

Vrije Universiteit Brussel

Inputs, Outputs, and Composition in the Logic of Information Flows
Aamer, Heba; Bogaerts, Bart; SURINX, Dimitri; Ternovska, Eugenia; Van Den Bussche, Jan

Published in:
ACM Transactions on Computational Logic

DOI:
10.1145/3604553

Publication date:
2023

License:
Unspecified

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Aamer, H., Bogaerts, B., SURINX, D., Ternovska, E., & Van Den Bussche, J. (2023). Inputs, Outputs, and
Composition in the Logic of Information Flows. ACM Transactions on Computational Logic, 24(4), 1-44. [33].
https://doi.org/10.1145/3604553

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 28. Apr. 2024

https://doi.org/10.1145/3604553
https://cris.vub.be/en/publications/inputs-outputs-and-composition-in-the-logic-of-information-flows(a9c9b100-cac4-4dd9-8bf3-0f349661dea1).html
https://doi.org/10.1145/3604553

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Inputs, Outputs, and Composition in the Logic of Information Flows

HEBA AAMER, Hasselt University, Belgium

BART BOGAERTS, Vrije Universiteit Brussel, Belgium

DIMITRI SURINX, Hasselt University, Belgium

EUGENIA TERNOVSKA, Simon Fraser University, Canada

JAN VAN DEN BUSSCHE, Hasselt University, Belgium

The logic of information flows (LIF) is a general framework in which tasks of a procedural nature can be modeled in a declarative,

logic-based fashion. The first contribution of this paper is to propose semantic and syntactic definitions of inputs and outputs of LIF

expressions. We study how the two relate and show that our syntactic definition is optimal in a sense that is made precise. The second

contribution is a systematic study of the expressive power of sequential composition in LIF. Our results on composition tie in the

results on inputs and outputs, and relate LIF to first-order logic (FO) and bounded-variable LIF to bounded-variable FO.

This paper is the extended version of a paper presented at KR 2020 [2].

CCS Concepts: • Computing methodologies→ Knowledge representation and reasoning; • Theory of computation→ Logic;
• Software and its engineering→ Software verification and validation.

Additional Key Words and Phrases: dynamic logic, expressive power, binary relations on valuations

ACM Reference Format:
Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche. 2018. Inputs, Outputs, and Composition in

the Logic of Information Flows. ACM Trans. Comput. Logic 1, 1 (May 2018), 45 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The Logic of Information Flows (LIF) [25, 26] is a knowledge representation framework designed tomodel and understand

how information propagates in complex systems, and to find ways to navigate it efficiently. The basic idea is that

modules, that can be given procedurally or declaratively, are the atoms of a logic whose syntax resembles first-order

logic, but whose semantics produces new modules. In LIF, atomic modules are modeled as relations with designated

input and output arguments. Computation is modeled as propagation of information from inputs to outputs, similarly to

propagation of tokens in Petri nets. The specification of a complex system then amounts to connecting atomic modules

together. For this purpose, LIF uses the classical logic connectives, i.e., the boolean operators, equality, and existential

quantification. The goal is to start from constructs that are well understood, and to address the fundamental question

of what logical means are necessary and sufficient to model computations declaratively. The eventual goal, which goes

beyond the topic of this paper, is to come up with restrictions or extensions of LIF that make the computations efficient.

Authors’ addresses: Heba Aamer, Hasselt University, Hasselt, Belgium, heba.mohamed@uhasselt.be; Bart Bogaerts, Vrije Universiteit Brussel, Brussels,

Belgium, bart.bogaerts@vub.be; Dimitri Surinx, Hasselt University, Hasselt, Belgium, surinxd@gmail.com; Eugenia Ternovska, Simon Fraser University,

Burnaby, BC, Canada, ter@sfu.ca; Jan Van den Bussche, Hasselt University, Hasselt, Belgium, jan.vandenbussche@uhasselt.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Aamer et al.

In its most general form, LIF is a rich family of logics with recursion and higher-order variables. Atomic modules

are given by formulae in various logics, and may be viewed as solving the task of Model Expansion [22]: the input

structure is expanded to satisfy the specification of a module thus producing an output. The semantics is given in terms

of pairs of structures. We can, for example, give a graph (a relational structure) on the input of a module that returns a

Hamiltonian cycle on the output, and compose it sequentially with a module that checks whether the produced cycle is

of even length. One can vary both the expressiveness of logics for specifying atomic modules and the operations for

combining modules, to achieve desirable complexity of the computation for the tasks of interest.

Many issues surrounding LIF, however, are already interesting in a first-order setting (see, e.g., [1]); and in fact such

a setting is more generic than the higher-order setting, which can be obtained by considering relations as atomary

data values. Thus, in this paper, we give a self-contained, first-order presentation of LIF. Syntactically, atomic modules

here are relation atoms with designated input and output positions. Such atoms are combined using a set of algebraic

operations into LIF expressions. The semantics is defined in terms of pairs of valuations of first-order variables; the first

valuation represents a situation right before applying the module, while the second represents a possible situation

immediately afterwards. The results in this paper are then also applicable to the case of higher-order variables.

Our contributions can be summarized as follows.

(1) While the input and output arguments of atomic modules are specified by the vocabulary, it is not clear how

to designate the input and output variables of a complex LIF expression that represents a compound module.

Actually, coming up with formal definitions of what it means for a variable to be an input or output is a

technically and philosophically interesting undertaking. We propose semantic definitions, based on natural

intuitions, which are, of course, open to further debate. The semantic notions of input and output turn out to be

undecidable. This is not surprising, since LIF expressions subsume classical first-order logic formulas, for which

most inference tasks in general are undecidable.

(2) We proceed to give an approximate, syntactic definition of the input and output variables of a formula, which is

effectively computable. Indeed, our syntactic definition is compositional, meaning that the set of syntactic input

(or output) variables of a formula depends only on the top-level operator of the formula, and the syntactic inputs

and outputs of the operands. We prove our syntactic input–output notion to be sound: every semantic input or

output is also a syntactic input or output, and the syntactic inputs and outputs are connected by a property that

we call input–output determinacy. Moreover, we prove an optimality result: our definition provides the most

precise approximation to semantic input and outputs among all compositional and sound definitions.

(3) We investigate the expressive power of sequential composition in the context of LIF. The sequential composition

of two modules is fundamental to building complex systems. Hence, we are motivated to understand in detail

whether or not this operation is expressible in terms of the basic LIF connectives. This question turns out to be

approachable through the notion of inputs and outputs. Indeed, there turns out to be a simple expression for

the composition of io-disjoint modules. Here, io-disjointness means that inputs and outputs do not overlap. For

example, a module that computes a function of 𝑥 and returns the result in 𝑦 is io-disjoint; a module that stores

the result back in 𝑥 , thus overwriting the original input, is not.

(4) We then use the result on io-disjoint expressions to show that composition is indeed an expressible operator in

the classical setting of LIF, where there is an infinite supply of fresh variables. (In contrast, the expression for

io-disjoint modules does not need extra variables.)

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Inputs, Outputs, and Composition in the Logic of Information Flows 3

(5) Finally, we complement the above findings with a result on LIF in a bounded-variable setting: in this setting,

composition is necessarily a primitive operator.

Many of our notions and results are stated generally in terms of transition systems (binary relations) on first-order

valuations. Consequently, we believe our work is also of value to settings other than LIF inasmuch as they involve

dynamic semantics. Several such settings, where input–output specifications are important, are discussed in the related

work section.

The rest of this paper is organized as follows. In Section 2, we formally introduce the Logic of Information Flows

from a first-order perspective. Section 3 presents our study concerning the notion of inputs and outputs of complex

expressions. Section 7 then presents our study on the expressibility of sequential composition. Section 8 discusses

related work. We conclude in Section 9. In Sections 4, 5, and 6, we give extensive proofs of theorems we discuss in

Section 3.

2 PRELIMINARIES

A (module) vocabulary S is a triple (Names, ar, iar) where:

• Names is a nonempty set, the elements of which are called module names;

• ar assigns an arity to each module name in Names;

• iar assigns an input arity to each module name𝑀 in Names, where iar (𝑀) ≤ ar (𝑀).

We fix a countably infinite universe dom of data elements. An interpretation 𝐷 of S assigns to each module name𝑀

in Names an ar (𝑀)-ary relation 𝐷 (𝑀) over dom.

Furthermore, we fix a universe of variables V. This set may be finite or infinite; the size of V will influence the

expressive power of our logic. A valuation is a function from V to dom. The set of all valuations is denoted by V . We

say that a1 and a2 agree on 𝑌 ⊆ V if a1 (𝑦) = a2 (𝑦) for all 𝑦 ∈ 𝑌 and that they agree outside 𝑌 if they agree on V − 𝑌 .

Sometimes, we simply write a1 = a2 on (outside) 𝑌 to say that they agree on (outside) 𝑌 . A partial valuation on 𝑌 ⊆ V is

a function from 𝑌 to dom; we will also call this a 𝑌 -valuation. If a is a valuation, we use a |𝑌 to denote its restriction to

𝑌 . Let a be a valuation and let a1 be a partial valuation on 𝑌 ⊆ V. Then the substitution of a1 into a , denoted by a [a1],
is defined as a1 ∪ (a |V−𝑌). In the special case where a1 is defined on a single variable 𝑥 with a1 (𝑥) = 𝑑 , we also write

a [a1] as a [𝑥 : 𝑑].
We assume familiarity with the syntax and semantics of first-order logic (FO, relational calculus) over S [8] and use

:= to mean “is by definition”.

2.1 Binary Relations on Valuations

The semantics of LIF will be defined in terms of binary relations onV (abbreviated BRV: Binary Relations on Valuations).

Before formally introducing LIF, we define operations on BRVs corresponding to the classical logical connectives,

adapted to a dynamic semantics. For boolean connectives, we simply use the standard set operations. For equality, we

introduce selection operators. For existential quantification, we introduce cylindrification operators.

Let 𝐴 and 𝐵 be BRVs, let 𝑍 be a finite set of variables, and let 𝑥 and 𝑦 be variables.

• Set Operations: 𝐴 ∪ 𝐵,𝐴 ∩ 𝐵, and 𝐴 − 𝐵 are well known.

• Composition
𝐴 ; 𝐵 := {(a1, a2) | ∃a3 : (a1, a3) ∈ 𝐴 and (a3, a2) ∈ 𝐵}.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Aamer et al.

• Converse
𝐴⌣ := {(a1, a2) | (a2, a1) ∈ 𝐴}.

• Left and Right Cylindrifications

cyl
𝑙
𝑍 (𝐴) := {(a1, a2) | ∃a ′1 : (a ′

1
, a2) ∈ 𝐴 and a ′

1
and a1 agree outside 𝑍 };

cyl
𝑟
𝑍 (𝐴) := {(a1, a2) | ∃a ′2 : (a1, a

′
2
) ∈ 𝐴 and a ′

2
and a2 agree outside 𝑍 }.

• Left and Right Selections

𝜎 l𝑥=𝑦 (𝐴) := {(a1, a2) ∈ 𝐴 | a1 (𝑥) = a1 (𝑦)};

𝜎r𝑥=𝑦 (𝐴) := {(a1, a2) ∈ 𝐴 | a2 (𝑥) = a2 (𝑦)}.

• Left-to-Right Selection

𝜎 lr𝑥=𝑦 (𝐴) := {(a1, a2) ∈ 𝐴 | a1 (𝑥) = a2 (𝑦)}.

If 𝑥 and 𝑦 are tuples of variables of length 𝑛, we write 𝜎 lr𝑥=𝑦 (𝐴) for

𝜎 lr𝑥1=𝑦1

𝜎 lr𝑥2=𝑦2

. . . 𝜎 lr𝑥𝑛=𝑦𝑛 (𝐴)

and if 𝑧 is a variable we write cyl
𝑙
𝑧 for cyl

𝑙
{𝑧 } . Intuitively, a BRV is a dynamic system that manipulates the interpretation

of variables. A pair (a1, a2) in a BRV represents that a transition from a1 to a2 is possible, i.e., that when given a1 as input,

the values of the variables can be updated to a2. The operations defined above correspond to manipulations/combinations

of such dynamic systems. Union, for instance, represents a non-deterministic choice, while composition corresponds

to composing two such systems. Cylindrification corresponds, in the dynamic view, to following the underlying BRV

followed by ignoring (erasing) some value either in the inputs or the outputs. The selection operations correspond to

performing checks, on the input, the output, or a combination of both, after performing what the underlying BRV does.

Some of the above operators are redundant, in the sense that they can be expressed in terms of others, for instance,

𝐴 ∩ 𝐵 = 𝐴 − (𝐴 − 𝐵). We also have:

Lemma 2.1. For any BRV 𝐴, and any variables 𝑥 and 𝑦, the following hold:

cyl
𝑟
𝑥 (𝐴) = (cyl

𝑙
𝑥 (𝐴⌣))⌣

cyl
𝑙
𝑥 (𝐴) = (cyl

𝑟
𝑥 (𝐴⌣))⌣

𝜎r𝑥=𝑦 (𝐴) = 𝐴 ∩ cyl
𝑙
𝑥𝜎

lr
(𝑥,𝑥)=(𝑦,𝑥)cyl

𝑙
𝑥 (𝐴)

𝜎 l𝑥=𝑦 (𝐴) = 𝐴 ∩ cyl
𝑟
𝑥𝜎

lr
(𝑦,𝑥)=(𝑥,𝑥)cyl

𝑟
𝑥 (𝐴)

𝜎 l𝑥=𝑦 (𝐴) = 𝜎r𝑥=𝑦 (𝐴⌣)⌣

The expression for 𝜎r𝑥=𝑦 can be explained as follows. First, we copy 𝑥 from right to left by applying cyl
𝑙
𝑥 followed by

𝜎 lr𝑥=𝑥 . Selection 𝜎r𝑥=𝑦 can now be simulated by 𝜎 lr𝑥=𝑦 . The original 𝑥 value on the left is restored by a final application of

cyl
𝑙
𝑥 and intersecting with the original 𝐴.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Inputs, Outputs, and Composition in the Logic of Information Flows 5

2.2 The Logic of Information Flows

The language of LIF expressions 𝛼 over a vocabulary S is defined by the following grammar:

𝛼 ::= id | 𝑀 (𝑧) | 𝛼 ∪ 𝛼 | 𝛼 ∩ 𝛼 | 𝛼 − 𝛼 | 𝛼 ; 𝛼 | 𝛼⌣ | cyl
𝑙
𝑍 (𝛼) | cyl

𝑟
𝑍 (𝛼) | 𝜎

lr
𝑥=𝑦 (𝛼) | 𝜎 l𝑥=𝑦 (𝛼) | 𝜎r𝑥=𝑦 (𝛼)

Here,𝑀 is any module name in S; 𝑍 is a finite set of variables; 𝑧 is a tuple of variables; and 𝑥,𝑦 are variables. For atomic

module expressions, i.e., expressions of the form𝑀 (𝑧), the length of 𝑧 must equal ar (𝑀). In practice, we will often write

𝑀 (𝑥 ;𝑦) for atomic module expressions, where 𝑥 is a tuple of variables of length iar (𝑀) and 𝑦 is a tuple of variables of

length ar (𝑀) − iar (𝑀).
We will define the semantics of a LIF expression 𝛼 , in the context of a given interpretation 𝐷 , as a BRV which will

be denoted by ⟦𝛼⟧𝐷 . Thus, adapting Gurevich’s terminology [13, 14], the semantics ⟦𝛼⟧ of a LIF expression 𝛼 is a

global BRV. Formally, we define a global BRV to be a function 𝑄 that maps interpretations 𝐷 of S to BRVs. Thus, ⟦𝛼⟧
corresponds to the global BRV 𝑄 where 𝑄 (𝐷) = ⟦𝛼⟧𝐷 .

For atomic module expressions, we define

⟦𝑀 (𝑥 ;𝑦)⟧𝐷 := {(a1, a2) ∈ V×V | a1 (𝑥) · a2 (𝑦) ∈ 𝐷 (𝑀) and a1 and a2 agree outside 𝑦}.

Here, a1 (𝑥) · a2 (𝑦) denotes the concatenation of tuples. Intuitively, the semantics of an expression𝑀 (𝑥 ;𝑦) represents a
transition from a1 to a2: the inputs of the module are “read” in a1 and the outputs are updated in a2. The value of every

variable that is not an output is preserved; this important semantic principle is a realization of the commonsense law of

inertia [19, 20].

We further define

⟦id⟧𝐷 := {(a, a) | a ∈ V}.

The semantics of other operators is obtained directly by applying the corresponding operation on BRVs, e.g.,

⟦𝛼 − 𝛽⟧𝐷 := ⟦𝛼⟧𝐷 − ⟦𝛽⟧𝐷 .

⟦𝜎 lr𝑥=𝑦 (𝛼)⟧𝐷 := 𝜎 lr𝑥=𝑦 (⟦𝛼⟧𝐷) .

We say that 𝛼 and 𝛽 are equivalent if ⟦𝛼⟧𝐷 = ⟦𝛽⟧𝐷 for each interpretation 𝐷 , i.e., if they denote the same global BRV.

2.3 Satisfiability of LIF Expressions

In this section, we will show that the problem of deciding whether a given LIF expression is satisfiable is undecidable.

Thereto we begin by noting that first-order logic (FO) is naturally embedded in LIF in the following manner. When

evaluating FO formulas on interpretations, we agree that the domain of quantification is always dom.

Lemma 2.2. Let S be a vocabulary with iar (𝑅) = 0 for every 𝑅 ∈ S. Then, for every FO formula 𝜑 over S, there exists a
LIF expression 𝛼𝜑 such that for every interpretation 𝐷 the following holds:

⟦𝛼𝜑⟧𝐷 = {(a, a) | 𝐷,a |= 𝜑}.

Proof. The proof is by structural induction on 𝜑 .

• If 𝜑 is 𝑥 = 𝑦, take 𝛼𝜑 = 𝜎r𝑥=𝑦 (id).
• If 𝜑 is 𝑅(𝑥) for some 𝑅 ∈ S, take 𝛼𝜑 = id ∩ 𝑅(;𝑥).
• If 𝜑 is 𝜑1 ∨ 𝜑2, take 𝛼𝜑 = 𝛼𝜑1

∪ 𝛼𝜑2
.

• If 𝜑 is ¬𝜑1, take 𝛼𝜑 = id − 𝛼𝜑1
.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Aamer et al.

• If 𝜑 is ∃𝑥 𝜑1, take 𝛼𝜑 = 𝜎 lr𝑥=𝑥 (cyl
𝑙
𝑥 (cyl

𝑟
𝑥 (𝛼𝜑1

))). □

It is well known that satisfiability of FO formulas over a fixed countably infinite domain is undecidable. This leads to

the following undecidability result.

Problem: Satisfiability
Given: a LIF expression 𝛼 .

Decide: Is there an interpretation 𝐷 such that ⟦𝛼⟧𝐷 ≠ ∅?

Proposition 2.3. The satisfiability problem is undecidable.

Proof. The proof is by reduction from the satisfiability of FO formulas. Let 𝜑 be an FO formula and let 𝛼𝜑 be the

LIF expression obtained from Lemma 2.2. It is clear that 𝛼𝜑 is satisfiable if and only if 𝜑 is. □

3 INPUTS AND OUTPUTS

We are now ready to study inputs and outputs of LIF expressions, and, more generally, of global BRVs. We first investigate

what inputs and outputs mean on the semantic level before introducing a syntactic definition for LIF expressions.

3.1 Semantic Inputs and Outputs for Global BRVs

Intuitively, an output is a variable whose value can be changed by the expression, i.e., a variable that is not subject to

inertia.

Definition 3.1. A variable 𝑥 is a semantic output for a global BRV 𝑄 if there exists an interpretation 𝐷 and (a1, a2) ∈
𝑄 (𝐷) such that a1 (𝑥) ≠ a2 (𝑥). We use 𝑂sem (𝑄) to denote the set of semantic output variables of 𝑄 . If 𝛼 is a LIF

expression, we call a variable a semantic output of 𝛼 if it is a semantic output of ⟦𝛼⟧. We also write 𝑂sem (𝛼) for the
semantic outputs of 𝛼 . A variable that is not a semantic output is also called an inertial variable.

Defining semantic inputs is a bit more subtle. Intuitively, a variable is an input for a BRV if its value on the left-hand

side matters for determining the right-hand side (i.e., that if the value of the input would have been different, so would

have been the right-hand side; which is in fact a very coarse counterfactual definition of actual causality [18]). However,

a naive formalization of this intuition would result in a situation in which all inertial variables (variables that are not

outputs) are inputs since their value on the right-hand side always equals to the one on the left-hand side. A slight

refinement of our intuition is that the inputs are those variables whose value matters for determining the possible

values of the outputs. This is formalized in the following definitions.

Definition 3.2. Let 𝑄 be a global BRV and 𝑋,𝑌 be sets of variables. We say that 𝑋 determines 𝑄 on 𝑌 if for every

interpretation 𝐷 , every (a1, a2) ∈ 𝑄 (𝐷) and every a ′
1
such that a ′

1
= a1 on 𝑋 , there exists a a ′

2
such that a ′

2
= a2 on 𝑌

and (a ′
1
, a ′

2
) ∈ 𝑄 (𝐷).

Definition 3.3. A variable 𝑥 is a semantic input for a global BRV 𝑄 if V − {𝑥} does not determine 𝑄 on 𝑂sem (𝑄). The
set of input variables of 𝑄 is denoted by 𝐼 sem (𝑄). A variable is a semantic input of a LIF expression 𝛼 if it is a semantic

input of ⟦𝛼⟧; the semantic inputs of 𝛼 are denoted by 𝐼 sem (𝛼).

From Definition 3.2, we can rephrase the definition for semantic inputs to:

Proposition 3.4. A variable 𝑥 is a semantic input for a global BRV𝑄 if and only if there is an interpretation 𝐷 , a value

𝑑 ∈ dom, and (a1, a2) ∈ 𝑄 (𝐷) such that there is no valuation a ′
2
that agrees with a2 on𝑂sem (𝑄) and (a1 [𝑥 : 𝑑], a ′

2
) ∈ 𝑄 (𝐷).

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Inputs, Outputs, and Composition in the Logic of Information Flows 7

The following proposition shows that the semantic inputs of 𝑄 are indeed exactly the variables that determine 𝑄 .

Proposition 3.5. If a set of variables 𝑋 determines a global BRV 𝑄 on 𝑂sem (𝑄), then 𝐼 sem (𝑄) ⊆ 𝑋 .

Proof. Let 𝑣 be any variable in 𝐼 sem (𝑄). We know that V − {𝑣} does not determine 𝑄 on 𝑂sem (𝑄). If 𝑣 ∉ 𝑋 , then

𝑋 ⊆ V − {𝑣}, so 𝑋 would not determine 𝑄 on 𝑂sem (𝑄), which is impossible. Hence, 𝑣 must be in 𝑋 as desired. □

Under a mild assumption, also the converse to Proposition 3.5 holds:
1

Proposition 3.6. Assume there exists a finite set of variables that determines a global BRV 𝑄 on 𝑂sem (𝑄). Then,
𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄).

