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ABSTRACT
The conventional single-target Cross-Domain Recommendation
(CDR) aims to improve the recommendation performance on a
sparser target domain by transferring the knowledge from a source
domain that contains relatively richer information. By contrast,
in recent years, dual-target CDR has been proposed to improve
the recommendation performance on both domains simultane-
ously. However, to this end, there are two challenges in dual-target
CDR: (1) how to generate both relevant and diverse augmented
user representations, and (2) how to effectively decouple domain-
independent information from domain-specific information, in ad-
dition to domain-shared information, to capture comprehensive
user preferences. To address the above two challenges, we pro-
pose a Disentanglement-based framework with Interpolative Data
Augmentation for dual-target Cross-Domain Recommendation,
called DIDA-CDR. In DIDA-CDR, we first propose an interpola-
tive data augmentation approach to generating both relevant and
diverse augmented user representations to augment sparser do-
main and explore potential user preferences. We then propose a
disentanglement module to effectively decouple domain-specific
and domain-independent information to capture comprehensive
user preferences. Both steps significantly contribute to capturing
more comprehensive user preferences, thereby improving the rec-
ommendation performance on each domain. Extensive experiments
conducted on five real-world datasets show the significant superi-
ority of DIDA-CDR over the state-of-the-art methods.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’23, September 18–22, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0241-9/23/09. . . $15.00
https://doi.org/10.1145/3604915.3608802

KEYWORDS
Cross-Domain Recommendation, Data Augmentation, Disentan-
gled Representation Learning

ACM Reference Format:
Jiajie Zhu, Yan Wang, Feng Zhu, and Zhu Sun. 2023. Domain Disentangle-
ment with Interpolative Data Augmentation for Dual-Target Cross-Domain
Recommendation. In Seventeenth ACM Conference on Recommender Systems
(RecSys ’23), September 18–22, 2023, Singapore, Singapore. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3604915.3608802

1 INTRODUCTION
To alleviate the data sparsity problem, Cross-Domain Recommen-
dation (CDR) [32] aims to employ abundant information from a
relatively richer domain to improve recommendation performance
on a sparser domain, forming the so-called single-target CDR [57].
By contrast, in recent years, dual-target CDR has been proposed
to improve the recommendation performance on both domains
simultaneously by sharing the common knowledge across domains
[50, 60].

The existing dual-target CDR methods can be divided into two
groups, i.e., (1) conventional methods, (2) disentanglement-based
methods. Conventional methods (see Fig. 1(a)) mainly utilize vari-
ous transfer layers [18, 26, 29, 55] to integrate the representations
learned by two base encoders in their respective domains. In con-
trast, disentanglement-based methods (see Fig. 1(b)) tend to use the
variational autoencoder (VAE) [3] or other disentangling techniques
[4, 14, 53] to decouple the domain-shared and domain-specific infor-
mation, and only transfer the domain-shared information to each
domain, which enhances the recommendation accuracy on both
domains simultaneously.

However, the existing dual-target CDR models have limitations
in terms of effectively capturing comprehensive user preferences
for the following reasons. Firstly, even though some of them use
data augmentation to mitigate data imbalance between richer and
sparser domains, few of them can balance the relevance (being
able to represent user preferences in both domains) and diversity
(having enough variations in user representations) of the user-item
interaction augmentation. As a result, such augmented user rep-
resentations can hardly provide strong support for subsequently
capturing accurate and comprehensive user preferences. Secondly,
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Figure 1: (a)-(b): Existing dual-target CDRmodels. (c): Amotivating example of user preferences inmovie andmusic domains. (d):
Compared with existing dual-target CDR models, our proposed DIDA-CDR not only decouples domain-shared user preferences
for cross-domain knowledge transfer, but also takes domain-independent user preferences into consideration.

none of the existing methods decouple all three essential compo-
nents needed to capture comprehensive user preferences. To be
specific, the existing methods only decouple two essential compo-
nents, i.e., domain-shared and domain-specific information, and
ignore the existence of domain-independent information. Since
domain-independent information has different meanings from the
other two types of information, it cannot be ignoredwhen capturing
comprehensive user preferences. It is worth mentioning here that
some existing works also decouple so called ‘domain-independent
information’, but its meaning is different from that in our work (cf.
the detailed description in Section 2.1).

Below we introduce domain-shared, domain-specific and
domain-independent information respectively with examples, and
further differentiate them.

(i) Domain-shared Information: As shown in Fig. 1(c), there ex-
ists some domain-shared information in both movie domain and
music domain, such as ‘Category’. For example, people who like
watching suspense movies (i.e., a category in movie domain) tend
to like listening to suspense music (i.e., a category in music do-
main), and vice versa. Since the domain-shared information can
provide the valuable information for cross-domain recommenda-
tions, it needs to be first decoupled and then transferred to both
domains.

(ii) Domain-specific Information: In contrast, there also exists
some domain-specific information in each domain. For example,
the user preference for pictures in a movie (i.e., ‘Frame’ in movie
domain) is not applicable in music domain because ‘Frame’ is
unique to movie domain. Thus, such domain-specific information
should be decoupled too, which helps improve the recommen-
dation performance on its own domain, but it should not be

transferred to another domain in order to avoid the negative
transfer [61].

(iii) Domain-independent Information: In addition, some domain-
independent information also exists in each domain, but should
not be transferred to other domains. For instance, ‘Rhythm’ exists
in each of movie, music and book domains. However, in movie
domain, it means the use of sound effects, the speed of camera
cuts, and the changes in the pace of movie scenes, etc [38]. In
music domain, it means , etc [15]. In book domain, it means the
fluidity of the writing and the ups and downs of the storyline, etc
[12]. In other words, although ‘Rhythm’ is seemingly common in
all three domains, it has different meanings in different domains.
Hence, such information is domain-independent and should be
extracted from its own domain for capturing comprehensive user
preferences, but should not be transferred to other domains.

