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ABSTRACT
Collaborative Filtering (CF) has been successfully used to help users

discover the items of interest. Nevertheless, existing CF methods

suffer from noisy data issue, which negatively impacts the quality

of recommendation. To tackle this problem, many prior studies

leverage adversarial learning to regularize the representations of

users/items, which improves both generalizability and robustness.

Those methods often learn adversarial perturbations and model pa-

rameters under min-max optimization framework. However, there

still have two major drawbacks: 1) Existing methods lack theoret-

ical guarantees of why adding perturbations improve the model

generalizability and robustness; 2) Solving min-max optimization

is time-consuming. In addition to updating the model parameters,

each iteration requires additional computations to update the per-

turbations, making them not scalable for industry-scale datasets.

In this paper, we present Sharpness-aware Collaborative Filtering

(SharpCF), a simple yet effective method that conducts adversarial

training without extra computational cost over the base optimizer.

To achieve this goal, we first revisit the existing adversarial collab-

orative filtering and discuss its connection with recent Sharpness-

aware Minimization. This analysis shows that adversarial training

actually seeks model parameters that lie in neighborhoods around

the optimal model parameters having uniformly low loss values,

resulting in better generalizability. To reduce the computational

overhead, SharpCF introduces a novel trajectory loss to measure

the alignment between current weights and past weights. Experi-

mental results on real-world datasets demonstrate that our SharpCF

achieves superior performance with almost zero additional compu-

tational cost comparing to adversarial training.

CCS CONCEPTS
• Information systems→ Collaborative filtering; • Comput-
ing methodologies→Machine learning.
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1 INTRODUCTION
Recommender systems have become increasingly popular due to

their ability to filter information and provide personalized recom-

mendations to users on the web [8, 19, 25]. One of the most promi-

nent techniques used in recommender systems is Collaborative

Filtering (CF)[16, 18]. CF considers users’ historical interactions

and assumes that users who have shared similar preferences in the

past tend to make similar decisions in the near future. To achieve

this goal, most CF methods learn an encoder to embed users and

items into a shared space and then optimize an objective function to

learn informative user and item representations. CF-based methods

have been successfully deployed in industries due to their simplic-

ity and effectiveness, such as Factorization Machines[13, 22] and

Graph Neural Networks [14, 40].

However, many state-of-the-art collaborative filtering (CF) meth-

ods remain vulnerable to noisy data, and their performance can

degrade significantly under unnoticeable perturbations [4, 5, 29, 34].

Indeed, real-world data is often noisy, where user preferences may

not necessarily align with the interacted items. For instance, a

significant portion of purchases may result in negative reviews

or returns. Such false-positive interactions hinder a model from

learning the actual user preferences, leading to low-quality recom-

mendations [33, 36]. To tackle this problem, many prior studies

leverage the adversarial learning principle to regularize the repre-

sentations of users and items [10, 15, 28, 38, 41]. These methods

employ a min-max optimization framework to alternatively learn

adversarial perturbations and model parameters. For instance, in

the APR model [15], adversarial training is applied to a Matrix Fac-

torization model by directly adding adversarial perturbations to the

embedding vectors of both users and items.

While existing adversarial collaborative filtering methods have

shown promising results, there still have two major limitations: 1)
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These methods lack theoretical guarantees on why the addition

of adversarial perturbations improves the model’s generalizabil-

ity and robustness. Interpretability remains unclear as noisy data

is inherently different from adversarial perturbations, which are

carefully crafted modifications to the original data [12]; 2) The

process of solving min-max optimization is time-consuming [37].

In each iteration, besides updating the model parameters (e.g., the

outer minimization problem), additional computations are required

to update the learnable perturbations (e.g., the inner maximiza-

tion problem). This makes the existing approaches unsuitable for

learning with large-scale datasets. Therefore, developing more effi-

cient and interpretable adversarial collaborative filtering methods

remains a significant challenge in recommender systems.

Present Work. To overcome the limitations outlined above, we

propose Sharpness-aware Collaborative Filtering (SharpCF), a sim-

ple yet effective method that enables adversarial training without

incurring extra computational costs over the base optimizer. To

achieve this goal, we first revisit existing adversarial collaborative

filtering techniques and discuss their connection with recent de-

veloped Sharpness-aware Minimization [2, 9, 11, 20]. Our analysis

reveals that adversarial training actually seeks model parameters

that lie in neighborhoods around the optimal model parameters

with uniformly low loss values. In other words, the adversarial

training favors flat minima rather than sharp minima, resulting in

better model generalizability.

To reduce the computational overhead, our SharpCF introduces a

novel trajectory loss that measures the alignment between current

and past model states. We further demonstrate that this trajectory

loss can prevent convergence to the sharp minima and thus tend to

drive the model parameters to the flat region, similar to the goal of

the adversarial training. Interestingly, unlike adversarial training

methods that use a min-max optimization framework, our SharpCF

can be trained using standard Stochastic Gradient Descent, which

significantly reduces the time complexity. Experimental results on

real-world datasets show that our SharpCF outperforms the state-

of-the-art adversarial collaborative filtering methods with almost

no additional computational cost.

We summarize our contributions as follows:

• We have revisited the existing adversarial collaborative filtering

methods and established their connection to recent Sharpness-

aware Minimization. Through this, we have unveiled that ad-

versarial training tends to favor flat minima over sharp ones,

which results in better generalizability.

• We propose Sharpness-aware Collaborative Filtering (SharpCF)

to introduce a novel trajectory loss that measures the align-

ment between current and past model states. Therefore, our

SharpCF is able to avoid the need to solve a min-max optimiza-

tion problem, and enables adversarial training without adding

extra computational costs.

• Experimental results demonstrate that SharpCF outperforms

the existing collaborative filtering methods. Specifically, our

SharpCF consistently outperforms the BPR with an average

improvement of 18.1% and an average improvement of 6.82%

over the APR. Additionally, in terms of time complexity, our

SharpCF is comparable to the BPR and has the same training

speed as the BPR and is 2× faster than the APR.