Proof. Let (a1, a2) ∈ 𝑄 (𝐷) and a ′
1
= a1 on 𝐼 sem (𝑄) for some interpretation 𝐷 and valuations a1, a2, and a ′

1
. To

show that 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄), we need to find a valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ 𝑄 (𝐷) and a ′

2
= a2 on

𝑂sem (𝑄). By assumption, let 𝑋 be a finite set of variables that determines 𝑄 on 𝑂sem (𝑄).
Thereto, take a ′′

1
to be the valuation a ′

1
[a1 |𝑋] which is the valuation a ′

1
after changing the values for the variables

in 𝑋 to be as in a1. Thus, a
′′
1
= a1 on 𝑋 , while a ′′

1
= a ′

1
outside 𝑋 . Since 𝑋 determines 𝑄 on 𝑂sem (𝑄), we know that

there is a valuation a ′′
2
such that (a ′′

1
, a ′′

2
) ∈ 𝑄 (𝐷) and a ′′

2
= a2 on 𝑂sem (𝑄). To reach our goal, we would like to do

incremental changes to a ′′
1
in order to be similar to a ′

1
while showing that each of the intermediate valuations does

satisfy the determinacy conditions.

From construction, we know that a ′′
1
= a ′

1
on 𝑋 ∩ 𝐼 sem (𝑄). Using the finiteness assumption for 𝑋 , let 𝑋 − 𝐼 sem (𝑄) be

the set of variables {𝑥1, . . . , 𝑥𝑛}. Define the sequence of valuations `0, `1, . . . , `𝑛 such that

• `0 := a ′′
1
; and

• `𝑖 := `𝑖−1 [{𝑥𝑖 ↦→ a ′
1
(𝑥𝑖)}] so `𝑖 is `𝑖−1 after changing the value of 𝑥𝑖 to be as in a ′

1
.

We claim that for 𝑖 ∈ {0, . . . , 𝑛}, there exists a valuation ^𝑖 such that (`𝑖 , ^𝑖) ∈ 𝑄 (𝐷) and ^𝑖 = a2 on 𝑂sem (𝑄). Since `𝑛
is clearly the same valuation as a ′

1
, we can then take a ′

2
to be ^𝑛 which is the required.

We verify our claim by induction.

Base Case: for 𝑖 = 0, we can see that ^0 = a ′′
2
.

Inductive Step: for 𝑖 > 0, by assumption, we know that there is a valuation ^𝑖−1 such that (`𝑖−1, ^𝑖−1) ∈ 𝑄 (𝐷) and
^𝑖−1 = a2 on 𝑂sem (𝑄). It is clear that `𝑖 = `𝑖−1 outside {𝑥𝑖 } which is V − {𝑥𝑖 }. Since 𝑥𝑖 ∉ 𝐼 sem (𝑄), we know
that V − {𝑥𝑖 } determines 𝑄 on 𝑂sem (𝑄). Hence, there is a valuation ^𝑖 such that (`𝑖 , ^𝑖) ∈ 𝑄 (𝐷) and ^𝑖 = ^𝑖−1

on 𝑂sem (𝑄). Since ^𝑖−1 = a2 on 𝑂sem (𝑄), we can see that ^𝑖 = a2 on 𝑂sem (𝑄). □

In the next remark, we show that without our assumption, we can find an example of a global BRV that is not

determined on its semantic outputs by its semantic inputs.

Remark 3.7. Let 𝑄 be the global BRV that maps every 𝐷 to the same BRV, namely:

𝑄 (𝐷) = {(a1, a2) ∈ V ×V | a1 and a2 differ on finitely many variables}.

Since the variables that can be changed by 𝑄 are not restricted, we see that 𝑂sem (𝑄) = V. We now verify that

𝐼 sem (𝑄) = ∅. Let 𝑣 be any variable. We can see that 𝑣 ∉ 𝐼 sem (𝑄). Thereto, we check that V − {𝑣} determines 𝑄 on

𝑂sem (𝑄). Let 𝐷 be an interpretation and a1, a2, and a
′
1
valuations such that (a1, a2) ∈ 𝑄 (𝐷) and a ′

1
= a1 outside {𝑣}.

Since a1 and a2 differ on finitely many variables, we can see that a ′
1
and a2 also do. Hence, (a ′

1
, a2) ∈ 𝑄 (𝐷).

1
Proposition 3.6 indeed provides a converse to Proposition 3.5: given that 𝐼 sem (𝑄) determines𝑄 on𝑂sem (𝑄) and 𝐼 sem (𝑄) ⊆ 𝑋 for some set 𝑋 , clearly

also 𝑋 determines𝑄 on𝑂sem (𝑄) .
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Aamer et al.

Finally, we verify that 𝐼 sem (𝑄) does not determine𝑄 on𝑂sem (𝑄). To see a counterexample, let 𝐷 be an interpretation

and a1 be the valuation that assigns 1 to every variable. We can see that (a1, a1) ∈ 𝑄 (𝐷). Let a2 be the valuation that

assigns 2 to every variable. It is clear that a2 = a1 on 𝐼 sem (𝑄) = ∅, however, clearly (a2, a1) ∉ 𝑄 (𝐷). By Proposition 3.6,

we know that there is no finite set of variables that does determine 𝑄 on 𝑂sem (𝑄). □

The reader should not be lulled into believing that 𝐼 sem (𝑄) determines a global BRV 𝑄 on the set V of all variables

since 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄) and no other variable outside 𝑂sem (𝑄) can have its value changed. In the

following remark, we give a simple counterexample.

Remark 3.8. We show that 𝐼 sem (𝑄) does not necessarily determine 𝑄 on V for every global BRV 𝑄 . Take 𝑄 to be

defined by the LIF expression 𝜎 l𝑥=𝑦 (id), so, for every 𝐷 , we have

𝑄 (𝐷) = {(a, a) | a ∈ V such that a (𝑥) = a (𝑦)}.

It is clear that 𝑂sem (𝑄) = ∅ and 𝐼 sem (𝑄) = {𝑥,𝑦}.
Let a1 be the valuation that assigns 1 to every variable. Clearly, (a1, a1) ∈ 𝑄 (𝐷) for any interpretation 𝐷 . Now take

a ′
1
to be the valuation that assigns 1 to 𝑥 and 𝑦, while it assigns 2 to every other variable. It is clear that a ′

1
= a1 on

𝐼 sem (𝑄).
If 𝐼 sem (𝑄) were to determine𝑄 onV, we should find a valuation a2 that agrees with a1 onV such that (a ′

1
, a2) ∈ 𝑄 (𝐷).

In other words, this means that (a ′
1
, a1) ∈ 𝑄 (𝐷), which is clearly not possible. □

Following the above remark, we note that in order to determine a global BRV 𝑄 on the set V of all variables we

need to know the values of the input variables of 𝑄 along with the values of the variables outside the outputs of 𝑄 . In

the following proposition, we show that when the inputs determine 𝑄 on the outputs, also a variant of the notion of

determinacy holds, compared to the one we defined in Definition 3.2.

Proposition 3.9. Let 𝑄 be a global BRV. If 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄), then for every interpretation 𝐷 , every

(a1, a2) ∈ 𝑄 (𝐷) and every a ′
1
that agrees with a1 on 𝐼 sem (𝑄) and outside 𝑂sem (𝑄), we have (a ′

1
, a2) ∈ 𝑄 (𝐷).

Proof. Suppose that

(a1, a2) ∈ 𝑄 (𝐷) and a ′
1
= a1 on 𝐼 sem (𝑄) and outside 𝑂sem (𝑄). (1)

By definition of 𝑂sem (𝑄), all variables outside 𝑂sem (𝑄) are inertial, so

a1 = a2 outside 𝑂sem (𝑄). (2)

Since 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄), by Definition 3.2 there exists a ′
2
such that

(i) a ′
2
= a2 on 𝑂sem (𝑄);

(ii) (a ′
1
, a ′

2
) ∈ 𝑄 (𝐷).

From (ii) and the definition of semantic outputs, we have

a ′
1
= a ′

2
outside 𝑂sem (𝑄). (3)

Chaining together Equations 3, 1 and 2, we obtain that a ′
2
= a2 outside 𝑂

sem (𝑄). Combining this with (i), we obtain

a2 = a ′
2
. Whence, by (ii), (a ′

1
, a2) ∈ 𝑄 (𝐷) as desired. □

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Inputs, Outputs, and Composition in the Logic of Information Flows 9

Intuitively, the inputs and outputs are the only variables that matter for a given global BRV, similar to how in classical

logic the free variables are the only ones that matter. All other variables can take arbitrary values, but, their values are

preserved by inertia, i.e., remain unchanged by the dynamic system. We now formalize this intuition.

Definition 3.10. Let 𝑄 be a global BRV and 𝑋 a set of variables. We say that 𝑄 is inertially cylindrified on 𝑋 if:

(1) all variables in 𝑋 are inertial; and

(2) for every interpretation 𝐷 , every (a1, a2) ∈ 𝑄 (𝐷), and every 𝑋 -valuation a ′ also (a1 [a ′], a2 [a ′]) ∈ 𝑄 (𝐷).

Proposition 3.11. Every global BRV 𝑄 is inertially cylindrified outside the semantic inputs and outputs of 𝑄 assuming

that 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄).

Proof. Let 𝑄 be a global BRV such that 𝐼 sem (𝑄) determines 𝑄 on 𝑂sem (𝑄). Moreover, let 𝑋 be the set of variables

that are neither semantic inputs nor semantic outputs of 𝑄 . It is trivial to show that all the variables in 𝑋 are inertial

since none of the variables in 𝑋 is a semantic output of 𝑄 . What remains to show is that for every interpretation 𝐷 ,

every (a1, a2) ∈ 𝑄 (𝐷), and every 𝑋 -valuation a ′ also (a1 [a ′], a2 [a ′]) ∈ 𝑄 (𝐷).
Let (a1, a2) ∈ 𝑄 (𝐷) for an arbitrary interpretation 𝐷 and let a ′

1
= a1 [a ′] be a valuation for some 𝑋 -valuation a ′.

Since a ′
1
= a1 on 𝐼

sem (𝑄), we know by determinacy that there is a valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ 𝑄 (𝐷) and a ′

2
= a2 on

𝑂sem (𝑄). We now argue that a ′
2
= a2 [a ′]. On the variables of 𝑂sem (𝑄), we know that a2 = a2 [a ′], whence, a ′

2
= a2 [a ′]

on 𝑂sem (𝑄). Now we consider the variables that are not in 𝑂sem (𝑄). It is clear that a1 = a2 outside 𝑂sem (𝑄), whence,
a1 [a ′] = a ′

1
= a ′

2
= a2 [a ′] outside 𝑂sem (𝑄). □

Remark 3.12. Without the assumption, we can give an example of a global BRV that is not inertially cylindrified

outside its semantic inputs and outputs. Let 𝑄 be the global BRV that maps every 𝐷 to the same BRV, namely:

𝑄 (𝐷) = {(a, a) | a ∈ V and no value in the domain occurs infinitely often in a}.

It is clear that 𝑂sem (𝑄) = ∅ and 𝐼 sem (𝑄) = ∅.
We proceed to verify that 𝑄 is not inertially cylindrified on V. Let 𝐷 be any interpretation and a be any valuation

that maps every variable to a unique value from the domain. We can see that (a, a) ∈ 𝑄 (𝐷) since every value in a

appears only once. Now fix some 𝑎 ∈ dom arbitrarily and consider the valuation a ′ that maps every variable to 𝑎. We

can see that (a [a ′], a [a ′]) ∉ 𝑄 (𝐷) since 𝑎 appears infinitely often in a ′ = a [a ′]. □

We remark that the converse of Proposition 3.11 is not true:

Remark 3.13. Consider the same global BRV Q discussed in Remark 3.7 where we showed that 𝐼 sem (𝑄) does not
determine 𝑄 on 𝑂sem (𝑄). Recall that 𝑂sem (𝑄) = V, so the set of variables outside the semantic inputs and outputs is

empty. Trivially, however, 𝑄 is inertially cylindrified on ∅.

3.2 Semantic Inputs and Outputs for LIF Expressions

As we have discussed in the previous section, if there is a finite set of variables that determines a global BRV on its

semantic outputs, then the global BRV has the properties of determinacy and inertial cylindrification. Indeed, that

is the assumption made in Proposition 3.6 from which results like Proposition 3.9 and Proposition 3.11 follow. For

the correctness of our later arguments it is important to emphasize that this assumption is indeed satisfied for global

BRVs that are the semantics of LIF expressions. Indeed, in Section 3.3, we will show that there does exist, for every LIF

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Aamer et al.

expression 𝛼 , a finite set of variables, what we will call the “syntactic input variables” of 𝛼 , that does determine ⟦𝛼⟧ on

a set of “syntactic output variables”, which will include 𝑂sem (𝛼) as desired.
For atomic LIF expressions, the semantic inputs and outputs are easy to determine, as we will show first. Unfortunately,

we show next that the problem is undecidable for general expressions.

We show that semantic inputs and outputs are exactly what one expects for atomic modules:

Proposition 3.14. If 𝛼 is an atomic LIF expressions𝑀 (𝑥 ;𝑦), then

• 𝐼 sem (𝛼) = {𝑥𝑖 | 𝑥 = 𝑥1, . . . , 𝑥𝑛 for 𝑖 ∈ {1, . . . , 𝑛}}; and
• 𝑂sem (𝛼) = {𝑦𝑖 | 𝑦 = 𝑦1, . . . , 𝑦𝑚 for 𝑖 ∈ {1, . . . ,𝑚}}.

Example 3.15. A variable can be both input and output of a given expression. A very simple example is an atomic

module 𝑃1 (𝑥 ;𝑥). To illustrate where this can be useful, assume dom = Z and consider an interpretation 𝐷 such that

𝐷 (𝑃1) = {(𝑛, 𝑛 + 1) | 𝑛 ∈ Z}. In that case, the expression 𝑃1 (𝑥 ;𝑥) represents a dynamic system in which the value of 𝑥

is incremented by 1; 𝑥 is an output of the system since its value is changed; it is an input since its original value matters

for determining its value in the output.

We will now show that the problem of deciding whether a given variable is a semantic input or output of a LIF

expression is undecidable. Proposition 2.3 showed that satisfiability of LIF expressions is undecidable. This leads to the

following undecidability results.

Problem: Semantic Output Membership
Given: a variable 𝑥 and a LIF expression 𝛼 .

Decide: 𝑥 ∈ 𝑂sem (𝛼)?

Proposition 3.16. The semantic output membership problem is undecidable.

Proof. The proof is by reduction from the satisfiability of LIF expressions. Let 𝛼 be a LIF expression. Take 𝛽 to be

cyl
𝑙
𝑥 (𝛼). What remains to show is that 𝑥 ∈ 𝑂sem (𝛽) ⇔ 𝛼 is satisfiable.

(⇒) Let 𝑥 ∈ 𝑂sem (𝛽). Then, there is certainly an interpretation 𝐷 and valuations a1 and a2 such that (a1, a2) ∈
⟦cyl

𝑙
𝑥 (𝛼)⟧𝐷 . Hence, there is also a valuation a ′

1
such that (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 . Certainly, 𝛼 is satisfiable.

(⇐) Let 𝛼 be satisfiable. Then, there is an interpretation 𝐷 and valuations a1 and a2 such that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Also,
let a ′ be an {𝑥}-valuation that maps 𝑥 to 𝑎 with 𝑎 ≠ a2 (𝑥). It is clear then that (a1 [a ′], a2) ∈ ⟦cyl

𝑙
𝑥 (𝛼)⟧𝐷 . We thus see

that 𝑥 ∈ 𝑂sem (𝛽). □

Problem: Semantic Input Membership
Given: a variable 𝑥 and a LIF expression 𝛼 .

Decide: 𝑥 ∈ 𝐼 sem (𝛼)?

Proposition 3.17. The semantic input membership problem is undecidable.

Proof. Let 𝛼 be a LIF expression. Take 𝛽 to be 𝜎 l𝑥=𝑧 (𝛼), where 𝑧 is a variable that is not used in 𝛼 and different from

𝑥 . What remains to show is that 𝑥 ∈ 𝐼 sem (𝛽) ⇔ 𝛼 is satisfiable.

(⇒) Let 𝑥 ∈ 𝐼 sem (𝛽). Then, certainly, there is an interpretation 𝐷 and valuations a1 and a2 such that (a1, a2) ∈
⟦𝜎 l𝑥=𝑧 (𝛼)⟧𝐷 ⊆ ⟦𝛼⟧𝐷 . Certainly, 𝛼 is satisfiable.

(⇐) Let 𝛼 be satisfiable. Then, there is an interpretation 𝐷 and valuations a1 and a2 such that (a1, a2) ∈ ⟦𝛼⟧𝐷 .
Without loss of generality, we can assume that a1 (𝑧) = a1 (𝑥) since 𝑧 is a fresh variable. Hence, (a1, a2) ∈ ⟦𝜎 l𝑥=𝑧 (𝛼)⟧𝐷 .
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Inputs, Outputs, and Composition in the Logic of Information Flows 11

Let a ′
1
be a valuation that agrees with a1 outside 𝑥 such that a ′

1
(𝑥) ≠ a1 (𝑥). Since 𝑥 and 𝑧 are different variables, also

a ′
1
(𝑥) ≠ a ′

1
(𝑧), so clearly there is no valuation a ′

2
such that (a ′

1
, a ′

2
) ∈ ⟦𝜎 l𝑥=𝑧 (𝛼)⟧𝐷 . We then see that 𝑥 ∈ 𝐼 sem (𝛽). □

3.3 Syntactic Inputs and Outputs

Since the membership problems for both semantic inputs and semantic outputs are undecidable, to determine inputs

and outputs in practice, we will need decidable approximations of these concepts. Before giving our syntactic definition,

we define some properties of candidate definitions.

Definition 3.18. Let 𝐼 and 𝑂 be functions from LIF expressions to sets of variables. We say that (𝐼 ,𝑂) is a sound
input–output definition if the following hold:

• If 𝛼 = 𝑀 (𝑥 ;𝑦), then 𝐼 (𝛼) = 𝑥 and 𝑂 (𝛼) = 𝑦,

• 𝑂 (𝛼) ⊇ 𝑂sem (𝛼), and
• 𝐼 (𝛼) determines ⟦𝛼⟧ on 𝑂 (𝛼).

The first condition states that on atomic expressions (of which we know the inputs), 𝐼 and 𝑂 are defined correctly.

The next condition states 𝑂 approximates the semantic notion correctly. We only allow for overapproximations; that

is, false positives are allowed while false negatives are not. The reason for this is that falsely marking a variable as

non-output while it is actually an output would mean incorrectly assuming the variable cannot change value. The last

condition establishes the relation between 𝐼 and𝑂 , and is called input–output determinacy. It states that the inputs need

to be large enough to determine the outputs, as such generalizing the defining condition of semantic inputs.

We first remark that a proposition similar to Proposition 3.5 can be made about sound output definitions.

Proposition 3.19. Let (𝐼 ,𝑂) be a sound input-output definition, 𝛼 be a LIF expression, and 𝑋 a set of variables. If 𝑋

determines ⟦𝛼⟧ on 𝑂 (𝛼), then 𝐼 sem (𝛼) ⊆ 𝑋 .

Proof. By soundness, we know that 𝑂sem (𝛼) ⊆ 𝑂 (𝛼). It follows that 𝑋 determines ⟦𝛼⟧ on 𝑂sem (𝛼). Indeed, in
general, if 𝑋 determines ⟦𝛼⟧ on some 𝑌 , then clearly also 𝑋 determines ⟦𝛼⟧ on 𝑍 for any set 𝑍 such that 𝑍 ⊆ 𝑌 . By

Proposition 3.5, then, we obtain 𝐼 sem (𝛼) ⊆ 𝑋 . □

This proposition along with the input-output determinacy condition imply a condition similar to the second condition

about the inputs:

Proposition 3.20. Let (𝐼 ,𝑂) be a sound input-output definition and 𝛼 be a LIF expression. Then, 𝐼 (𝛼) ⊇ 𝐼 sem (𝛼).

Proof. The proof follows from Proposition 3.19 and knowing that 𝐼 (𝛼) determines ⟦𝛼⟧ on 𝑂 (𝛼). □

Besides requiring that our definitions to be sound, we will focus on definitions that are compositional, in the sense

that definitions of inputs and outputs of compound expressions can be given in terms of their direct subexpressions

essentially treating subexpressions as black boxes. This means that the definition nicely follows the inductive definition

of the syntax. Formally,

Definition 3.21. Suppose 𝐼 and 𝑂 are functions from LIF expression to sets of variables. We say that (𝐼 ,𝑂) is
compositional if for all LIF expressions 𝛼1, 𝛼2, 𝛽1, and 𝛽2 with 𝐼 (𝛼1) = 𝐼 (𝛼2), 𝑂 (𝛼1) = 𝑂 (𝛼2), 𝐼 (𝛽1) = 𝐼 (𝛽2), and
𝑂 (𝛽1) = 𝑂 (𝛽2) the following hold:

• For every unary operator □: 𝐼 (□𝛼1) = 𝐼 (□𝛼2), and 𝑂 (□𝛼1) = 𝑂 (□𝛼2); and
Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Aamer et al.

• For every binary operator ⊡: 𝐼 (𝛼1 ⊡ 𝛽1) = 𝐼 (𝛼2 ⊡ 𝛽2), and 𝑂 (𝛼1 ⊡ 𝛽1) = 𝑂 (𝛼2 ⊡ 𝛽2).

The previous definition essentially states that in order to be compositional, the inputs and outputs of 𝛼1 ⊡ 𝛽1 and

□𝛼1 should only depend on the inputs and outputs of 𝛼1 and 𝛽1, and not on their inner structure.

The following lemma rephrases input–output determinacy in terms of the inputs and outputs: in order to determine

the output-value of an inertial variable, we need to know its input-value.

Lemma 3.22. Let (𝐼 ,𝑂) be a sound input–output definition and let 𝛼 be a LIF expression.

(1) If 𝛼 is satisfiable, then 𝑂 (𝛼) −𝑂sem (𝛼) ⊆ 𝐼 (𝛼).
(2) Moreover, if (𝐼 ,𝑂) is compositional, then 𝑂 (𝛼) −𝑂sem (𝛼) ⊆ 𝐼 (𝛼) holds even if 𝛼 is not satisfiable.

