 
since “they are not cheap” and while “not everyone has a joystick, everyone has a phone”. Participant 
P3 mentioned their parents’ struggle with installing apps and recommended frApps as a potential 
solution for users who are not technologically proficient - “they can just know that the app is in the 
QR code. They can use the app simply by scanning the QR code” (P3). 

Lastly, participant P3 complimented enFrappé’s feature to generate a custom server. “I think this 
is a pretty solid framework. For most of these template-based app-builders, it’s just the UI part. But till 
now I haven’t found any application which can generate the server along with the application. I think 
that this is actually the most interesting thing about this tool.” 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:18 Adil Rahman and Seongkook Heo 

8 DISCUSSION 

Our technical evaluation demonstrates the advantages of using Frappé apps over web and native 
apps in terms of app size, network usage, and load times. Participants in our study emphasized 
the ease of building and deploying applications using our framework and demonstrated high 
learnability of the tool, regardless of their prior experience with programming and app designing. 
In this section, we discuss some insights about our framework, present its limitations and explore 
options for improving future builds of Frappé. 

8.1 Tradeoff Between UI Customizability and Framework Efficacy 

8.1.1 Customizable Features. While Frappé allows some degree of UI customization, such as 
changing component colors and altering text sizes, it is fairly limited in its ability to design rich 
user interfaces. During the user study, participants asked about the possibility of incorporating 
several customizations in their app design - “Is there any option to change the color for each radio 
option individually?” (P5, P6); “Do the buttons not go side by side?” (P7); “landscape mode” (P11). 
One participant also asked about the possibility of incorporating advanced logic into the UI design 
- “If I select one of the colors can I also change the color of the button to reflect that?” (P7). However, 
there is an inherent tradeoff between customizability and app size. Since our primary aim was to 
serve the designed UIs directly through a QR code, and given the QR codes limited storage capacity, 
we need to limit the customization possibilities in our framework. 

8.1.2 Beyond Form Apps. Our Frappé framework is not limited to designing form-like UIs with 
basic components such as input fields and buttons. The framework can be expanded to support 
more sophisticated UI components such as Charts, Map Views, and Date Time Picker as long as the 
UI component can be broken down into a set of discrete parameters which can then be used to 
reconstruct the component. As a proof-of-concept, we included three such components (DataViewer, 
Chart, and Image) in our current Frappé build and categorized them as Miscellaneous Components 
(illustrated in Appendix). However, every component comes with their own network bandwidth 
cost, e.g., the Image component will use a significant amount of network bandwidth to load an image. 
Thus, the tradeoff between each component and their impact on the overall network bandwidth 
needs to be considered before inclusion into a frApp. 

8.1.3 Dynamic UI Rendering. One of the guiding principles behind Frappé is its minimal dependence 
on internet connectivity, i.e., no internet connection should be required for loading the UI. This 
results in frApp UIs being static by nature. However, bypassing this principle can allow Frappé to 
support dynamic UI rendering. When making an API call, the server can return activities (or pages) 
dynamically, akin to loading new pages on a website. Unlike web pages, however, the network 
bandwidth consumption for loading these dynamic activities is extremely low (~500 bytes) given 
the lightweight nature of our framework. This can allow for many interesting use cases such as 
designing intricate quick-access control systems and serving app content based on user inputs. 

8.2 Limitations 
8.2.1 Reliance on Reconstructor Application. The requirement of an additional reconstructor appli-
cation on the end-user’s mobile device to load frApps from QR codes can be perceived as a major 
limitation of our framework. However, we envision our work as a foundation for augmenting 
such interactive capabilities in QR codes. When QR codes were first introduced, devices needed a 
dedicated application for reading them, but with their increase in popularity, today’s smartphones 
come with in-built QR code readers. Furthermore, several QR code protocols, such as those of 
WiFi configurations, are now baked into modern smartphones. We hope our work can act as a 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



Frappé: An Ultra Lightweight Mobile UI Framework 211:19 

building block for standardized protocols allowing QR codes to serve UIs, which can be built into 
smartphones in the future, eliminating the need for an additional reconstructor application. 

