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ABSTRACT
Since Knowledge Graphs (KGs) contain rich semantic information,
recently there has been an influx of KG-enhanced recommendation
methods. Most of existing methods are entirely designed based
on euclidean space without considering curvature. However, re-
cent studies have revealed that a tremendous graph-structured data
exhibits highly non-euclidean properties. Motivated by these ob-
servations, in this work, we propose a knowledge-based multiple
adaptive spaces fusion method for recommendation, namely MCKG.
Unlike existing methods that solely adopt a specific manifold, we
introduce the unified space that is compatible with hyperbolic, eu-
clidean and spherical spaces. Furthermore, we fuse the multiple
unified spaces in an attention manner to obtain the high-quality
embeddings for better knowledge propagation. In addition, we pro-
pose a geometry-aware optimization strategy which enables the
pull and push processes benefited from both hyperbolic and spheri-
cal spaces. Specifically, in hyperbolic space, we set smaller margins
in the area near to the origin, which is conducive to distinguishing
between highly similar positive items and negative ones. At the
same time, we set larger margins in the area far from the origin to
ensure the model has sufficient error tolerance. The similar manner
also applies to spherical spaces. Extensive experiments on three
real-world datasets demonstrate that the MCKG has a significant
improvement over state-of-the-art recommendation methods. Fur-
ther ablation experiments verify the importance of multi-space
fusion and geometry-aware optimization strategy, justifying the
rationality and effectiveness of MCKG.
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1 INTRODUCTION
Recommender systems (RSs) have shown great potential in solving
the information explosion problem and enhancing the user experi-
ence in various online applications [27]. In a variety of scenarios,
knowledge graphs (KGs) can be utilized to offer fundamental back-
ground knowledge as well as rich structural information. To fully
utilize KG, existing knowledge-enhanced recommendation meth-
ods [4, 16, 22, 30, 36] strive to build more effective neural networks
to integrate the semantics of KG.

Although these techniques can significantly enhance the em-
beddings of users and items, they are entirely designed based
on Euclidean space without considering curvature. Recent stud-
ies [1, 21, 39] have revealed that a tremendous data exhibits the
highly non-Euclidean properties, especially the data that presents
tree-likeness or cyclic structures. For instance, the KG data are
diverse and include a variety of structures. As shown in Figure 1,
there are interactions between the user and items, which can be
further connected to more entities. Owing to such high-order rela-
tionship [34], knowledge-aware methods have the ability to provide
accurate recommendations. Essentially, such interactions can be
seen as tree structures or cyclic structures. In such situations, Eu-
clidean space methods suffer from severe distortion when depicting
these structures [3, 23]. Furthermore, recent studies [10, 18] have
demonstrated that geometric spaces with constant non-zero curva-
ture can enhance representation performance when the underlying
graph structures of the data follow particular patterns. Specifically,
the hyperbolic space is more suitable for modeling tree-structured
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Figure 1: Tree and cyclic structures correspond to their
most suitable modeling spaces: the hyperbolic and spher-
ical spaces.

data, while the spherical space is superior for representing cyclic
patterns.

Since complex KG usually have varied structures coupled to-
gether, choosing the ideal space is especially tricky. Constant curva-
ture space methods [1, 5, 8, 28] just project entities to a single space,
as a result, they fail to completely express the sophisticated struc-
tures of KG. Recently, some mixed-curvature space works [9, 13, 33]
merge distinct spaces, aiming to characterize various structures.
Unfortunately, how to find the most effective combination of these
manifolds is also a challenging task. The simplest method [40] is
to list all possible combinations and choose the one that best uti-
lizes these geometry. Obviously, this method would be efficient
but impractical due to the time-consuming and low-scalability [25].
Another solution [5] is to treat the curvature 𝜅 as a trainable pa-
rameter, aiming to learn the optimal curvature from the training
data. However, there are still the following issues: 1) the constraints
of model parameters depend on the changes of curvature. Once the
curvature 𝜅 varies (e.g., from negative to positive), parameters may
no longer satisfy the constraints. As a result, the internal structure
of manifold will be destroyed, thus unable to obtain high-quality
embeddings. 2) Since the manifolds belong to different spaces, i.e.,
M ∈ H,E, S, directly operating on various manifolds without con-
sidering the heterogeneity is problematic. For instance, the global
distance computation just sums up the distances without distin-
guishing the importance of various manifolds.

Motivated by the above observations, in this paper, we propose
a knowledge-based multiple adaptive spaces fusion method for rec-
ommendation (MCKG). Unlike existing methods [5, 26, 28, 37] that
solely consider a specific manifold, we introduce a unified space
U that is compatible with the hyperbolic, euclidean and spheri-
cal spaces. Note that the unified space can interpolate smoothly
between all geometries of constant curvature, thus the internal
structure of the manifold is preserved when training curvature.
To break the limitation of the single space’s expression ability, we

further integrate multiple unified spaces to more accurately capture
the structural information on a global level. On the other hand, we
propose a geometry-aware optimization strategy that enables the
pull and push processes benefited from both hyperbolic and spheri-
cal spaces. Specifically, in hyperbolic space, we set smaller margins
in the area near to the origin, which is conducive to distinguishing
between highly similar positive items and negative ones. At the
same time, we set larger margins in the area far from the origin to
ensure that the model has sufficient error tolerance. Conversely, in
spherical space, the geometry-aware strategy assigns larger mar-
gins near to the origin and smaller margins far from the origin.
Empirically, we conduct comprehensive experiments on the three
benchmark datasets, the results show that MCKG outperforms the
state-of-the-art recommendation methods. In summary, this work
makes the following contributions:

• To the best of our knowledge, this is the first work to apply
multiple adaptive spaces fusion for knowledge-enhanced
recommender systems.

• We present a knowledge-based multiple adaptive spaces fu-
sion method for recommendation. To obtain the high-quality
embeddings for recommendation, we introduce the unified
space to describe the complex structures of KG, then further
fuse multiple subspaces in an attention manner. Finally, our
proposed geometry-aware optimization strategy is the first
work that considers the properties of both hyperbolic and
spherical spaces.