(iv) Difference: Different to the domain-independent information,
the domain-shared information (e.g., ‘Category’) extracted from
two domains expresses the same meaning in each domain. In ad-
dition, the domain-specific information, e.g., ‘Frame’ in the movie
domain, exists only in its own domain. By contrast, although the
domain-independent information, e.g., ‘Rhythm’, exists in each
domain, it has different meanings in different domains.

(v) Summary: Therefore, it is vital to recognize the existence of
domain-independent information and to clearly differentiate it
from domain-shared and domain-specific information. More im-
portantly, decoupling domain-independent information is crucial
for capturing more comprehensive user preferences, otherwise it
will cause suboptimal recommendation results. However, exist-
ing dual-target CDR methods neglect the above insights. Hence,
novel dual-target CDR solutions are needed to incorporate the
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above insights for capturing more comprehensive user prefer-
ences.

Following the above discussions, to target superior dual-target
CDR, there are two major challenges as follows.
CH1: How to generate relevant and diverse augmented user rep-
resentations to augment sparser domain and explore potential user
preferences? The existing dual-target CDR methods [14, 48] mainly
obtain augmentation views by perturbing the original data. Al-
though these methods can increase the diversity of augmentation
by increasing the types of perturbations, they cannot generate aug-
mented user representations that represent user preferences in both
domains because they perform data augmentation on the data from
each domain separately without considering the correlation be-
tween data from both domains, and thus can hardly capture the
potential common user preferences in both domains.
CH2: How to effectively decouple domain-independent information
from domain-specific information, in addition to domain-shared in-
formation, to capture comprehensive user preferences on each do-
main, thereby improving the recommendation performance on both
domains? The existing dual-target CDR methods either ignore de-
coupling the domain-specific and domain-shared information [18]
(Group 1), or directly transfer the domain-shared information to
only fuse with the domain-specific information in each domain,
overlooking the domain-independent information [3] (Group 2). The
methods in Group 1 (also see Fig. 1(a)) disregard the discrimination
between domain-specific and domain-shared information, which
may lead to the negative transfer. The methods in Group 2 (also see
Fig. 1(b)) do not differentiate the domain-independent information
from domain-specific information and decouple these two types of
information, which results in suboptimal recommendation results.
Our Approach and Contributions: To address the above chal-
lenges, we propose a novel disentanglement-based framework with
interpolative data augmentation for dual-target CDR. To the best
of our knowledge, this is the first work in the literature that explic-
itly takes domain-independent information into consideration in
addition to domain-shared and domain-specific information, and
decouples it to capture more comprehensive user preferences for
cross-domain recommendation. The characteristics and contribu-
tions of our proposed model are summarized as follows:

• We first propose a Disentanglement-based framework with
Interpolative Data Augmentation for dual-target Cross-
Domain Recommendation, called DIDA-CDR, which can
augment the sparser domain, disentangle three essential
components of user preferences and transfer the domain-
shared user preferences of common users across domains,
thus enhancing the recommendation accuracy on both do-
mains simultaneously;

• To address CH1, we propose an interpolative data augmen-
tation approach to generating both relevant and diverse aug-
mented user representations, which augments the sparser
domain and explores the potential common user preferences
and therefore improves the recommendation performance
on both domains;

• To address CH2, we propose a disentanglement module to
effectively decouple the domain-independent and domain-
specific user preferences. The disentanglement module also

extracts the domain-shared user preferences from aug-
mented user representations, which can be transferred to
both domains to provide the valuable information. We then
apply the attention mechanism to combine the above three
essential components of user preferences to capture more
comprehensive user preferences in each domain, which can
improve the recommendation performance on each of both
domains;

• Extensive experiments conducted on five real-world datasets
show that our proposed DIDA-CDR outperforms the best-
performing state-of-the-art baselines with an average im-
provement of 8.54% and 11.10% with respect to HR@10 and
NDCG@10, respectively.

2 RELATEDWORK
In this section, we first review the relevant literature on two major
categories of CDR in Section 2.1. Next, since we utilize disentangled
representation learning and interpolative data augmentation for
our model, we also review the relevant literature on them in Section
2.2 and Section 2.3, respectively [57].

2.1 Single-Target and Dual-Target CDR
Single-Target CDR. The existing single-target CDR methods can
be divided into two categories, i.e., (1) content-based transfer meth-
ods and (2) feature-based transfer methods [60]. Content-based
transfer methods [21] mainly use the various content information,
such as user/item attributes, tags, reviews, etc., to link domains
and share their information across domains. By contrast, feature-
based transfer methods [9, 19] aim to first get embeddings or rating
patterns [49] using various learning techniques, and then transfer
them across domains.
Dual-Target CDR. In contrast to single-target CDR, dual-target
CDR aims to achieve better recommendation performance on
both domains simultaneously, which can be extended to multi-
ple domains, leading to multi-target CDR [8, 14, 59]. The existing
dual-target CDR approaches can be divided into two categories,
i.e., (1) conventional approaches, (2) disentanglement-based ap-
proaches. For conventional dual-target CDR, CoNet [18] utilizes
cross-connection networks to achieve knowledge transfer between
two domains. DDTCDR [26] employs a latent orthogonal mapping
function to transfer user embeddings across domains. PPGN [55]
constructs a cross-domain interaction graph to learn and trans-
fer representations. BiTGCF [29] first leverages two base graph
encoders to learn user/item embeddings, and then performs the
feature propagation and transfer to fuse user embeddings. However,
most of them lead to the negative transfer, because they neglect to
decouple the domain-shared and domain-specific information.

In addition, we further classify the existing disentanglement-
based dual-target CDR approaches into two classes, i.e., (1) VAE-
based approaches and (2) other approaches, according to disen-
tangling techniques. VAE-based approaches [43] (Class 1) employ
the explicit reconstruction loss included in the Evidence Lower
Bound (ELBO) and extra regularizers as the disentanglement loss
to learn desirable disentangled representations. Other approaches
(Class 2) often utilize Graph Convolutional Networks (GCNs) [41],
adversarial learning [7, 56], self-supervised learning [14, 25, 52]
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Table 1: Important notations.