2 RELATEDWORK
In this section, we briefly review the related work on Collaborative

Filtering and Adversarial Training.We also highlight the differences

between the existing efforts and our proposed method.

2.1 Collaborative Filtering
Collaborative filtering (CF) is a widely used technique in recom-

mender systems, which plays an essential role in addressing the

information overload problem for users [26]. The core idea of CF is

that users tend to have similar preferences and hence, their opin-

ions and behavior can be utilized to make recommendations in

the near future. One of the primary methods for CF is the Matrix

Factorization, which learns the latent user and item representations

by factorizing the observed interaction matrix [19, 25]. The pre-

dicted score of an unobserved user-item pair can be then derived by

the similarity between the user and item representations, typically

measured by the dot product.

Inspired by the success of deep neural networks, neural CF mod-

els have been proposed to learn more powerful user/item repre-

sentations. For example, The Wide&Deep recommender model [7]

combines linear models and deep neural networks to capture both

memorization and generalization. He et al. [16] propose a neural

collaborative filtering model that replaces the dot product with a

neural network architecture to model the user-item interactions.

Another popular model is DeepFM [13], which combines factor-

ization machines with neural networks to learn both low- and

high-order feature interactions. XdeepFM [22] extends DeepFM by

introducing a novel cross network to capture more complex feature

interactions. Recently, xLightFM [17] greatly reduces the memory

footprint of factorization machines via quantization techniques. In

addition to factorization machines, graph neural networks have

also attracted increasing attention recently, and a number of graph-

based CFmodels have been proposed, such as LightGCN [14]. These

models have shown great success in recommendation tasks and

have been applied in various domains [8, 19, 25, 32, 35, 39].

However, noisy data (e.g., false-positive feedback) can have a

significant impact on the performance of recommender systems.

Generally, noisy data can cause a bias towards popular items, which

is very challenging for accurate and diverse recommendations [4,

29, 33, 34, 36]. To collect the data, prior studies consider incor-

porating more user feedback (e.g., multi-type clicks, user textual

comments) during training. Wen et al. [36] suggest that training the

recommendermodels uses three kinds of scenarios: "click-complete",

"click-skip", and "non-click" ones, where last two kinds of items

are both treated as negative samples. Julian et al. [24] combine the

user latent factors with textual review to justify users’ ratings. Nev-

ertheless, additional feedback might be expensive or unavailable

in many scenarios. Researchers have alternatively attempted to

explore the adversarial training to mitigate the negative impact of

noisy feedback without additional information [3, 10, 15, 38, 41].

2.2 Adversarial Training
Adversarial training has emerged as a promising technique to

mitigate the negative effects of noisy data in recommender sys-

tems [3, 6, 10, 15, 38, 41]. Adversarial training involves training

the model on a combination of clean and adversarial data, where
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the adversarial data is generated by adding the worst-case pertur-

bations to the input data [6, 12, 15]. The goal is to encourage the

model to be robust to these perturbations, which in turn improves

its ability to generalize to unseen data. For example, In APR [15],

adversarial training is used to perturb the embedding vectors of

users and items in a Matrix Factorization model, resulting in a more

robust and accurate recommendation system. NMRN [31] applies

adversarial training to discover both long-term stable interests and

short-term dynamic behaviors in streaming recommender models.

ACAE [41] combines collaborative auto-encoder with adversarial

training, which outperforms highly competitive state-of-the-art

recommendation methods. ATF [3] reaps the benefits of adversarial

training to improve the context-aware recommendations. Typically,

these methods employ a min-max optimization framework to al-

ternatively learn adversarial perturbations and model parameters.

However, solving min-max frameworks incurs a two-fold computa-

tional overhead of the given base optimizer, making it not scalable

to large datasets in practice.

Recently, several studies have made attempts to develop the

fast version of adversarial training [1, 27, 37]. One example is

FreeAT [27], which removes the overhead cost of generating ad-

versarial examples by reusing the gradient information computed

during model training. GradAlign [1] explicitly maximizes the gra-

dient alignment inside the perturbation set. Despite their bleeding

edge performance, those frameworks rely on a series of heuristics-

based strategies, such as good initialization, large step size, and

cyclic learning rate schedule. Recent studies indicate that these

free strategies often lack of stability and are prone to catastrophic

overfitting issue [42]. Furthermore, the majority of fast adversarial

training algorithms are intended for generating continuous adver-

sarial examples (e.g., image pixels), rendering them unsuitable for

information retrieval purposes due to their discrete space [15, 30].

In contrast, we propose a novel trajectory loss function that

measures the alignment between current and past model states to

reduce the complexity, which avoids solving min-max optimization.

And we show that our trajectory loss function is connected to the

recent Sharpness-aware Minimization [2, 11, 20], which tends to

seek flat minima, leading to better model generalization.

3 PRELIMINARIES
In this section, we first formulate the basic problem of collaborative

filtering. Then, we briefly revisit the Bayesian Personalized Ranking

(BPR) [25] and the Adversarial Personalized Ranking (APR) [15] for

implicit recommendations.

3.1 Collaborative Filtering
In this paper, we focus on the task of learning user preferences from

implicit feedback. Specifically, the users’ behavior data, e.g., click,

view, comment, purchase, etc., consists of a set of usersU = {𝑢}
and items I = {𝑖}, such that the set I+𝑢 represents the items that

user 𝑢 has interacted with before, whereas I−𝑢 = I −I+𝑢 represents

unobserved items. In general, the unobserved interactions are not

necessarily negative, but rather, the user may simply be unaware

of them. The goal of collaborative filtering is to estimate the user

preference towards items.