• We conduct extensive experiments on the three benchmark
datasets, results show that MCKG outperforms the state-of-
the-art recommendation methods.

2 PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Mathematical Concepts
In this subsection, we summarize preliminary notations for readers
to better understand this paper.

Manifold: A manifoldM of dimension 𝑛 is a topological where
each point’s neighborhood can be approximated by euclidean space
R𝑛 . For example, the earth can be modeled by the spherical space,
and its local place can be estimated by R2. The notion of manifold
is a generalization of the notion of surface.

Tangent space: For each point 𝑥 ∈ M, the tangent space T𝑥M
ofM at 𝑥 is defined as a 𝑛-dimensional space estimatingM around
x at a first order.

Geodesics distance: Geodesics distance is the the generalization
of a straight line in the Euclidean space, which indicates the shortest
path between pairs of points.

Exponential map: The exponential map carries a vector 𝑣 ∈
T𝑥M of a point 𝑥 ∈ M to the manifoldM, i.e., Exp𝑥 : T𝑥M → M
by traveling a fixed distance along the geodesic defined as 𝛾 (0) = 𝑥
with direction 𝛾 ′ (0) = 𝑣 . Each manifold has its own manner to
design the exponential maps.

Logarithmicmap: The logarithmic map is the reverse operation
of the exponential map, which projects a point 𝑧 ∈ M on the
manifold back to the tangent space of another point 𝑥 ∈ M, i.e.,
Log𝑥 : M → T𝑥M. Similar to Exp𝑥 , different manifolds correspond
to their distinct logarithmic map.
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2.2 Constant Curvature Spaces
With the constant sectional curvature𝜅 , the three types ofmanifolds
are defined as follows:

M𝑛
𝜅 =


H𝑛𝜅 :{𝑥 ∈ R𝑛+1 : ⟨𝑥, 𝑥 ⟩𝜅 = 1/𝜅, 𝑥0 > 0} 𝑓 𝑜𝑟 𝜅 < 0

E𝑛𝜅 : R𝑑 𝑓 𝑜𝑟 𝜅 = 0

S𝑛𝜅 :{𝑥 ∈ R𝑛+1 : ⟨𝑥, 𝑥 ⟩𝜅 = 1/𝜅 } 𝑓 𝑜𝑟 𝜅 > 0

(1)

where the ⟨·, ·⟩𝜅 represents the inner product:

⟨𝑥,𝑦⟩𝜅 =

{ ∑𝑛
𝑖=0 𝑥𝑖𝑦𝑖 𝑓 𝑜𝑟 𝜅 > 0

−𝑥0𝑦0 +
∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 𝑓 𝑜𝑟 𝜅 < 0

(2)

Because hyperbolic or spherical spaces are not vector spaces, the
vector operations (e.g., addition, subtraction and scalar multipli-
cation) cannot be achieved. Therefore, we need to convert non-
Euclidean spaces into tangent spaces for corresponding vector cal-
culations. Specifically, the tangent space T𝑥M at point 𝑥 onM is a
𝑑-dimensional Euclidean space that approximatesM around 𝑥 :

T𝑥M𝑚
𝜅 = {𝑣 ∈ R𝑛+1 : ⟨𝑣, 𝑥⟩𝜅 = 0}. (3)

As mentioned in the previous section, the mapping between mani-
foldM𝑛

𝜅 ∈ {H𝑛𝜅 , S𝑛𝜅 } and its tangent space T𝑥M𝜅 can be achieved
by the exponential and logarithmic operations.

To connect vectors in tangent spaces, the parallel transport [14]
defines a manner of transporting the local geometry along smooth
curves that preserves the metric tensors. Specifically, for vector
𝑢 ∈ M and 𝑣 ∈ M, the parallel transport PT𝑢→𝑣 : T𝑢M → T𝑣M
carries a vector in T𝑢M along the geodesic from 𝑢 to 𝑣 .

2.3 Mix-Curvature Spaces
Since the constant curvature space is only suitable for a certain
geometric structure, mix-curvature methods [1, 9, 17, 25, 40] expect
to match the complicated geometry of data thus provide higher
quality representations. To capture a wider range of curvatures, mix-
curvature methods propose embeddings into product spaces [9]
where each component has constant curvature. Formally, assuming
a series of𝑁 distinct constant curvature spacesM (1) ,M (2) , ...,M (𝑁 ) ,
the mix-curvature manifold are defined as:

M = M (1) ×M (2) × ... ×M (𝑁 ) , (4)

where the × denotes Cartesian product.

2.4 Problem Formulation
We follow the recommendation setting [5, 30, 34]. Let𝑈 = {𝑢1, 𝑢2, ...}
and 𝑉 = {𝑣1, 𝑣2, ...} denote the sets of users and items, respectively.
The user-item interaction matrix 𝑌 = {𝑦𝑢𝑣 |𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 } is defined
based on the users’ implicit feedback, where the value of 𝑦𝑢𝑣 = 1
denotes that there is an interaction between user 𝑢 and item 𝑖;
otherwise 𝑦𝑢𝑣 = 0. We also have a knowledge graph 𝐺 available,
which consists of massive entity-relation-entity triplets (ℎ, 𝑟, 𝑡),
where ℎ ∈ 𝜙 , 𝑟 ∈ 𝜑 , and 𝑡 ∈ 𝜙 describe the head, relation, and tail
of knowledge triples, and 𝜙 and 𝜑 denote the set of entities and
relations. Given the user-item interactions and the item-side KG,
the recommendation task is to train a RS model calculating the
probability that the user 𝑢 will click item 𝑣 .