8.2.2 Reliance on Internet Connectivity. While users do not need internet connectivity to load 
Frappé apps, the current build of Frappé relies on RESTful APIs for connecting the user interface 
with functionality. Thus, making API calls may require an internet connection if the API server is 
hosted over the web. To alleviate this, Frappé features the queuing of API call requests in case of 
no network coverage so that the request can be scheduled for when sufficient network coverage 
is available. Moreover, since API calls require a very small amount of network bandwidth [15] 
(Table 1), future iterations of Frappé can explore the use of other low-cost transmission mediums 
such as bluetooth low energy, near-field communication, infrared, and visible light communication, 
thereby completely obviating the need for internet connectivity throughout the interaction. We are 
also witnessing a trend where modern smartphones are equipped with satellite communication 
modules, which can be exploited for use in frApps deployed in risky areas for facilitating emergency 
communication. Lastly, the lack of reliance on internet connectivity can also yield privacy benefits. 
Since our framework can load apps (and potentially execute app functionalities) without any 
internet connectivity, this can prevent any third party from tracking the user’s actions, which can 
be an advantage as compared to web and native applications. 

8.2.3 Security Challenges. We acknowledge the security challenges that our framework presents. 
While visual markers such as QR codes are inexpensive and convenient, they are inherently prone 
to security vulnerabilities [31]. Since the frApps are deployed using QR codes, a malicious user can 
easily manipulate the QR code to reroute sensitive information to their own system [28]. This was 
also highlighted by two expert participants during our user study - “If you have a QR code pasted, it 
becomes very easy for anybody to access it.” (P7); “A malicious user can transfer and steal user data, 
so maybe the interpreter should scan the QR code before translating it into executable format” (P3). In 
its current state of development, we do not recommend using Frappé apps to perform transactions 
of sensitive data. While it is beyond our current scope, it may be useful to investigate the use of 
digital signatures and encryption techniques, or switch to a more secure transmission medium to 
bolster users’ trust in Frappé apps. 

8.2.4 Exploring Alternative UI Transmission Media. Beyond the security challenges, visual markers 
can also have a negative aesthetic impact on surrounding environments, particularly if they are 
large, obtrusive, or not well-integrated into the overall design. On a broader context, the ultra 
lightweight nature of our framework can be leveraged to support other passive media such as RFID 
and NFC tags for the transmission of mobile UIs, offering greater flexibility and convenience for 
embedding UIs into physical objects and enabling seamless interaction between users and their 
environments. 

9 CONCLUSION 

In this paper, we introduce Frappé, a framework for deploying ultra lightweight mobile user 
interfaces, frApps, directly through QR codes. We achieve this by preserving only the essential 
metadata of the UI while offloading the UI functionalities to API calls. End-users can execute 
these frApps by simply scanning the QR code, and the frApp UI gets instantly reconstructed on 
the user’s device, without requiring any network connection. We also designed a WYSIWYG UI 
builder, enFrappé, to streamline the process of designing and deploying UIs using our framework. 
Our findings from a technical evaluation reflect significantly less performance overheads for apps 
generated using our framework, as compared to similar web and native apps. We also conducted a 
user study with 16 participants from various UI designing backgrounds to evaluate our framework 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 



211:20 Adil Rahman and Seongkook Heo 

in terms of its usability and utility. All participants found it easy to use our framework to complete 
the required tasks and reported high learnability and utility value, regardless of prior UI design 
experience. QR codes are ubiquitous, inexpensive, and have a low barrier of access, and yet their 
modern day use-cases are one-dimensional. We envision our work as building blocks for augmenting 
the interactive capabilities of QR codes, allowing them to not only serve as static redirection artifacts, 
but as dynamic tools for enhancing human-computer interactions. 