Symbol Definition Symbol Definition
𝑘 the dimension of embedding matrix 𝑃 the predicted domain probability
𝑚 the number of users 𝑂 the ground truth domain label
𝑛 the number of items E𝑢 the graph embedding matrix of users
𝑅 the rating matrix E𝑣 the graph embedding matrix of items
U the set of users Z𝑠ℎ𝑎 the domain-shared user preferences
V the set of items Z𝑠𝑝𝑒 the domain-specific user preferences
𝑦 the user-item interaction Z𝑖𝑛𝑑 the domain-independent user preferences

∗𝑎𝑢𝑔 the notation for data augmentation E∗𝑢 the comprehensive user preferences

∗𝐴 , ∗𝐵 the notations for domains 𝐴 and 𝐵, e.g., 𝑛𝐴
represents the number of items on domain 𝐴

E𝑎𝑢𝑔𝑢
the augmented user representations

of common users

∗̂ the predicted notations, e.g., 𝑦𝑖 𝑗 represents
the predicted interaction of user 𝑢𝑖 on item 𝑣 𝑗

𝐺
the heterogeneous graph, where 𝑄
is the set of user-item relationships

and fixed or flexible combination strategies [48, 57, 59] to disen-
tangle the latent knowledge, such as domain-shared and domain-
specific information. The domain-shared information is also termed
as domain-invariant information in [31, 39], domain-common in-
formation in [7] and domain-independent information in [28, 37]
(note that the domain-independent information in other works
does not have the same meaning as in our work). However, none
of them can effectively capture comprehensive user preferences,
because they entangle the domain-independent information with
domain-specific information.

2.2 Disentangled Representation Learning
Disentangled representation learning is originally introduced in the
field of computer vision [6, 13] and is mainly used to learn visual
features such as shape, color and location features of objects [54].
In addition to computer vision, in recent years, disentangled rep-
resentation learning has also been used in recommender systems
(RSs) [33, 34, 46]. The main idea of disentangled representation
learning is to focus on decomposing the latent factors behind the
observed instances in the low-dimension vector space [1, 42]. For
recommendation, MacridVAE [33] performs the macro disentan-
glement and micro disentanglement based on the user behavior
data. DGCF [46] leverages a graph disentangling module to decou-
ple user embeddings learned from user-item interaction data into
fine-grained user intents. The work proposed in [34] reconstructs
the embedding of future sequence by self-supervised learning to
decouple the intentions of users.

2.3 Interpolative Data Augmentation
Mixup [51] has been recently proposed as a representative inter-
polative data augmentation method that enhances the prediction
accuracy of networks for image classification. In addition to image
classification, interpolative data augmentation has been used in
recent RSs [5, 20]. The general idea of interpolative data augmenta-
tion is to linearly interpolate inputs and model targets of random
samples. For recommendation, existing methods with interpolative
data augmentation [2] tend to generate natural augmented user
representations to model sequential user behaviors [17].

3 THE PROPOSED MODEL
In this section, first, we formulate the target problem of our pro-
posed model. Next, we present a novel Disentanglement-based
framework with Interpolative Data Augmentation for dual-target
Cross-Domain Recommendation, called DIDA-CDR. Finally, we
elaborate on the basic components of DIDA-CDR.

3.1 Problem Formulation
For the sake of better readability, we list the important notations of
this paper in Table 1. This paper considers the dual-target CDR on
two domains 𝐷𝐴 and 𝐷𝐵 with a shared user set, denoted by U (of
size𝑚 = |U|). The sets of items in 𝐷𝐴 and 𝐷𝐵 are defined asV𝐴

(of size 𝑛𝐴 = |V𝐴 |) and V𝐵 (of size 𝑛𝐵 = |V𝐵 |), respectively. Let
R𝐴 ∈ {0, 1}𝑚×𝑛𝐴 and R𝐵 ∈ {0, 1}𝑚×𝑛𝐵

denote the binary user-item
interaction matrices in 𝐷𝐴 and 𝐷𝐵 , respectively. By aggregating
the interaction data in each domain, we first construct two het-
erogeneous graphs 𝐺𝐴 = (U,V𝐴,Q𝐴) and 𝐺𝐵 = (U,V𝐵,Q𝐵)
to learn user embeddings E𝐴𝑢 , E𝐵𝑢 and item embeddings E𝐴𝑣 , E𝐵𝑣
in domains 𝐷𝐴 and 𝐷𝐵 , respectively, where Q𝐴 and Q𝐵 are the
edge sets that represent the observed user-item interactions. By
linearly interpolating the user embeddings E𝐴𝑢 and E𝐵𝑢 , we then gen-
erate augmented user representations E𝑎𝑢𝑔𝑢 to augment the sparser
domain 𝐷𝐵 . Given two coarse user embeddings E𝐴𝑢 , E𝐵𝑢 and the
augmented user representations E𝑎𝑢𝑔𝑢 , our goal is to disentangle
domain-shared, domain-specific and domain-independent user pref-
erences, i.e., Z𝑠ℎ𝑎 , Z𝑠𝑝𝑒 , and Z𝑖𝑛𝑑 , and then transfer domain-shared
user preferences Z𝑠ℎ𝑎 to each domain to capture comprehensive
user preferences E∗𝑢 , thereby improving the recommendation per-
formance on both domains.

3.2 Overview of DIDA-CDR
To enhance the recommendation accuracy on both domains, we pro-
pose a novel disentanglement-based framework with interpolative
data augmentation for dual-target cross-domain recommendation,
called DIDA-CDR. This framework contains five major components,
i.e., (1) Graph Convolution and Propagation Module, (2) Interpolative
Data Augmentation Module, (3) User Preference Disentanglement
Module, (4) Information Fusion Module, and (5) Prediction Module.
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Figure 2: The details of each module of our proposed DIDA-CDR.