Proof. Let 𝑥 ∈ 𝑂 (𝛼) −𝑂sem (𝛼). For the sake of contradiction, assume that 𝑥 ∉ 𝐼 (𝛼), so Proposition 3.11 is applicable

since 𝑥 ∉ 𝐼 sem (𝛼) as we know by the soundness of (𝐼 ,𝑂). Hence, ⟦𝛼⟧ is inertially cylindrified on {𝑥}. We claim that

this contradicts the fact that (𝐼 ,𝑂) is a sound definition. In particular, we can verify that 𝐼 (𝛼) can not determine ⟦𝛼⟧ on

𝑂 (𝛼) in case 𝛼 is satisfiable. Let 𝐷 be an interpretation and a1 and a2 be valuations such that (a1, a2) ∈ ⟦𝛼⟧𝐷 . We also

know that a1 (𝑥) = a2 (𝑥) since ⟦𝛼⟧ is inertially cylindrified on {𝑥}. Take a ′
1
to be the valuation a1 [{𝑥 ↦→ 𝑎}] where

𝑎 ≠ a1 (𝑥). By determinacy, we know that there is a valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 and a ′

2
= a2 on 𝑂 (𝛼). Thus,

a ′
2
(𝑥) = a2 (𝑥) ≠ 𝑎 since 𝑥 ∈ 𝑂 (𝛼). On the other hand, a ′

2
(𝑥) = a ′

1
(𝑥) = 𝑎 since ⟦𝛼⟧ is inertially cylindrified on {𝑥}.

Hence, a contradiction.

For the compositional case, we can always replace subexpressions by atomic expressions with the same inputs and

outputs to ensure satisfiability. It is clear that when 𝛼 is an atomic module expression, it is always satisfiable. Now,

consider any LIF expression 𝛼 which is of the form □𝛼1 or 𝛼1 ⊡ 𝛼2, where □ is any of the unary operators and ⊡ is

any of the binary operator. Construct two atomic expressions𝑀1 and𝑀2 such that 𝐼 (𝑀𝑖) = 𝐼 (𝛼𝑖) and 𝑂 (𝑀𝑖) = 𝑂 (𝛼𝑖)
for 𝑖 = 1, 2. By compositionality, we know that 𝐼 (□𝛼1) = 𝐼 (□𝑀1) and 𝑂 (□𝛼1) = 𝑂 (□𝑀1) for any unary operator,

while 𝐼 (𝛼1 ⊡ 𝛼2) = 𝐼 (𝑀1 ⊡𝑀2) and 𝑂 (𝛼1 ⊡ 𝛼2) = 𝑂 (𝑀1 ⊡𝑀2) for any binary operator. Next, we give examples for

an interpretation 𝐷 in which any ⟦□𝑀1⟧𝐷 and ⟦𝑀1 ⊡𝑀2⟧𝐷 can be shown not be empty, so □𝑀1 and 𝑀1 ⊡𝑀2 are

satisfiable expressions.

In what follows, let a1 be the valuation that assigns 1 to every variable.

Case ⊡ is −. Let 𝐷 be the interpretation with

• 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}; and
• 𝐷 (𝑀2) = ∅.

It is clear that (a1, a1) ∈ ⟦𝑀1⟧𝐷 , and (a1, a1) ∉ ⟦𝑀2⟧𝐷 , whence, (a1, a1) ∈ ⟦𝑀1 −𝑀2⟧𝐷 .

All other cases. Let 𝐷 be the interpretation with

• 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}; and
• 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}.

We can see that (a1, a1) ∈ ⟦𝑀1⟧𝐷 . Consequently, (a1, a1) ∈ ⟦□𝑀1⟧𝐷 for any unary operator □. We can also see that

(a1, a1) ∈ ⟦𝑀2⟧𝐷 , whence, (a1, a1) ∈ ⟦𝑀1 ⊡𝑀2⟧𝐷 for any binary operator ⊡ ∈ {∪,∩, ; }. □

We now provide a sound and compositional input–output definition. While the definition might seem complex, there

is a good reason for the different cases. Indeed, as we show below in Theorem 3.28, our definition is optimal among the

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Inputs, Outputs, and Composition in the Logic of Information Flows 13

𝛼 𝐼 syn (𝛼) 𝑂syn (𝛼)
id ∅ ∅
𝑀 (𝑥 ;𝑦) {𝑥1, . . . , 𝑥𝑛} where 𝑥 = 𝑥1, . . . , 𝑥𝑛 {𝑦1, . . . , 𝑦𝑛} where 𝑦 = 𝑦1, . . . , 𝑦𝑛

𝛼1 ∪ 𝛼2 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)) 𝑂syn (𝛼1) ∪𝑂syn (𝛼2)
𝛼1 ∩ 𝛼2 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)) 𝑂syn (𝛼1) ∩𝑂syn (𝛼2)
𝛼1 − 𝛼2 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)) 𝑂syn (𝛼1)
𝛼1 ; 𝛼2 𝐼 syn (𝛼1) ∪ (𝐼 syn (𝛼2) −𝑂syn (𝛼1)) 𝑂syn (𝛼1) ∪𝑂syn (𝛼2)
𝛼⌣

1
𝑂syn (𝛼1) ∪ 𝐼 syn (𝛼1) 𝑂syn (𝛼1)

cyl
𝑙
𝑥 (𝛼1) 𝐼 syn (𝛼1) − {𝑥} 𝑂syn (𝛼1) ∪ {𝑥}

cyl
𝑟
𝑥 (𝛼1) 𝐼 syn (𝛼1) 𝑂syn (𝛼1) ∪ {𝑥}

𝜎 lr𝑥=𝑦 (𝛼1)

𝐼 syn (𝛼1) if 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂syn (𝛼1)
𝐼 syn (𝛼1) ∪ {𝑥,𝑦} if 𝑥 ≠syn 𝑦 and 𝑦 ∉ 𝑂syn (𝛼1)
𝐼 syn (𝛼1) ∪ {𝑥} otherwise

{
𝑂syn (𝛼1) − {𝑥} if 𝑥 =syn 𝑦

𝑂syn (𝛼1) otherwise

𝜎 l𝑥=𝑦 (𝛼1)
{
𝐼 syn (𝛼1) if 𝑥 =syn 𝑦

𝐼 syn (𝛼1) ∪ {𝑥,𝑦} otherwise

𝑂syn (𝛼1)

𝜎r𝑥=𝑦 (𝛼1)
{
𝐼 syn (𝛼1) if 𝑥 =syn 𝑦

𝐼 syn (𝛼1) ∪ ({𝑥,𝑦} −𝑂syn (𝛼1)) otherwise

𝑂syn (𝛼1)

Table 1. Syntactic inputs and outputs for LIF expressions.

sound and compositional definitions. In the definition, the condition 𝑥 =syn 𝑦 simply means that 𝑥 and 𝑦 are the same

variable. Moreover, △ denotes the symmetric difference of two sets, precisely, 𝐴 △ 𝐵 := (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵).

Definition 3.23. The syntactic inputs and outputs of a LIF expression 𝛼 , denoted 𝐼 syn (𝛼) and 𝑂syn (𝛼) respectively,
are defined recursively as given in Table 1.

While it would be tedious to discuss the motivation for all the cases of Definition 3.23 (their motivation will be

clarified in Theorem 3.28), we discuss here one of the most difficult parts, namely the case where 𝛼 = 𝜎𝑙𝑟𝑥=𝑦 (𝛼1). For a
given interpretation 𝐷 ,

⟦𝛼⟧𝐷 = {(a1, a2) ∈ ⟦𝛼1⟧𝐷 | a1 (𝑥) = a2 (𝑦)}.

First, since ⟦𝛼⟧𝐷 ⊆ ⟦𝛼1⟧𝐷 , it is clear that the outputs of 𝛼 should be a subset of those of 𝛼1 (if 𝛼1 admits no pairs in its

semantics that change the value of a variable, then neither does 𝛼). For the special case in which 𝑥 and 𝑦 are the same

variable, this selection enforces 𝑥 to be inertial, i.e., it should not be an output of 𝛼 .

Secondly, all inputs of 𝛼1 remain inputs of 𝛼 . Since we select those pairs whose 𝑦-value on the right equals the

𝑥-value on the left, clearly 𝑥 must be an input of 𝛼 (the special case 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂syn (𝛼1) only covers cases where

𝛼1 and 𝛼 are actually equivalent). Whether 𝑦 is an input depends on 𝛼1: if 𝑦 ∉ 𝑂syn (𝛼1), 𝑦 is inertial. Since we compare

the input-value of 𝑥 with the output-value of 𝑦, essentially this is the same as comparing the input-values of both

variables, i.e., the value of 𝑦 on the input-side matters. On the other hand, if 𝑦 ∈ 𝑂syn (𝛼1), the value of 𝑦 can be changed

by 𝛼1 and thus this selection does not force 𝑦 to be an input.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Aamer et al.

Our syntactic definition is clearly compositional (since we only use the inputs and outputs of subexpressions). An

important result is that our definition is also sound, i.e., our syntactic concepts are overapproximations of the semantic

concepts.

Theorem 3.24 (Soundness Theorem). (𝐼 syn,𝑂syn) is a sound input–output definition.

Proof. The proof is given in Section 4. □

Of course, since the semantic notions of inputs and outputs are undecidable and our syntactic notions clearly are

decidable, expressions exist in which the semantic and syntactic notions do not coincide. We give some examples.

Example 3.25. Consider the LIF expression

𝛼 := 𝜎 l𝑥=𝑦𝜎
r
𝑥=𝑦 (𝑅(𝑥 ;𝑦)).

In this case, 𝑂sem (𝛼) = ∅. However, it can be verified that 𝑂syn (𝛼) = {𝑥,𝑦}.

Example 3.26. Consider the LIF expression

𝛼 := 𝜎 lr𝑥=𝑥 cyl
𝑟
𝑥 cyl

𝑙
𝑥 (𝑃 (𝑥 ;)) .

While the expression 𝑃 (𝑥 ;) may look erroneous at first sight, it is an allowed expression, where 𝑃 denotes an atomic

module with input arity one and output arity zero.

In this expression, we first cylindrify 𝑥 on both sides and afterwards only select those pairs that have inertia, therefore,

we reach an expression 𝛼 that is equivalent to id. As such, 𝑥 is inertially cylindrified in 𝛼 where 𝑥 ∉ 𝑂sem (𝛼) and
𝑥 ∉ 𝐼 sem (𝛼). However, 𝐼 syn (𝛼) = {𝑥}.

These examples suggest that our definitions can be improved. Indeed, one can probably keep coming up with ad-hoc

but more precise approximations of inputs and outputs for various specific patterns of expressions. Such improvements

would not be compositional, as they would be based on inspecting the structure of subexpressions. In the following

results, we show that (𝐼 syn,𝑂syn) is actually the most precise sound and compositional input–output definition.

Theorem 3.27 (Precision Theorem). Let 𝛼 be a LIF expression that is either atomic, or a unary operator applied to an

atomic module expression, or a binary operator applied to two atomic module expressions involving different module names.

Then

𝑂sem (𝛼) = 𝑂syn (𝛼) and 𝐼 sem (𝛼) = 𝐼 syn (𝛼) .

Proof. The proof is given in Section 5. □

Now, the precision theorem forms the basis for our main result on syntactic inputs and outputs, which states that

Definition 3.23 yields the most precise sound and compositional input–output definition.

Theorem 3.28 (Optimality Theorem). Suppose (𝐼 ,𝑂) is a sound and compositional input–output definition. Then for

each LIF expression 𝛼 ,

𝐼 syn (𝛼) ⊆ 𝐼 (𝛼) and 𝑂syn (𝛼) ⊆ 𝑂 (𝛼) .

Proof. The proof is given in Section 6. □

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Inputs, Outputs, and Composition in the Logic of Information Flows 15

4 SOUNDNESS THEOREM PROOF

In this section, we prove Theorem 3.24. Thereto, we need to verify its three conditions for every LIF expression 𝛼

according to Definition 3.18:

Atomic Module Case: If 𝛼 = 𝑀 (𝑥 ;𝑦), then 𝐼 syn (𝛼) = 𝑥 and 𝑂syn (𝛼) = 𝑦.

This is clear from the definitions.

Output Approximation: 𝑂syn (𝛼) ⊇ 𝑂sem (𝛼).
The output approximation property is shown in Proposition 4.1, which is given in Section 4.1.

Syntactic Input-Output Determinacy: 𝐼 syn (𝛼) determines ⟦𝛼⟧ on 𝑂syn (𝛼).
The syntactic input-output determinacy property is shown in Lemma 4.6, which is given in Section 4.3. First,

however, in Section 4.2, we need to prove a syntactic version of Proposition 3.11, which will be used in the

proof of the syntactic input-output determinacy property.

4.1 Proof of Output Approximation

In this section, we prove:

Proposition 4.1. Let 𝛼 be a LIF expression. Then, 𝑂sem (𝛼) ⊆ 𝑂syn (𝛼).

To prove this proposition, we introduce the following notion which is related to Definition 3.10.

Definition 4.2. A BRV 𝐵 has inertia outside a set of variables 𝑍 if for every (a1, a2) ∈ 𝐵, we have a1 = a2 outside 𝑍 . A

global BRV 𝑄 has inertia outside a set of variables 𝑍 if 𝑄 (𝐷) has inertia outside 𝑍 for every interpretation 𝐷 .

Using this notion, Proposition 4.1 can be equivalently formulated as follows.

Proposition 4.3 (Inertia Property). Let 𝛼 be a LIF expression. Then, ⟦𝛼⟧ has inertia outside 𝑂syn (𝛼).

In the remainder of this section we prove the inertia property by structural induction on the shape of LIF expressions.

Also, we remove the superscript from 𝑂syn
and refer to it simply by 𝑂 .

4.1.1 Atomic Modules. Let 𝛼 be of the form 𝑀 (𝑥 ;𝑦). Recall that 𝑂 (𝛼) = 𝑌 where 𝑌 is the set of variables in 𝑦. The

property directly follows from the definition of the semantics for atomic modules.

4.1.2 Identity. Let 𝛼 be of the form id. Recall that 𝑂 (𝛼) = ∅. The property directly follows from the definition of id.

4.1.3 Union. Let 𝛼 be of the form 𝛼1 ∪ 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2). If (a1, a2) ∈ ⟦𝛼1 ∪ 𝛼2⟧𝐷 , then at least

one of the following holds:

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Then, by induction we know that a1 = a2 outside𝑂 (𝛼1). Since𝑂 (𝛼1) ⊆ 𝑂 (𝛼1)∪𝑂 (𝛼2) = 𝑂 (𝛼),
we know that a1 = a2 outside 𝑂 (𝛼).

(2) (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Similar.

4.1.4 Intersection. Let 𝛼 be of the form 𝛼1 ∩ 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∩ 𝑂 (𝛼2). If (a1, a2) ∈ ⟦𝛼1 ∩ 𝛼2⟧𝐷 , then
(a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . By induction, a1 = a2 outside 𝑂 (𝛼1) and also a1 = a2 outside 𝑂 (𝛼2). Hence,
a1 = a2 outside 𝑂 (𝛼1) ∩𝑂 (𝛼2).

4.1.5 Composition. Let 𝛼 be of the form 𝛼1 ; 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2). If (a1, a2) ∈ ⟦𝛼1 ; 𝛼2⟧𝐷 , then there

exists a valuation a such that (a1, a) ∈ ⟦𝛼1⟧𝐷 and (a, a2) ∈ ⟦𝛼2⟧𝐷 . By induction, a1 = a outside 𝑂 (𝛼1) and also a = a2

outside 𝑂 (𝛼2). Hence, a1 = a2 = a outside 𝑂 (𝛼1) ∪𝑂 (𝛼2).
Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Aamer et al.

4.1.6 Difference. Let 𝛼 be of the form 𝛼1 − 𝛼2. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1). The proof then follows immediately by

induction.

4.1.7 Converse. Let 𝛼 be of the form 𝛼⌣
1
. Recall that 𝑂 (𝛼) = 𝑂 (𝛼1). The proof is immediate by induction.

4.1.8 Left and Right Selections. Let 𝛼 be of the form 𝜎 l𝑥=𝑦 (𝛼1) or 𝜎r𝑥=𝑦 (𝛼1). Recall that 𝑂 (𝛼) = 𝑂 (𝛼1). The proof is
immediate by induction.

4.1.9 Left-to-Right Selection. Let 𝛼 be of the form 𝜎 lr𝑥=𝑦 (𝛼1). Recall the definition:

𝑂 (𝛼) =

𝑂 (𝛼1) if 𝑥 ≠syn 𝑦

𝑂 (𝛼1) − {𝑥} otherwise

If (a1, a2) ∈ ⟦𝜎 lr𝑥=𝑦 (𝛼1)⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a1 (𝑥) = a2 (𝑦).

By induction from (1), we know that a1 = a2 outside 𝑂 (𝛼1). Hence, for 𝑥 ≠syn 𝑦 case we are done. In the other case, i.e.,

when 𝑥 and 𝑦 are the same variable, we must additionally show that a1 (𝑥) = a2 (𝑥). This follows from (2) since now 𝑥

and 𝑦 are the same variable.

4.1.10 Right and Left Cylindrifications. Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1). The case for left cylindrification is analogous.

Recall that 𝑂 (𝛼) = 𝑂 (𝛼1) ∪ {𝑥}. If (a1, a2) ∈ ⟦cyl
𝑟
𝑥 (𝛼1)⟧𝐷 , then there exists a such that

(1) (a1, a) ∈ ⟦𝛼1⟧𝐷 ;
(2) a = a2 outside {𝑥}.

By induction from (1), we know that a1 = a outside 𝑂 (𝛼1). Combining this with (2), we know that a1 = a2 outside

𝑂 (𝛼1) ∪ {𝑥} as desired.

4.2 Proof of Syntactic Free Variable Property

Lemma 4.4 (Syntactic Free Variable Property). Let 𝛼 be a LIF expression. Denote 𝐼 syn (𝛼) ∪𝑂syn (𝛼) by fvars(𝛼).
Then, 𝛼 is inertially cylindrified on V − fvars(𝛼).

In the proof of this Lemma, we will often make use of Lemma 4.5. In what follows, for a set of variables 𝑋 , we define

𝑋 to be V − 𝑋 . In the rest of the section, we remove the superscript from 𝑂syn
and refer to it simply by 𝑂 .

Lemma 4.5. Let 𝐵 be a BRV that has inertia on 𝑌 . Then, 𝐵 is inertially cylindrified on 𝑌 if and only if 𝐵 is inertially

cylindrified on every 𝑋 ⊆ 𝑌 .

Proof. The ‘if’-direction is immediate.
2
Let us now consider the ‘only if’. To this end, suppose that (a1, a2) ∈ 𝐵 and

that a is a partial valuation on 𝑋 . Extend a to a valuation a ′ by a ′ = a1 on 𝑌 −𝑋 . Since 𝐵 has inertia on 𝑌 , we know that

a1 = a2 = a ′ on 𝑌 − 𝑋 . Thus, a1 [a ′] = a1 [a] and a2 [a ′] = a2 [a]. The lemma now directly follows since 𝐵 is inertially

cylindrified on 𝑌 . □

2
We remind the reader that a statement of the form ‘Φ if and only if Ψ’ states the equivalence Φ ⇔ Ψ, with ‘if’ standing for the implication⇐ and ‘only

if’ standing for the implication⇒.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Inputs, Outputs, and Composition in the Logic of Information Flows 17

This Lemma is always applicable for any LIF expression 𝛼 and 𝑌 = V − fvars(𝛼). Indeed, for every interpretation 𝐷 ,

we know by Proposition 4.3 that ⟦𝛼⟧𝐷 has inertia outside 𝑂 (𝛼) ⊆ fvars(𝛼).
We are now ready to prove Lemma 4.4.

4.2.1 Atomic Modules. Let 𝛼 be of the form𝑀 (𝑥 ;𝑦). Recall that fvars(𝛼) = 𝑋 ∪𝑌 where 𝑋 and 𝑌 are the variables in 𝑥

and 𝑦, respectively. The property directly follows from the definition of the semantics for atomic modules.

4.2.2 Identity. Let 𝛼 be of the form id. Recall that fvars(𝛼) = ∅. The property directly follows from the definition of id.

4.2.3 Union. Let 𝛼 be of the form 𝛼1 ∪ 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
(a1, a2) ∈ ⟦𝛼1⟧𝐷 or (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Let 𝑌 = V− fvars(𝛼) and let a be a partial valuation on 𝑌 . Assume without loss of

generality that (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Clearly, 𝑌 ⊆ V − fvars(𝛼1) since fvars(𝛼1) ⊆ fvars(𝛼). By induction and Lemma 4.5,

we know that (a1 [a], a2 [a]) ∈ ⟦𝛼1⟧𝐷 ⊆ ⟦𝛼⟧𝐷 as desired.

4.2.4 Intersection. Let 𝛼 be of the form 𝛼1 ∩ 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If (a1, a2) ∈ ⟦𝛼⟧𝐷 ,
then (a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Let 𝑌 = V − fvars(𝛼) and let a be a partial valuation on 𝑌 . Clearly,

𝑌 ⊆ V − fvars(𝛼𝑖) with 𝑖 = 1, 2 since fvars(𝛼𝑖) ⊆ fvars(𝛼). By induction and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈
⟦𝛼𝑖⟧𝐷 with 𝑖 = 1, 2, whence (a1 [a], a2 [a]) ∈ ⟦𝛼⟧𝐷 as desired.

4.2.5 Composition. Let 𝛼 be of the form 𝛼1 ; 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
there exists a valuation a3 such that (a1, a3) ∈ ⟦𝛼1⟧𝐷 and (a3, a2) ∈ ⟦𝛼2⟧𝐷 . Let 𝑌 = V − fvars(𝛼) and let a be a partial

valuation on𝑌 . Clearly,𝑌 ⊆ V−fvars(𝛼𝑖) with 𝑖 = 1, 2 since fvars(𝛼𝑖) ⊆ fvars(𝛼). By induction and Lemma 4.5, we know

that (a1 [a], a3 [a]) ∈ ⟦𝛼1⟧𝐷 and (a3 [a], a2 [a]) ∈ ⟦𝛼2⟧𝐷 . Therefore, we may conclude that (a1 [a], a2 [a]) ∈ ⟦𝛼1 ; 𝛼2⟧𝐷 .

4.2.6 Difference. Let 𝛼 be of the form 𝛼1 − 𝛼2. Recall that fvars(𝛼) = fvars(𝛼1) ∪ fvars(𝛼2). If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then
we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 . By inertia, we know that a1 = a2 outside 𝑂 (𝛼1) ⊆ fvars(𝛼1) ⊆ fvars(𝛼).
(2) (a1, a2) ∉ ⟦𝛼2⟧𝐷 .