REFERENCES 
[1] Amazon. 2014. Understand Smart Home Skills | Alexa Skills Kit. https://developer.amazon.com/en-US/docs/alexa/ 

smarthome/understand-the-smart-home-skill-api.html 
[2] Appenate. 2011. What Makes Appenate Stand Out From The Rest? https://www.appenate.com/why-appenate/ 
[3] Seongbok Baik. 2012. Rethinking QR code: analog portal to digital world. Multimedia Tools and Applications 58, 2 (May 

2012), 427–434. https://doi.org/10.1007/s11042-010-0686-9 
[4] Rafael Ballagas, Michael Rohs, and Jennifer G. Sheridan. 2005. Mobile Phones as Pointing Devices. In Pervasive Mobile 

Interaction Devices (PERMID 2005) - Mobile Devices as Pervasive User Interfaces and Interaction Devices - Workshop in 
conjunction with: The 3rd International Conference on Pervasive Computing (PERVASIVE 2005), May 11 2005, Munich, 
Germany, Enrico Rukzio, Jonna Häkkilä, Mirjana Spasojevic, Jani Mäntyjärvi, and Nishkam Ravi (Eds.). LMU Munich, 
Munich, Germany, 27–30. 

[5] Rafael Ballagas, Michael Rohs, and Jennifer G. Sheridan. 2005. Sweep and Point and Shoot: Phonecam-Based Interactions 
for Large Public Displays. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems (Portland, OR, USA) 
(CHI EA ’05). Association for Computing Machinery, New York, NY, USA, 1200–1203. https://doi.org/10.1145/1056808. 
1056876 

[6] Jagni Dasa Horta Bezerra and Cidcley Teixeira de Souza. 2019. smAR2t: a Models at Runtime Architecture to 
Interact with the Web Of Things using Augmented Reality. In Proceedings of the XXXIII Brazilian Symposium on 
Software Engineering (SBES 2019). Association for Computing Machinery, New York, NY, USA, 124–129. https: 
//doi.org/10.1145/3350768.3353818 

[7] Ketan Bhardwaj, Pragya Agrawal, Ada Gavrilowska, Karsten Schwan, and Adam Allred. 2015. Appflux: Taming app 
delivery via streaming. In Proceedings of the 2015 Conference on Timely Results in Operating Systems (TRIOS 15). USENIX 
Association, Monterey, CA, USA. 

[8] Ketan Bhardwaj, Ada Gavrilovska, and Karsten Schwan. 2016. Ephemeral Apps. In Proceedings of the 17th International 
Workshop on Mobile Computing Systems and Applications (HotMobile ’16). Association for Computing Machinery, New 
York, NY, USA, 81–86. https://doi.org/10.1145/2873587.2873591 

[9] Ketan Bhardwaj, Matt Saunders, Nikita Juneja, and Ada Gavrilovska. 2019. Serving Mobile Apps: A Slice at a Time. In 
Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing 
Machinery, New York, NY, USA, Article 30, 15 pages. https://doi.org/10.1145/3302424.3303989 

[10] Yan Chen and Tovi Grossman. 2021. Umitation: Retargeting UI Behavior Examples for Website Design. In The 34th 
Annual ACM Symposium on User Interface Software and Technology (UIST ’21). Association for Computing Machinery, 
New York, NY, USA, 922–935. https://doi.org/10.1145/3472749.3474796 

[11] Francesco Cottone. 2022. Rewtro. https://github.com/kesiev/rewtro original-date: 2019-12-19T15:08:05Z. 
[12] Giulia de Andrade Cardieri and Luciana Martinez Zaina. 2018. Analyzing User Experience in Mobile Web, Native and 

Progressive Web Applications: A User and HCI Specialist Perspectives. In Proceedings of the 17th Brazilian Symposium 
on Human Factors in Computing Systems (IHC 2018). Association for Computing Machinery, New York, NY, USA, 1–11. 
https://doi.org/10.1145/3274192.3274201 

[13] Peter Deutsch and Jean-Loup Gailly. 1996. Zlib compressed data format specification version 3.3. Technical Report. RFC 
1950, May. 