The details of each module of our proposed DIDA-CDR are illus-
trated in Fig. 2. They are briefly introduced below and described in
detail in the following subsections.
(1) Graph Convolution and Propagation. First, we construct
two heterogeneous graphs to extract the high-order user-item in-
teraction relationships using the interaction data in domain 𝐴 and
domain 𝐵, respectively. Based on the above graphs, we apply the
graph convolution and propagation layer in the GCN [23] to gener-
ate user and item embeddings.
(2) Interpolative Data Augmentation. Next, we propose an inter-
polative data augmentation approach to augmenting user embed-
dings at the representation level. The interpolative data augmen-
tation approach linearly interpolates user embeddings in domain
𝐴 and domain 𝐵 to generate both relevant and diverse augmented
user representations.
(3) User Preference Disentanglement. Thereafter, we propose a
disentanglement module guided by a domain classifier to decouple
more accurate domain-specific and domain-independent user pref-
erences from user embeddings generated by GCNs. This module
also disentangles the domain-shared user preferences from the aug-
mented user representations, which are then transferred to both
domains to provide the valuable information.
(4) Information Fusion. Next, we use three approaches, i.e., con-
catenation, element-wise sum, and attention mechanism to incorpo-
rate essential components of user preferences, i.e., domain-shared,
domain-specific and domain-independent information, which are
decoupled by the disentanglement module, to capture comprehen-
sive user preferences.

(5) Prediction. Finally, we apply the multi-layer perception (MLP)
to model the user-item interaction relationships, endowing the non-
linearity to our proposed model. Based on the MLP, the predicted
user-item interaction matrix can be obtained. The prediction loss
between it and the observed user-item interaction matrix, together
with two domain classification losses, constitute the final loss for
training.

Overall, our model can be easily extended to a multi-target CDR
model. Specifically, we can disentangle domain-shared user pref-
erences and transfer them to all domains, decouple the domain-
specific and domain-independent user preferences from each do-
main, and then capture the comprehensive user preferences to
improve the recommendation performance on multiple domains
simultaneously.

3.3 Graph Convolution and Propagation
GCNs excel at capturing the relationships between nodes and learn-
ing the representation of graph data, and are well suited for model-
ing user-item relationships in RSs, because the user-item interaction
data can be easily transformed into the graph structure. To distill
the high-order user-item interaction relationships, we construct
two heterogeneous graphs𝐺𝐴 and𝐺𝐵 for domains𝐴 and 𝐵, respec-
tively, where nodes refer to entities (i.e., users and items) and edges
refer to interactions. In this paper, we apply the graph convolution
and propagation layer in the GCN to encode the user and item em-
beddings according to the user-item interaction matrix R𝐴 (or R𝐵 ).
The node embeddings E𝐴0 (or E𝐵0 ) are randomly initialized. Given a
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graph 𝐺𝐴 , the propagation rule is represented as:

E𝐴
𝑙
= 𝑓 (D̃− 1

2 R̃𝐴D̃− 1
2 E𝐴

𝑙−1W𝑙 + b𝑙 ), (1)

where R̃𝐴 = R𝐴 + I is the user-item interaction matrix of graph𝐺𝐴

after adding a self-loop identity matrix I. D̃ is a degree matrix for
normalization. W𝑙 and b𝑙 are the trainable weight matrix and bias
vector in the 𝑙𝑡ℎ layer respectively, and E𝐴

𝑙
is the hidden embedding

matrix of graph 𝐺𝐴 in the 𝑙𝑡ℎ layer [36]. 𝑓 (·) denotes the ReLU
activation function.

After 𝑙 times propagation, we can obtain the global hidden repre-
sentations E𝐴 by concatenating multiple embedding matrices from
E𝐴0 to E𝐴

𝑙
, which can be rearranged into the user embeddings E𝐴𝑢

and item embeddings E𝐴𝑣 in domain𝐴 [55]. Similarly, we can obtain
the user embeddings E𝐵𝑢 and item embeddings E𝐵𝑣 in domain 𝐵.

3.4 Interpolative Data Augmentation
Although the user embeddings in both domains are obtained by
GCNs, the user embeddings learned from the sparser domain are
not as accurate as those learned from the richer domain due to the
data imbalance between the two domains. To augment the sparser
domain and explore the potential user preferences, inspired by
the mixup technique [51], we design an interpolative data aug-
mentation approach, which generates both relevant and diverse
augmented user representations. However, the conventional mixup
technique cannot be directly utilized for our task, because the inter-
action data cannot be directly mixed at the pixel level like images.
Therefore, we propose to linearly interpolate the embeddings of
common users in both domains. The augmentation of common
users ensures that augmented user representations maintain the
relevance of user preferences in both domains, i.e., relevant aug-
mented user representations, while corresponding to adding more
interaction data for users in the sparser domain. In addition, in-
troducing randomness in linear interpolation instead of using a
fixed mixing coefficient can generate diverse augmented user rep-
resentations, which can provide richer information for subsequent
disentanglement. The formula for interpolative data augmentation
can be expressed as follows:

E𝑎𝑢𝑔𝑢 = 𝜆E𝐴𝑢 + (1 − 𝜆)E𝐵𝑢 , (2)

where E𝑎𝑢𝑔𝑢 denotes the augmented user representations1. Since
we aim to generate more diverse augmented user representations
through data augmentation, instead of using attention-based meth-
ods in this module, we propose the interpolative data augmenta-
tion approach. 𝜆 ∈ [0, 1] is the mixing coefficient sampled from
𝐵𝑒𝑡𝑎(𝛼, 𝛼), 𝛼 ∈ (0,∞). The advantages of adopting a mixing coeffi-
cient sampled from 𝐵𝑒𝑡𝑎(𝛼, 𝛼) are as follows. First, since the user
embeddings of the common user in each of the two domains should
be equivalent, the mixing coefficient should be sampled within
the interval [0, 1] and be symmetric around 0.5. Beta distribution
𝐵𝑒𝑡𝑎(𝛼, 𝛼) satisfies this characteristic. Second, it has been proven
to effectively improve the generalization ability of the model [47].
Meanwhile, 𝜆 also introduces randomness into our model, thus
weakening the negative transfer that may result from performing

1The two terms, i.e., embedding and representation, are exchangeable in this paper.

a linear interpolation operation with fixed weights (cf. the experi-
mental results in Section 4.3 and the discussion of parameter 𝛼 in
Section 4.6.2).