The majority of CF methods learn each user and item into a

low-dimensional latent space. Matrix Factorization is widely ac-

knowledged as the fundamental and most effective model in rec-

ommendation. Specifically, the representations of a user 𝑢 and an

item 𝑖 can be obtained via embedding lookup tables:

e𝑢 = lookup(𝑢), e𝑖 = lookup(𝑖), (1)

where 𝑢 and 𝑖 denote the IDs of user and item; e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑
are the embeddings of user 𝑢 and item 𝑖 , respectively, and 𝑑 is the

embedding size. These embeddings are intended to capture and

retain the initial characteristics of both items and users, which can

be updated during training. Then, the predicted score is defined as

the similarity between the user and item representations via dot

product:

𝑦𝑢𝑖 = e𝑢𝑇 e𝑖 . (2)

As for the learning objective, we next introduce the Bayesian Per-

sonalized Ranking (BPR) loss [25] and the Adversarial Personalized

Ranking (APR) [15] loss to train the model.

3.2 Bayesian Personalized Ranking
Bayesian Personalized Ranking (BPR) [25] is a popular and effective

pairwise method used in learning-to-rank for recommender sys-

tems. Its primary goal is to optimize recommender models towards

personalized ranking. BPR is particularly suitable for learning from

implicit feedback, where the observed interactions are often incom-

plete and the unobserved ones are assumed to be ranked lower.

Unlike pointwise methods, which focus on optimizing each

model prediction towards a predefined ground truth, BPR priori-

tizes maximizing the margin between an observed interaction and

its unobserved counterparts. This margin-based approach allows

BPR to perform well even when the number of negative samples is

much larger than the number of positive samples. Formally, BPR

aims to minimize the following objective function:

LBPR (Θ) = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈O
ln𝜎

(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
, (3)

where O =
{
(𝑢, 𝑖, 𝑗) | 𝑢 ∈ U ∧ 𝑖 ∈ 𝐼+𝑢 ∧ 𝑗 ∈ 𝐼−𝑢

}
denotes the pair-

wise training data, 𝜎 (·) is the sigmoid function, and Θ denotes

model parameters. Typically, standard Stochastic Gradient Descent

(SGD) is used for its optimization. Once the parameters are ob-

tained, a personalized ranking list for a user 𝑢 can be generated by

evaluating the value of 𝑦𝑢𝑖 (Θ) over all unobserved items 𝑖 ∈ 𝐼−𝑢 .

However, training Matrix Factorization with the BPR loss is

not robust as it is vulnerable to adversarial perturbations on the

model parameters. Therefore, the model can easily learn a complex

function, which may result in overfitting on the training data and

poor generalization on unseen data.

3.3 Adversarial Personalized Ranking
To tackle above issue, Adversarial Personalized Ranking (APR) [15]

intends to create an objective function that optimizes the recom-

mender model for both personalized ranking and resistance to

adversarial perturbations. To achieve this, APR injects adversarial

perturbations Δ on latent factors to quantify the loss of the model

under perturbations on its parameters Θ:

𝑦𝑢𝑖 (Θ + Δ) = (e𝑢 + Δ𝑢 )𝑇 (e𝑖 + Δ𝑖 ), (4)
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where the perturbation vectors Δ are coupled with their correspond-

ing latent factors, i.e., Δ𝑢 ∈ R𝑑 denotes the perturbation vector for

user latent vector e𝑢 . Adversarial perturbations aim to cause the

largest influence on the model and are also known as worst-case

perturbations. Therefore, APR maximizes the BPR loss to find the

optimal adversarial perturbations:

Δ
adv

= argmax

Δ
LBPR (Θ̂ + Δ),

𝑠 .𝑡 . ∥Δ∥2 ≤ 𝜌,
(5)

where 𝜌 controls the magnitude of adversarial perturbations, ∥ · ∥2
denotes the 𝐿2 norm, and Θ̂ is the intermediate model parame-

ters. To this end, APR designs a new objective function that is

both reasonable for personalized ranking and robust to adversarial

perturbations. Formally, it minimizes the adversarial BPR loss by

jointly integrating Eq. (3) and Eq. (5) as follow [10, 15]:

LAPR (Θ) = LBPR (Θ) + 𝛼 · LBPR (Θ + Δ𝑎𝑑𝑣),
where Δ𝑎𝑑𝑣 = argmax

∥Δ∥2≤𝜌
LBPR (Θ̂ + Δ), (6)

where 𝛼 controls the impact of the adversarial perturbations on

the model optimization. In the extreme case where 𝛼 = 0, the APR

algorithm reduces to the original BPR framework as defined in

Eq. (3). Therefore, APR can be considered a generalization of BPR

that takes into account the robustness of the models.

The above min-max objective function in Eq. (6) can be expressed

as playing a min-max game: the optimization of model parameters

Θ serves as the minimizing player, while adversarial perturbations

Δ act as the maximizing player. The two players alternate between

playing this min-max game until convergence. Nevertheless, APR

still lacks theoretical guarantees of why adding perturbations im-

proves the model’s generalizability. Additionally, solving min-max

optimization is a time-consuming process. These shortcomings

have motivated us to develop a new training method for personal-

ized ranking.We next present our SharpCF that provides theoretical

guarantees and requires nearly zero additional computational cost

compared to the APR.

4 THE PROPOSED SHARPCF
In this section, we begin by simplifying the design of the APR

loss function. Next, we establish a connection between the APR

loss and recent research on Sharpness-aware Minimization [2, 11,

20]. Building on this insight, we put forward Sharpness-aware

Collaborative Filtering (SharpCF), which includes a novel trajectory

loss that measures the alignment between the current and past

model states. Importantly, we demonstrate theoretically that our

trajectory loss performs a similar role as adversarial training on

improving model generalization.

4.1 Simplify APR
Since the intermediate variable Δ maximizes the objective func-

tion that Θ minimizes, the optimization problem in Eq. (6) can be

expressed as:

Θ∗,Δ∗ = argmin

Θ
max

∥Δ∥2≤𝜌
LBPR (Θ)︸     ︷︷     ︸
the BPR loss

+𝛼 · LBPR (Θ + Δ)︸          ︷︷          ︸
the adversarial loss

.
(7)

One can adopt the classical gradient descent-ascent algorithm

for min-max optimization, which alternatively updates one variable

while fixing the other one. That is

Δ(𝑡+1) ← argmax

∥Δ∥2≤𝜌
LBPR (Θ(𝑡 ) + Δ),

Θ(𝑡+1) ← argmin

Θ
LBPR (Θ) + 𝛼 · LBPR (Θ + Δ(𝑡+1) ).