[14] Ian Fogg. 2021. Quantifying the speed bar for a reliable mobile experience. https://www.opensignal.com/2021/06/17/ 
quantifying-the-speed-bar-for-a-reliable-mobile-experience 

[15] Google. 2010. SPDY: An experimental protocol for a faster web. https://www.chromium.org/spdy/spdy-whitepaper/ 
[16] Google. 2016. Google Home. https://developers.google.com/home 
[17] Google. 2017. Google Play Instant. https://developer.android.com/topic/google-play-instant 
[18] Google. 2019. Create an instant-enabled app bundle. https://developer.android.com/topic/google-play-instant/getting-

started/instant-enabled-app-bundle 
[19] Dominique Guinard and Vlad Trifa. 2016. Building the Web of Things: With examples in Node.js and Raspberry Pi (1st 

ed.). Manning Publications Co., USA. 
[20] Dominique Guinard, Vlad Trifa, and Erik Wilde. 2010. A resource oriented architecture for the Web of Things. In 2010 

Internet of Things (IOT). IEEE, Tokyo, Japan, 1–8. https://doi.org/10.1109/IOT.2010.5678452 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 

https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://www.appenate.com/why-appenate/
https://doi.org/10.1007/s11042-010-0686-9
https://doi.org/10.1145/1056808.1056876
https://doi.org/10.1145/1056808.1056876
https://doi.org/10.1145/3350768.3353818
https://doi.org/10.1145/3350768.3353818
https://doi.org/10.1145/2873587.2873591
https://doi.org/10.1145/3302424.3303989
https://doi.org/10.1145/3472749.3474796
https://github.com/kesiev/rewtro
https://doi.org/10.1145/3274192.3274201
https://www.opensignal.com/2021/06/17/quantifying-the-speed-bar-for-a-reliable-mobile-experience
https://www.opensignal.com/2021/06/17/quantifying-the-speed-bar-for-a-reliable-mobile-experience
https://www.chromium.org/spdy/spdy-whitepaper/
https://developers.google.com/home
https://developer.android.com/topic/google-play-instant
https://developer.android.com/topic/google-play-instant/getting-started/instant-enabled-app-bundle
https://developer.android.com/topic/google-play-instant/getting-started/instant-enabled-app-bundle
https://doi.org/10.1109/IOT.2010.5678452


Frappé: An Ultra Lightweight Mobile UI Framework 211:21 

[21] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. 2007. Programming by a sample: rapidly creating web 
applications with d.mix. In Proceedings of the 20th annual ACM symposium on User interface software and technology (UIST 
’07). Association for Computing Machinery, New York, NY, USA, 241–250. https://doi.org/10.1145/1294211.1294254 

[22] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG. In 
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19). Association for 
Computing Machinery, New York, NY, USA, 281–292. https://doi.org/10.1145/3332165.3347925 

[23] Apple Inc. 2019. HomeKit. https://developer.apple.com/homekit/ 
[24] Apple Inc. 2020. App Clips. https://developer.apple.com/app-clips/ 
[25] Apple Inc. 2020. Choosing the Right Functionality for Your App Clip | Apple Developer Documentation. https: 

//developer.apple.com/documentation/app_clips/choosing_the_right_functionality_for_your_app_clip 
[26] Apple Inc. 2020. Tracking Prevention in WebKit. https://webkit.org/tracking-prevention/ 
[27] Denso Wave Inc. 2004. What is a QR Code? | QRcode.com | DENSO WAVE. https://www.qrcode.com/en/about/ 
[28] Pranjal Jain, Rama Adithya Varanasi, and Nicola Dell. 2021. “Who is Protecting Us? No One!” Vulnerabilities Experienced 

by Low-Income Indian Merchants Using Digital Payments. In ACM SIGCAS Conference on Computing and Sustainable 
Societies (Virtual Event, Australia) (COMPASS ’21). Association for Computing Machinery, New York, NY, USA, 261–274. 
https://doi.org/10.1145/3460112.3471961 