Let 𝑌 = V − fvars(𝛼) and let a be a partial valuation on 𝑌 . Clearly, 𝑌 ⊆ V − fvars(𝛼𝑖) with 𝑖 = 1, 2 since fvars(𝛼𝑖) ⊆
fvars(𝛼). By induction from (1) and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ⟦𝛼1⟧𝐷 . All that remains is to show

that (a1 [a], a2 [a]) ∉ ⟦𝛼2⟧𝐷 Now, suppose for the sake of contradiction that (a1 [a], a2 [a]) ∈ ⟦𝛼2⟧𝐷 . By induc-

tion and Lemma 4.5, we know that ((a1 [a]) [a1 |𝑌], (a2 [a]) [a1 |𝑌]) ∈ ⟦𝛼2⟧𝐷 . Clearly, (a1 [a]) [a1 |𝑌] = a1. Moreover,

(a2 [a]) [a1 |𝑌] = a2 since a1 = a2 outside fvars(𝛼) by (1). We have thus obtained that (a1, a2) ∈ ⟦𝛼2⟧𝐷 , which contradicts
(2).

4.2.7 Converse. Let 𝛼 be of the form 𝛼⌣
1
. Recall that fvars(𝛼) = fvars(𝛼1). The property follows directly by induction

since fvars(𝛼1) = fvars(𝛼⌣
1
).

4.2.8 Left Selection. Let 𝛼 be of the form 𝜎 l𝑥=𝑦 (𝛼1). Recall the definition:

fvars(𝛼) =

fvars(𝛼1) if 𝑥 =syn 𝑦

fvars(𝛼1) ∪ {𝑥,𝑦} otherwise

In case of 𝑥 =syn 𝑦, clearly ⟦𝜎 l𝑥=𝑦 (𝛼1)⟧𝐷 = ⟦𝛼1⟧𝐷 . The property holds trivially by induction. In the other case when

𝑥 ≠syn 𝑦, if (a1, a2) ∈ ⟦𝛼⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Let 𝑌 = V − fvars(𝛼) and let a be a partial valuation on 𝑌 . Clearly,

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Aamer et al.

𝑌 ⊆ V − fvars(𝛼1) since fvars(𝛼1) ⊆ fvars(𝛼). By induction and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ⟦𝛼1⟧𝐷 .
Moreover, since {𝑥,𝑦} ∩ 𝑌 = ∅, we know that the selection does not look at a , whence (a1 [a], a2 [a]) ∈ ⟦𝜎 l𝑥=𝑦 (𝛼1)⟧𝐷
as desired.

4.2.9 Right Selection. Let 𝛼 be of the form 𝜎r𝑥=𝑦 (𝛼1). Recall the definition:

fvars(𝛼) =

fvars(𝛼1) if 𝑥 =syn 𝑦

fvars(𝛼1) ∪ {𝑥,𝑦} otherwise

In case of 𝑥 =syn 𝑦, clearly ⟦𝜎r𝑥=𝑦 (𝛼1)⟧𝐷 = ⟦𝛼1⟧𝐷 . Hence, the property holds trivially by induction. In the other case, it

is analogous to 𝜎 l𝑥=𝑦 (𝛼1) since here also {𝑥,𝑦} ∩ (V − fvars(𝛼)) = ∅.

4.2.10 Left-to-Right Selection. Let 𝛼 be of the form 𝜎 lr𝑥=𝑦 (𝛼1). Recall the definition:

fvars(𝛼) =

fvars(𝛼1) if 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1)

fvars(𝛼1) ∪ {𝑥,𝑦} otherwise

In case of 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1), clearly ⟦𝜎 lr𝑥=𝑦 (𝛼1)⟧𝐷 = ⟦𝛼1⟧𝐷 . Hence, the property holds trivially by induction. In

the other case, it is analogous to 𝜎 l𝑥=𝑦 (𝛼1) since here also {𝑥,𝑦} ∩ (V − fvars(𝛼)) = ∅.

4.2.11 Right and Left Cylindrifications. Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1). The case for left cylindrification is analogous.

Recall that fvars(𝛼) = fvars(𝛼1) ∪ {𝑦}. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then there exists a valuation a3 such that

(1) (a1, a3) ∈ ⟦𝛼1⟧𝐷 ;
(2) a3 = a2 outside {𝑥}.

Let 𝑌 = V − fvars(𝛼) and let a be a partial valuation on 𝑌 . Clearly, 𝑌 ⊆ V − fvars(𝛼1) since fvars(𝛼1) ⊆ fvars(𝛼).
By induction from (1) and Lemma 4.5 we know that (a1 [a], a3 [a]) ∈ ⟦𝛼1⟧𝐷 . Since 𝑥 ∉ 𝑌 , we know from (2) that
a3 [a] = a2 [a] outside {𝑥}. Hence, we can conclude that (a1 [a], a2 [a]) ∈ ⟦𝛼⟧𝐷 .

4.3 Proof of Syntactic Input-Output Determinacy

Syntactic Input-Output determinacy follows from the proof of the following Lemma.

Lemma 4.6 (Syntactic Input-Output Determinacy). Let 𝛼 be a LIF expression. Then, for every interpretation 𝐷 ,

every (a1, a2) ∈ ⟦𝛼⟧𝐷 and every a ′
1
that agrees with a1 on 𝐼 syn (𝛼), there exists a valuation a ′

2
that agrees with a2 on

𝑂syn (𝛼) and (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

In the proof, we will make use of a useful alternative formulation of syntactic input-output determinacy which is

defined next.

Definition 4.7 (Alternative Input-Output Determinacy). A LIF expression 𝛼 is said to satisfy alternative input-output

determinacy if for every interpretation 𝐷 , every (a1, a2) ∈ ⟦𝛼⟧𝐷 and every a ′
1
that agrees with a1 on 𝐼

syn (𝛼) and outside
𝑂syn (𝛼), we have (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 .

The following Lemma shows that the two notions are equivalent. In what follows, will remove the superscript from

𝐼 syn
and 𝑂syn

and refer to them as 𝐼 and 𝑂 , respectively.

Lemma 4.8. Every LIF expression 𝛼 satisfies alternative input-output determinacy if and only if it satisfies syntactic

input-output determinacy.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Inputs, Outputs, and Composition in the Logic of Information Flows 19

Proof. The proof of the ‘if’-direction is similar to the proof of Proposition 3.9. Now, we proceed to verify the other

direction. Suppose that (a1, a2) ∈ ⟦𝛼⟧𝐷 and a ′
1
= a1 on 𝐼 (𝛼). We now construct a new valuation a ′′

1
such that it agrees

with a ′
1
on fvars(𝛼) and it agrees with a1 elsewhere. We thus have the following properties for a ′′

1
:

(1) a ′′
1
= a ′

1
on fvars(𝛼), and

(2) a ′′
1
= a1 on V − fvars(𝛼).

We know that a ′
1
= a1 on 𝐼 (𝛼) by assumption, whence (1) implies that a ′′

1
= a1 on 𝐼 (𝛼) since 𝐼 (𝛼) ⊆ fvars(𝛼). Combining

this with (2), we know that a ′′
1
= a1 on 𝐼 (𝛼) and outside fvars(𝛼). Thus, alternative input-output determinacy implies

that (a ′′
1
, a2) ∈ ⟦𝛼⟧𝐷 . Since a ′′1 = a ′

1
on fvars(𝛼), we know that there is a partial valuation a on V − fvars(𝛼) such that

a ′′
1
[a] = a ′

1
. By syntactic free variable, we know that (a ′′

1
[a], a2 [a]) ∈ ⟦𝛼⟧𝐷 . Thus, (a ′1, a2 [a]) ∈ ⟦𝛼⟧𝐷 as desired. □

We are now ready for the proof of Lemma 4.6. In this proof, we will use the notation 𝑋 to mean V − 𝑋 . Moreover,

since we established by Lemma 4.8 that the two definitions for input-output determinacy are equivalent, we will verify

any of them for each LIF expression.

4.3.1 Atomic Modules. Let 𝛼 be of the form𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝐼 (𝛼) = 𝑋 where 𝑋 are the variables in 𝑥 ;

• 𝑂 (𝛼) = 𝑌 where 𝑌 are the variables in 𝑦.

Syntactic input-output determinacy directly follows from the definition of the semantics for atomic modules.

4.3.2 Identity. Let 𝛼 be of the form id. Recall that the definition for 𝐼 (𝛼) = 𝑂 (𝛼) = ∅. We proceed to verify that 𝛼

satisfies alternative input-output determinacy. Indeed, this is true since 𝑂 (𝛼) ∪ 𝐼 (𝛼) = V.

4.3.3 Union. Let 𝛼 be of the form 𝛼1 ∪ 𝛼2. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2));
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷 or

(a1, a2) ∈ ⟦𝛼2⟧𝐷 . Assume without loss of generality that (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Now, let a ′1 be a valuation such that a ′
1
= a1

on 𝑂 (𝛼) ∪ 𝐼 (𝛼). Moreover, we have the following:

𝑂 (𝛼) ∪ 𝐼 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2))

= 𝑂 (𝛼1) ∩𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)

= 𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)

Therefore, certainly a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, (a ′

1
, a2) ∈ ⟦𝛼1⟧𝐷 by induction and Lemma 4.8, whence (a ′

1
, a2) ∈

⟦𝛼⟧𝐷 as desired.

4.3.4 Intersection. Let 𝛼 be of the form 𝛼1 ∩ 𝛼2. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2));
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∩𝑂 (𝛼2).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then (a1, a2) ∈ ⟦𝛼1⟧𝐷
and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Now, let a ′ be a valuation such that a ′

1
= a1 on𝑂 (𝛼) ∪ 𝐼 (𝛼). Just as in the case for ∪, we have that

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Aamer et al.

𝑂 (𝛼) ∪ 𝐼 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2). Therefore, certainly a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, (a ′

1
, a2) ∈ ⟦𝛼1⟧𝐷

and (a ′
1
, a2) ∈ ⟦𝛼2⟧𝐷 by induction and Lemma 4.8, whence (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 as desired.

4.3.5 Composition. Let 𝛼 be of the form 𝛼1 ; 𝛼2. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1));
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2).

We proceed to verify that 𝛼 satisfies syntactic input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then there exists a valuation

a such that

(i) (a1, a) ∈ ⟦𝛼1⟧𝐷 ;
(ii) (a, a2) ∈ ⟦𝛼2⟧𝐷 .

Now, let a ′
1
be a valuation such that

a ′
1
= a1 on 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1)) . (1)

Since 𝐼 (𝛼1) ⊆ 𝐼 (𝛼), then by induction there exists a valuation a ′ such that

(iii) (a ′
1
, a ′) ∈ ⟦𝛼1⟧𝐷 ;

(iv) a ′ = a on 𝑂 (𝛼1).

By applying inertia to (i) and (iii) we get that a1 = a and a ′
1
= a ′ outside 𝑂 (𝛼1). Combining this with (1) we have that

a ′ = a ′
1
= a1 = a on 𝐼 (𝛼) ∩𝑂 (𝛼1) = (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)) −𝑂 (𝛼1). Together with (iv), this implies that

a ′ = a on 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1) . (2)

By induction from (ii), there exists a ′
2
such that

(v) (a ′, a ′
2
) ∈ ⟦𝛼2⟧𝐷 ;

(vi) a ′
2
= a2 on 𝑂 (𝛼2).

From (iii) and (vi) we get that (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . All that remains to be shown is that a ′

2
= a2 on𝑂 (𝛼). By applying inertia

to (ii) and (v) we get that

a = a2 outside 𝑂 (𝛼2);

a ′ = a ′
2
outside 𝑂 (𝛼2) .

Combining this with 2 we have that a ′
2
= a2 on (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1)) ∩𝑂 (𝛼2) = (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1)) −𝑂 (𝛼2).

Together with (vi) this implies that a ′
2
= a2 on 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1) ∪𝑂 (𝛼2), whence a ′

2
= a2 on 𝑂 (𝛼) as desired.

4.3.6 Difference. Let 𝛼 be of the form 𝛼1 − 𝛼2. Recall that

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2));
• 𝑂 (𝛼) = 𝑂 (𝛼1).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) (a1, a2) ∉ ⟦𝛼2⟧𝐷 .

Now, let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). Since 𝑂 (𝛼1) ⊆ 𝑂 (𝛼) and 𝐼 (𝛼1) ⊆ 𝐼 (𝛼), then a ′

1
= a1 on

𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, by induction from (1) and Lemma 4.8, we know that (a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 .

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Inputs, Outputs, and Composition in the Logic of Information Flows 21

To prove that (a ′
1
, a2) ∈ ⟦𝛼⟧𝐷 , all that remains is to show that (a ′

1
, a2) ∉ ⟦𝛼2⟧𝐷 . Assume for the sake of contradiction

that (a ′
1
, a2) ∈ ⟦𝛼2⟧𝐷 . Since a ′1 = a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼) and 𝑂 (𝛼) ∪ 𝐼 (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2), we know that

a ′
1
= a1 on 𝑂 (𝛼2) ∪ 𝐼 (𝛼2). Hence, (a1, a2) ∈ ⟦𝛼2⟧𝐷 by induction and Lemma 4.8, which contradicts (2).

4.3.7 Converse. Let 𝛼 be of the form 𝛼⌣
1
. Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) ∪𝑂 (𝛼1);
• 𝑂 (𝛼) = 𝑂 (𝛼1).

Alternative input-output determinacy holds since 𝑂 (𝛼) ∪ 𝐼 (𝛼) = V.

4.3.8 Left Selection. Let 𝛼 be of the form 𝜎 l𝑥=𝑦 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) =

𝐼 (𝛼1) 𝑥 =syn 𝑦

𝐼 (𝛼1) ∪ {𝑥,𝑦} otherwise

• 𝑂 (𝛼) = 𝑂 (𝛼1).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. Clearly, the property holds trivially by

induction in case of 𝑥 =syn 𝑦. Indeed, in this case, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 . In the other case when 𝑥 ≠syn 𝑦, if (a1, a2) ∈ ⟦𝛼⟧𝐷 ,
then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a1 (𝑥) = a1 (𝑦);

Let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). In all cases, 𝑂 (𝛼) ⊆ 𝑂 (𝛼1). Hence, 𝑂 (𝛼1) ⊆ 𝑂 (𝛼). Moreover,

in all cases 𝐼 (𝛼1) ⊆ 𝐼 (𝛼). Thus, a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction from (1) and Lemma 4.8, we know that

(a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 .
All that remains to be shown is that a ′

1
(𝑥) = a ′

1
(𝑦). Since {𝑥,𝑦} ⊆ 𝐼 (𝛼), we know that a ′

1
= a1 on {𝑥,𝑦} by assumption.

Hence, a ′
1
(𝑥) = a ′

1
(𝑦) by (2).

4.3.9 Right Selection. Let 𝛼 be of the form 𝜎r𝑥=𝑦 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) =

𝐼 (𝛼1) 𝑥 =syn 𝑦

𝐼 (𝛼1) ∪ ({𝑥,𝑦} −𝑂 (𝛼1)) otherwise

• 𝑂 (𝛼) = 𝑂 (𝛼1).

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. Clearly, the property holds trivially by

induction in case of 𝑥 =syn 𝑦. Indeed, in this case, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 . In the other case when 𝑥 ≠syn 𝑦, if (a1, a2) ∈ ⟦𝛼⟧𝐷 ,
then we know that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a2 (𝑥) = a2 (𝑦).

Let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). In all cases, 𝑂 (𝛼) ⊆ 𝑂 (𝛼1). Hence, 𝑂 (𝛼1) ⊆ 𝑂 (𝛼). Moreover,

in all cases 𝐼 (𝛼1) ⊆ 𝐼 (𝛼). Thus, a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction from (1) and Lemma 4.8, we know that

(a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 . Together with (2), we know that (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 .

4.3.10 Left-to-Right Selection. Let 𝛼 be of the form 𝜎 lr𝑥=𝑦 (𝛼1). Recall the definitions:
Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Aamer et al.

• 𝐼 (𝛼) =

𝐼 (𝛼1) 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1)

𝐼 (𝛼1) ∪ {𝑥,𝑦} 𝑥 ≠syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1)

𝐼 (𝛼1) ∪ {𝑥} otherwise

• 𝑂 (𝛼) =

𝑂 (𝛼1) − {𝑥} 𝑥 =syn 𝑦

𝑂 (𝛼1) otherwise

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 in case of 𝑥 =syn 𝑦

and 𝑦 ∉ 𝑂 (𝛼1). Hence, the property holds trivially by induction. In the other cases, if (a1, a2) ∈ ⟦𝛼⟧𝐷 , then we know

that

(1) (a1, a2) ∈ ⟦𝛼1⟧𝐷 ;
(2) a1 (𝑥) = a2 (𝑦).

Let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). In all cases, 𝑂 (𝛼) ⊆ 𝑂 (𝛼1). Hence, 𝑂 (𝛼1) ⊆ 𝑂 (𝛼). Moreover,

in all cases 𝐼 (𝛼1) ⊆ 𝐼 (𝛼). Thus, a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction from (1) and Lemma 4.8, we know that

(a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 . All that remains to be shown is that a ′

1
(𝑥) = a2 (𝑦). Since 𝑥 ∈ 𝐼 (𝛼) and a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼), we

have a ′
1
(𝑥) = a1 (𝑥). Together with (2), we get that a ′

1
(𝑥) = a2 (𝑦) as desired, whence (a ′

1
, a2) ∈ ⟦𝛼⟧𝐷 .

4.3.11 Right Cylindrification. Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1);
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪ {𝑥};
• fvars(𝛼) = fvars(𝛼1) ∪ {𝑥}.

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then there exists a

valuation a ′
2
such that

(1) (a1, a
′
2
) ∈ ⟦𝛼1⟧𝐷 ;

(2) a ′
2
= a2 outside {𝑥}.

Now, let a ′
1
be a valuation such that a ′

1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). We now split the proof in two cases:

• Suppose that 𝑥 ∈ fvars(𝛼1). Then, fvars(𝛼) = fvars(𝛼1). Thus, we know that a ′
1
= a1 on fvars(𝛼1) ∪ 𝐼 (𝛼1),

whence a ′
1
= a1 on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). Thus, by induction from (1) and Lemma 4.8, we know that (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 .

Hence, (a ′
1
, a2) ∈ ⟦𝛼⟧𝐷 .

• Conversely, suppose that 𝑥 ∉ fvars(𝛼1). We have 𝑂 (𝛼) ∪ 𝐼 (𝛼) = (𝑂 (𝛼1) ∪ 𝐼 (𝛼1)) − {𝑥}. Thus, a ′
1
[a1 | {𝑥 }] = a1

on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1) since a ′
1
= a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). By induction and Lemma 4.8, then (a ′

1
[a1 | {𝑥 }], a ′2) ∈ ⟦𝛼1⟧𝐷 .

By syntactic free variable, we know that (a ′
1
[a1 | {𝑥 }] [a ′1 | {𝑥 }], a

′
2
[a ′

1
| {𝑥 }]) ∈ ⟦𝛼1⟧𝐷 since 𝑥 ∉ fvars(𝛼1). Clearly,

a ′
1
[a1 | {𝑥 }] [a ′1 | {𝑥 }] = a ′

1
, whence (a ′

1
, a ′

2
[a ′

1
| {𝑥 }]) ∈ ⟦𝛼1⟧𝐷 . Consequently, (a ′1, a2) ∈ ⟦𝛼⟧𝐷 as desired.

4.3.12 Left Cylindrification. Let 𝛼 be of the form cyl
𝑙
𝑥 (𝛼1). Recall the definitions:

• 𝐼 (𝛼) = 𝐼 (𝛼1) − {𝑥};
• 𝑂 (𝛼) = 𝑂 (𝛼1) ∪ {𝑥}.

We proceed to verify that 𝛼 satisfies alternative input-output determinacy. If (a1, a2) ∈ ⟦𝛼⟧𝐷 , then there exists a

valuation a ′
1
such that

(i) a ′
1
= a1 outside {𝑥};

(ii) (a ′
1
, a2) ∈ ⟦𝛼1⟧𝐷 .

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Inputs, Outputs, and Composition in the Logic of Information Flows 23

Now, let a be a valuation such that

a = a1 on 𝑂 (𝛼) ∪ 𝐼 (𝛼). (1)

Clearly, a [a ′
1
| {𝑥 }] = a outside {𝑥}. Since 𝑥 ∉ 𝑂 (𝛼) ∪ 𝐼 (𝛼), we also know that a [a ′

1
| {𝑥 }] = a on𝑂 (𝛼) ∪ 𝐼 (𝛼). Combining

this with (1), we get that a [a ′
1
| {𝑥 }] = a ′

1
on 𝑂 (𝛼) ∪ 𝐼 (𝛼) ∪ {𝑥}. Clearly, 𝑂 (𝛼) ∪ 𝐼 (𝛼) ∪ {𝑥} ⊇ 𝑂 (𝛼1) ∪ 𝐼 (𝛼1), whence

a [a ′
1
| {𝑥 }] = a ′

1
on 𝑂 (𝛼1) ∪ 𝐼 (𝛼1). By induction from (ii) and Lemma 4.8, we get that (a [a ′

1
| {𝑥 }], a2) ∈ ⟦𝛼1⟧𝐷 , whence

also (a, a2) ∈ ⟦𝛼1⟧𝐷 .

5 PRECISION THEOREM PROOF

In this section, we prove Theorem 3.27. By soundness and Proposition 3.20, it suffices to prove 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼)
and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼) for every LIF expression 𝛼 . For the latter inequality, it will be convenient to use the equivalent

definition of semantic input variables introduced in Proposition 3.4. Moreover, in the proof of the Precision Theorem,

we will often make use of the following two technical lemmas.

Lemma 5.1. Let𝑀 be a nullary relation name and let 𝐷 be an interpretation where 𝐷 (𝑀) is nonempty. Then ⟦𝑀 ()⟧𝐷
consists of all identical pairs of valuations.

Proof. The proof follows directly from the semantics of atomic modules. □

Lemma 5.2. Suppose 𝛼1 = 𝑀1 (𝑥1;𝑦1) and 𝛼2 = 𝑀2 (𝑥2;𝑦2) where𝑀1 ≠ 𝑀2. Let 𝛼 be either 𝛼1 ∪ 𝛼2 or 𝛼1 − 𝛼2. Assume

that𝑂syn (𝛼𝑖) ⊆ 𝑂sem (𝛼𝑖) and 𝐼 syn (𝛼𝑖) ⊆ 𝐼 sem (𝛼𝑖) for 𝑖 = 1, 2. Let 𝑗 ≠ 𝑘 ∈ {1, 2}. If ⟦𝛼⟧𝐷 = ⟦𝛼𝑘⟧𝐷 for any interpretation

𝐷 where 𝐷 (𝑀𝑗) is empty, then 𝑂syn (𝛼𝑘) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼𝑘) ⊆ 𝐼 sem (𝛼).