3.5 User Preference Disentanglement
To capture domain comprehensive preferences of users, we uti-
lize disentangled representation learning to extract the essential
components of user preferences from previously obtained user em-
beddings. Inspired by themethod introduced in [11], we design a dis-
entanglement module to decouple the domain-specific and domain-
independent user preferences. Specifically, our disentanglement
module adopts a similar architecture to the encoder of VAE, but it is
quite different from VAE. In particular, VAE only encodes one latent
feature, while our disentanglement module aims to better learn to
decouple the domain-specific and domain-independent user pref-
erences. Although both domain-specific and domain-independent
user preferences cannot be transferred to other domains, they have
different meanings, thus their importance in capturing comprehen-
sive user preferences is different. If they are not distinguished, they
are equally important in capturing comprehensive user preferences,
which is inappropriate. By contrast, if they are decoupled, the sub-
sequent information fusion module can use attention mechanism to
learn their weights respectively, thereby capturing more accurate
and comprehensive user preferences. This module can also disen-
tangle the domain-shared user preferences from the augmented
user representations. In this case, our model can not only extract the
domain-shared preferences of common users in both domains, but
also explore the domain-specific personalized user preferences and
domain-independent user preferences, which enhances the com-
prehensiveness of capturing user preferences, and thus improves
the recommendation performance on both domains. To this end,
we first feed user embeddings in both domains (see methods in-
troduced in Section 3.3) and augmented user representations (see
methods introduced in Section 3.4) into this module and perform
the following processing respectively.

Taking domain𝐴 as an example, the user embeddings E𝐴𝑢 are first
entered into the disentanglement module, which consists of several
fully connected (FC) layers. More specifically, the first FC layer (see
navy blue FC layer in Fig. 2), followed by the ReLU activation func-
tion, is utilized to extract general representations. In addition, the
subsequent FC layers (also see lake blue FC layers in Fig. 2) outputs
two sets of latent vectors, each representing different mean and de-
viation information of the input user embeddings. Next, following
the method introduced in [11], a reparametrization trick is adopted
to generate domain-independent Z𝐴

𝑖𝑛𝑑
and domain-specific user

preferences Z𝐴𝑠𝑝𝑒 . Similarly, we can obtain the domain-independent
Z𝐵
𝑖𝑛𝑑

and domain-specific user preferencesZ𝐵𝑠𝑝𝑒 in domain 𝐵, as well
as the domain-shared Z𝑎𝑢𝑔

𝑠ℎ𝑎
and domain-specific user preferences

Z𝑎𝑢𝑔𝑠𝑝𝑒 decoupled from augmented user representations.
To ensure that the above essential components of user pref-

erences can be accurately disentangled, we introduce a domain
classifier 𝐻𝑐𝑙𝑠 (·), which includes a single FC layer to predict the
domain probability of user preferences, to guide the disentangle-
ment process. In order to supervise the optimization process of
disentanglement module, we further set two domain classification
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tasks to train our DIDA-CDR. First of all, the disentanglement mod-
ule is guided to decouple the domain-specific information with
stronger domain identification ability, i.e., more accurate domain-
specific user preferences, by minimizing the domain classification
loss L𝑐𝑙𝑠1 . In other words, if the decoupled user preferences can
be easily recognized by a domain classifier as belonging to a par-
ticular domain, then such user preferences are considered as the
domain-specific information. By contrast, the domain-independent
and domain-shared information are leveraged to confuse the do-
main classifier, i.e., to make the domain classifier unable to identify
the domain to which they belong, to ensure that they can be distin-
guished from the domain-specific information. In other words, if
the decoupled user preferences are no better than random guesses
in identifying the domain to which they belong when fed into a
domain classifier, then such user preferences are mutually exclu-
sive with the domain-specific information and should be classified
as the domain-independent information. When the input to the
disentanglement module is the augmented user representations
containing the user preferences from both domains, the above user
preferences refer to the domain-shared information. Specifically,
the domain classification loss L𝑐𝑙𝑠1 can be defined as follows:

L𝑐𝑙𝑠1 =
1
3

∑︁
[ℓ1 (𝐻𝑐𝑙𝑠 (Z𝐴𝑠𝑝𝑒 ),𝑂𝐴

𝑠𝑝𝑒 )

+ ℓ1 (𝐻𝑐𝑙𝑠 (Z𝐵𝑠𝑝𝑒 ),𝑂𝐵
𝑠𝑝𝑒 )

+ 𝜆 · ℓ1 (𝐻𝑐𝑙𝑠 (Z
𝑎𝑢𝑔
𝑠𝑝𝑒 ),𝑂

𝑎𝑢𝑔𝐴
𝑠𝑝𝑒 )

+ (1 − 𝜆) · ℓ1 (𝐻𝑐𝑙𝑠 (Z
𝑎𝑢𝑔
𝑠𝑝𝑒 ),𝑂

𝑎𝑢𝑔𝐵
𝑠𝑝𝑒 )],

(3)

where ℓ1 (𝑃,𝑂) denotes the cross-entropy loss function. 𝑃 is the
predicted domain probability of input user preferences and𝑂 is the
ground truth (GT) domain label.We define the corresponding GT for
domain-specific user preferences Z𝐴𝑠𝑝𝑒 , Z𝐵𝑠𝑝𝑒 and Z

𝑎𝑢𝑔
𝑠𝑝𝑒 as𝑂𝐴

𝑠𝑝𝑒 ,𝑂𝐵
𝑠𝑝𝑒

and 𝑂𝑎𝑢𝑔
𝑠𝑝𝑒 , respectively. All the elements in 𝑂𝐴

𝑠𝑝𝑒 and 𝑂𝑎𝑢𝑔𝐴
𝑠𝑝𝑒 are set

to 1, while those in 𝑂𝐵
𝑠𝑝𝑒 and 𝑂𝑎𝑢𝑔𝐵

𝑠𝑝𝑒 are set to 0. Here, 𝜆 represents
the confidence score that an augmented user representation belongs
to its initial GT, since augmented user representations are generated
by incorporating embeddings of common users in both domains
with a mixing coefficient 𝜆 [11].