[29] Donghwi Kim, Sooyoung Park, Jihoon Ko, Steven Y. Ko, and Sung-Ju Lee. 2019. X-Droid: A Quick and Easy Android 
Prototyping Framework with a Single-App Illusion. In Proceedings of the 32nd Annual ACM Symposium on User 
Interface Software and Technology (UIST ’19). Association for Computing Machinery, New York, NY, USA, 95–108. 
https://doi.org/10.1145/3332165.3347890 

[30] Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim. 2022. Stylette: Styling the Web with Natural Language. In 
CHI Conference on Human Factors in Computing Systems. Number 5 in CHI ’22. Association for Computing Machinery, 
New York, NY, USA, 1–17. https://doi.org/10.1145/3491102.3501931 

[31] Katharina Krombholz, Peter Frühwirt, Peter Kieseberg, Ioannis Kapsalis, Markus Huber, and Edgar Weippl. 2014. QR 
Code Security: A Survey of Attacks and Challenges for Usable Security. In Human Aspects of Information Security, 
Privacy, and Trust, Theo Tryfonas and Ioannis Askoxylakis (Eds.). Springer International Publishing, Cham, 79–90. 

[32] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation 
Strategies for HCI Toolkit Research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–17. https: 
//doi.org/10.1145/3173574.3173610 

[33] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride and Prejudice in Progressive Web 
Apps: Abusing Native App-like Features in Web Applications. In Proceedings of the 2018 ACM SIGSAC Conference 
on Computer and Communications Security (CCS ’18). Association for Computing Machinery, New York, NY, USA, 
1731–1746. https://doi.org/10.1145/3243734.3243867 

[34] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating Multimodal Smartphone Automation by 
Demonstration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). Association 
for Computing Machinery, New York, NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483 

[35] Xu Liu, David Doermann, and Huiping Li. 2008. A Camera-Based Mobile Data Channel: Capacity and Analysis. In 
Proceedings of the 16th ACM International Conference on Multimedia (Vancouver, British Columbia, Canada) (MM ’08). 
Association for Computing Machinery, New York, NY, USA, 359–368. https://doi.org/10.1145/1459359.1459408 

[36] Yi Liu, Enze Xu, Yun Ma, and Xuanzhe Liu. 2019. A First Look at Instant Service Consumption with Quick Apps on 
Mobile Devices. In 2019 IEEE International Conference on Web Services (ICWS). IEEE, Milan, Italy, 328–335. https: 
//doi.org/10.1109/ICWS.2019.00061 

[37] MattKC. 2020. Snake in a QR code. https://mattkc.com/etc/snakeqr/ 
[38] Beat Gfeller Michael Rohs. 2004. Using Camera-Equipped Mobile Phones for Interacting with Real-World Objects, 

In Advances in pervasive computing, Alois Ferscha and et al. (Eds.). Books@ocg.at 176, 265–271. Pervasive 2004; 
Conference Date: April 18-23, 2004. 

[39] Microsoft. 2008. Azure Virtual Desktop | Microsoft Azure. https://azure.microsoft.com/en-us/services/virtual-desktop/ 
[40] Numecent. 2012. Cloudpager - Container Management for Windows Desktops. https://www.numecent.com/ 

cloudpager/ 
[41] Appy Pie. 2010. Free Online Mobile App Builder. https://www.appypie.com/app-builder/appmaker 
[42] M. Rohs. 2005. Visual code widgets for marker-based interaction. In 25th IEEE International Conference on Distributed 

Computing Systems Workshops. IEEE, Columbus, OH, USA, 506–513. https://doi.org/10.1109/ICDCSW.2005.140 
[43] Samsung. 2012. SmartThings Developers. https://smartthings.developer.samsung.com/ 
[44] Aislan Tavares. 2021. QRGame. https://github.com/thisaislan/qrgame original-date: 2021-06-06T04:41:45Z. 
[45] Thunkable. 2015. Thunkable: Build powerful, native mobile apps without coding. https://thunkable.com/ 
[46] VMware. 2006. What is VMware Horizon? | VDI Software. https://www.vmware.com/products/horizon.html 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 