Table 1: Summary of operations in unified space U𝑛𝜅

Name Operation

Addition 𝑥 ⊕𝜅 𝑦 =
(1−2𝜅 ⟨𝑥,𝑦⟩−𝜅 ∥𝑦 ∥22 )𝑥+(1+𝜅 ∥𝑦 ∥22 )𝑦

1−2𝜅 ⟨𝑥,𝑦⟩+𝜅2 ∥𝑥 ∥22 ∥𝑦 ∥22
Multiplication 𝑥 ⊗𝜅 𝑦 = exp𝜅o (𝑥 · log𝜅o (𝑦))

Concatenate 𝑥 ⊖𝜅 𝑦 = exp𝜅o (𝑥 | | log𝜅o (𝑦))

Dot Product 𝑥 ⊙𝜅 𝑦 = exp𝜅o (𝑥𝑇 log𝜅o (𝑦))

Geodesics Distance 𝑑𝜅 (𝑥,𝑦) = 2 tan−1𝜅 (∥ − 𝑥 ⊕𝜅 𝑦∥2)

Exponential Map exp𝜅𝑥 (𝑣) = 𝑥 ⊕𝜅 (tan𝜅 ( 𝜆
𝜅
𝑥 ∥𝑣 ∥2
2 ) 𝑣

∥𝑣 ∥2

Logarithmic Map log𝜅𝑥 (𝑦) = 2
𝜆𝜅𝑥

tan−1𝜅 (∥ − 𝑥 ⊕𝜅 𝑦∥2) −𝑥⊕𝜅𝑦

∥−𝑥⊕𝜅𝑦 ∥2

3 METHOD
In this section we present the MCKG model in Figure 2. First, we
introduce the 𝜅-Stereographic manifold and the extraction of high-
order information on a single manifold. Then, we fuse the each
adaptive subspaces to fully capture the global structural information.
Finally, we propose a novel geometry-aware optimization strategy
to be compatible with both hyperbolic and spherical spaces.

3.1 Unifying All Curvatures
We adopt 𝜅-Stereographic model [1] as the base manifold, which is
a unification of constant curvature manifolds: H𝑛𝜅 , E𝑛𝜅 and S𝑛𝜅 . The
model is a Riemannian manifold with constant sectional curvature
𝜅 and dimension 𝑛:

U𝑛𝜅 =

{
𝑥 ∈ R𝑛 : ∥𝑥 ∥2 < 1/

√
−𝜅, 𝜆𝜅𝑥 𝜅 < 0

R𝑛, 𝜆𝜅𝑥 𝜅 ≥ 0 (5)

where 𝜆𝜅𝑥 = 2
1+𝜅 ∥𝑥 ∥22

is conformal metric tensor at point 𝑥 . For
the𝜅-Stereographic model, the optimization step changes the geom-
etry of space and the constraints of parameters, which also depend
on the curvature. Fortunately, when we use curvature 𝜅 as a train-
able parameter, the model can interpolate smoothly between all
geometries of constant curvature, and the detailed proof process
can refer to paper [1].

The basic operations of the unified space U𝑛𝜅 are summarized in
Table 1, but the trigonometric functions in Table 1 are not complete,
here we complement its definition.

𝑡𝑎𝑛𝜅 (𝑥) =


𝜅−1/2𝑡𝑎𝑛(𝑥𝜅1/2) 𝜅 > 0

𝑥 + 1
3𝜅𝑥

3 𝜅 = 0

|𝜅 |−1/2𝑡𝑎𝑛ℎ(𝑥 |𝜅 |1/2) 𝜅 < 0

(6)

𝑡𝑎𝑛−1𝜅 (𝑥) =


𝜅−1/2𝑡𝑎𝑛−1 (𝑥𝜅1/2) 𝜅 > 0

𝑥 − 1
3𝜅𝑥

3 𝜅 = 0

|𝜅 |−1/2𝑡𝑎𝑛ℎ−1 (𝑥 |𝜅 |1/2) 𝜅 < 0

(7)
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and spherical spaces.

3.2 High-Order Information Extraction
Since the initial embeddings are in Euclidean space, we explicitly
encode the Euclidean embeddings onto the unified space before
feeding the subsequent layers. Denote the initial user, item and rela-
tion embeddings as 𝑥𝑢 , 𝑥𝑣 and 𝑥𝑟 respectively, then the exponential
maps are applied:

𝑒𝑢 = 𝑒𝑥𝑝𝜅o (𝑥𝑢 ), 𝑒𝑣 = 𝑒𝑥𝑝
𝜅
o (𝑥𝑣), 𝑒𝑟 = 𝑒𝑥𝑝

𝜅
o (𝑥𝑟 ) . (8)

We present a relational attention function as follows to describe
user’s interest:

𝑐𝑟𝑢 = 𝑒𝑢 ⊙𝜅 𝑒𝑟 . (9)

Intuitively, 𝑐𝑟𝑢 means the importance of relation 𝑟 to user 𝑢. The
neighboring information can be continuously aggregated based on
𝑐𝑟𝑢 . Specifically, the neighborhood embedding of entity 𝑣 is defined
as

𝑒𝑢
𝑠 (𝑣) =

∑︁
𝑎∈𝑠 (𝑣)

𝑐𝑟𝑢 ⊗𝜅 𝑒𝑎, 𝑐𝑟𝑢 =
𝐸𝑥𝑝 (𝑐𝑟𝑣,𝑎𝑢 )∑

𝑎∈𝑠 (𝑣)
𝐸𝑥𝑝 (𝑐𝑟𝑣,𝑎𝑢 )

, (10)

where 𝑠 (𝑣) denotes the selected neighbors of 𝑣 , the 𝑐𝑟𝑢 is the normal-
ized user-relation score, and 𝐸𝑥𝑝 (·) means the basic exponential
function.

The key idea of Graph Convolution Network (GCN) is to ag-
gregate feature information from a node’s neighbors. Obviously,
feeding the entire knowledge graph to model will greatly increase
the computational burden. To this end, we assign a fixed size re-
ceptive field for each node to control the amount of calculation.