Proof. First, we verify that𝑂syn (𝛼𝑘) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂syn (𝛼𝑘). Since𝑂syn (𝛼𝑘) ⊆ 𝑂sem (𝛼𝑘), then 𝑣 ∈ 𝑂sem (𝛼𝑘).
By definition, we know that there is an interpretation 𝐷 ′

and (a1, a2) ∈ ⟦𝛼𝑘⟧𝐷′ such that a1 (𝑣) ≠ a2 (𝑣). Take 𝐷 ′′
to be

the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any𝑀 ≠ 𝑀𝑗 while 𝐷
′′(𝑀𝑗) is empty. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷′′ , whence,

𝑀𝑗 ≠ 𝑀𝑘 and ⟦𝛼⟧𝐷′′ = ⟦𝛼𝑘⟧𝐷′ . It follows then that 𝑣 ∈ 𝑂sem (𝛼).
Similarly, we proceed to verify 𝐼 syn (𝛼𝑘) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 syn (𝛼𝑘). Since 𝐼 syn (𝛼𝑘) ⊆ 𝐼 sem (𝛼𝑘), then 𝑣 ∈ 𝐼 sem (𝛼𝑘).

By definition, we know that there is an interpretation 𝐷 ′
, (a1, a2) ∈ ⟦𝛼𝑘⟧𝐷′ , and a ′

1
(𝑣) ≠ a1 (𝑣) such that (a ′

1
, a ′

2
) ∉

⟦𝛼𝑘⟧𝐷′ for every valuation a ′
2
that agrees with a2 on 𝑂sem (𝛼𝑘).

Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀𝑗 while 𝐷 ′′(𝑀𝑗) is empty. Clearly,

⟦𝛼⟧𝐷′′ = ⟦𝛼𝑘⟧𝐷′ , whence, 𝑀𝑗 ≠ 𝑀𝑘 . Therefore, 𝑂
sem (𝛼𝑘) ⊆ 𝑂sem (𝛼). Hence, 𝑣 ∈ 𝐼 sem (𝛼). Indeed, (a1, a2) ∈ ⟦𝛼⟧𝐷′′

and for any valuation a ′
2
if a ′

2
agrees with a2 on 𝑂sem (𝛼), then a ′

2
agrees with a2 on 𝑂sem (𝛼𝑘). □

The proof of Theorem 3.27 is done by extensive case analysis. Intuitively, for each of the different operations, and

every variable 𝑧 ∈ 𝑂syn (𝛼), we construct an interpretation 𝐷 such that 𝑧 is not inertial in ⟦𝛼⟧𝐷 and thus 𝑧 ∈ 𝑂sem (𝛼).
Similarly, for every variable 𝑧 ∈ 𝐼 syn (𝛼), we construct an interpretation 𝐷 as a witness of the fact that V − {𝑧} does
not determine ⟦𝛼⟧ on 𝑂sem (𝛼) and thus that 𝑧 ∈ 𝐼 sem (𝛼). In the proof, we often remove the superscript from 𝐼 syn

and

𝑂syn
and refer to them by 𝐼 and 𝑂 , respectively.

5.1 Atomic Modules

Let 𝛼 be of the form 𝛼1, where 𝛼1 is𝑀 (𝑥 ;𝑦). Recall the definition:

• 𝑂syn (𝛼) = 𝑌 , where 𝑌 are the variables in 𝑦;

• 𝐼 syn (𝛼) = 𝑋 , where 𝑋 are the variables in 𝑥 .

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Aamer et al.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑌 . Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑌 and 1 everywhere else. Clearly,

(a1, a2) ∈ ⟦𝛼⟧𝐷 since a1 (𝑥) · a2 (𝑦) ∈ 𝐷 (𝑀) and a1 agrees with a2 outside 𝑌 . Hence, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝑋 . Consider the same interpretation 𝐷 and the same valuations

a1 and a2 as discussed above. We already established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We establish that

𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is true since 𝑣 ∈ 𝑋 . Consequently,

𝑣 ∈ 𝐼 sem (𝛼).

5.2 Identity

Let 𝛼 be of the form id. We recall that 𝐼 syn (𝛼) and 𝑂syn (𝛼) are both empty. Hence, 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆
𝐼 sem (𝛼) is trivial.

5.3 Union

Let 𝛼 be of the form 𝛼1 ∪ 𝛼2, where 𝛼1 is 𝑀1 (𝑥1;𝑦1) and 𝛼2 is 𝑀2 (𝑥2;𝑦2). We distinguish different cases based on

whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.3.1 𝑀1 is nullary,𝑀2 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼2⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀1) is empty. By induction

and Lemma 5.2, we establish that 𝑂syn (𝛼2) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼2) ⊆ 𝐼 sem (𝛼). Since 𝐼 (𝛼1) and 𝑂 (𝛼1) are both empty,

then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼2) ∪𝑂 (𝛼2).

Thus, 𝑂 (𝛼2) ⊆ 𝑂sem (𝛼) and 𝐼 (𝛼2) ⊆ 𝐼 sem (𝛼) is trivial.
We proceed to verify 𝑂 (𝛼2) − 𝐼 (𝛼2) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼2) − 𝐼 (𝛼2). Consider the interpretation 𝐷 where 𝐷 (𝑀1)

is not empty and

𝐷 (𝑀2) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 by Lemma 5.1. Take

a ′
1

:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there for every valuation a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 , we

show that a ′
2
and a1 disagrees on 𝑂sem (𝛼). Thereto, suppose (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , whence

a ′
2
= a ′

1
by Lemma 5.1. Indeed, 𝑣 ∈ 𝑂 (𝛼2), 𝑂 (𝛼2) ⊆ 𝑂sem (𝛼), and a ′

2
(𝑣) = 2 but a1 (𝑣) = 1. Otherwise, (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 .

However, since 𝑣 ∈ 𝑂 (𝛼2), then a ′
2
(𝑣) = 2 as well. Therefore, there is no a ′

2
that agrees with a1 on 𝑂sem (𝛼) and

(a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 at the same time. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.3.2 𝑀2 is nullary,𝑀1 is not. This case is symmetric to the previous one.

5.3.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)).

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Inputs, Outputs, and Composition in the Logic of Information Flows 25

We first proceed to verify that 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). By induction, 𝑂syn (𝛼𝑖) = 𝑂sem (𝛼𝑖) for 𝑖 = 1 or 2. Consequently, if

𝑣 ∈ 𝑂 (𝛼𝑖), then there is an interpretation 𝐷𝑖 , and (a1, a2) ∈ ⟦𝛼𝑖⟧𝐷 such that a1 (𝑣) ≠ a2 (𝑣). Indeed, 𝑣 ∈ 𝑂sem (𝛼) since
(⟦𝛼1⟧𝐷 ∪ ⟦𝛼2⟧𝐷) ⊆ ⟦𝛼⟧𝐷 for any interpretation 𝐷 .

We then proceed to verify that 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). The proof has four possibilities. Each case is discussed separately

below.

When 𝑣 ∈ 𝐼 (𝛼1). If 𝑣 ∈ 𝐼 (𝛼1) and𝑀1 ≠ 𝑀2, it is clear that ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀2) is
empty. By Lemma 5.2 and by induction, we easily establish that 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑣 ∈ 𝐼 (𝛼2). This case is symmetric to the previous one.

When 𝑣 ∈ 𝑂 (𝛼1) − (𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). If 𝑣 ∈ 𝑂 (𝛼1) − (𝑂 (𝛼2) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)), then consider the interpretation

𝐷 such that 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 2 on 𝑣 and 1

elsewhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 , whence (a1, a1) ∈ ⟦𝛼2⟧𝐷 . Now take a ′
1

:= a1 [𝑣 : 1]. If we can show that a ′
2
does

not agree with a1 on 𝑂sem (𝛼) for any valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 , we are done. Thereto, suppose that there

exists a valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 .

• In particular, if (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , then a ′2 (𝑣) = 1 since 𝑣 ∈ 𝑂 (𝛼1).

• Otherwise, if (a ′
1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 , then a ′2 (𝑣) = a ′

1
(𝑣) = 1 since 𝑣 ∉ (𝐼 (𝛼2) ∪𝑂 (𝛼2)).

In both cases, a ′
2
have to be 1 on 𝑣 which disagrees with a1 on 𝑣 . Since 𝑣 ∈ 𝑂 (𝛼1) and 𝑂 (𝛼1) ⊆ 𝑂sem (𝛼), then a ′

2
does

not agree with a1 on 𝑂sem (𝛼) as desired. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑣 ∈ 𝑂 (𝛼2) − (𝑂 (𝛼1) ∪ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). This case is symmetric to the previous one.

5.4 Intersection

Let 𝛼 be of the form 𝛼1 ∩ 𝛼2, where 𝛼1 is 𝑀1 (𝑥1;𝑦1) and 𝛼2 is 𝑀2 (𝑥2;𝑦2). We distinguish different cases based on

whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.4.1 𝑀1 is nullary,𝑀2 is not. In this case, 𝐼 (𝛼1) and 𝑂 (𝛼1) are both empty, then we observe that

• 𝑂syn (𝛼) = ∅;
• 𝐼 syn (𝛼) = 𝐼 (𝛼2) ∪𝑂 (𝛼2).

It is trivial to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) since 𝑂syn (𝛼) is empty.

We proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼2) ∪𝑂 (𝛼2). Consider an interpretation 𝐷 where 𝐷 (𝑀1) is not
empty and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since

(a1, a1) ∈ ⟦𝛼1⟧𝐷 and (a1, a1) ∈ ⟦𝛼2⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no

valuation a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose (a ′1, a

′
2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼2), it is clear that

(a ′
1
, a ′

2
) ∉ ⟦𝛼1⟧𝐷 . In the other case when 𝑣 ∈ 𝑂 (𝛼2) − 𝐼 (𝛼2), there is no a ′

2
such that (a ′

1
, a ′

2
) belongs to both ⟦𝛼1⟧𝐷

and ⟦𝛼2⟧𝐷 . Indeed, the value for a ′2 (𝑣) will never be agreed upon by 𝛼1 and 𝛼2. Hence, (a ′
1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 as desired. We

conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.4.2 𝑀2 is nullary,𝑀1 is not. This case is symmetric to the previous one.

5.4.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∩𝑂 (𝛼2);
Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Aamer et al.

• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∩ 𝑂 (𝛼2). Consider an interpretation 𝐷 such that

𝐷 (𝑀1) = {(1, . . . , 1;𝑜1, . . . , 𝑜𝑚)}, where 𝑜1, . . . , 𝑜𝑚 are all the combinations of {1, 2}. Similarly,

𝐷 (𝑀2) = {(1, . . . , 1;𝑜1, . . . , 𝑜𝑛)},

where 𝑜1, . . . , 𝑜𝑛 are all the combinations of {1, 2}.
Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) ∩𝑂 (𝛼2) and 1 elsewhere.

Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 , whence (a1, a2) ∈ ⟦𝛼1⟧𝐷 and (a1, a2) ∈ ⟦𝛼2⟧𝐷 . Hence, 𝑣 ∈ 𝑂sem (𝛼). Indeed, a2 (𝑣) ≠ a1 (𝑣)
for 𝑣 ∈ 𝑂syn (𝛼).

We then proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)). Consider an interpretation

𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}. Similarly, 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1

everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 , whence (a1, a1) ∈ ⟦𝛼1⟧𝐷 and (a1, a1) ∈ ⟦𝛼2⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We establish

that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no valuation a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is clear when 𝑣 ∈ 𝐼 (𝛼1)

or 𝑣 ∈ 𝐼 (𝛼2). On the other hand, when 𝑣 ∈ (𝑂 (𝛼1) △𝑂 (𝛼2)) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)), we have a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷

whence (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . This is not possible since 𝑣 belongs to either 𝑂 (𝛼1) or 𝑂 (𝛼2), but not

both. Hence, the value for a ′
2
(𝑣) will never be agreed upon by 𝛼1 and 𝛼2. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.5 Difference

Let 𝛼 be of the form 𝛼1 − 𝛼2, where 𝛼1 is 𝑀1 (𝑥1;𝑦1) and 𝛼2 is 𝑀2 (𝑥2;𝑦2). We distinguish different cases based on

whether𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.5.1 𝑀1 is nullary,𝑀2 is not. In this case, 𝐼 (𝛼1) and 𝑂 (𝛼1) are empty. In particular, 𝑂syn (𝛼) is empty, so 𝑂syn (𝛼) ⊆
𝑂sem (𝛼) is trivial.

We proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Observe that

𝐼 syn (𝛼) = 𝐼 (𝛼2) ∪𝑂 (𝛼2).

Let 𝑣 ∈ 𝐼 syn (𝛼). Consider the interpretation 𝐷 where 𝐷 (𝑀1) is not empty and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1

be the valuation that is 2 on 𝑣 and 1 elsewhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 1]. We establish that

𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose (a ′1, a

′
2
) ∈ ⟦𝛼⟧𝐷 . In particular,

(a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 , whence a ′2 = a ′

1
by Lemma 5.1. However, (a ′

1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 , so (a ′

1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 as desired.

5.5.2 𝑀2 is nullary,𝑀1 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀2) is empty. By induction

and Lemma 5.2, we establish that 𝑂syn (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼1) ⊆ 𝐼 sem (𝛼). Since 𝐼 (𝛼2) and 𝑂 (𝛼2) are both empty,

then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪𝑂 (𝛼1).

Thus, 𝑂 (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 (𝛼1) ⊆ 𝐼 sem (𝛼) is trivial.
We proceed to verify 𝑂 (𝛼1) − 𝐼 (𝛼1) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) − 𝐼 (𝛼1). Consider the interpretation 𝐷 where 𝐷 (𝑀2)

is not empty and 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 2 on 𝑣 and 1 elsewhere and let a2 be

the valuation that is 1 everywhere. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 1]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by
Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Inputs, Outputs, and Composition in the Logic of Information Flows 27

arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose (a ′1, a

′
2
) ∈ ⟦𝛼⟧𝐷 . In particular, (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 ,

whence a ′
2
= a ′

1
from the structure of 𝐷 . However, (a ′

1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 by Lemma 5.1, so (a ′

1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 as desired.

5.5.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪ (𝑂 (𝛼1) △𝑂 (𝛼2)).

The proof of 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) is done together with the proof that 𝑣 ∈ 𝐼 sem (𝛼) for every 𝑣 ∈ 𝐼 (𝛼1). Discussions for
the other cases for 𝑣 ∈ 𝐼 syn (𝛼) follow afterwards. Since𝑀1 ≠ 𝑀2, it is clear that ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation

𝐷 where 𝐷 (𝑀2) is empty. By induction and Lemma 5.2, we establish that 𝑂syn (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼1) ⊆ 𝐼 sem (𝛼).
Thus, 𝑂 (𝛼1) ⊆ 𝑂sem (𝛼) and 𝐼 (𝛼1) ⊆ 𝐼 sem (𝛼) is trivial.

When 𝑣 ∈ 𝐼 (𝛼2) − 𝐼 (𝛼1). Let 𝑣 ∈ 𝐼 (𝛼2) − 𝐼 (𝛼1). Consider an interpretation 𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and
similarly 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that 2 on 𝑣 and 1 elsewhere. Also, let a2 be the valuation

that is 1 on 𝑂 (𝛼1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Further, (a1, a2) ∉ ⟦𝛼2⟧𝐷 . Indeed,
since 𝑣 ∈ 𝐼 (𝛼2) then a1 should have the value of 1 on 𝑣 for (a1, a2) to be in ⟦𝛼2⟧𝐷 . Take a ′1 := a1 [𝑣 : 1]. We establish that

𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that (a ′1, a

′
2
) ∈ ⟦𝛼⟧𝐷 . Hence,

(a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . Indeed, (a ′1, a

′
2
) ∈ ⟦𝛼1⟧𝐷 whence a ′

1
= a ′

2
. Clearly, (a ′

1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 showing

that (a ′
1
, a ′

1
) ∉ ⟦𝛼⟧𝐷 as desired. Therefore, 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑣 ∈ (𝑂 (𝛼1) △𝑂 (𝛼2)) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). Let 𝑣 ∈ (𝑂 (𝛼1) △𝑂 (𝛼2)) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2)). Consider an interpretation

𝐷 where 𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 2 on 𝑣 and 1

elsewhere. Also let a2 be the valuation that is 1 on𝑂 (𝛼1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼1⟧𝐷 .
Furthermore, (a1, a2) ∉ ⟦𝛼2⟧𝐷 . In particular, when 𝑣 ∈ 𝑂 (𝛼1) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼2)), we know that a1 (𝑣) = 2 and

a2 (𝑣) = 1. Since 𝑣 ∉ 𝑂 (𝛼2), then (a1, a2) ∉ ⟦𝛼2⟧𝐷 . In the other case, when 𝑣 ∈ 𝑂 (𝛼2) − (𝐼 (𝛼1) ∪ 𝐼 (𝛼2) ∪𝑂 (𝛼1)), we
know that a1 (𝑣) = a2 (𝑣) = 2 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Consequently, (a1, a2) ∉ ⟦𝛼2⟧𝐷 since 𝑣 ∈ 𝑂 (𝛼2) but a2 (𝑣) = 2.

We verify that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 1]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′
2

for which (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that (a ′1, a

′
2
) ∈ ⟦𝛼⟧𝐷 . Hence, (a ′1, a

′
2
) ∈ ⟦𝛼1⟧𝐷 and (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 .

Indeed, (a ′
1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 whence a ′

1
= a ′

2
. Clearly, (a ′

1
, a ′

1
) ∈ ⟦𝛼2⟧𝐷 showing that (a ′

1
, a ′

1
) ∉ ⟦𝛼⟧𝐷 as desired. Therefore,

𝑣 ∈ 𝐼 sem (𝛼).

5.6 Composition

Let 𝛼 be of the form 𝛼1 ;𝛼2, where 𝛼1 is𝑀1 (𝑥1;𝑦1) and 𝛼2 is𝑀2 (𝑥2;𝑦2). We distinguish different cases based on whether

𝑀1 or𝑀2 is nullary. If𝑀1 and𝑀2 are both nullary there is nothing to prove.

5.6.1 𝑀1 is nullary,𝑀2 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼2⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀1) is not empty. In this case,

𝐼 (𝛼1) and 𝑂 (𝛼1) are both empty, then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼2).

First, we verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼2). We know that 𝑂syn (𝛼2) ⊆ 𝑂sem (𝛼2) by induction, then 𝑣 ∈
𝑂sem (𝛼2). By definition, we know that there is an interpretation 𝐷 ′

and (a1, a2) ∈ ⟦𝛼2⟧𝐷′ such that a1 (𝑣) ≠ a2 (𝑣).
Take 𝐷 ′′

to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀1 while 𝐷 ′′(𝑀1) is not empty. Clearly,

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Aamer et al.

(a1, a2) ∈ ⟦𝛼⟧𝐷′′ , whence, 𝑀1 ≠ 𝑀2, (a1, a1) ∈ ⟦𝛼1⟧𝐷′′ by Lemma 5.1, and ⟦𝛼⟧𝐷′′ = ⟦𝛼2⟧𝐷′ . It follows then that

𝑣 ∈ 𝑂sem (𝛼).
Similarly, we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼2). We know that 𝐼 syn (𝛼2) ⊆ 𝐼 sem (𝛼2) by induction,

then 𝑣 ∈ 𝐼 sem (𝛼2). By definition, we know that there is an interpretation 𝐷 ′
, (a1, a2) ∈ ⟦𝛼2⟧𝐷′ , and a ′

1
(𝑣) ≠ a1 (𝑣) such

that (a ′
1
, a ′

2
) ∉ ⟦𝛼2⟧𝐷′ for every valuation a ′

2
that agrees with a2 on 𝑂sem (𝛼2).

Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀1 while 𝐷 ′′(𝑀1) is not empty. Clearly,

⟦𝛼⟧𝐷′′ = ⟦𝛼2⟧𝐷′ , whence, 𝑀1 ≠ 𝑀2. Therefore, 𝑂
sem (𝛼2) ⊆ 𝑂sem (𝛼). Hence, 𝑣 ∈ 𝐼 sem (𝛼). Indeed, (a1, a2) ∈ ⟦𝛼⟧𝐷′′

and for any valuation a ′
2
if a ′

2
agrees with a2 on 𝑂sem (𝛼), then a ′

2
agrees with a2 on 𝑂sem (𝛼2).

5.6.2 𝑀2 is nullary,𝑀1 is not. Clearly, ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 where 𝐷 (𝑀2) is not empty. In this case,

𝐼 (𝛼2) and 𝑂 (𝛼2) are both empty, then we observe that

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

First, we verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). We know that 𝑂syn (𝛼1) ⊆ 𝑂sem (𝛼1) by induction, then 𝑣 ∈
𝑂sem (𝛼1). By definition, we know that there is an interpretation 𝐷 ′

and (a1, a2) ∈ ⟦𝛼1⟧𝐷′ such that a1 (𝑣) ≠ a2 (𝑣).
Take 𝐷 ′′

to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀2 while 𝐷 ′′(𝑀2) is not empty. Clearly,

(a1, a2) ∈ ⟦𝛼⟧𝐷′′ , whence, 𝑀1 ≠ 𝑀2, (a2, a2) ∈ ⟦𝛼2⟧𝐷′′ by Lemma 5.1, and ⟦𝛼⟧𝐷′′ = ⟦𝛼1⟧𝐷′ . It follows then that

𝑣 ∈ 𝑂sem (𝛼).
Similarly, we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1). We know that 𝐼 syn (𝛼1) ⊆ 𝐼 sem (𝛼1) by induction,

then 𝑣 ∈ 𝐼 sem (𝛼1). By definition, we know that there is an interpretation 𝐷 ′
, (a1, a2) ∈ ⟦𝛼1⟧𝐷′ , and a ′

1
(𝑣) ≠ a1 (𝑣) such

that (a ′
1
, a ′

2
) ∉ ⟦𝛼1⟧𝐷′ for every valuation a ′

2
that agrees with a2 on 𝑂sem (𝛼1).

Take 𝐷 ′′
to be the interpretation where 𝐷 ′′(𝑀) = 𝐷 ′(𝑀) for any 𝑀 ≠ 𝑀2 while 𝐷 ′′(𝑀2) is not empty. Clearly,

⟦𝛼⟧𝐷′′ = ⟦𝛼1⟧𝐷′ , whence, 𝑀1 ≠ 𝑀2. Therefore, 𝑂
sem (𝛼1) ⊆ 𝑂sem (𝛼). Hence, 𝑣 ∈ 𝐼 sem (𝛼). Indeed, (a1, a2) ∈ ⟦𝛼⟧𝐷′′

and for any valuation a ′
2
if a ′

2
agrees with a2 on 𝑂sem (𝛼), then a ′

2
agrees with a2 on 𝑂sem (𝛼1).