(8)

Following [15], we adopt the Fast Gradient Sign Method to solve

the inner maximization while apply the standard Stochastic Gradi-

ent Descent to optimize the outer minimization. Clearly, we have

the following observations: 1) While updating Δ, only the adver-

sarial loss contributes to the gradient ∇ΔLBPR (Θ(𝑡 ) + Δ); 2) While

updating Θ, the gradient of adversarial loss ∇ΘLBPR (Θ + Δ(𝑡+1) )
already contains the gradient of BPR loss ∇ΘLBPR (Θ) as the Δ(𝑡+1)
is a constant. Given this information, a natural question arises here:

is it necessary to include the original BPR loss LBPR (Θ) in the

min-max optimization?

To answer the above question, we conduct a series of experiments

using four public benchmark datasets: MovieLens1M, Gowalla,

Yelp2018, and Amazon-Book (The detailed data description can

be found in Sec 5). In the experiments, we fix the embedding size

𝑑 = 128, and the magnitude of adversarial perturbations 𝜌 = 0.5.

Then we vary the regularization parameter 𝛼 within the range of

{0, 1𝑒 − 2, 1𝑒 − 1, 1, 1𝑒1, 1𝑒2, 1𝑒3, +∞}. We next compare the model

training results using two different loss functions: Hybrid loss and

Adversarial loss. The Hybrid loss is a combination of the BPR loss

and the Adversarial loss with a range of 𝛼 values except for {0, +∞},
while the Adversarial loss completely eliminates the impact of the

BPR loss by setting 𝛼 = +∞. Our comparison of these two methods

provided valuable insights into their respective impact for adver-

sarial training.

As depicted in Figure 1, choosing a non-zero value of 𝛼 con-

sistently outperforms the baseline that sets 𝛼 = 0, i.e., the model

training only with the BPR loss. This means that the model gets

benefits from the adversarial training. Gradual improvements are

commonly observed as 𝛼 increases, particularly when 𝛼 is smaller

than 100. However, future increases in 𝛼 do not significantly im-

prove or decrease the performance when 𝛼 is larger than 100.

In the extreme case 𝛼 = +∞, training with only the adversarial

loss slightly improves performance, except for the Yelp dataset,

but the difference between the Hybrid loss and the Adversarial

loss is not statistically significant. Based on the above analysis, we

can conclude that the model benefits from a larger value of 𝛼 and

becomes rather insensitive when 𝛼 is sufficiently large. This implied

that the Adversarial loss actually dominates the training, and the

BPR loss can be safely removed without hurting the performance.

To this end, we can simplify the APR model in Eq. (6) into the

following:

min

Θ
max

∥Δ∥2≤𝜌
LBPR (Θ + Δ).

(9)

We next connect the adversarial training to the recent Sharpness-

aware Minimization [2, 11, 20].

4.2 Connect to Sharpness-aware Minimization
Understanding the generalization of adversarial training is critical

as the training objective Eq. (9) has multiple local optima that can
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Figure 1: The performance of APR with different values of 𝛼 . The Hybrid loss is a combination of the BPR loss and the
Adversarial loss with a range of 𝛼 values except for +∞, while the Adversarial loss completely eliminates the impact of the BPR
loss by setting 𝛼 = +∞.

perfectly fit the training data, but different optima lead to dramat-

ically different generalization performance. To better understand

the generalization of Eq. (9), we decompose it as:

min

Θ
L(Θ) + R(Θ),

where R(Θ) = max

∥Δ∥2≤𝜌
L(Θ + Δ) − L(Θ), (10)

where L is short for LBPR. Interestingly, we observe that the Eq.

(10) is the same as the Sharpness-aware Minimization [11], where

the term R(Θ) captures the sharpness of L at Θ by measuring how

quickly the training loss can be increased by moving Θ to a nearby

region: {Θ + Δ|Δ : ∥Δ∥2 ≤ 𝜌}.
Therefore, rather than seeking model parameters Θ that have

low training loss values in Eq. (3), adversarial training in Eq. (10)

actually seeks out Θ whose entire neighborhoods have uniformly

low training loss values. In other words, adversarial training favors

flat minima rather than sharp minima, resulting in better general-

izability. One can further derive generalization bounds as:

Proposition 1. For any 𝜌 > 0, let LD be the expected loss and
LS be the training loss, where the training set S is drawn from data
distribution D with i.i.d condition, then

LD (Θ) ≤ max

∥Δ∥2≤𝜌
LS (Θ + Δ) + ℎ(∥Θ∥22/𝜌

2), (11)

where ℎ(·) : R+ → R+ is a strictly increasing function (e.g., the
weight decay 𝐿2 norm).

The proof of the above inequality can be driven by using the PAC-

Bayes theory [23] (more details can be seen in Theorem 2 in [11]).

Above proposition provides a generalization upper bound to explain

why the adversarial training can help improve generalization.

However, both Adversarial Training [15] and Sharpness-aware

Minimization [11] adopt the gradient descent-ascent framework,

which requires two forward and backward passes on each sam-

ple in a batch, namely a namely a gradient ascent step to update

the perturbation Δ and a gradient descent step to update the cur-

rent model Θ. This doubling of computation time compared to the

base optimizer makes them unsuitable for scaling to industry-scale

datasets.