After getting the neighborhood representation, we aim to represent
target node at the next layer. There are three kinds of aggregators:

• GCN Aggregator [20] adds the two representations and per-
forms a nonlinear transformation, and it can be formulated
as

𝑒
(𝑘+1)
𝑣 = 𝑒𝑥𝑝𝜅𝑣 (𝜎𝑙𝑜𝑔𝜅𝑣 (𝑊 ⊗𝜅 (𝑒 (𝑘 )𝑣 ⊕𝜅 𝑒 (𝑘 )𝑠 (𝑣) ) ⊕𝜅 𝑏)), (11)

where 𝜎 is LeakyRelu activation function,𝑊 and b represent
the weight matrix and bias respectively, ⊗𝜅 and ⊕𝜅 denote
the multiplication and addition as mentioned in Table 1.

• GraphSage Aggregator [12] concatenates the two represen-
tations, then fed to the activation function:

𝑒
(𝑘+1)
𝑣 = 𝑒𝑥𝑝𝜅𝑣 (𝜎𝑙𝑜𝑔𝜅𝑣 (𝑊 ⊗𝜅 (𝑒 (𝑘 )𝑣 ⊖𝜅 𝑒 (𝑘 )𝑠 (𝑣) ) ⊕𝜅 𝑏)), (12)

where the ⊖ is the concatenation operation.
• Neighbor Aggregator [34] takes the neighborhood represen-
tation of entity 𝑣 as the output representation, and it can be
formulated as

𝑒
(𝑘+1)
𝑣 = 𝑒𝑥𝑝𝜅𝑣 (𝜎𝑙𝑜𝑔𝜅𝑣 (𝑊 ⊗𝜅 (𝑒 (𝑘 )

𝑠 (𝑣) ) ⊕𝜅 𝑏)) . (13)

The embeddings at different layers capture different semantics.
E.g., the first layer focuses on items that users has directly interacted
with, the second layer emphasizes overlapping items between users,
and the higher-layers can capture higher-order information [35].
After 𝐾 layers aggregation, we further combine the embeddings
obtained at each layer to form the final item representations:

𝑒∗𝑣 = 𝑒
(0)
𝑣 ⊕𝜅 𝑒 (1)𝑣 ... ⊕𝜅 𝑒 (𝑘 )𝑣 , 𝑒∗𝑢 = 𝑒

(0)
𝑢 . (14)
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3.3 Multiple Spaces Fusion
Since the complicated structures are not evenly distributed over
the entire graph, even if a single space can learn the ideal curvature
𝜅 , it is still not capable of fully modeling the entire graph. Now we
consider a sequence of manifolds U(1) ,U(2) , ...,U(𝑀 ) , where the
item (user) embedding in the𝑚-th subspace is denoted as 𝑒∗,𝑚𝑣 . To
accurately capture the global structural information, we design a
fusion mechanism by aggregating subspace embeddings. First, we
take the average of subspace representations as the global fused
embeddings 𝑒∗,𝑔𝑣 , then we concatenate the average value and the
original subspace embedding to obtain the new subspace embed-
ding:

𝑒
∗,𝑔
𝑣 =

1
𝑀

𝑀∑︁
𝑚=1

𝑒
∗,𝑚
𝑣 ,

𝑒
∗,𝑚
𝑣 = 𝑒

∗,𝑚
𝑣 ⊖𝜅 𝑒∗,𝑔𝑣 .

(15)

As a result, the new embeddings take into account the global
information, which is not limited to the current space. Finally, we
further integrate the series of subspaces in an attention-enhanced
manner. In other words, we calculate the global distance in an
attention manner. Formally, the global distance between user 𝑢 and
item 𝑣 is the weighted sum of the distances in each subspace:

𝑑𝑖𝑠𝑡 (𝑢, 𝑣) =
𝑀∑︁
𝑚=1

𝑤 (𝑒∗,𝑚𝑢 , 𝑒
∗,𝑚
𝑣 )𝑑𝜅 (𝑒∗,𝑚𝑢 , 𝑒

∗,𝑚
𝑣 ), (16)

where the𝑑𝜅 (·) represents geodesics distance as mentioned in Table
1, and the𝑤 (𝑒∗,𝑚𝑢 , 𝑒

∗,𝑚
𝑣 ) is defined as:

𝑤 (𝑒∗,𝑚𝑢 , 𝑒
∗,𝑚
𝑣 ) = 𝑤 ′ (𝑒∗,𝑚𝑢 ) +𝑤 ′ (𝑒∗,𝑚𝑣 ) . (17)

Here the importance of a user-item pair is the sum of the influence
of 𝑢 and 𝑣 . Due to the 𝑤 ′ (𝑒∗,𝑚𝑢 ) and 𝑤 ′ (𝑒∗,𝑚𝑣 ) are the entity level
subspace attention, the weights can be pre-trained as follows:

𝑤 ′ (𝑒∗,𝑚𝑢 ) = 𝑒𝑥𝑝 (𝛼𝑚𝑢 )∑𝑀
𝑖=1 𝑒𝑥𝑝 (𝛼𝑖𝑢 )

,𝑤 ′ (𝑒∗,𝑚𝑣 ) = 𝑒𝑥𝑝 (𝛼𝑚𝑣 )∑𝑀
𝑖=1 𝑒𝑥𝑝 (𝛼𝑖𝑣)

, (18)

where the 𝛼𝑢 and 𝛼𝑣 are matrices of size 1 ×M and each entry
stands for the importance of the corresponding subspace.

𝛼𝑢 =𝑊 [𝑒∗,1𝑢 ⊖𝜅 ... ⊖𝜅 𝑒∗,𝑀𝑢 ], 𝛼𝑣 =𝑊 [𝑒∗,1𝑣 ⊖𝜅 ... ⊖𝜅 𝑒∗,𝑀𝑣 ] . (19)

In summarize, the multiple spaces fusion method has the follow-
ing advantages:

• Different from existing mixed curvature methods [9, 17,
33, 40] manually combine various manifolds, we adopt the
adaptive curvature spaces U𝑛𝜅 instead of constant curvature
spaces, e.g., H𝑛𝜅 , E𝑛𝜅 and S𝑛𝜅 .

• To accurately model the complex structure of the graph, we
further integrate each subspace in an attention-enhanced
manner from a global perspective.