https://doi.org/10.1145/1294211.1294254
https://doi.org/10.1145/3332165.3347925
https://developer.apple.com/homekit/
https://developer.apple.com/app-clips/
https://developer.apple.com/documentation/app_clips/choosing_the_right_functionality_for_your_app_clip
https://developer.apple.com/documentation/app_clips/choosing_the_right_functionality_for_your_app_clip
https://webkit.org/tracking-prevention/
https://www.qrcode.com/en/about/
https://doi.org/10.1145/3460112.3471961
https://doi.org/10.1145/3332165.3347890
https://doi.org/10.1145/3491102.3501931
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3243734.3243867
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/1459359.1459408
https://doi.org/10.1109/ICWS.2019.00061
https://doi.org/10.1109/ICWS.2019.00061
https://mattkc.com/etc/snakeqr/
https://azure.microsoft.com/en-us/services/virtual-desktop/
https://www.numecent.com/cloudpager/
https://www.numecent.com/cloudpager/
https://www.appypie.com/app-builder/appmaker
https://doi.org/10.1109/ICDCSW.2005.140
https://smartthings.developer.samsung.com/
https://github.com/thisaislan/qrgame
https://thunkable.com/
https://www.vmware.com/products/horizon.html
https://Books@ocg.at
https://QRcode.com


211:22 Adil Rahman and Seongkook Heo 

[47] Thomas Zachariah, Joshua Adkins, and Prabal Dutta. 2020. Browsing the Web of Connectable Things. In Proceedings 
of the 2020 International Conference on Embedded Wireless Systems and Networks (Lyon, France) (EWSN ’20). Junction 
Publishing, USA, 49–60. 

[48] Thomas Zachariah and Prabal Dutta. 2019. Browsing the Web of Things in Mobile Augmented Reality. In Proceedings 
of the 20th International Workshop on Mobile Computing Systems and Applications (Santa Cruz, CA, USA) (HotMobile 
’19). Association for Computing Machinery, New York, NY, USA, 129–134. https://doi.org/10.1145/3301293.3302359 

[49] Deze Zeng, Song Guo, and Zixue Cheng. 2011. The Web of Things: A Survey (Invited Paper). Journal of Communications 
6, 6 (Sept. 2011), 424–438. https://doi.org/10.4304/jcm.6.6.424-438 

[50] Xiong Zhang and Philip J. Guo. 2019. Mallard: Turn the Web into a Contextualized Prototyping Environment for 
Machine Learning. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST 
’19). Association for Computing Machinery, New York, NY, USA, 605–618. https://doi.org/10.1145/3332165.3347936 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 

https://doi.org/10.1145/3301293.3302359
https://doi.org/10.4304/jcm.6.6.424-438
https://doi.org/10.1145/3332165.3347936


Frappé: An Ultra Lightweight Mobile UI Framework 211:23 

A SUPPLEMENTARY FIGURES 

Fig. 10. UI components currently supported by enFrappé 

Fig. 11. Frappé decomposes every UI component into a set of basic parameters. (a) Properties of an input 
field component; (b) properties of a radio group component; (c) properties of a text component. 

Received January 2023; Revised May 2023; Accepted June 2023 

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. MHCI, Article 211. Publication date: September 2023. 


	Abstract
	1 Introduction
	2 Related Work
	2.1 On-Demand Application Delivery
	2.2 Interactive Uses of Visual Markers
	2.3 Rapid Application Prototyping

	3 Framework Design Principles
	4 Frappé
	4.1 System Design and Implementation
	4.2 Designing and Deploying frApps

	5 Application Scenarios
	5.1 Data Collection
	5.2 Interfacing the Physical Objects
	5.3 Controlling Virtual Systems

	6 Technical Evaluation
	6.1 Frappé App Size Analysis
	6.2 Network Usage
	6.3 App Load Time

	7 User Study
	7.1 Participants
	7.2 Study Design
	7.3 Tasks
	7.4 Results

	8 Discussion
	8.1 Tradeoff Between UI Customizability and Framework Efficacy
	8.2 Limitations

	9 Conclusion
	References
	A Supplementary Figures