Similarly, we define the corresponding GT for domain-
independent user preferences Z𝐴

𝑖𝑛𝑑
, Z𝐵

𝑖𝑛𝑑
and domain-shared user

preferencesZ𝑎𝑢𝑔
𝑠ℎ𝑎

as𝑂𝐴
𝑖𝑛𝑑

,𝑂𝐵
𝑖𝑛𝑑

and𝑂𝑎𝑢𝑔

𝑠ℎ𝑎
, respectively.We set all the

items in𝑂𝐴
𝑖𝑛𝑑

,𝑂𝐵
𝑖𝑛𝑑

and𝑂𝑎𝑢𝑔

𝑠ℎ𝑎
as [0.5, 0.5] [10]. This ensures that the

learned domain-shared and domain-independent user preferences
cannot be used to identify the domain to which they belong, and
thus be distinguished from the domain-specific user preferences.
Specifically, the loss function is represented as follows:

L𝑐𝑙𝑠2 =
1
3

∑︁
[ℓ2 (𝐻𝑐𝑙𝑠 (Z𝐴𝑖𝑛𝑑 ),𝑂

𝐴
𝑖𝑛𝑑

)

+ ℓ2 (𝐻𝑐𝑙𝑠 (Z𝐵𝑖𝑛𝑑 ),𝑂
𝐵
𝑖𝑛𝑑

)
+ ℓ2 (𝐻𝑐𝑙𝑠 (Z

𝑎𝑢𝑔

𝑠ℎ𝑎
),𝑂𝑎𝑢𝑔

𝑠ℎ𝑎
)],

(4)

where ℓ2 (𝑃,𝑂) is the Kullback-Leibler divergence loss function.

Table 2: Comparison of information fusion approaches [40].

Formula
Concatenation E∗𝑢 = [Z𝑠𝑝𝑒 ,Z𝑖𝑛𝑑 ,Z𝑠ℎ𝑎]

Element-wise sum E∗𝑢 = Z𝑠𝑝𝑒 + Z𝑖𝑛𝑑 + Z𝑠ℎ𝑎

Attention C𝑢 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑠 · 𝜎 (W𝑠𝑝𝑒 · Z𝑠𝑝𝑒 +W𝑖𝑛𝑑 · Z𝑖𝑛𝑑 +W𝑠ℎ𝑎 · Z𝑠ℎ𝑎))
E∗𝑢 = [Z𝑠𝑝𝑒 ,Z𝑖𝑛𝑑 ,Z𝑠ℎ𝑎] · C𝑢

3.6 Information Fusion
The domain-shared, domain-specific and domain-independent in-
formation are three essential components of user preferences, which
need to be integrated in a reasonable and efficient way to capture
comprehensive user preferences. To this end, in this paper, we lever-
age three approaches, i.e., concatenation, element-wise sum, and
attention mechanism, to aggregate individual representations into
comprehensive user preferences [40]. The specific operations of
these information fusion approaches are expressed in Table 2. (cf.
the experimental comparison of them in Section 4.5).

3.7 Model Prediction and Training
After the information fusion, we obtain the comprehensive user
preferences E∗𝑢 and we also have the corresponding item embed-
dings E𝑣 generated by GCNs. To give our model the non-linearity,
we adopt a neural network, i.e., MLP, to represent the user-item
interactions. Taking the domain 𝐴 as an example, the input user
embeddings and item embeddings in domain 𝐴 for the MLP are
defined as S𝐴

𝑖𝑛
= E𝐴∗𝑢 and T𝐴

𝑖𝑛
= E𝐴𝑣 , respectively. Moreover, the

output embeddings of user 𝑢𝑖 and item 𝑣 𝑗 of MLP is expressed as:

S𝐴𝑖 = S𝐴𝑜𝑢𝑡𝑖 = 𝛿 (. . . 𝛿 (𝛿 (S𝐴𝑖𝑛𝑖 ·𝑊
𝐴
S1 ) ·𝑊

𝐴
S2 )), (5)

T𝐴𝑖 = T𝐴𝑜𝑢𝑡𝑖 = 𝛿 (. . . 𝛿 (𝛿 (T𝐴𝑖𝑛𝑖 ·𝑊
𝐴
T1
) ·𝑊𝐴

T2
)), (6)

where 𝛿 (·) is the LeakyReLU activation function. W𝐴
S1
, W𝐴

S2
. . .

andW𝐴
T1
,W𝐴

T2
. . . denote the trainable weight matrices of MLP in

various layers, respectively.
Next, the predicted user-item interaction 𝑦𝐴

𝑖 𝑗
between user 𝑢𝑖

and item 𝑣 𝑗 in domain 𝐴 can be formulated as follows:

𝑦𝐴𝑖 𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒 (S𝐴𝑖 ,T
𝐴
𝑗 ) =

S𝐴
𝑖
· T𝐴

𝑗

∥S𝐴
𝑖
∥∥T𝐴

𝑗
∥
. (7)

Furthermore, the prediction loss in domain 𝐴 is defined as follows:

L𝐴
𝑝𝑟𝑑

=
∑︁

𝑦∈Y𝐴+∪Y𝐴−
ℓ1 (𝑦,𝑦) + 𝛾 (∥S𝐴∥2𝐹 + ∥T𝐴∥2𝐹 ), (8)

where ℓ1 (𝑦,𝑦) is the cross-entropy loss function. 𝑦 denotes an ob-
served user-item interaction, and 𝑦 is the corresponding predicted
user-item interaction. Y𝐴+ denotes the set of observed interac-
tions and Y𝐴− is a certain number of negative instances randomly
sampled from the set of unseen interactions in domain 𝐴 to avoid
over-fitting. ∥S𝐴∥2

𝐹
+ ∥T𝐴∥2

𝐹
is a regularizer controlled by 𝛾 .