3.4 Geometry-aware Optimization Strategy
The margin-based ranking loss has shown to be quite beneficial for
non-Euclidean recommendation models [26, 37]. This loss seeks to
distinguish user-item pairs up to a specified margin into positive
and negative samples, once the margin is satisfied the pairs are
regarded as well separated. Specifically, for each user𝑢 we sample a
positive item 𝑖 and a negative item 𝑗 , and the margin loss is defined
as

L(𝑢, 𝑖, 𝑗) =𝑚𝑎𝑥 (𝑑𝑖𝑠𝑡2 (𝑢, 𝑖)︸      ︷︷      ︸
𝑝𝑢𝑙𝑙

−𝑑𝑖𝑠𝑡2 (𝑢, 𝑗)︸      ︷︷      ︸
𝑝𝑢𝑠ℎ

+𝑚, 0),
(20)

where the 𝑑𝑖𝑠𝑡 (·) denotes the global distance in unified space as
mentioned in equation (16), 𝑚 is the margin between (𝑢, 𝑖) and
(𝑢, 𝑗). As a result, positive items are pulled closer to user while
negative items are pushed outside the margin.

However, it is still unclear how to pick a suitablemargin. HGCF [26]
sets the margin to a constant, this action ignores the exponentially
expansive geometric properties of hyperbolic spaces. Furthermore,
to emphasize the importance of modeling tail items, HICF [37]
sets a greater margin in the vicinity of the hyperbolic origin and a
smaller margin elsewhere. Although this method can alleviate the
power-law distribution to a certain extent, it will hurt the model
performance. E.g., in hyperbolic spaces, the space capacity of the
area near the origin is extremely narrow, thus a smaller margin is
beneficial to distinguish highly similar entities. While in areas far
away from the origin, we prefer a greater margin because the room
is spacious enough. On the other hand, in spherical spaces, the
origin area is relatively spacious, but the boundary area is narrow.
Therefore, we expect assigning larger margins to the area closer to
the spherical origin, and smaller margins to the area farther from
the spherical origin.

Motivated by the above considerations, we aim to devise a geometric-
aware optimization strategy which can benefit from both hyper-
bolic and spherical spaces. Paper [24] discovered an intriguing
phenomenon: when entities 𝑥 and 𝑦 progressively moves away
from the origin in hyperbolic space, the ratio 𝑑𝑖𝑠𝑡 (𝑥,𝑦)

𝑑𝑖𝑠𝑡 (𝑥,o)+𝑑𝑖𝑠𝑡 (𝑦,o) is
getting greater. Obviously, the reason is that the numerator (dis-
tance) grows significantly faster than the denominator (radius) in
hyperbolic spaces. On the contrary, as entities 𝑥 and 𝑦 move away
from the spherical origin, the ratio 𝑑𝑖𝑠𝑡 (𝑥,𝑦)

𝑑𝑖𝑠𝑡 (𝑥,o)+𝑑𝑖𝑠𝑡 (𝑦,o) will gradu-
ally become smaller. Surprisingly, the change trend of this ratio
is in line with our expectations for the margin. Inspired by these
observations, we carefully design the margin𝑚𝑔 as follows:

𝑚𝑔 = 𝜎 (
𝑑𝑖𝑠𝑡 (𝑢, 𝑖)

𝑑𝑖𝑠𝑡 (𝑢, o) + 𝑑𝑖𝑠𝑡 (𝑖, o) ) + 𝑐, (21)

where 𝜎 is the sigmoid function for normalization, and we maintain
the constant 𝑐 for better parameter tuning. Then the𝑚𝑔 is utilized to
replace the𝑚 in equation (20). As a result, the margin will increase
as it slowly departs from the origin in hyperbolic spaces, and in
spherical spaces it’s the exact opposite. To summarize, either in
the hyperbolic or spherical spaces, our model have the ability to
perceive the spatial structures and learn the ideal margin.

It is worth mentioning that HICF [37] aims to improve the atten-
tion of tail items in hyperbolic space, thus the margin𝑚ℎ is set as
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follows:

𝑚ℎ = 𝜎 (𝑑𝑖𝑠𝑡 (𝑢, o) + 𝑑𝑖𝑠𝑡 (𝑖, o) − (𝑑𝑖𝑠𝑡 (𝑢, 𝑖)) + 𝑐. (22)

Therefore, it assigns larger margins in narrower areas and smaller
margins in spacious areas, exactly the opposite of what we expect.
We will compare the performance of various margins in Section
4.3.1.

3.5 Time Complexity Analysis
As we can see, the layer-wise propagation is the core operation in
MCKG. Let 𝑁 denotes the number of user-item interactions, for the
𝑘-th layer, the matrix multiplication computational complexity is
𝑂 (𝑁 · |𝑠 (𝑣) | ·𝑑𝑘 ), where 𝑠 (𝑣) represents the item neighbor sampling
size, and 𝑑𝑘 denotes the current transformation size. As a result, the
overall time complexity of our proposed model is𝑂 (∑𝑀𝑚=1

∑𝐾
𝑘=1 𝑁 ·

|𝑠 (𝑣) | ·𝑑𝑘 ), where𝑀 is the number of manifolds, and 𝐾 denotes the
number of graph convolution layers. Parameter setting details will
be introduced in Section 4.1.4.

4 EXPERIMENTS
In this section, we introduce the experimental settings, and perform
extensive comparative experiments with the state-of-the-art models.
Then we conduct comprehensive ablation studies to verify the
designs in MCKG and reveal the reasons of its effectiveness. Finally,
we visualize the learned embedding and analyze the performance
of the recommendation model in data-sparse scenarios.

4.1 Experimental Settings
4.1.1 Datasets. We perform extensive experiments on the three
real-world datasets to assess the performance of the MCKG algo-
rithm. Table 1 summarizes the statistics of datasets.

Movielens-1M1: This movie dataset has been extensively ap-
plied to testify recommendation methods. We adopt the version
with one million interactions, and each user has more than 20
ratings.

LastFM2: The LastFM online music system, which offers the
listening count as weight for each user-item interaction, provided
the dataset from a set of about 2,000 users.