5.6.3 Neither𝑀1 nor𝑀2 is nullary. Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪𝑂 (𝛼2);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1)).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∪𝑂 (𝛼2). Consider an interpretation 𝐷 such that

𝐷 (𝑀1) = {(1, . . . , 1; 2, . . . , 2), (𝑖1, . . . , 𝑖𝑚 ; 3, . . . , 3)},

where 𝑖1, . . . , 𝑖𝑚 are all the combinations of {1, 2}. Similarly,

𝐷 (𝑀2) = {(1, . . . , 1; 2, . . . , 2), (𝑖1, . . . , 𝑖𝑛 ; 3, . . . , 3)},

where 𝑖1, . . . , 𝑖𝑛 are all the combinations of {1, 2}.
Let a1 be the valuation that is 1 everywhere. Also, let a be the valuation that is 2 on 𝑂 (𝛼1) and 1 elsewhere. Clearly,

(a1, a) ∈ ⟦𝛼1⟧𝐷 . Let a2 be the valuation that is 3 on𝑂 (𝛼2), 2 on𝑂 (𝛼1)−𝑂 (𝛼2), and 1 elsewhere. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 ,
whence (a, a2) ∈ ⟦𝛼2⟧𝐷 . Hence, 𝑣 ∈ 𝑂sem (𝛼). Indeed, a2 (𝑣) ≠ a1 (𝑣) for 𝑣 ∈ 𝑂syn (𝛼).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ (𝐼 (𝛼2) −𝑂 (𝛼1)). Consider an interpretation 𝐷 where

𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)} and similarly 𝐷 (𝑀2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere.

Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 , whence (a1, a1) ∈ ⟦𝛼1⟧𝐷 and (a1, a1) ∈ ⟦𝛼2⟧𝐷 .
Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Inputs, Outputs, and Composition in the Logic of Information Flows 29

Take a ′
1

:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no valuation a ′
2
for which (a ′

1
, a ′

2
) ∈

⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1). Clearly, there is no a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 . On the other hand, when

𝑣 ∈ 𝐼 (𝛼2) −𝑂 (𝛼1). Clearly, (a ′
1
, a) ∈ ⟦𝛼1⟧𝐷 , whence a = a ′

1
. However, there is no a ′

2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼2⟧𝐷 . Thus,

there is no a ′
2
such that (a ′

1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 as desired. We conclude that 𝑣 ∈ 𝐼 sem (𝛼).

5.7 Converse

Let 𝛼 be of the form 𝛼⌣
1
, where 𝛼1 := 𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪𝑂 (𝛼1).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 2 on 𝑂 (𝛼1) and 1 elsewhere. Also let a2 be the valuation that is 1 everywhere. Clearly,

(a1, a2) ∈ ⟦𝛼⟧𝐷 since (a2, a1) ∈ ⟦𝛼1⟧𝐷 . Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪𝑂 (𝛼1). Consider the same interpretation 𝐷 and the

same valuations a1 and a2. We established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 3]. We establish that 𝑣 ∈ 𝐼 sem (𝛼)
by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, when 𝑣 ∈ 𝑂 (𝛼1), then a1 has to be 2 on 𝑣 . In the

other case, when 𝑣 ∈ 𝐼 (𝛼1) −𝑂 (𝛼1), then a1 has to be 1 on 𝑣 . Thus, there is no a ′
2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 as desired.

Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.8 Left Cylindrification

Let 𝛼 be of the form cyl
𝑙
𝑥 (𝛼1), where 𝛼1 := 𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪ {𝑥};
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) − {𝑥}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 3 on 𝑥 and 1 elsewhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and 1 everywhere

else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1 [𝑥 : 1], a2) ∈ ⟦𝛼1⟧𝐷 . Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) − {𝑥}. Consider the same interpretation 𝐷 and the same

valuations a1 and a2. We established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing
that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is true since 𝑣 ∈ 𝐼 (𝛼1) − {𝑥}. Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.9 Right Cylindrification

Let 𝛼 be of the form cyl
𝑟
𝑥 (𝛼1), where 𝛼1 := 𝑀 (𝑥 ;𝑦). Recall the definitions:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) ∪ {𝑥};
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.
Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Aamer et al.

Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and on 𝑥 and 1 everywhere

else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since either (a1, a2 [𝑥 : 1]) ∈ ⟦𝛼1⟧𝐷 or (a1, a2) ∈ ⟦𝛼1⟧𝐷 . Therefore, 𝑣 ∈ 𝑂sem (𝛼) since
a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1). Consider the same interpretation 𝐷 and the same

valuations a1 and a2. We established that (a1, a2) ∈ ⟦𝛼⟧𝐷 . Take a ′1 := a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing
that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is true since 𝑣 ∈ 𝐼 (𝛼1). Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.10 Left Selection

Let 𝛼 be of the form 𝜎 l𝑥=𝑦 (𝛼1), where 𝛼1 := 𝑀 (𝑢; �̄�), 𝑢 = 𝑢1, . . . , 𝑢𝑛 , and �̄� = 𝑤1, . . . ,𝑤𝑚 . We distinguish different cases

based on whether 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are the same variable (𝑥 =syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

We proceed to verify that 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Indeed, this is true since ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any

interpretation 𝐷 because of 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are different variables (𝑥 ≠syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥,𝑦}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and 1 everywhere else.

Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a1 (𝑦). Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥,𝑦}. Consider an interpretation 𝐷 where

𝐷 (𝑀1) = {(1, . . . , 1; 1, . . . , 1)}.

Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a1 (𝑦). Take
a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular,

when 𝑣 ∈ 𝐼 (𝛼1), it is clear that there is no a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 . In the other case, when 𝑣 is either 𝑥 or 𝑦, there

is no a ′
2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Indeed, this is true since 𝑥 ≠syn 𝑦 and a ′

1
(𝑥) ≠ a ′

1
(𝑦). Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

5.11 Right Selection

Let 𝛼 be of the form 𝜎r𝑥=𝑦 (𝛼1), where 𝛼1 := 𝑀 (𝑢; �̄�), 𝑢 = 𝑢1, . . . , 𝑢𝑛 , and �̄� = 𝑤1, . . . ,𝑤𝑚 . We distinguish different cases

based on whether 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are the same variable (𝑥 =syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Inputs, Outputs, and Composition in the Logic of Information Flows 31

We proceed to verify that 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Indeed, this is true since ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any

interpretation 𝐷 because of 𝑥 =syn 𝑦.

When 𝑥 and 𝑦 are different variables (𝑥 ≠syn 𝑦). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ ({𝑥,𝑦} −𝑂 (𝛼1)).

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(𝑖1, . . . , 𝑖𝑛 ; 2, . . . , 2)},

such that 𝑖 𝑗 = 2 if𝑢 𝑗 is either 𝑥 or 𝑦 and𝑢 𝑗 ∉ 𝑂 (𝛼1), otherwise,𝑢 𝑗 = 1. Let a1 be the valuation that is 2 on 𝑥 if 𝑥 ∉ 𝑂 (𝛼1),
2 on 𝑦 if 𝑦 ∉ 𝑂 (𝛼1), and 1 everywhere. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) and agrees with a1 everywhere

else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a2 (𝑥) = a2 (𝑦). Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).
Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥,𝑦}. Consider an interpretation 𝐷 where 𝐷 (𝑀1) =

{(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷
and a1 (𝑥) = a1 (𝑦). Take a ′

1
:= a1 [𝑣 : 2]. We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which

(a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1), it is clear that there is no a ′

2
such that (a ′

1
, a ′

2
) ∈ ⟦𝛼1⟧𝐷 . Now we need

to verify the same when 𝑣 is 𝑥 or 𝑦 and 𝑣 ∉ 𝐼 (𝛼1). Thereto, suppose (a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In the case of 𝑣 is 𝑥 and 𝑥 ∉ 𝐼 (𝛼1),

this is only possible when 𝑥 ∉ 𝑂 (𝛼1). Therefore, a ′
2
(𝑥) = a ′

1
(𝑥) = 2 but a ′

2
(𝑦) = 1 whether 𝑦 ∈ 𝑂 (𝛼1) or not. Hence,

(a ′
1
, a ′

2
) ∉ ⟦𝛼⟧𝐷 since 𝑥 ≠syn 𝑦 and a ′

2
(𝑥) ≠ a ′

2
(𝑦). The case when 𝑣 is 𝑦 and 𝑦 ∉ 𝐼 (𝛼1) is symmetric. Consequently,

𝑣 ∈ 𝐼 sem (𝛼).

5.12 Left-to-Right Selection

Let 𝛼 be of the form 𝜎 lr𝑥=𝑦 (𝛼1), where 𝛼1 := 𝑀 (𝑢; �̄�), 𝑢 = 𝑢1, . . . , 𝑢𝑛 , and �̄� = 𝑤1, . . . ,𝑤𝑚 . We distinguish different cases

based on whether 𝑥 =syn 𝑦 and 𝑦 ∈ 𝑂 (𝛼1).

When 𝑥 =syn 𝑦 and 𝑦 ∈ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1) − {𝑥};
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥}.

In what follows, since 𝑥 =syn 𝑦 we will refer to both of them with 𝑥 . We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼).
Let 𝑣 ∈ 𝑂 (𝛼1) − {𝑥}. Consider an interpretation 𝐷 such that 𝐷 (𝑀) = {(1, . . . , 1;𝑜1, . . . , 𝑜𝑚)} where 𝑜 𝑗 = 1 if 𝑤 𝑗 = 𝑦,

otherwise 𝑜 𝑗 = 2 . Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on𝑂 (𝛼1) − {𝑥} and
1 everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a2 (𝑥). Therefore, 𝑣 ∈ 𝑂sem (𝛼) since
a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 1, . . . , 1)}.

Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 . Take a ′1 := a1 [𝑣 : 2].
We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that

(a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1) it is clear that (a ′

1
, a ′

2
) ∉ ⟦𝛼1⟧𝐷 . On the other hand, when 𝑣 = 𝑥 and

𝑥 ∈ 𝑂 (𝛼1) − 𝐼 (𝛼1), clearly a ′
1
(𝑥) = 2 ≠ 1 = a ′

2
(𝑥). Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑥 =syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1). Recall the definitions in this case:

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Aamer et al.

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1).

In what follows, since 𝑥 =syn 𝑦 we will refer to both of them with 𝑥 . We proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼) and
𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Indeed, this is true since ⟦𝛼⟧𝐷 = ⟦𝛼1⟧𝐷 for any interpretation 𝐷 because of 𝑥 =syn 𝑦 and 𝑥 ∉ 𝑂 (𝛼1).

When 𝑥 ≠syn 𝑦 and 𝑦 ∈ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 such that

𝐷 (𝑀) = {(𝑖1, . . . , 𝑖𝑛 ;𝑜1, . . . , 𝑜𝑚)},

where 𝑖 𝑗 = 2 if 𝑢 𝑗 = 𝑥 , otherwise 𝑖 𝑗 = 1. Also, 𝑜 𝑗 = 3 if𝑤 𝑗 = 𝑥 , otherwise 𝑜 𝑗 = 2 . Let a1 be the valuation that is 2 on 𝑥

and 1 everywhere else. Also let a2 be the valuation that is 2 on 𝑂 (𝛼1) − {𝑥}, 3 on 𝑥 if 𝑥 ∈ 𝑂 (𝛼1) and agrees with a1

everywhere else. Clearly, (a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a2 (𝑦). Therefore, 𝑣 ∈ 𝑂sem (𝛼). Indeed, in
both cases whether 𝑥 ∈ 𝑂 (𝛼1) or not, a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥}. Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 1, . . . , 1)}.

Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 . Take a ′1 := a1 [𝑣 : 2].
We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that

(a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1) it is clear that (a ′

1
, a ′

2
) ∉ ⟦𝛼1⟧𝐷 . On the other hand, when 𝑣 = 𝑥 and

𝑦 ∈ 𝑂 (𝛼1), clearly a ′
1
(𝑥) = 2 ≠ 1 = a ′

2
(𝑦). Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

When 𝑥 ≠syn 𝑦 and 𝑦 ∉ 𝑂 (𝛼1). Recall the definitions in this case:

• 𝑂syn (𝛼) = 𝑂 (𝛼1);
• 𝐼 syn (𝛼) = 𝐼 (𝛼1) ∪ {𝑥,𝑦}.

We first proceed to verify 𝑂syn (𝛼) ⊆ 𝑂sem (𝛼). Let 𝑣 ∈ 𝑂 (𝛼1). Consider an interpretation 𝐷 such that

𝐷 (𝑀) = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on𝑂 (𝛼1) and 1 everywhere else. Clearly,

(a1, a2) ∈ ⟦𝛼⟧𝐷 since (a1, a2) ∈ ⟦𝛼1⟧𝐷 and a1 (𝑥) = a2 (𝑦). Indeed, this is true since 𝑦 ∉ 𝑂 (𝛼1), then a1 (𝑦) = a2 (𝑦).
Therefore, 𝑣 ∈ 𝑂sem (𝛼) since a1 (𝑣) ≠ a2 (𝑣).

Now we proceed to verify 𝐼 syn (𝛼) ⊆ 𝐼 sem (𝛼). Let 𝑣 ∈ 𝐼 (𝛼1) ∪ {𝑥,𝑦}. Consider an interpretation 𝐷 where

𝐷 (𝑀) = {(1, . . . , 1; 1, . . . , 1)}.

Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ⟦𝛼⟧𝐷 since (a1, a1) ∈ ⟦𝛼1⟧𝐷 . Take a ′1 := a1 [𝑣 : 2].
We establish that 𝑣 ∈ 𝐼 sem (𝛼) by arguing that there is no a ′

2
for which (a ′

1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . Thereto, suppose that

(a ′
1
, a ′

2
) ∈ ⟦𝛼⟧𝐷 . In particular, when 𝑣 ∈ 𝐼 (𝛼1) it is clear that (a ′

1
, a ′

2
) ∉ ⟦𝛼1⟧𝐷 . On the other hand, when 𝑣 = 𝑥 or 𝑣 = 𝑦,

clearly a ′
1
(𝑥) ≠ (a ′

1
(𝑦) = a ′

2
(𝑦)) since 𝑦 ∉ 𝑂 (𝛼1) and 𝑥 ≠syn 𝑦. Consequently, 𝑣 ∈ 𝐼 sem (𝛼).

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Inputs, Outputs, and Composition in the Logic of Information Flows 33

6 OPTIMALITY THEOREM PROOF

In this section, we prove Theorem 3.28. Thus, we would like to show that

𝐼 syn (𝛼) ⊆ 𝐼 (𝛼) and 𝑂syn (𝛼) ⊆ 𝑂 (𝛼).

for any LIF expression 𝛼 , assuming that (𝐼 ,𝑂) is a sound and compositional input–output definition. The proof is by

induction on the structure of 𝛼 .

Atomic Modules. For atomic module expressions 𝛼 , this follows directly from Theorem 3.27.

Identity. For 𝛼 = id, this is immediate since 𝐼 syn (id) = 𝑂syn (id) = ∅.

Binary Operators. For 𝛼 = 𝛼1 ⊡ 𝛼2, where ⊡ is a binary operator, we define two atomic module expressions

𝛼 ′
1
= 𝑀1 (𝑥 ;𝑦) and 𝛼 ′

2
= 𝑀2 (𝑢, 𝑣) where 𝑥 = 𝐼 (𝛼1), 𝑦 = 𝑂 (𝛼1), 𝑢 = 𝐼 (𝛼2), and 𝑣 = 𝑂 (𝛼2) with𝑀𝑖 distinct module names

of the right arity.

Since (𝐼 ,𝑂) is sound, we know that the following holds for 𝑖 ∈ {1, 2}:

𝐼 (𝛼𝑖) = 𝐼 (𝛼 ′
𝑖) = 𝐼 syn (𝛼 ′

𝑖) and 𝑂 (𝛼𝑖) = 𝑂 (𝛼 ′
𝑖) = 𝑂syn (𝛼 ′

𝑖). (1)

Moreover by soundness and Proposition 3.20, we know that

𝐼 sem (𝛼 ′
1
⊡ 𝛼 ′

2
) ⊆ 𝐼 (𝛼 ′

1
⊡ 𝛼 ′

2
) and 𝑂sem (𝛼 ′

1
⊡ 𝛼 ′

2
) ⊆ 𝑂 (𝛼 ′

1
⊡ 𝛼 ′

2
) . (2)

From the Precision Theorem, we know that

𝐼 syn (𝛼 ′
1
⊡ 𝛼 ′

2
) = 𝐼 sem (𝛼 ′

1
⊡ 𝛼 ′

2
) and 𝑂syn (𝛼 ′

1
⊡ 𝛼 ′

2
) = 𝑂sem (𝛼 ′

1
⊡ 𝛼 ′

2
) . (3)

From the compositionality of (𝐼 ,𝑂), we know that

𝐼 (𝛼 ′
1
⊡ 𝛼 ′

2
) = 𝐼 (𝛼1 ⊡ 𝛼2) and 𝑂 (𝛼 ′

1
⊡ 𝛼 ′

2
) = 𝑂 (𝛼1 ⊡ 𝛼2). (4)

By combining Equations (2–4), we find that

𝐼 syn (𝛼 ′
1
⊡ 𝛼 ′

2
) ⊆ 𝐼 (𝛼1 ⊡ 𝛼2) and 𝑂syn (𝛼 ′

1
⊡ 𝛼 ′

2
) ⊆ 𝑂 (𝛼1 ⊡ 𝛼2). (5)

We now claim the following

𝐼 syn (𝛼1 ⊡ 𝛼2) ⊆ 𝐼 syn (𝛼 ′
1
⊡ 𝛼 ′

2
) and 𝑂syn (𝛼1 ⊡ 𝛼2) ⊆ 𝑂syn (𝛼 ′

1
⊡ 𝛼 ′

2
). (6)

If we prove our claim, then combining Equations (5–6) establishes our theorem for binary operators.

First, we prove our claim for the inductive cases for outputs of the different binary operators. From the inductive

hypothesis and Equation (1), we know that for 𝑖 ∈ {1, 2}:

𝑂syn (𝛼𝑖) ⊆ 𝑂 (𝛼𝑖) = 𝑂syn (𝛼 ′
𝑖) .

Hence, it is clear that

• 𝑂syn (𝛼1) ∪𝑂syn (𝛼2) is a subset of𝑂syn (𝛼 ′
1
) ∪𝑂syn (𝛼 ′

2
), which settles the cases when ⊡ ∈ {∪, ;} since𝑂syn (𝛽 ⊡

𝛾) = 𝑂syn (𝛽) ∪𝑂syn (𝛾) for any LIF expressions 𝛽 and 𝛾 ;

• 𝑂syn (𝛼1) ∩𝑂syn (𝛼2) is a subset of𝑂syn (𝛼 ′
1
) ∩𝑂syn (𝛼 ′

2
), which settles the case when ⊡ is ∩ since𝑂syn (𝛽 ⊡𝛾) =

𝑂syn (𝛽) ∩𝑂syn (𝛾) for any LIF expressions 𝛽 and 𝛾 ;

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Aamer et al.

• 𝑂syn (𝛼1) is a subset of 𝑂syn (𝛼 ′
1
), which settles the case when ⊡ is − since 𝑂syn (𝛽 ⊡ 𝛾) = 𝑂syn (𝛽) for any LIF

expressions 𝛽 and 𝛾 .

Now, we consider the inductive cases for the inputs of the different binary operators. Similar to the outputs, we

know that for 𝑖 ∈ {1, 2}:
𝐼 syn (𝛼𝑖) ⊆ 𝐼 (𝛼𝑖) = 𝐼 syn (𝛼 ′

𝑖) .

Consequently,

• when 𝑥 ∈ 𝐼 syn (𝛼1) ∪ (𝐼 syn (𝛼2) −𝑂syn (𝛼1)), we consider the following cases:
– if 𝑥 ∈ 𝐼 syn (𝛼1), then it is clear that 𝑥 ∈ 𝐼 syn (𝛼 ′

1
);

– if 𝑥 ∈ (𝐼 syn (𝛼2) −𝑂syn (𝛼1)), then we know that 𝑥 ∈ 𝐼 syn (𝛼 ′
2
). Moreover, since 𝑥 ∉ 𝑂syn (𝛼1), we know by

soundness of (𝐼 syn,𝑂syn) that 𝑥 ∉ 𝑂sem (𝛼1). Now, we differentiate between two cases

∗ when 𝑥 ∉ 𝑂syn (𝛼 ′
1
), it is clear that 𝑥 ∈ (𝐼 syn (𝛼 ′

2
) −𝑂syn (𝛼 ′

1
));

∗ when 𝑥 ∈ 𝑂syn (𝛼 ′
1
), we know from Equation (1) that 𝑥 ∈ 𝑂 (𝛼1). From Lemma 3.22 and Equation (1),

it follows that 𝑥 ∈ 𝐼 (𝛼1) and 𝑥 ∈ 𝐼 syn (𝛼 ′
1
).

In all cases, we verify that 𝑥 ∈ 𝐼 syn (𝛼 ′
1
) ∪ (𝐼 syn (𝛼 ′

2
) − 𝑂syn (𝛼 ′

1
)). This settles the case when ⊡ is ; since

𝐼 syn (𝛽 ⊡ 𝛾) = 𝐼 syn (𝛽) ∪ (𝐼 syn (𝛾) −𝑂syn (𝛽)) for any LIF expressions 𝛽 and 𝛾 .

• when 𝑥 ∈ 𝐼 syn (𝛼1) ∪ 𝐼 syn (𝛼2) ∪ (𝑂syn (𝛼1) △𝑂syn (𝛼2)), we consider the following cases:

– if 𝑥 ∈ 𝐼 syn (𝛼𝑖) for some 𝑖 , then it is clear that 𝑥 ∈ 𝐼 syn (𝛼 ′
𝑖
);

– if 𝑥 ∈ 𝑂syn (𝛼𝑖) − 𝑂syn (𝛼 𝑗) for 𝑖 ≠ 𝑗 , we know that 𝑥 ∈ 𝑂syn (𝛼 ′
𝑖
). Since 𝑥 ∉ 𝑂syn (𝛼 𝑗), we know by

soundness that 𝑥 ∉ 𝑂sem (𝛼 𝑗). Now, we differentiate between two cases

∗ when 𝑥 ∉ 𝑂syn (𝛼 ′
𝑗
), it is clear that 𝑥 ∈ (𝑂syn (𝛼 ′

𝑖
) △𝑂syn (𝛼 ′

𝑗
));

∗ when 𝑥 ∈ 𝑂syn (𝛼 ′
𝑗
), we know from Equation (1) that 𝑥 ∈ 𝑂 (𝛼 𝑗). From Lemma 3.22 and Equation (1),

it follows that 𝑥 ∈ 𝐼 (𝛼 𝑗) and 𝑥 ∈ 𝐼 syn (𝛼 ′
𝑗
).

In all cases, we verify that 𝑥 ∈ 𝐼 syn (𝛼 ′
1
) ∪ 𝐼 syn (𝛼 ′

2
) ∪ (𝑂syn (𝛼 ′

1
) △ 𝑂syn (𝛼 ′

2
)). This settles the cases when

⊡ ∈ {∪,∩,−} since 𝐼 syn (𝛽 ⊡ 𝛾) = 𝐼 syn (𝛽) ∪ 𝐼 syn (𝛾) ∪ (𝑂syn (𝛽) △𝑂syn (𝛾)) for any LIF expressions 𝛽 and 𝛾 .