4.3 Our SharpCF
To overcome the computational bottleneck, we propose Sharpness-

aware Collaborative Filtering (SharpCF), which includes a novel

trajectory loss that measures the alignment between the current and

past model states. We begin by approximate the inner maximization

problem in Eq. (10) via a first-order Taylor expansion of Δ as [11]:

Δ̂ = arg max

∥Δ∥2≤𝜌
L(Θ + Δ)

≈ arg max

∥Δ∥2≤𝜌
L(Θ) + Δ𝑇∇ΘL(Θ)

= arg max

∥Δ∥2≤𝜌
Δ𝑇∇ΘL(Θ)

= 𝜌
∇ΘL(Θ)
∥∇ΘL(Θ)∥2

.

(12)

With the approximated Δ̂, for each batch size B, we can rewrite its

sharpness term RB (Θ) as:

RB (Θ) = max

∥Δ∥2≤𝜌
LB (Θ + Δ) − LB (Θ)

≈ max

∥Δ∥2≤𝜌
LB (Θ) + Δ̂𝑇∇ΘLB (Θ) − LB (Θ)

= 𝜌
∇ΘLB (Θ)𝑇
∥∇ΘLB (Θ)∥2

∇ΘLB (Θ)

= 𝜌 ∥∇ΘLB (Θ)∥2 .

(13)

This remarks that minimizing the sharpness term RB (Θ) is equiva-
lent to minimizing the 𝑙2-norm of the gradient ∇ΘLB (Θ), which is

the same gradient used to minimize the vanilla loss LB (Θ). How-
ever, directly optimizing the gradient norm involves second-order

derivative information (e.g., Hessian), which is computationally

demanding. To overcome this challenge, we next introduce a novel

trajectory loss that measures the alignment between current and

past model states [9]. Thus, the trajectory loss provides a way to

optimize the gradient norm implicitly without requiring the com-

putation of second-order derivatives.

For current iteration 𝑡 , we denote its pass trajectory of the model

weights as Θ = {Θ1, · · · ,Θ𝑡−1}, and Θ𝑡 represents the current

weights in the 𝑡−th iteration. Recall that standard SGD updates the

weights as Θ𝑡+1 = Θ𝑡 − 𝜂𝑡∇Θ𝑡
LB𝑡 (Θ𝑡 ). For current batch B𝑡 and

model state Θ𝑡 , as RB𝑡 (Θ𝑡 ) is always non-negative, and thus we
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have:

argmin

Θ𝑡

RB𝑡 (Θ𝑡 ) ⇔ argmin

Θ𝑡

𝜂𝑡 cos(Φ𝑡 )RB𝑡 (Θ𝑡 )RB𝑡 (Θ𝑡 )

⇔ argmin

Θ𝑡

𝜂𝑡 cos(Φ𝑡 )RB𝑡 (Θ𝑡 )RB𝑡 (Θ𝑡 )

+
∑︁
𝑖<𝑡

𝜂𝑖 cos(Φ𝑖 )RB𝑡 (Θ𝑖 )RB𝑖 (Θ𝑖 )

=

𝑡∑︁
𝑖=1

argmin

Θ𝑡

𝜂𝑖 cos(Φ𝑖 )RB𝑡 (Θ𝑖 )RB𝑖 (Θ𝑖 )

= E
Θ𝑖∼Unif (Θ)

[𝜂𝑖 cos(Φ𝑖 )RB𝑡 (Θ𝑖 )RB𝑖 (Θ𝑖 )],

(14)

where Θ𝑖 ∼ Unif (Θ) denotes that Θ𝑖 is uniformly distributed in the

set Θ, and E[·] denotes the expectation; Φ𝑖 is the angle between
the gradients that are computed using the mini-batches B𝑖 and B𝑡
and cos(Φ𝑖 ) = 1. Note that 𝜂𝑖 cos(Φ𝑖 )RB𝑡 (Θ𝑖 )RB𝑖 (Θ𝑖 ) becomes a

constant with respect to variable Θ𝑡 for all 𝑖 ≠ 𝑡 . By substituting

Eq. (13) into Eq (14), we have following:

argmin

Θ𝑡

RB𝑡 (Θ𝑡 ) ⇔ E
Θ𝑖∼Unif (Θ)

[𝜂𝑖 cos(Φ𝑖 )RB𝑡 (Θ𝑖 )RB𝑖 (Θ𝑖 )]

= E
Θ𝑖∼Unif (Θ)

[𝜌2𝜂𝑖 cos(Φ𝑖 )∥∇Θ𝑖
LB𝑡 (Θ𝑖 )∥2∥∇Θ𝑖

LB𝑖 (Θ𝑖 )∥2]

= E
Θ𝑖∼Unif (Θ)

[𝜌2𝜂𝑖∇Θ𝑖
LB𝑡 (Θ𝑖 )𝑇∇Θ𝑖

LB𝑖 (Θ𝑖 )]

≈ 𝜌2 E
Θ𝑖∼Unif (Θ)

[LB𝑡 (Θ𝑖 ) − LB𝑡 (Θ𝑖+1)]

=
𝜌2

𝑡 − 1 [LB𝑡 (Θ1) − LB𝑡 (Θ2) + · · · + LB𝑡 (Θ𝑡−1) − LB𝑡 (Θ𝑡 )]

=
𝜌2

𝑡 − 1 [LB𝑡 (Θ1) − LB𝑡 (Θ𝑡 )] .
(15)

We remark that minimizing the sharpness term RB𝑡 (Θ𝑡 ) is equiv-
alent to minimizing the loss difference LB𝑡 (Θ1) − LB𝑡 (Θ𝑡 ). To
avoid the second term − 𝜌2

𝑡−1LB𝑡 (Θ𝑡 ) cancel out a partial of the

vanilla loss, we replace LB𝑡 (Θ1) − LB𝑡 (Θ𝑡 ) with its 𝑙2 norm. In

addition, as the model parameters Θ1 contains less information,

for current epoch 𝑒 , we only track the loss trajectory in the past 𝐸

epochs: {Θ𝑒−𝐸 , · · · ,Θ𝑒 }.
To this end, the mini-batch loss of our SharpCF at 𝑒-th epoch is

defined as follow:

L
SharpCF

(Θ𝑒 ) = LB (Θ𝑒 )︸   ︷︷   ︸
the BPR loss

+ 𝜆|B| ∥LB (Θ𝑒 ) − LB (Θ𝑒−𝐸 )∥22︸                           ︷︷                           ︸
the trajectory loss

, (16)

where 𝜆 is a regularized parameter that is used to balance the vanilla

loss with the trajectory loss. Meanwhile, LB (Θ𝑒−𝐸 ) represents the
loss of the batch B in 𝐸 epochs ago, which is being recorded during

training.