Book-Crossing3: This dataset provided by the Book-Crossing
website, which contains the evaluation of books bymore than 10,000
users.

4.1.2 Baselines. To demonstrate the effectiveness, we compare our
proposed MCKG algorithm with the following SOTA methods.

• HGCF [26]: The first work that proposes a hyperbolic GCN
model for collaborative filtering. Specifically, HGCF utilizes
the Lorentz representation to initialize user and item embed-
dings, performs graph convolution in the tangent space, and
projects back to hyperbolic space to learn the final embed-
dings.

• RippleNet [30]: This is the first work to propose the con-
ception of preference propagation. In particular, RippleNet
takes the item clicked by the user as the origin, expands

1https://grouplens.org/datasets/movielens/
2https://grouplens.org/datasets/hetrec-2011/
3http://www2.informatik.uni-freiburg.de/ cziegler/BX/

around like the water ripples, and constantly absorbs 1-hop
and 2-hop neighbors to spread information.

• KGAT [34]: KGAT trains the embeddings of target node
based on its neighbors embeddings, and further recursively
executes the embeddings propagation to obtain the high-
order connectivity in KG. Additionally, it design an attention
mechanism is employed to learn the weight of each neighbor
during the information propagation.

• KBHP [28]: KBHP is the first work to combine KG and hy-
perbolic space for recommendation, which is the hyperbolic
version of RippleNet.

• LKGR [5]: To better model the scale-free tripartite graphs
and investigate the intrinsic hierarchical graph structures,
LKGR employs different information propagation strategies
in the hyperbolic space to explicitly encode the historical
interactions and KG.

4.1.3 Evaluation Metrics. For each user, we randomly pick one
item that user has interacted with, and sample 100 unobserved or
negative items to construct the test sets. We adopt two common
ranking evaluation metrics, i.e., Hit Ratio (HR) and Normalized Dis-
counted Cumulative Gain (NDCG) to evaluate all recommendation
methods. As a result, the 𝐻𝑅@𝐾 clearly assesses whether the test
item is appeared on the top-K list, while the 𝑁𝐷𝐶𝐺@𝐾 assigns
higher points to items at the top of the hit list, to emphasize the
importance of their positions.

4.1.4 Parameter Settings. In the experiments, we randomly pick
70% of each dataset as the train set, the rest 30% as the test set.
For the baseline methods, the model parameters are in accordance
with the authors’ paper. We set the sampling size and the hop as:
8 and 3 for Movielens-1M and Book-Crossing; 4 and 3 for LastFM.
The number of manifolds defaults to 3. Moreover, if HR and NDCG
do not increase for 20 successive epochs on the test set, the early
stopping strategy is implemented.

4.2 Overall Performance Comparison
Table 3 shows the performance (HR@10, HR@20, NDCG@10 and
NDCG@20) of all competitive algorithms. The observations ob-
tained from Table 3 are as follows:

• Most KG-enhanced methods perform better than HGCF,
which proves that the iterative aggregation is an effective
way to extract high-order information from KGs. Note that
HGCF outperforms RippleNet in the Movielens-1M, one pos-
sible reason is that the Movie datasets have a relatively suffi-
cient user-item interactions, so the improvement from KGs
is not particularly obvious.

• Under the same conditions combined with KGs, the hyper-
bolic model (e.g., KBHP and LKGR) performs better than
the Euclidean model (e.g., RippleNet and KGAT). It is crucial
to note that KBHP is the hyperbolic version of RippleNet,
we can see that in each datasets, KBHP performs markedly
better than RippleNet.

• Compared with other competitive modles, MCKG performs
best in most cases. Roughly speaking, this is attributed to our
model’s ability of adaptive curvature learning and geometry
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Table 2: Three datasets used in this paper.

Datasets Movielens-1M LastFM Book-Crossing
Users/Items 6,036/2,347 1,872/3,846 17,860/14,910
Interactions 753,772 42,346 139,746
KG Entities/Relations 16,954/32 9,366/60 25,787/18
KG triples 20,195 15,518 60,787
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Figure 3: The performance compared with other competing methods on the three datasets, with latent dimension ranging from
2 to 32.

Table 3: The overall comparison among all competing models, the best results of all methods are in bold, while the second-best
results are underlined.

Datasets Movielens-1M LastFM Book-Crossing
Methods H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20

HGCF 0.602 0.763 0.376 0.392 0.544 0.596 0.350 0.361 0.336 0.528 0.251 0.340
RippleNet 0.596 0.752 0.372 0.391 0.562 0.611 0.361 0.372 0.368 0.547 0.281 0.359
KGAT 0.615 0.778 0.394 0.407 0.571 0.614 0.364 0.377 0.379 0.551 0.309 0.356
KBHP 0.628 0.781 0.391 0.408 0.612 0.645 0.387 0.406 0.398 0.609 0.344 0.390
LKGR 0.640 0.791 0.395 0.411 0.628 0.678 0.396 0.418 0.380 0.582 0.324 0.364
MCKG 0.645 0.802 0.401 0.418 0.635 0.691 0.405 0.432 0.402 0.603 0.348 0.392

Improv. 0.7% 1.3% 1.5% 1.7% 1.1% 1.9% 2.2% 3.3% 1.0% -1.0% 1.1% 0.5%

perception. We will reveal this phenomenon in the ablation
study.

Figure 3 shows the performance of all the competitive algorithms
with different numbers of dimension 𝑑 . With the latent dimension

changes, the performance of all models fluctuates within a small
range. From this figure, we conclude that Euclidean methods are
easily impacted by the embedding size, while hyperbolic methods
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Table 4: The comparison of performance (HR@20 and
NDCG@20) among different variants.