Unary Operators. We follow a similar approach for unary operators. For 𝛼 = □𝛼1, where □ is a unary operator, we

define one atomic module expression 𝛼 ′
1
= 𝑀1 (𝑥 ;𝑦) where 𝑥 = 𝐼 (𝛼1), and 𝑦 = 𝑂 (𝛼1).

Since (𝐼 ,𝑂) is sound, we know that the following holds:

𝐼 (𝛼1) = 𝐼 (𝛼 ′
1
) = 𝐼 syn (𝛼 ′

1
) and 𝑂 (𝛼1) = 𝑂 (𝛼 ′

1
) = 𝑂syn (𝛼 ′

1
) . (7)

Moreover, we know that

𝐼 sem (□𝛼 ′
1
) ⊆ 𝐼 (□𝛼 ′

1
) and 𝑂sem (□𝛼 ′

1
) ⊆ 𝑂 (□𝛼 ′

1
) . (8)

From the precision theorem, we know that

𝐼 syn (□𝛼 ′
1
) = 𝐼 sem (□𝛼 ′

1
) and 𝑂syn (□𝛼 ′

1
) = 𝑂sem (□𝛼 ′

1
) . (9)

From the compositionality of (𝐼 ,𝑂), we know that

𝐼 (□𝛼 ′
1
) = 𝐼 (□𝛼1) and 𝑂 (□𝛼 ′

1
) = 𝑂 (□𝛼1). (10)

By combining Equations (8–10), we find that

𝐼 syn (□𝛼 ′
1
) ⊆ 𝐼 (□𝛼1) and 𝑂syn (□𝛼 ′

1
) ⊆ 𝑂 (□𝛼1). (11)

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Inputs, Outputs, and Composition in the Logic of Information Flows 35

We now claim the following

𝐼 syn (□𝛼1) ⊆ 𝐼 syn (□𝛼 ′
1
) and 𝑂syn (□𝛼1) ⊆ 𝑂syn (□𝛼 ′

1
) . (12)

If we prove our claim, then combining Equations (11–12) establishes our theorem for unary operators.

Proving our claim for the inductive cases for outputs of the different unary operators follows directly from the

inductive hypothesis and Equation (7), which states that

𝑂syn (𝛼1) ⊆ 𝑂 (𝛼1) = 𝑂syn (𝛼 ′
1
) .

Indeed, 𝑂syn (□𝛼1) and 𝑂syn (□𝛼 ′
1
), respectively, simply equal 𝑂syn (𝛼1) and 𝑂syn (𝛼 ′

1
), except for the possible addition

or removal of some fixed variable that depends only on □.

Now, we consider the inductive cases for inputs. Similar to the outputs, we know that

𝐼 syn (𝛼1) ⊆ 𝐼 (𝛼1) = 𝐼 syn (𝛼 ′
1
) .

Here, we only discuss the cases for 𝜎 lr𝑥=𝑦 and 𝜎r𝑥=𝑦 as all the other cases again follow directly from the above inclusion

and the definition of 𝐼 syn
.

We begin by the cases for 𝜎 lr𝑥=𝑦 . The cases are:

• when 𝑦 ∈ 𝑂syn (𝛼1), we have

𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ∪ {𝑥} ⊆ 𝐼 syn (𝛼 ′
1
) ∪ {𝑥} = 𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼 ′

1
)) .

• when 𝑦 ∉ 𝑂syn (𝛼1) and 𝑥 =syn 𝑦, we have

𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ⊆ 𝐼 syn (𝛼 ′
1
) ⊆ 𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼 ′

1
)) .

• when 𝑦 ∉ 𝑂syn (𝛼1) and 𝑥 ≠syn 𝑦, by definition

𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ∪ {𝑥,𝑦}.

In case 𝑦 ∉ 𝑂syn (𝛼 ′
1
), we are done since 𝐼 syn (𝛼1) ∪ {𝑥,𝑦} ⊆ 𝐼 syn (𝛼 ′

1
) ∪ {𝑥,𝑦} = 𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼 ′

1
)). Otherwise,

𝑦 ∈ 𝑂syn (𝛼 ′
1
) in which case 𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼 ′

1
)) = 𝐼 syn (𝛼 ′

1
) ∪ {𝑥}. What remains to show is that 𝑦 ∈ 𝐼 syn (𝛼 ′

1
). By

Equation 7, we have 𝑦 ∈ 𝑂 (𝛼1). Moreover, 𝑦 ∉ 𝑂sem (𝛼1) since 𝑦 ∉ 𝑂syn (𝛼1). By Lemma 3.22 and Equation 7,

we obtain 𝑦 ∈ 𝐼 (𝛼1) = 𝐼 syn (𝛼 ′
1
) as desired.

Finally, we consider the case for 𝜎r𝑥=𝑦 when 𝑥 ≠syn 𝑦. The case when 𝑥 =syn 𝑦 follows directly. By definition,

𝐼 syn (𝜎r𝑥=𝑦 (𝛼1)) = 𝐼 syn (𝛼1) ∪ ({𝑥,𝑦} −𝑂syn (𝛼1)).

We can focus on 𝑧 ∈ {𝑥,𝑦}. If 𝑧 ∈ 𝑂syn (𝛼1) or 𝑧 ∉ 𝑂syn (𝛼 ′
1
), we are done. Now, consider the case when 𝑧 ∉ 𝑂syn (𝛼1),

but 𝑧 ∈ 𝑂syn (𝛼 ′
1
). Similar to our reasoning for the last case in 𝜎 lr𝑥=𝑦 , we can show that 𝑧 ∈ 𝐼 syn (𝛼 ′

1
), whence, 𝑧 ∈

𝐼 syn (𝜎 lr𝑥=𝑦 (𝛼 ′
1
)) by definition.

7 PRIMITIVITY OF COMPOSITION

We now turn our attention to the study of composition in LIF. Indeed, LIF has a rich set of logical operators already,

plus an explicit operator (;) for sequential composition. This begs the question whether composition is not already

definable in terms of the other operators.

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Aamer et al.

We begin by showing that for “well-behaved” expressions (all subexpressions have disjoint inputs and outputs)

composition is redundant in LIF: every well-behaved LIF expression is equivalent to a LIF expression that does not use

composition. As a corollary, we will obtain that composition is generally redundant if there is an infinite supply of

variables. In contrast, in the bounded variable case, we will show that composition is primitive in LIF. Here, we use

LIFnc to denote the fragment of LIF without composition.

7.1 When Inputs and Outputs are Disjoint, Composition is Non-Primitive

Our first non-primitivity result is based on inputs and outputs. We say that a LIF expression 𝛽 is io-disjoint if𝑂sem (𝛽) ∩
𝐼 sem (𝛽) = ∅. The following theorem implies that if 𝛼 , 𝛽 , and all their subexpressions are io-disjoint, we can rewrite 𝛼 ; 𝛽

into a LIFnc expression. Of course, this property also holds in case𝑂syn (𝛽) ∩ 𝐼 syn (𝛽) = ∅ since the syntactic inputs and

outputs overapproximate the semantic ones.

Theorem 7.1. Let 𝛼 and 𝛽 be LIF expressions such that 𝛽 is io-disjoint. Then, 𝛼 ; 𝛽 is equivalent to

𝛾 := cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂sem (𝛼) (𝛽) .

Intuitively, the reason why this expression works is as follows: we cylindrify 𝛼 on the right. In general, this might

result in a loss of information, but since we are only cylindrifying outputs of 𝛽 , this means we only forget the information

that would be overwritten by 𝛽 anyway. Since the inputs and outputs of 𝛽 are disjoint, 𝛽 does not need to know what 𝛼

did to those variables in order to determine its own outputs. We also cylindrify 𝛽 on the left on the outputs of 𝛼 , since

these values will be set by 𝛼 . One then still needs to be careful in showing that the intersection indeed removes all

artificial pairs, by exploiting the fact that expressions are inertial outside their output.

Proof of Theorem 7.1. Let 𝐷 be an interpretation. First, we show that ⟦𝛼 ; 𝛽⟧𝐷 ⊆ ⟦𝛾⟧𝐷 . If (a1, a2) ∈ ⟦𝛼 ; 𝛽⟧𝐷 ,
then there is a a3 such that (a1, a3) ∈ ⟦𝛼⟧𝐷 and (a3, a2) ∈ ⟦𝛽⟧𝐷 . By definition of the outputs of 𝛽 , a3 and a2 agree

outside 𝑂sem (𝛽). Hence, (a1, a2) ∈ ⟦cyl
𝑟
𝑂sem (𝛽) (𝛼)⟧𝐷 . Similarly, we can show that (a1, a2) ∈ ⟦cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 .

For the other inclusion, assume that (a1, a2) ∈ ⟦𝛾⟧𝐷 . Using the definition of the semantics of cylindrification, we

find a ′
2
such that (a1, a

′
2
) ∈ ⟦𝛼⟧𝐷 and a2 agrees with a ′

2
outside 𝑂sem (𝛽) and we find a a ′

1
such that a ′

1
agrees with

a1 outside 𝑂sem (𝛼) and (a ′
1
, a2) ∈ ⟦𝛽⟧𝐷 . Using the definition of output of 𝛽 , we know that also a ′

1
agrees with a2

outside the outputs of 𝛽 , thus a ′
1
and a ′

2
agree outside the outputs of 𝛽 , and hence definitely on the inputs of 𝛽 . We can

apply Proposition 3.6 thanks to the (𝐼 syn,𝑂syn) soundness, 𝐼 syn (𝛼) is finite and determines 𝑂syn (𝛼), which contains

𝑂sem (𝛼). So we guarantee that 𝛽 is determined by its inputs, whence, there exists a a ′′
2
such that (a ′

2
, a ′′

2
) ∈ ⟦𝛽⟧𝐷

where a ′′
2
= a2 on the outputs of 𝛽 and, since 𝛽 is inertial outside its outputs, a ′′

2
= a ′

2
outside the outputs of 𝛽 . But we

previously established that a ′
2
agrees with a2 outside the outputs of 𝛽 , whence a ′′

2
= a2. Summarized we now found that

(a1, a
′
2
) ∈ ⟦𝛼⟧𝐷 and (a ′

2
, a2) ∈ ⟦𝛽⟧𝐷 , whence, (a1, a2) ∈ ⟦𝛼 ; 𝛽⟧𝐷 as desired. □

Given the undecidability results of Section 3, Theorem 7.1 is not effective. We can however give the following

syntactic variant.

Theorem 7.2. Let 𝛼 and 𝛽 be LIF expressions such that 𝑂syn (𝛽) ∩ 𝐼 syn (𝛽) = ∅. Then, 𝛼 ; 𝛽 is equivalent to

cyl
𝑟
𝑂syn (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽) .

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Inputs, Outputs, and Composition in the Logic of Information Flows 37

Proof. Since 𝐼 syn (𝛽) ∩ 𝑂syn (𝛽) = ∅, we obtain by Lemma 3.22 that 𝑂sem (𝛽) = 𝑂syn (𝛽). Thus, we alternatively
show that 𝛼 ; 𝛽 is equivalent to the expression

cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽) .

We can also see that 𝛽 is io-disjoint, since 𝐼 syn (𝛽) ∩𝑂syn (𝛽) = ∅ and (𝐼 syn,𝑂syn) is sound. Thus, if we show that

⟦cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 = ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷

for any interpretation 𝐷 , we can apply Theorem 7.1 and we are done.

Thereto, let 𝐷 be an interpretation. By soundness, it is clear that

⟦cyl
𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 ⊆ ⟦cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 , so ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 ⊆ ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 .

What remains to show is that the other inclusion also holds. Thereto, let (a1, a2) ∈ ⟦cyl
𝑟
𝑂sem (𝛽) (𝛼) ∩ cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 .

Clearly, (a1, a2) ∈ ⟦cyl
𝑟
𝑂sem (𝛽) (𝛼)⟧𝐷 and (a1, a2) ∈ ⟦cyl

𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 . From (a1, a2) ∈ ⟦cyl

𝑟
𝑂sem (𝛽) (𝛼)⟧𝐷 , we can see

that a1 = a2 outside𝑂sem (𝛼) ∪𝑂sem (𝛽). From (a1, a2) ∈ ⟦cyl
𝑙
𝑂syn (𝛼) (𝛽)⟧𝐷 , we can see that there is a valuation a ′

1
such

that (a ′
1
, a2) ∈ ⟦𝛽⟧𝐷 and a ′

1
= a1 outside𝑂syn (𝛼). Define a ′′

1
to be the valuation a ′

1
[a1 |𝑂sem (𝛽)]. By construction and io-

disjointness of 𝛽 , we see thata ′′
1
= a ′

1
on 𝐼 sem (𝛽) and outside𝑂sem (𝛽). By Proposition 3.9, we obtain that (a ′′

1
, a2) ∈ ⟦𝛽⟧𝐷 .

Define a to be the valuation a ′′
1
[a1 |𝑂sem (𝛼)]. By the semantics of cylindrification, we see that (a, a2) ∈ ⟦cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷 .

Consequently, a = a2 outside 𝑂sem (𝛼) ∪𝑂sem (𝛽). Before, we established that a1 and a2 agree outside the same set of

variables. So we obtain that a = a2 = a1 outside𝑂
sem (𝛼)∪𝑂sem (𝛽). Moreover, we know by construction that a = a ′′

1
= a1

on𝑂sem (𝛽)∪𝑂sem (𝛼). Then, a is the same valuation as a1. So we obtain that (a1, a2) ∈ ⟦cyl
𝑟
𝑂sem (𝛽) (𝛼)∩cyl

𝑙
𝑂sem (𝛼) (𝛽)⟧𝐷

as desired. □

Example 7.3 (Example 3.15 continued). Consider the expression

𝛼 = 𝑃1 (𝑥 ;𝑥) ; 𝑃1 (𝑥 ;𝑦) .

with the interpretation 𝐷 in Example 3.15. In that case, 𝛼 first increments 𝑥 by one and subsequently sets the value of 𝑦

to one higher than 𝑥 . Stated differently,

⟦𝛼⟧𝐷 =
{
(a1, a2) | a2 (𝑥) = a1 (𝑥) + 1 ∧ a2 (𝑦) = a2 (𝑥) + 1 and a1 (𝑧) = a2 (𝑧) for 𝑧 ∉ {𝑥,𝑦}

}
Theorem 7.1 tells us that 𝛼 is equivalent to

cyl
𝑟
𝑦 (𝑃1 (𝑥 ;𝑥)) ∩ cyl

𝑙
𝑥 (𝑃1 (𝑥 ;𝑦)) .

We see that

⟦cyl
𝑟
𝑦 (𝑃1 (𝑥 ;𝑥))⟧𝐷 =

{
(a1, a2) | a2 (𝑥) = a1 (𝑥) + 1 and a1 (𝑧) = a2 (𝑧) for 𝑧 ∉ {𝑥,𝑦}

}
,

⟦cyl
𝑙
𝑥 (𝑃1 (𝑥 ;𝑦))⟧𝐷 =

{
(a1, a2) | a2 (𝑦) = a2 (𝑥) + 1 and a1 (𝑧) = a2 (𝑧) for 𝑧 ∉ {𝑥,𝑦}

}
.

The intersection of these indeed equals ⟦𝛼⟧𝐷 .

Theorem 7.1 no longer holds in general if 𝛽 can have overlapping inputs and outputs, as the following example

illustrates.

Example 7.4. Consider the expression

𝛼 := 𝑃1 (𝑥 ;𝑥) ; 𝑃1 (𝑥 ;𝑥) .
Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Aamer et al.

with the interpretation 𝐷 as in the example above. In this case, 𝛼 increments the value of 𝑥 by two. However,

⟦cyl
𝑟
𝑥 (𝑃1 (𝑥 ;𝑥))⟧𝐷 and ⟦cyl

𝑙
𝑥 (𝑃1 (𝑥 ;𝑥))⟧𝐷 are both equal to

{(a1, a2) | a1 (𝑧) = a2 (𝑧) for all 𝑧 ≠ 𝑥}.

Hence, indeed, in this case 𝛼 is not equivalent to

cyl
𝑟
𝑥 (𝑃1 (𝑥 ;𝑥)) ∩ cyl

𝑙
𝑥 (𝑃1 (𝑥 ;𝑥)) .

7.2 If V is Infinite, Composition is Non-Primitive

We know from Theorem 7.1 that if 𝛽 is io-disjoint, 𝛼 and 𝛽 can be composed without using the composition operator.

If V is sufficiently large, we can force any expression 𝛽 to be io-disjoint by having 𝛽 write its outputs onto unused

variables instead of its actual outputs. The composition can then be eliminated following Theorem 7.1, after which we

move the variables back so that the “correct” outputs are used. What we need to show is that “moving the variables

around”, as described above, is expressible without composition. As before, we define the operators on BRVs but their

definition is lifted to LIF expressions in a straightforward way.

Definition 7.5. Let 𝐵 be a BRV and let 𝑥 and 𝑦 be disjoint tuples of distinct variables of the same length. The right

move is defined as follows:

mv
r
𝑥→𝑦 (𝐵) := {(a1, a

′
2
) | a ′

2
(𝑥) = a1 (𝑥) and ∃a2 : (a1, a2) ∈ 𝐵 and a ′

2
(𝑦) = a2 (𝑥) and a2 = a ′

2
outside 𝑥 ∪ 𝑦}.

This operation can be expressed without composition, which we show in the following lemma:

Lemma 7.6. Let 𝑥 and 𝑦 be disjoint tuples of distinct variables of the same length. Then, for any BRV 𝐵, we have

mv
r
𝑥→𝑦 (𝐵) = 𝜎 lr𝑥=𝑥 cyl

𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵).

Proof. We give a “proof by picture”. Consider an arbitrary (a1, a2) ∈ 𝐵:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ¯𝑑 𝑒 ¯𝑓

We will verify that when we apply the LHS and the RHS on this pair of valuations, we obtain identical results.

For the LHS, we see that mv
r
𝑥→𝑦 (𝐵) yields the following pair of valuations when applied on (a1, a2):

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 𝑎 ¯𝑑 ¯𝑓

Now, we check the RHS. We see that the following set of pairs of valuations is the result of cyl
𝑟
𝑦 (𝐵) when applied on

(a1, a2):
𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ¯𝑑 ∗ ¯𝑓

Here the asterisk denotes a “wildcard”, i.e., any valuation on 𝑦 is allowed.

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Inputs, Outputs, and Composition in the Logic of Information Flows 39

Then, we see that 𝜎r𝑥=𝑦cyl
𝑟
𝑦 (𝐵) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ¯𝑑 ¯𝑑 ¯𝑓

Next, we see that cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 ∗ ¯𝑑 ¯𝑓

Finally, we see that 𝜎 lr𝑥=𝑥 cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝐵) yields the following pair of valuations which is the same as the result of

the LHS.

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ¯𝑏 𝑐 𝑎 ¯𝑑 ¯𝑓

□

Lemma 7.7. Let 𝐴 and 𝐵 be BRVs and let 𝑥 and 𝑦 be disjoint tuples of distinct variables of the same length such that all

variables in 𝑦 are inertially cylindrified in 𝐴 and 𝐵. In that case:

𝐴 ; 𝐵 = mv
r
𝑦→𝑥 (𝐴 ; mv

r
𝑥→𝑦 (𝐵))

What this lemma shows is that we can temporarily move certain variables (the 𝑥) to unused variables (the 𝑦) and

then move them back. The proof of this lemma is:

Proof of Lemma 7.7. Again we give a proof by picture. Let the left be a generic pair of valuations that belongs to 𝐴,

while the one on the right be a generic one that belongs to 𝐵. The “−” here represents inertial cylindrification.

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 − ¯𝑏 𝑐 − ¯𝑑

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑒 − ¯𝑓 𝑔 − ¯ℎ

For the LHS, we see that composition can only be applied if 𝑐 = 𝑒 and ¯𝑑 = ¯𝑓 . Under this assumption, we get that 𝐴 ; 𝐵

yields the following:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 − ¯𝑏 𝑔 − ¯ℎ

Now, we check the RHS. We see that mv
r
𝑥→𝑦 (𝐵) yields the following when applied on the generic pair belonging to

𝐵:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑒 ∗ ¯𝑓 𝑒 𝑔 ¯ℎ

To apply the composition in the RHS, we must have 𝑐 = 𝑒 and ¯𝑑 = ¯𝑓 , which are the same restrictions we had in

applying the composition in the LHS, so the expression 𝐴 ; mv
r
𝑥→𝑦 (𝐵) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 ∗ ¯𝑏 𝑒 𝑔 ¯ℎ

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Aamer et al.

Finally, applying the last move operation, mv
r
𝑦→𝑥 (𝐴 ; mv

r
𝑥→𝑦 (𝐵)) yields:

𝑥 𝑦 𝑟𝑒𝑠𝑡 𝑥 𝑦 𝑟𝑒𝑠𝑡

𝑎 − ¯𝑏 𝑔 − ¯ℎ

which is clearly identical to what we had from the LHS. □

This finally brings us to the main result of the current subsection.

Theorem 7.8. If V is infinite, then every LIF expression is equivalent to a LIFnc expression.

Proof. We prove this theorem by induction on the number of compositions operators in a LIF expression 𝛾 . The

base case (no composition operators), is trivial. For the inductive case, consider an expression [containing at least one

composition operator. We show how to rewrite [equivalently with one composition operator less. Thereto, take any

subexpression 𝛼 ; 𝛽 such that 𝛼 and 𝛽 are LIFnc expressions. We eliminate this composition as follows. Choose a tuple

of variables 𝑦 of the same length as𝑂syn (𝛽), such that 𝑦 does not occur in 𝛾 . In that case, 𝑦 is inertially cylindrified in 𝛼

and in 𝛽 , and hence, Lemma 7.7 yields that 𝛼 ; 𝛽 is equivalent to

mv
r
𝑦→𝑂syn (𝛽) (𝛼 ; mv

r
𝑂syn (𝛽)→𝑦

(𝛽)) .

We will next show that mv
r
𝑂syn (𝛽)→𝑦

(𝛽) is io-disjoint. Indeed, from the equivalence in Lemma 7.6 and the soundness of

our definitions, we can see that

𝑂sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) = 𝑂sem (𝜎 lr𝑥=𝑥 cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) ⊆ 𝑂syn (𝜎 lr𝑥=𝑥 cyl

𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) = 𝑂syn (𝛽) ∪ 𝑦.

Moreover, we generally have 𝑂sem (mv
r
𝑥→𝑦 (𝛾)) ∩ 𝑥 = ∅ for any 𝑥 and any LIF expression 𝛾 in which 𝑦 is inertially

cylindrified. As a consequence, 𝑂sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) ⊆ 𝑦.