Nonetheless, bothLB (Θ𝑒−𝐸 ) andLB (Θ𝑒 ) involve the utilization
of the negative sampling technique to generate the negative samples

as described in Eq. (3). In practice, the same batch of positive user-

item pairs can be utilized for LB (Θ𝑒−𝐸 ) and LB (Θ𝑒 ) through an

indexing method, but distinct negative pairs are generated due to

the random negative sampling approach. To address this issue, we

initially train the model with BPR, and subsequently monitor the

trajectory after a predefined epoch 𝐸start.

After the pretrained epoch 𝐸start, the user/item representations

become more reliable and stable, and the BPR loss enforces a large

margin between positive pairs and negative pairs, i.e., 𝑦𝑢𝑖 ≫ 𝑦𝑢 𝑗 ,

for 𝑖 ∈ 𝐼+𝑢 ∧ 𝑗 ∈ 𝐼−𝑢 . As such, we empirically find that it is sufficient

to only track the predicted scores of positive pairs in the mini-batch

ŶB (Θ𝑒−𝐸 ) and ŶB (Θ𝑒 ) as described in Eq. (2). By doing so, our

empirical loss function of Eq. (16), which is simple yet effective, can

be expressed as follows:

Lemp

SharpCF
(Θ𝑒 ) = LB (Θ𝑒 ) +

𝜆

|B| ∥ŶB (Θ𝑒 ) − ŶB (Θ𝑒−𝐸 )∥22, (17)

Essentially, our loss is applied to slow down the rate of change

of the training loss to prevent convergence to sharp local minima.

Algorithm 1 summarizes the overall training of SharpCF.

Algorithm 1: SharpCF
Input: The training data O, the regularizer 𝜆, the number

of epoch 𝐸, the started trajectory loss epoch 𝐸start,

the epoch window 𝐸.

1 Initialize model parameters Θ;

2 for 𝑒 ← 1 to 𝐸 do
3 for each mini-batch B ⊂ O do
4 Compute the predicted scores for positive pairs

ŶB (Θ𝑒 );
5 Compute the predicted scores for negative pairs

N̂B (Θ𝑒 ) ;
6 Compute the BPR loss LB (Θ𝑒 ) based on ŶB (Θ𝑒 )

and N̂B (Θ𝑒 );
7 Cache the loss ŶB (Θ𝑒−𝐸 ) in 𝐸 epochs ago for same

batch B;

8 if 𝑒 > 𝐸start then
9 Lemp

SharpCF
(Θ𝑒 ) =

LB (Θ𝑒 ) + 𝜆
|B | ∥ŶB (Θ𝑒 ) − ŶB (Θ𝑒−𝐸 )∥22;

10 else
11 Lemp

SharpCF
(Θ𝑒 ) = LB (Θ𝑒 );

12 end
13 Update the model weights Θ𝑒 by using SGD;

14 end
15 end

Output: The optimal model parameters Θ∗.

Model Complexity. For time complexity, Unlike adversarial train-

ing [11, 15] that requires two forward and backward passes to

alternatively update the auxiliary variable Δ and model parameters

Θ, Our SharpCF can update Θ by using standard SGD. This makes

the time complexity of SharpCF similar to that of the original BPR

model [25], with almost no additional computational cost required

to record the loss trajectory.

In terms of memory complexity, APR [15] requires O((|U| +
|I|)𝑑), where |U| and |U| represent the number of users and items,

respectively, and 𝑑 is the embedding size. In contrast, our SharpCF

needs extra memory to cache the loss trajectory O(𝐸 |O|), where 𝐸
is the window size of the trajectory and |O| is the number of training
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Table 1: Dataset statistics.

Dataset #User #Items #Interactions Density

MovieLens1M 6,040 3,900 1,000,209 4.190%

Gowalla 29,858 40,981 1, 027, 370 0.084%

Yelp2018 31, 668 38, 048 1, 561, 406 0.130%

Amazon-Book 52, 643 91, 599 2, 984, 108 0.062%

data. However, since the window size of the trajectory 𝐸 is typically

a small constant like 3 or 5, the memory complexity of SharpCF is

negligible compared to BPR [25]. Overall, our proposed SharpCF

method offers a computationally efficient and memory-friendly

alternative for collaborative filtering tasks.

5 EXPERIMENTS
In this section, we present the results of our extensive experiments

on four public datasets, aimed at validating the effectiveness of

SharpCF. Firstly, we describe our experimental settings, and then

we compare the overall top-𝐾 recommendation performance of

SharpCF with other CF methods. Next, we showcase the loss land-

scape of our SharpCF, which reveals that the adversarial training

effectively smooths the loss landscape to achieve flat minima. Fi-

nally, we investigate the performance of sparse recommendations

to verify the generalizability of different CF methods.

5.1 Experimental Settings
5.1.1 Datasets. We use four public benchmark datasets for evalu-

ating recommendation performance:

• Movielens-1M1
is a widely used dataset for recommenda-

tions. This dataset contains 1, 000, 209 anonymous ratings

of approximately 3, 900 movies made by 6, 040 users who

joined in 2000.

• Gowalla2 is a location-based social networking website

where users share their locations by checking-in. It mainly

collects the check-ins of these users over the period from

Feb. 2009 to Oct. 2010.

• Yelp20183 is released by the Yelp challenge that consists

of a subset of the businesses, reviews, and user data. The

Yelp2018 version is used in the experiments.

• Amazon-Book4 comprises a vast corpus of user reviews,

ratings, timestamps, and product metadata gathered from

Amazon.com. For our experiments, we select the largest

category available, namely Book.