Datasets Movielens-1M LastFM Book-Crossing
Aggregators HR NDCG HR NDCG HR NDCG

GCN-c 0.783 0.402 0.682 0.411 0.534 0.356
GCN-h 0.770 0.393 0.675 0.401 0.503 0.332
GCN-g 0.802 0.418 0.691 0.432 0.579 0.374

GraphSage-c 0.754 0.384 0.638 0.406 0.576 0.364
GraphSage-h 0.730 0.361 0.613 0.372 0.568 0.352
GraphSage-g 0.771 0.392 0.642 0.415 0.609 0.392

Neighbor-c 0.742 0.354 0.593 0.351 0.524 0.343
Neighbor-h 0.733 0.338 0.561 0.325 0.501 0.327
Neighbor-g 0.767 0.365 0.602 0.362 0.566 0.366

still perform well even in low dimensions. Specifically, MCKG per-
forms the best in most situations. It is worth mentioning that LKGR
also performs relatively well. In addition, KBHP has an excellent
performance on Book-Crossing dataset.

4.3 Ablation Study
We conduct a comprehensive ablation study on MCKG by showing
how the model components affect its performance.

4.3.1 Impact of aggregators and geometry-aware margin. To fur-
ther investigate the influence of aggregators (see the equation (12)
(13) (14)) and margins on the model, we conduct a comprehensive
experiment and the results are shown in Table 4, where the suffix
’-c’ means we adopt constant c as the margin, ’-g’ indicates the
geometry-aware margin in MCKG (see the equation (21)), and ’-h’
represents the margin in HICF (see the equation (22)). From this
table, we have the following observations:

• The model depends greatly on the aggregator selection. GCN
and GraphSage aggregators perform substantially better
than Neighbor, one possible reason is that the Neighbor
aggregator ignores its own information.

• All aggregators adopting geometry-aware margins ’-g’ are
significantly better than other margins (i.e., ’-c’ and ’-h’),
and the margin performance in HICF is not even as good as
a constant margin. This shows that HICF can alleviate the
power-law distribution to a certain extent, it will hurt the
model performance.

• To summarize, the choice of aggregators is still important,
and the margin we designed will significantly improve the
model performance, especially in larger dataset (e.g., Book-
Crossing).

4.3.2 Impact of KG propagation depth. We consider the aggrega-
tion depth from 𝑑 = {1, 2, 3}, the results show that 𝑑 = 2 performs
best on Movielens-1M, while 𝑑 = 1 works best on LastFM and
Book-Crossing. We can also see that the model performs best when
𝑑 = 1 or 2, but when 𝑑 = 3, all metrics indicate to a rapid collapse.

Table 5: The comparison of performance (HR@20 and
NDCG@20) among different depths.

Datasets Movielens-1M LastFM Book-Crossing
depths HR NDCG HR NDCG HR NDCG

1 0.783 0.402 0.691 0.432 0.534 0.356
2 0.802 0.418 0.684 0.428 0.609 0.392
3 0.787 0.407 0.662 0.414 0.601 0.376

Table 6: The comparison of performance (HR@20 and
NDCG@20) among different numbers of manifolds.

Datasets Movielens-1M LastFM Book-Crossing
numbers HR NDCG HR NDCG HR NDCG

1 0.778 0.409 0.663 0.401 0.573 0.356
2 0.793 0.414 0.685 0.430 0.609 0.390
3 0.802 0.418 0.691 0.432 0.608 0.392
4 0.800 0.417 0.688 0.430 0.609 0.392

Essentially, the appropriate depth of aggregation can improve per-
formance, but too long relationship chains are more likely to bring
noise.

4.3.3 Impact of Muti-space Fusion. We consider the number of
manifold from {1, 2, 3, 4} and the results are summarized in Table
6, note that there is no space fusion when 𝑛𝑢𝑚𝑏𝑒𝑟 = 1. Obviously
the multi-space fusion is significantly better than the single space.
When the 𝑛𝑢𝑚𝑏𝑒𝑟 = {2, 3, 4}, the performance is stronger than the
case of 𝑛𝑢𝑚𝑏𝑒𝑟 = 1. In addition, the performance of the model is
similar in the case of number is 2, 3, or 4. One possible reason is that
although the dataset is sparse, the distribution is not particularly
complex. As a result, when the number of spaces increases, the
performance does not change much.

4.4 Embedding Visualization
We used t-SNE to visualize the item embeddings as shown in Fig-
ure 4. Similar to HGCF [26], to better understand the influence of
graph convolutions we depict item embeddings before and after
the MCKG layers. Furthermore, the items are divided into three
groups based on the prevalence of interactions, and we color each
tertile independently.

Before performing MCKG, we can see that the three groups
of item embeddings are evenly distributed in a sphere area. Af-
ter feeding the three datasets to MCKG, we have the following
observations:

• In Movielens-1M, we can clearly see that unpopular items
(purple points) are pushed out at both ends, while the popu-
lar items (green and yellow points) are pulled in the middle
region. This may be caused by the geometry-aware optimiza-
tion strategy. Specifically, when the curvature is trainable,
our model can distinguish items by popularity, whether in
hyperbolic or spherical spaces.
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Movielens-1M LastFM Book-Crossing

Prevalence Tertile Range [0,  33] [33,  66] [66,  100]

(a) Item embeddings before the MCKG

Movielens-1M LastFM Book-Crossing

(b) Item embeddings after the MCKG

Figure 4: Item embeddings visualisation in the unified space U before and after the MCKG graph convolutioanl layers.

• In LastFM, we hardly see a clear difference between the
trained item embeddings and the original embeddings, but
this may be more beneficial for the recommendation’s fair-
ness. On the other hand, in Book-Crossing, we roughly see
that the more popular items (green points) are distributed in
the upper part of the sphere, and the unpopular items (purple
points) are distributed in the lower part of the sphere.

4.5 Sparse Scene Study
Data sparsity is a serious problem in recommendation field, to
study the performance of recommendation models in sparse cir-
cumstances, we change the training set ratio of Movielens-1M from
10% to 90%, the rest datasets as test set. From Table 7, compared
with the ratio=90%, the HR@20 of each model decreases by 6.2%,
3.7%, 4.4%, 2.7%, 3.0%, 3.2% when ratio=10%.