Also, we can see that

𝐼 sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) = 𝐼 sem (𝜎 lr𝑥=𝑥 cyl
𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) ⊆ 𝐼 syn (𝜎 lr𝑥=𝑥 cyl

𝑟
𝑥𝜎

r
𝑥=𝑦cyl

𝑟
𝑦 (𝛽)) = 𝐼 syn (𝛽) ∪𝑂syn (𝛽) .

Since 𝑦 does not occur in 𝛽 , we indeed obtain that is mv
r
𝑂syn (𝛽)→𝑦

(𝛽) io-disjoint.

𝑂sem (mv
r
𝑂syn (𝛽)→𝑦

(𝛽)) ⊆ 𝑦 ∩ (𝐼 syn (𝛽) ∪𝑂syn (𝛽)) = ∅.

We can now apply Theorem 7.2 to eliminate the composition yielding the LIFnc expression

mv
r
𝑦→𝑂syn (𝛽) (cyl

𝑟
𝑂syn (mv

r
𝑂syn (𝛽)→�̄�

(𝛽)) (𝛼) ∩ cyl
𝑙
𝑂syn (𝛼) (mv

r
𝑂syn (𝛽)→𝑦

(𝛽))) .

□

7.3 If V is Finite, Composition is Primitive

The case that remains is when V is finite. We will show that in this case, composition is indeed primitive by relating

bounded-variable LIF to bounded-variable first-order logic.

Assume V = {𝑥1, . . . , 𝑥𝑛}. Since BRVs involve pairs of V-valuations, we introduce a copy V𝑦 = {𝑦1, . . . , 𝑦𝑛} disjoint
from V. For clarity, we also write V𝑥 for V. As usual, by FO[𝑘] we denote the fragment of first-order logic that uses

only 𝑘 distinct variables. We observe the following:

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Inputs, Outputs, and Composition in the Logic of Information Flows 41

Proposition 7.9. For every LIF expression 𝛼 , there exists an FO[3𝑛] formula 𝜑𝛼 with free variables in V𝑥 ∪ V𝑦 such

that

(a1, a2) ∈ ⟦𝛼⟧𝐷 if and only if 𝐷, (a1 ∪ a ′
2
) |= 𝜑𝛼 ,

where a ′
2
is the V𝑦-valuation such that a ′

2
(𝑦𝑖) = a2 (𝑥𝑖) for each 𝑖 . Furthermore, if 𝛼 is a LIFnc expression, 𝜑𝛼 can be taken

to be a FO[2𝑛] formula.

Proof. The proof is by induction on the structure of 𝛼 (using Lemma 2.1, we omit redundant operators).

We introduce a third copy V𝑧 = {𝑧1, . . . , 𝑧𝑛} of V. For every 𝑢, 𝑣 ∈ {𝑥,𝑦, 𝑧} we define 𝜌𝑢𝑣 as follows:

𝜌𝑢𝑣 : V𝑢 → V𝑣 : 𝑢𝑖 ↦→ 𝑣𝑖

Using these functions, we can translate a valuation a on V = V𝑥 to a corresponding valuation on V𝑢 with 𝑢 ∈ {𝑦, 𝑧}.
Clearly, a ◦ 𝜌𝑢𝑥 does this job.

In the proof, we actually show a stronger statement by induction, namely that for each 𝛼 and for every𝑢 ≠ 𝑣 ∈ {𝑥,𝑦, 𝑧}
there is a formula 𝜑𝑢𝑣𝛼 with free variables in V𝑢 ∪ V𝑣 in FO[V𝑥 ∪ V𝑦 ∪ V𝑧] such that for every 𝐷 ,

(a1, a2) ∈ ⟦𝛼⟧𝐷 if and only if 𝐷, (a1 ◦ 𝜌𝑢𝑥 ∪ a2 ◦ 𝜌𝑣𝑥) |= 𝜑𝑢𝑣𝛼 .

Since the notations 𝑥 , 𝑦, 𝑧, 𝑢 and 𝑣 are taken, we use notations 𝑎, 𝑏 and 𝑐 for variables.

• 𝛼 = id. Take 𝜑𝑢𝑣𝛼 to be

∧𝑛
𝑖=1

𝑢𝑖 = 𝑣𝑖 .

• 𝛼 = 𝑀 (𝑎;𝑏). Take 𝜑𝑢𝑣𝛼 to be𝑀 (𝜌𝑥𝑢 (𝑎), 𝜌𝑥𝑣 (𝑏)) ∧
∧

𝑐∉𝑏
𝜌𝑥𝑢 (𝑐) = 𝜌𝑥𝑣 (𝑐).

• 𝛼 = 𝛼1 ∪ 𝛼2. Take 𝜑
𝑢𝑣
𝛼 to be 𝜑𝑢𝑣𝛼1

∨ 𝜑𝑢𝑣𝛼2

.

• 𝛼 = 𝛼1 − 𝛼2. Take 𝜑
𝑢𝑣
𝛼 to be 𝜑𝑢𝑣𝛼1

∧ ¬𝜑𝑢𝑣𝛼2

.

• 𝛼 = 𝛼1 ; 𝛼2. Let𝑤 ∈ {𝑥,𝑦, 𝑧} − {𝑢, 𝑣}. Take 𝜑𝑢𝑣𝛼 to be ∃𝑤1 . . . ∃𝑤𝑛 (𝜑𝑢𝑤𝛼1

∧ 𝜑𝑤𝑣
𝛼2

).
• 𝛼 = 𝛼⌣

1
. By induction, 𝜑𝑣𝑢

𝛼1

exists. This formula can serve as 𝜑𝑢𝑣𝛼 .

• 𝛼 = 𝜎 lr
𝑎=𝑏

(𝛼1). Take 𝜑𝑢𝑣𝛼 to be 𝜑𝑢𝑣𝛼1

∧ 𝜌𝑥𝑢 (𝑎) = 𝜌𝑥𝑣 (𝑏).
• 𝛼 = cyl

𝑙
𝑎 (𝛼1). Take 𝜑𝑢𝑣𝛼 to be ∃𝜌𝑥𝑢 (𝑎) 𝜑𝑢𝑣𝛼1

. □

Now that we have established that LIFnc can be translated into FO[2𝑛], all that is left to do is find a Boolean query

that can be expressed in LIF with 𝑛 variables, but not in FO[2𝑛]. We find such a query in the existence of a 3𝑛-clique.

We will first show that we can construct a LIFnc expression 𝛼2𝑛 such that, given an interpretation 𝐷 interpreting a

binary relation 𝑅, ⟦𝛼2𝑛⟧𝐷 consists of all 2𝑛-cliques of 𝑅. Next, we show how 𝛼2𝑛 can be used (with composition) to

construct an expression 𝛼∃3𝑛 such that ⟦𝛼∃3𝑛⟧𝐷 is non-empty if and only if 𝑅 has a 3𝑛-clique. Since this property

cannot be expressed in FO[2𝑛], we can conclude that composition must be primitive.

To avoid confusion, we recall that a set 𝐿 of 𝑘 data elements is a 𝑘-clique in a binary relation 𝑅, if any two distinct 𝑎

and 𝑏 in 𝐿, we have (𝑎, 𝑏) ∈ 𝑅 (and also (𝑏, 𝑎) ∈ 𝑅).

Proposition 7.10. Suppose that |V| = 𝑛 with 𝑛 ≥ 2 and let S = {𝑅} with ar (𝑅) = iar (𝑅) = 2. There exists a LIF

expression 𝛼2𝑛 such that

⟦𝛼2𝑛⟧𝐷 = {(a1, a2) | a1 (V) ∪ a2 (V) is a 2𝑛-clique in 𝐷 (𝑅)}.

Proof. Throughout this proof, we identify a pair (a1, a2) of two valuations with the 2𝑛 tuple of data elements

a1 (𝑥1, . . . , 𝑥𝑛) · a2 (𝑥1, . . . , 𝑥𝑛) .
Manuscript submitted to ACM

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Aamer et al.

Before coming to the actual expression for 𝛼2𝑛 , we introduce some auxiliary concepts. First, we define

all := cyl
𝑙
V cyl

𝑟
V (id) .

It is clear that

⟦all⟧𝐷 = {(a1, a2) ∈ V ×V}.

A first condition for being a 2𝑛-clique is that all data elements are different. It is clear that the expression

𝛼= :=
⋃

𝑥≠𝑦∈V

(
𝜎 l𝑥=𝑦 (all) ∪ 𝜎r𝑥=𝑦 (all)

)
∪

⋃
𝑥,𝑦∈V

𝜎 lr𝑥=𝑦 (all)

has the property that ⟦𝛼=⟧𝐷 consists of all 2𝑛-tuples where at least one data element is repeated. Hence, ⟦𝛼≠⟧𝐷 consists

of all 2𝑛-tuples of distinct data elements, where

𝛼≠ := all − 𝛼= .

The second condition for being a 2𝑛-clique is that each two distinct elements are connected by 𝑅. In order to check

this, we define the following expressions for each two variables 𝑥 and 𝑦:

𝑅𝑙𝑥,𝑦 := cyl
𝑙
V−{𝑥,𝑦 }cyl

𝑟
V (𝑅(𝑥,𝑦;) ∩ 𝑅(𝑦, 𝑥 ;))

𝑅𝑟𝑥,𝑦 := cyl
𝑙
Vcyl

𝑟
V−{𝑥,𝑦 } (𝑅(𝑥,𝑦;) ∩ 𝑅(𝑦, 𝑥 ;))

𝑅𝑙𝑟𝑥,𝑦 := cyl
𝑙
V−{𝑥 }cyl

𝑟
V−{𝑦 } (𝑅(𝑥,𝑦;) ∩ 𝑅(𝑦, 𝑥 ;))

With these definitions, for instance ⟦𝑅𝑙𝑟𝑥𝑖 ,𝑥 𝑗
⟧𝐷 consists of all 2𝑛-tuples such that the 𝑖th and the 𝑛 + 𝑗 th element are

connected (in two directions) in 𝑅, and similar properties hold for 𝑅𝑙 and 𝑅𝑟 . From this, it follows that the expression

𝛼2𝑛 = 𝛼≠ ∩
⋂

𝑥≠𝑦∈V

(
𝑅𝑙𝑥,𝑦 ∩ 𝑅𝑟𝑥,𝑦

)
∩

⋂
𝑥,𝑦∈V

𝑅𝑙𝑟𝑥,𝑦

satisfies the proposition; it intersects 𝛼≠ with all the expressions stating that each two data elements must be (bidirec-

tionally) connected by 𝑅. □

Notice that 𝛼2𝑛 can be used to compute all the 2𝑛-cliques of the input interpretation. We now use 𝛼2𝑛 to check for

existence of 3𝑛-cliques.

Proposition 7.11. Suppose that |V| = 𝑛 with 𝑛 ≥ 2 and let S = {𝑅} with ar (𝑅) = iar (𝑅) = 2. Define

𝛼∃3𝑛 := (𝛼2𝑛 ; 𝛼2𝑛) ∩ 𝛼2𝑛 .

Then, for every interpretation 𝐷 , ⟦𝛼∃3𝑛⟧𝐷 is non-empty if and only if 𝐷 (𝑅) has a 3𝑛-clique.

It is well known that existence of a 3𝑛-clique is not expressible in FO[2𝑛] [7]. The above proposition thus immediately

implies primitivity of composition.

Theorem 7.12. Suppose that |V| = 𝑛 ≥ 2. Then, composition is primitive in LIF. Specifically, no LIFnc expression is

equivalent to the LIF expression 𝛼∃3𝑛 .

8 RELATEDWORK

LIF grew out of the Algebra of Modular Systems [24], which was developed to provide foundations for programming

from available components. That paper mentions information flows, in connection with input–output behavior in

Manuscript submitted to ACM

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Inputs, Outputs, and Composition in the Logic of Information Flows 43

classical logic, for the first time. The paper also surveys earlier work from the author’s group, as well as other closely

related work.

In a companion paper [1], we report on an application of LIF to querying under limited access patterns, as for
instance offered by web services [21]. That work also involves inputs and outputs, but only of a syntactic nature, and

for a restricted variant of LIF (called “forward” LIF) only. The property of io-disjointness turned also to be important in

that work, albeit for a quite different purpose.

Our results also relate to the evaluation problem for LIF, which takes as input a LIF expression 𝛼 , an interpretation

𝐷 , and a valuation a1, and where the task is to find all a2 such that (a1, a2) ∈ ⟦𝛼⟧𝐷 . From our results, it follows that

only the value of a1 on the input variables is important, and similarly we are only interested in the values of each a2 on

the output variables. A subtle point, however, is that 𝐷 may be infinite, and moreover, even if 𝐷 itself is not infinite, the

output of the evaluation problem may still be. In many cases, it is still possible to obtain a finite representation, for

instance by using quantifier elimination techniques as done in Constraint Databases [17].

We have defined the semantics of LIF algebraically, in the style of cylindric set algebra [15, 16]. An important

difference is the dynamic nature of BRVs which are sets of pairs of valuations, as opposed to sets of valuations which

are the basic objects in cylindric set algebra.

Our optimality theorem was inspired by work on controlled FO [9], which had as aim to infer boundedness

properties of the outputs of first-order queries, given boundedness properties of the input relations. Since this inference

task is undecidable, the authors defined syntactic inferences similar in spirit to our syntactic definition of inputs and

outputs. They show (their Proposition 4.3) that their definitions are, in a sense, sharp. Note that our optimality theorem

is stronger in that it shows that no other compositional and sound definition can be better than ours. Of course, the

comparison between the two results is only superficial as the inference tasks at hand are very different.

The Logic of Information Flows is similar to dynamic predicate logic (DPL) [12], in the sense that formulas are also

evaluated with respect to pairs of valuations. There is, however a key difference in philosophy between the two logics.

LIF starts from the idea that well-known operators from first-order logic can be used to describe combinations and

manipulations of dynamic systems, and as such provides a means for procedural knowledge in a declarative language.

The dynamics in LIF are dynamics of the described system. Dynamic predicate logic, on the other hand starts from

the observation that, in natural language, operators such as conjunction and existential quantification are dynamic,

where the dynamics are in the process of parsing a sentence, often related to coreference analysis. To the best of our

knowledge, inputs and outputs of expressions have not been studied in DPL.

Since we developed a large part of our work in the general setting of BRVs, and thus of transition systems, we
expect several of our results to be applicable in the context of other formalisms where specifying inputs and outputs is

important, such as API-based programming [5] and synthesis [3, 6], privacy and security, business process modeling

[4], and model combinators in Constraint Programming [11].

9 CONCLUSION AND FUTUREWORK

Declarative modeling is of central importance in the area of Knowledge Representation and Reasoning. The Logic of

Information Flows provides a framework to investigate how, and to what degree, dynamic or imperative features can

be modeled declaratively. In this paper we have focused on inputs, outputs, and sequential composition, as these three

concepts are fundamental to modeling dynamic systems. There are many directions for further research.

Inputs and outputs are not just relevant from a theoretic perspective, but can also have ramifications on computation.

Indeed, they form a first handle to parallelize computation of complex LIF expressions, or to decompose problems.

Manuscript submitted to ACM

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

44 Aamer et al.

In this paper, we have worked with a basic set of operations motivated by the classical logic connectives. In order

to provide a fine control of computational complexity, or to increase expressiveness, it makes sense to consider other

operations.

The semantic notions developed in this paper (inputs, outputs, soundness) apply to global BRVs in general, and

hence are robust under varying the set of operations. Moreover, our work delineates and demonstrates a methodology

for adapting syntactic input–output definitions to other operations.

A specific operation that is natural to investigate its primitivity is converse. The converse of a BRV 𝐴 is defined to be

{(a2, a1) | (a1, a2) ∈ 𝐴}. In the context of LIF [26] it can model constraint solving by searching for an input to a module

that produces a desired outcome. When we add converse to LIF with only a single variable (|V| = 1), and the vocabulary

has only binary relations of input arity one, then we obtain the classical calculus of relations [23]. There, converse is

known to be primitive [10]. When the number of variables is strictly more than half of the maximum arity of relations

in the vocabulary, converse is redundant in LIF, as can be shown using similar techniques as used in this paper to show

redundancy of composition. Investigating the exact number of variables needed for non-primitivity is an interesting

question for further research.

Another direction for further research is to examine fragments of LIF for which the semantic input or output problem

may be decidable, or even for which the syntactic definitions coincide with the semantic definitions.

Finally, an operation that often occurs in dynamic systems is the fixed point construct used by [26]. It remains to

be seen how our work, and the further research directions mentioned above, can be extended to include the fixpoint

operation.

ACKNOWLEDGMENTS

This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie

(AI) Vlaanderen” programme, from FWO Flanders project G0D9616N, and from Natural Sciences and Engineering

Research Council of Canada (NSERC). Jan Van den Bussche is partially supported by the National Natural Science

Foundation of China (61972455). Heba Aamer is supported by the Special Research Fund (BOF) (BOF19OWB16).

REFERENCES
[1] Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche. 2020. Executable first-order queries in the logic of

information flows. In Proceedings 23rd International Conference on Database Theory (Leibniz International Proceedings in Informatics, Vol. 155). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 4:1–4:14.

[2] Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche. 2020. Inputs, Outputs, and Composition in the

Logic of Information Flows. In Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning. 2–11.
https://doi.org/10.24963/kr.2020/1

[3] Natasha Alechina, Tomás Brázdil, Giuseppe De Giacomo, Paolo Felli, Brian Logan, and Moshe Y. Vardi. 2019. Unbounded Orchestrations of

Transducers for Manufacturing. In AAAI. AAAI Press, 2646–2653.
[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, and Fabio Patrizi. 2008. Automatic Service Composition and

Synthesis: the Roman Model. IEEE Data Eng. Bull. 31, 3 (2008), 18–22.
[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2016. Regular Open APIs. In Principles of Knowledge Representation

and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016. AAAI Press, 329–338.
[6] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardiña. 2013. Automatic behavior composition synthesis. Artif. Intell. 196 (2013), 106–142.
[7] Heinz-Dieter Ebbinghaus and Jörg Flum. 1999. Finite Model Theory (second ed.). Springer.

[8] Herbert B. Enderton. 1972. A Mathematical Introduction To Logic. Academic Press.

[9] Wenfei Fan, Floris Geerts, and Leonid Libkin. 2014. On scale independence for querying big data. In Proceedings 33th ACM Symposium on Principles
of Database Systems. ACM, 51–62.

[10] George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Dimitri Surinx, Jan Van den Bussche, Dirk Van Gucht, Stijn Vansummeren, and Yuqing Wu.

2015. Relative expressive power of navigational querying on graphs. Information Sciences 298 (2015), 390–406.

Manuscript submitted to ACM

https://doi.org/10.24963/kr.2020/1

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

Inputs, Outputs, and Composition in the Logic of Information Flows 45

[11] Daniel Fontaine, Laurent Michel, and Pascal Van Hentenryck. 2013. Model Combinators for Hybrid Optimization. In Principles and Practice of
Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings. Springer, 299–314.

[12] Jeroen Groenendijk and Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14 (1991), 39–100.

[13] Yuri Gurevich. 1983. Algebras of feasible functions. In Proceedings 24th Symposium on Foundations of Computer Science. IEEE Computer Society,

210–214.

[14] Yuri Gurevich. 1988. Logic and the challenge of computer science. In Current Trends in Theoretical Computer Science, E. Börger (Ed.). Computer

Science Press, 1–57.

[15] Leon Henkin, J. Donald Monk, and Alfred Tarski. 1971. Cylindric Algebras. Part I. North-Holland.
[16] Tomasz Imieliński and Witold Lipski. 1984. The relational model of data and cylindric algebras. J. Comput. System Sci. 28 (1984), 80–102.
[17] Gabriel M. Kuper, Leonid Libkin, and Jan Paredaens (Eds.). 2000. Constraint Databases. Springer.
[18] David Lewis. 1973. Causation. Journal of Philosophy 70 (1973), 556–567.

[19] Vladimir Lifschitz. 1987. Formal Theories of Action (Preliminary Report). In Proceedings of the 10th International Joint Conference on Artificial
Intelligence. Milan, Italy, August 23-28, 1987, John P. McDermott (Ed.). Morgan Kaufmann, 966–972. http://ijcai.org/Proceedings/87-2/Papers/081.pdf

[20] John McCarthy and Patrick J. Hayes. 1969. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In Machine Intelligence 4,
B. Meltzer and D. Michie (Eds.). Edinburgh University Press, 463–502.

[21] Sheila Mcilraith, Tran Son, and Honglei Zeng. 2001. Semantic Web Services. Intelligent Systems, IEEE 16 (04 2001), 46 – 53.

[22] David G. Mitchell and Eugenia Ternovska. 2005. A framework for representing and solving NP search problems. In Proc. AAAI. AAAI Press / The
MIT Press, 430–435.

[23] Alfred Tarski. 1941. On the calculus of relations. Journal of Symbolic Logic 6 (1941), 73–89.
[24] Eugenia Ternovska. 2015. An Algebra of Combined Constraint Solving. In Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia,

October 16-19, 2015. EasyChair, 275–295.
[25] Eugenia Ternovska. 2017. Recent progress on the algebra of modular systems. In Proceedings 11th Alberto Mendelzon International Workshop on

Foundations of Data Management (CEUR Workshop Proceedings, Vol. 1912), J.L. Reutter and D. Srivastava (Eds.). CEUR-WS.org.

[26] Eugenia Ternovska. 2019. An algebra of modular systems: static and dynamic perspectives. In Frontiers of Combining Systems: Proceedings 12th
FroCos (Lecture Notes in Artificial Intelligence, Vol. 11715), A. Herzig and A. Popescu (Eds.). Springer, 94–111.

Manuscript submitted to ACM

http://ijcai.org/Proceedings/87-2/Papers/081.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Binary Relations on Valuations
	2.2 The Logic of Information Flows
	2.3 Satisfiability of LIF Expressions

	3 Inputs and Outputs
	3.1 Semantic Inputs and Outputs for Global BRVs
	3.2 Semantic Inputs and Outputs for LIF Expressions
	3.3 Syntactic Inputs and Outputs

	4 Soundness Theorem Proof
	4.1 Proof of Output Approximation
	4.2 Proof of Syntactic Free Variable Property
	4.3 Proof of Syntactic Input-Output Determinacy

	5 Precision Theorem Proof
	5.1 Atomic Modules
	5.2 Identity
	5.3 Union
	5.4 Intersection
	5.5 Difference
	5.6 Composition
	5.7 Converse
	5.8 Left Cylindrification
	5.9 Right Cylindrification
	5.10 Left Selection
	5.11 Right Selection
	5.12 Left-to-Right Selection

	6 Optimality Theorem Proof
	7 Primitivity of Composition
	7.1 When Inputs and Outputs are Disjoint, Composition is Non-Primitive
	7.2 If V is Infinite, Composition is Non-Primitive
	7.3 If V is Finite, Composition is Primitive

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