For the MovieLens1M dataset, we consider all ratings as implicit

feedback, where each rating score is converted to either 1 or 0 to

indicate whether a user rated a movie. For sparser datasets such as

Gowalla, Yelp2018, and Amazon-Book, we use the 10-core setting

to ensure that all users and items have at least 10 interactions [14].

Table 1 provides a summary of the dataset statistics.

1
https://grouplens.org/datasets/movielens/

2
https://github.com/kuandeng/LightGCN/tree/master/Data

3
https://www.yelp.com/dataset

4
https://jmcauley.ucsd.edu/data/amazon/

5.1.2 Baselines. As our primary goal of this work is to give a deep

insight about the adversarial training and accelerate its computa-

tional overhead, we mainly compare with the two popular baselines:

• BPR [25]: A classicmodel that seeks to optimize the Bayesian

personalized ranking loss. We employ Matrix Factorization

as its preference predictor.

• APR [15]: Similar to BPR, it also chooses the Matrix Factor-

ization model and considers the adversarial perturbations

during training.

For BPR, APR, and SharpCF, we choose the basic Matrix Fac-

torization as their backbones due to its simplicity and effective-

ness. However, it is worth mentioning that SharpCF, similar to

BPR, is compatible with any encoders, such as Graph Neural Net-

works [5, 14]. We leave this extension for further work since our

focus is not on developing a new encoder for recommendation in

this study. In contrast, we pay more attention to explaining and

accelerating the adversarial collaborative filtering.

5.1.3 Implementation Details. We implement our SharpCF model

in PyTorch on NVIDIA Tesla V100 32GB machines. For all models,

the embedding dimension 𝑑 of users and items (e.g., in Eq. (1)) is set

to 128. We initialize the hyper-parameters for APR as suggested in

the original paper and then fine-tune them to optimize performance.

For our SharpCF, we choose an epoch window 𝐸 = 3. As suggested

by APR [15], we set 𝐸start = 200, which means we first train the

model with BPR only for the first 200 epochs to warm up, and then

continue training with APR or SharpCF in the experiments.

We adopt two popular top-𝐾 metrics, Recall and Normalized

Discounted Cumulative Gain (NDCG) [14], for evaluation purposes.

The default value of 𝐾 is set to [10, 20], and we report the average

of Recall@10 and NDCG@10 over all users in the test set. During

inference, we consider items that the user has never interacted with

in the training set as candidate items. All models predict the users’

preference scores over these candidate items and rank them based

on the computed scores to calculate Recall@10 and NDCG@10. We

independently repeated the experiments five times and report the

averaged results.

5.2 Experimental Results
5.2.1 Overall Performance. In this study, we compare our proposed

method SharpCF with BPR and APR on four real-world datasets.

Table 2 summarizes the experimental results, including the run-

ning time per epoch. Based on our experiments, we have made the

following two observations:

• Although the underlying recommendermodel remains the same

(e.g., Matrix Factorization), both APR and SharpCF outper-

form BPR by leveraging adversarial training. APR achieves this

by explicitly introducing worst-case perturbations, while our

SharpCF implicitly smooths the learning trajectory to achieve

the same effect. Both methods have the potential to smooth the

loss landscape to reach out the flat minima, leading to better

performance. These findings suggest that the way of training a

recommender model is a critical factor in the recommendation

process, and one can easily modify the vanilla loss function to

enhance performance further.
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Table 2: The performance of different baselines in terms of Recall@K, NDCG@K, and the duration of each epoch in seconds.
RI means Relative Improvement w.r.t. baselines.

Dataset Metrics BPR APR SharpCF RI w.r.t. BPR RI w.r.t. APR

Movielens-1M

Recall@10 0.2038 0.2273 0.2354 +15.5% +3.56%

NDCG@10 0.3396 0.3705 0.4123 +21.4% +11.3%

Recall@20 0.3025 0.3126 0.3179 +5.09% +1.70%

NDCG@20 0.3387 0.3566 0.3949 +16.6% +10.7%

Time per epoch 16.5s 30.5s 17.1s - -

Gowalla

Recall@10 0.1153 0.1242 0.1296 +12.4% +4.35%

NDCG@10 0.1258 0.1375 0.1456 +15.7% +5.89%

Recall@20 0.1674 0.1784 0.1838 +9.80% 3.03%

NDCG@20 0.1404 0.1524 0.1594 +13.5% +4.59%

Time per epoch 28.3s 50.1s 28.7s - -

Yelp2018

Recall@10 0.0352 0.0397 0.0411 +16.8% +3.53%

NDCG@10 0.0446 0.0477 0.0526 +17.9% +10.3%

Recall@20 0.0591 0.0673 0.0686 +16.1% +1.93%

NDCG@20 0.0519 0.0571 0.0608 +17.1% +6.48%

Time per epoch 45.8s 88.6s 46.1s - -

Amazon-Book

Recall@10 0.0207 0.0241 0.0267 +29.0% +10.8%

NDCG@10 0.0223 0.0259 0.0294 +31.9% +13.5%

Recall@20 0.0366 0.0421 0.0451 +23.2% +7.13%

NDCG@20 0.0286 0.0329 0.0363 +26.9% +10.3%

Time per epoch 127.8s 230.1s 128.9s - -

• Our proposed SharpCF has shown improvements in all compar-

isons. It consistently outperforms the BPR by up to 30%, with

an average improvement of 18.1% and a standard deviation of

7% across all datasets. While the improvements over the APR

are not as significant as those over the BPR, our SharpCF still

shows positive results, with an average improvement of 6.82%

and a standard deviation of 3.81% over the APR. Presumably,

this is because our SharpCF does not require solving the min-

max minimization, which avoids the risk of getting stuck at

saddle points that often exhibit large variances, as explained in

the original APR paper.