With the change of ratio, HGCF fluctuates the most, which shows
that compared to other KG-enhanced models, it is more suscepti-
ble to sparse data. This also confirms that using KG as auxiliary
information is a effective strategy to improve recommendation per-
formance in sparse scenarios. On the other hand, we found that
the non-Euclidean methods (i.e., KBHP, LKGR and MCKG) perform
more stable than the Euclidean methods (i.e., RippleNet and KGAT)
in sparse scene. One possible reason is that due to the spatial char-
acteristics of hyperbolic spaces, even in sparse scene, its ability to
distinguish positive and negative items still be maintained.

5 RELATEDWORK
In this section, we review two relevant prior works: KG-enhanced
recommendation methods and the hyperbolic representation learn-
ing.

5.1 KG-enhanced Recommendation Methods
Currently, KG-enhanced recommendation methods has gradually
attracted the attention of researchers, here we divide them into
embedding-based methods, path-based methods and GCN-based
methods:

Embedding-based approaches typically use knowledge graph
embedding (KGE) methods to endow knowledge graph for entity
vectors, and further feed these vectors to recommendation mod-
ule [2]. For instance, to fully exploit the knowledge base, CKE [38]
considers three components to extract semantic features from the
item’s structured content, textual content and visual content, re-
spectively. Finally, CKE is formed to jointly learn the implicit vector
of collaborative filtering and the semantics of items based on knowl-
edge base. To dynamically adapt to user preference in real time,
DKN [31] adopts a sequential learning method, that is, the knowl-
edge embedding learning module and the recommendation system
module are independent of each other. It uses semantic informa-
tion and knowledge information to represent news, and makes
predictions based on user historical behavior and current candidate
news.

Path-based approaches take into account various relationships
between items and users in the knowledge network, which aims to
offer accurate directions for recommendation tasks. Since the KG
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Table 7: Results of HR@20 on MovieLens-1M with different ratios of training set

Model
Ratios of training set

%change.
10% 20% 30% 40% 50% 60% 70% 80% 90%

HGCF 0.7183 0.7320 0.7346 0.7488 0.7503 0.7538 0.7631 0.7597 0.7633 6.2%

RippleNet 0.7236 0.7256 0.7263 0.7279 0.7385 0.7492 0.7490 0.7504 0.7403 3.7%

KGAT 0.7456 0.7648 0.7637 0.7646 0.7648 0.7729 0.7781 0.7786 0.7791 4.4%

KBHP 0.7611 0.7729 0.7786 0.7865 0.7878 0.7810 0.7812 0.7817 0.7815 2.7%

LKGR 0.7690 0.7697 0.7804 0.7806 0.7808 0.7910 0.7914 0.7905 0.7918 3.0%

MCKG 0.7805 0.7809 0.7858 0.7962 0.7997 0.8023 0.8010 0.8008 0.8055 3.2%

can construct heterogeneous information networks with user-item
interactions, the conventional meta-path techniques can be applied
to extracting heterogeneous information networks for recommen-
dation. For instance, MCRec [15] learns representations of users,
items and their interaction contexts, i.e., aggregated meta-paths.
Specifically, MCRec uses a hierarchical neural network to model the
meta-path context as a low-dimensional embedding, and enhances
the three representations with a joint attention mechanism. Due to
the introduction of meta-path-based context, this model not only
has excellent performance, but also has a certain interpretability.

GCN-based methods typically employ iterative aggregation of
the target node’s neighbors to fully mine the high-level informa-
tion of KG. For instance, RippleNet [30] takes the item clicked by
the user as the origin, expands around like the water ripples, and
constantly absorbs 1-hop and 2-hop neighbors to spread informa-
tion. To automatically discover the semantic information of KG,
KGCN [32] samples from the neighborhood of each entity in KG
as its receptive field, and then combines the neighborhood infor-
mation with bias when computing the representation for a given
entity. The receptive field can be further extended to multi-hops to
model high-order information and capture users’ latent long-range
interests. Similarly, KGAT [34] updates a node’s embedding based
on the embedding of its neighbors, and recursively performs this
embedding propagation to capture high-order connectivity in linear
time complexity. Additionally, an attention mechanism is employed
to learn the weight of each neighbor during propagation.

5.2 Hyperbolic Representation Learning
Recently, Hyperbolic representation learning has taken an impor-
tant role in RSs [5, 26, 28, 29, 39]. HyperML [29] studies metric
learning in hyperbolic space and its connection to CF. Furthermore,
HGCF [26] proposes a hyperbolic GCN model for CF. To alleviate
the power-law distribution in recommender systems, HICF [37]
aims to improve the attention of tail items in hyperbolic spaces,
which makes the pull and push process geometric-aware. On the
other hand, to reveal the intent factors across geometric spaces,
GDCF [39] learns geometric disentangled representations associ-
ated with user intentions and various geometries. It’s worth em-
phasizing that KBHP [28] and LKGR [5] are the most similar to

our work. Both of them combine KG and hyperbolic representa-
tion learning. Different from existing methods that solely adopt a
specific manifold, we introduce a unified manifold into KG-based
methods to capture the structural information on global level and
automatically learn the optimal curvature in the data.

6 CONCLUSION
In this work, we proposed a novel recommendation model named
MCKG. Our key motivation is that existing non-euclidean recom-
mendation methods have the following issues: 1) existing non-
euclidean methods treat 𝜅 as a trainable parameter, but model pa-
rameters constraints depend on the changes of curvature. Once
the curvature 𝜅 varies, the internal structure of manifold may be
destroyed, and further unable to obtain high-quality embeddings; 2)
Existing mix-curvature methods directly operate on various mani-
folds without considering the heterogeneity. To address the above
problems, we introduce the unified space can interpolate smoothly
between all geometries of constant curvature, apply multiple spaces
fusion to obtain the high-quality embedding, and finally propose a
geometry-aware optimization strategy compatible with hyperbolic
and spherical spaces.

In future work, we will further study the mix-curvature method
for other application scenarios, e.g., natural language processing [6,
19], computer vision [7, 11], such non-Euclidean modeling strategy
learns embeddings of correlated data successfully with reduced
distortion.
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