Finally, we utilize a multi-task learning mechanism consisting of
a prediction task and two domain classification tasks to optimize our
model in domain𝐴. Specifically, the final loss function is formulated
as follows:

L𝐴 = L𝐴
𝑝𝑟𝑑

+ 𝜇1 · L𝑐𝑙𝑠1 + 𝜇2 · L𝑐𝑙𝑠2 . (9)
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where 𝜇1 and 𝜇2 denote the weights of domain classification losses
L𝑐𝑙𝑠1 and L𝑐𝑙𝑠2 , respectively (cf. the discussion of parameters 𝜇1
and 𝜇2 in Section 4.6.3). Similarly, we perform the same optimization
process for domain 𝐵.

4 EXPERIMENTS AND ANALYSIS
In order to demonstrate the superiority of our proposed DIDA-CDR
and explore the effectiveness of its various modules, we conduct
extensive experiments on five real-world datasets to answer the
following five research questions:
• RQ1. How does our model perform when compared to represen-
tative and state-of-the-art baseline models?

• RQ2. How do various modules (i.e., interpolative data augmen-
tation and user preference disentanglement) affect the results of
our model?

• RQ3. How do various components of user preferences (i.e.,
domain-shared, domain-specific and domain-independent in-
formation) contribute to the performance improvement of our
model?

• RQ4. How do various information fusion approaches influence
the performance of our models?

• RQ5. How does the performance of our model change with
various values of hyper-parameters?

4.1 Experimental Settings
4.1.1 Experimental Datasets and Tasks. In order to verify the
recommendation performance of our proposed DIDA-CDR, we
conduct extensive experiments on five real-world datasets, i.e.,
Douban subsets (Douban-Movie, Douban-Book and Douban-Music)
released in GA-DTCDR [59] and Amazon subsets (Amazon-Elec and
Amazon-Cloth) released in DisenCDR [3]. For these five datasets,
we first convert the explicit ratings into implicit feedback, i.e., we
binarize the ratings into 0 and 1 to indicate whether the user has
interacted with the item or not. Following the methods introduced
in [29, 30], we then filter these datasets to remove users and items
with less than 5 interactions. Since the two Amazon subsets are
filtered out of the cold-start item entry in the test set, following
DisenCDR [3], we perform the same preprocessing operation on
the three Douban subsets as well for a fair comparison. Finally, we
divide the above five subsets into three pairs of datasets, extract the
common users in each pair of datasets, and design three dual-target
CDR tasks in a scenario where users completely overlap, which can
be listed as follows:

• Task 1: Douban-Movie (richer)↔ Douban-Book (sparser)
• Task 2: Douban-Movie (richer)↔ Douban-Music (sparser)
• Task 3: Amazon-Elec (richer)↔ Amazon-Cloth (sparser)

The details of these three dual-target CDR tasks and the correspond-
ing datasets are shown in Table 3.

4.1.2 Parameter Settings. For the graph convolution and propa-
gation module in Fig. 2, the layer structure of GCN is ‘𝑘 → 𝑘’ and
for the disentanglement module, the layer structure is ‘2𝑘 → 𝑘’. In
the prediction module, the layer structure of user branch MLP is ‘𝑘
→ 2𝑘 → 𝑘’, and the layer structure of item branch MLP is ‘2𝑘 →
2𝑘 → 𝑘’. 𝑘 is the embedding dimension. We vary 𝑘 in the range of
{64, 128}, but in order to balance the trade-off of recommendation

Table 3: Statistics of three dual-target CDR tasks.

Tasks Datasets #Users #Items #Interactions Density

Task 1 Douban-Movie 2106 9555 907219 4.508%
Douban-Book 2106 6777 95974 0.672%

Task 2 Douban-Movie 1666 9555 781288 4.908%
Douban-Music 1666 5567 69681 0.751%

Task 3 Amazon-Elec 15761 51447 224689 0.027%
Amazon-Cloth 15761 48781 133609 0.017%

accuracy and model training time, we finally set 𝑘 to 64. The param-
eters of all these layers are initialized as the Gaussian distribution
𝑋 ∼ N(0, 0.01). For each observed user-item interaction, following
GA-DTCDR [59], we randomly sample 7 unseen interactions as neg-
ative instances. For a fair comparison, we leverage the grid search
to tune the choice of parameters of all models. For the baseline
models, we tune them based on the best parameter settings listed
in their original papers. Specifically, we choose the learning rate
from {0.01, 0.005, 0.001, 0.0005, 0.0001}, and search the regulariza-
tion coefficient in the range of {0.001, 0.0001, 0.00001}. In addition,
we apply the Adam [22] to optimize all the models, and the batch
size is 1024. We train our model and other baseline models with
100 epochs in order to guarantee the convergence. Moreover, we
investigate the number of GCN layers 𝑙 in {1, 2, 3, 4}, 𝛼 of 𝐵𝑒𝑡𝑎(𝛼, 𝛼)
in {0.1, 0.5, 1, 2, 5} and the weights of domain classification losses
𝜇1, 𝜇2 in {0.1, 0.3, 0.5, 0.7, 1, 3, 5, 10}, and analyze their impact on
the recommendation performance of our model in Section 4.6. In
the experiments, we set 𝑙 = 2, 𝛼 = 1, and 𝜇1 = 𝜇2 = 1 by default
and we resample the mixing coefficient 𝜆 once for training each
batch of data.

4.1.3 Evaluation Metrics. Since the leave-one-out method is
ubiquitous in baseline models, such as GA-DTCDR [59] and BiT-
GCF [29], we also employ it to evaluate the recommendation per-
formance of our proposed DIDA-CDR and baseline models. In other
words, we utilize the last interaction record of each test user to
form the test set, while all the other interaction records are used as
the training set. Following the methods introduced in [3, 24], for
each test user-item interaction, we randomly sample 999 items that
the test user has not interacted with as negative items, and then pre-
dict 1000 candidate scores for ranking. The leave-one-out method
contains two main metrics, i.e., Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG) [44], which are widely-used
ranking evaluation metrics [30, 61]. In the experiments, we employ
them to evaluate the performance of the top-10 ranking results. For
a fair evaluation, we perform all experiments 5 times and present
the average results.