Figure 2 depicts the training curves of various baselines for four

datasets. After pretraining for 200 epochs, we observe that contin-

ued training of APR and SharpCF results in significant improvement,

whereas further training of BPR leads to only marginal gains. For

instance, in the case of Amazon-Book, BPR achieves a maximum Re-

call@10 score of around 0.0207, which is then boosted to 0.0267 by

training with SharpCF, leading to a relative improvement of approx-

imately 29%. Table 2 also shows running time elapsed for training

per epoch of BPR, APR and SharpCF. In general, the training time

for BPR and SharpCF is almost equal, while the computational time

for APR is roughly twice as expensive as these two approaches. For

example, for the largest dataset Amazon-Book, the training times

per epoch for BPR, APR, and SharpCF are around 127.8s, 230.1s,

and 128.9s, respectively.

Overall, the experimental results demonstrate the superiority

of our proposed SharpCF. Specifically, it outperforms the BPR and

APR across four datasets, while maintaining comparable complexity

to the BPR model. These appealing properties make our SharpCF

practical for industry-scale applications.

5.2.2 Loss Landscapes. Prior works have demonstrated a strong

correlation between the flatness of the loss landscape and the gen-

eralizability and robustness of a model. In Section 4.2, we establish

a connection between Adversarial Training and Sharpness-aware

Minimization to explain their generalizability. To verify this as-

sumption, we visualize the loss landscapes of the baselines and our

proposed method on four different datasets. Following the method-

ology outlined in [21], give a well-train model Θ, we compute the

loss values when moving the model parameters Θ along a random

direction 𝑡 ∈ [−2, 2] to generate a 1D loss landscape.

From Figure 3, we observe that BPR has a sharper local min-

ima in the loss landscape as compared to APR and SharpCF across

all datasets. In other words, the adversarial training techniques,

including APR and SharpCF, prefer to generate flatter loss land-

scapes. A flatter weight loss surface often leads to a smaller gap

between training and testing performances, thereby improving the

robustness of the model’s generalization capabilities [2, 11, 20, 21].

Rather than interpreting adversarial training as a min-max game

aimed at enhancing robustness and generalizability, as done in APR,

we provide an alternative perspective by showing that adversarial

training tends to achieve a flatter weight loss landscape, thereby

reducing the robust generalization gap.

5.3 Further Probe
In this section, we conducted a series of detailed analyses on the

proposed SharpCF to confirm its effectiveness. We report the results
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Figure 2: Training curves of BPR, APR, and SharpCF on different datasets.
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Figure 3: Training curves of BPR, APR, and SharpCF on different datasets.
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Figure 4: The performance of different models with respect
to item degree on Gowalla and Amazon-Book.

only on the Gowalla andAmazon-Book datasets, as the observations

are similar on the other two datasets and thus omitted here.

5.3.1 Long-tail Recommendation. To further investigate themodel’s

generalization, we grouped items by degree and visualized the aver-

age performance of each group. We mainly focused on Gowalla and

Amazon-Book since they are sparser than the other two datasets.

Additionally, we explored the item degree within the ranges of

[0,100), [100, 200), and [200, 300) to focus on long-tail items. Fig-

ure 4 displays the performance of different models with respect to

item degrees. As shown, SharpCF and APR achieved higher per-

formance for low-degree items. This indicates that both APR and

SharpCF are capable of providing high-quality recommendations

even with sparse interaction data, thanks to smoothing the loss

landscape and better generalization.

5.3.2 The Impact of the Coefficient 𝜆. In the objective function of

SharpCF defined in Eq. (17), the coefficient 𝜆 is used to balance

the two losses: the original task loss and the trajectory loss. To

analyze the influence of 𝜆, we vary its value in the range of 0.001

to 10 and reported the experimental results in Figure 5. The results

indicate that an appropriate value of 𝜆 can effectively improve the

performance of SharpCF. Specifically, when the hyper-parameter 𝜆

is set to around 0.1 or 1.0, the performance becomes better on both

datasets, revealing that tracking the learning trajectory is valuable

for improving performance. However, when 𝜆 is set to around 10.0,

the performance of our SharpCF drops quickly, suggesting that too

strong regularization on the trajectory loss will negatively affect

normal training of the model and is not encouraged in practice.
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Figure 5: The performance of SharpCF for different settings
of 𝜆.
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Figure 6: The performance of SharpCF for different settings
of the epoch window size 𝐸.

5.3.3 The Impact of the Epoch Window Size 𝐸. In our proposed

SharpCF model, the epoch window size 𝐸 in Eq. (17) is a crucial

hyper-parameter that affects its performance. A larger value of

𝐸 means that the SharpCF will track the long-range trajectory to

smooth the loss landscape. To examine the impact of 𝐸 on SharpCF,

we vary it from 1 to 7 and evaluate the model’s performance on

different datasets. From Figure 6, the results show that the perfor-

mance of SharpCF is relatively stable across different settings of

𝐸. In some cases, increasing the value of 𝐸 can gradually boost the

performance on the Amazon-Book dataset. It should be noted that

tracking longer trajectories in SharpCF requires more memory to

cache the model states. While this is a cheaper alternative to the

APR method, it still needs to be considered in real-world applica-

tions. In our experiments, we found that choosing an epoch window

size of 𝐸 = 3 provides good recommendation performance with the

reasonable memory requirement.

6 CONCLUSION
In this paper, we first revisit the existing adversarial collaborative

filtering methods and demonstrate that adversarial training favors

flat minima over sharp ones, which results in better generalizabil-

ity. We then propose our Sharpness-aware Collaborative Filtering

(SharpCF), a simple yet effective method that conducts adversarial

training without extra computational cost over the base optimizer.

Our proposed method has shown superior performance on four

public real-world datasets compared to current adversarial collabo-

rative filtering methods with reasonable time complexity.

In our future work, we aim to expand our assessment of the

effectiveness of our adversarial training approach in diverse recom-

mendation tasks, including fairness recommendation. Additionally,

we plan to extend the capabilities of our framework to establish it as

a versatile training technique that improves model generalization.
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