4.1.4 Comparison Methods. We select a total of nine repre-
sentative and state-of-the-art baseline models to compare with
our proposed DIDA-CDR. These nine baseline models can be di-
vided into four categories, i.e., (1) Single-Domain Recommendation
(SDR), (2) Single-Target Cross-Domain Recommendation (CDR), (3)
Conventional Dual-Target CDR, and (4) Disentanglement-Based
Dual-Target or Multi-Target CDR. For a clear comparison, in Table
4, we elaborate on the embedding strategies and transfer strategies
of the above nine baseline models and our proposed DIDA-CDR.
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Table 4: The comparison of the baselines and our approach [59].

Model Embedding Strategy Transfer Strategy

Baselines

Single-Domain
Recommendation (SDR)

NGCF [45] Non-linear MLP -
LightGCN [16] Non-linear MLP -

Single-Target Cross-Domain
Recommendation (CDR)

BPR_EMCDR [35] Linear Matrix Factorization (MF) MLP
BPR_DCDCSR [58] Linear MF Combination & MLP

Conventional
Dual-Target CDR

PPGN [55] Graph Embedding Combination & MLP
BiTGCF [29] Graph Embedding Transfer Learning

Disentanglement-Based Dual-Target
or Multi-Target CDR

GA-DTCDR [59] Graph Embedding Combination (Element-wise Attention)
DR-MTCDR [14] Graph Embedding & Self-supervised Learning Domain Adaptation
DisenCDR [3] Graph Embedding & VAE Transfer Learning

Our Approach Disentanglement-Based
Dual-Target CDR DIDA-CDR Graph Embedding & Disentanglement Transfer Learning & Combination (Attention)

Table 5: Performance comparison (%) of different approaches for three dual-target CDR tasks according to HR@10 and
NDCG@10 [59]. While the results of best-performing baselines are underlined, the best results are marked in bold (* indicates
𝑝 < 0.05, paired t-test of our proposed DIDA-CDR vs. the best-performing baselines) [62].

Datasets
SDR Baselines Single-Target CDR Baselines Conventional Dual-Target

CDR Baselines

NGCF LightGCN BPR_EMCDR
_MLP BPR_DCDCSR PPGN BiTGCF

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
Douban-Movie 10.26 5.37 10.53 5.49 - - - - 12.03 6.42 12.11 6.46
Douban-Book 7.31 4.08 7.35 4.15 6.25 3.93 6.74 4.02 10.52 4.78 10.58 4.93
Douban-Movie 9.16 4.23 9.24 4.25 - - - - 10.09 4.35 10.14 4.41
Douban-Music 6.11 3.87 6.36 3.99 5.08 3.45 5.97 3.79 7.24 4.03 7.32 4.10
Amazon-Elec 20.22 11.97 20.03 10.94 - - - - 22.06 12.44 21.79 12.31
Amazon-Cloth 10.95 6.01 11.38 6.10 9.87 5.33 10.90 5.86 13.04 6.91 13.16 6.88

Datasets

Disentanglement-Based Dual-Target
or Multi-Target CDR Baselines Disentanglement-Based Dual-Target CDR (our) Improvement

GA-DTCDR DR-MTCDR DisenCDR DIDA-CDR
_Fixed

DIDA-CDR
_Base

DIDA-CDR
_ELBO DIDA-CDR (DIDA-CDR vs.

best baselines)
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Douban-Movie 12.25 6.51 14.74 7.89 15.09 8.02 16.12 8.97 12.98 6.51 15.74 8.51 16.66* 9.16* 10.40% 14.21%
Douban-Book 10.71 5.06 12.66 7.45 12.40 7.27 13.08 7.82 10.41 5.52 12.80 7.69 13.79* 8.18* 8.93% 9.80%
Douban-Movie 10.35 4.57 11.27 5.74 12.13 5.95 12.76 6.23 10.45 4.99 12.55 6.18 13.01* 6.60* 7.25% 10.92%
Douban-Music 7.42 4.19 8.49 4.73 8.92 5.02 9.54 5.49 8.36 4.24 9.36 5.37 9.97* 5.79* 11.77% 15.34%
Amazon-Elec 23.87 13.20 22.34 12.98 23.77 13.61 24.68 13.83 22.03 12.97 24.14 13.72 25.05* 14.36* 4.94% 5.51%
Amazon-Cloth 13.94 7.09 14.13 7.59 15.46 8.42 16.01 8.94 12.97 6.93 15.76 8.63 16.69* 9.33 7.96% 10.81%

4.2 Performance Comparison (for RQ1)
Table 5 presents the performance comparison2 of various ap-
proaches for three dual-target CDR tasks according to HR@10
and NDCG@10. Note that since single-target CDR baselines aim to
improve the recommendation performance on the sparser domain,
we train them on both domains and then only present their experi-
mental results on the sparser domain. From Table 5, we have the fol-
lowing observations: (1) Our proposed DIDA-CDR improves other
baseline models on sparser domain by a large margin. Specifically,
on sparser domain, it outperforms the best-performing baseline
model with an average improvement of 9.55% in terms of HR@10
and 11.98% in terms of NDCG@10. This is because we adopt the
interpolative data augmentation, which effectively generate both

2Due to space limitation, we only show the results when 𝑘 = 64 in Table 5. For
the results under other values of 𝑘 that are omitted, similarly, our model also has a
significant improvement over other baseline models.

relevant and diverse augmented user representations to augment
the sparser domain, and therefore significant improvements in rec-
ommendation performance can be obtained on the sparser domain;
(2) Disentanglement-based dual-target CDR models improve con-
ventional dual-target CDR models by an average of 14.98% in terms
of HR@10 and 20.94% in terms of NDCG@10, which shows that
decoupling and then transferring the domain-shared information to
both domains is an efficient way for dual-target CDR; (3) Compared
with other disentanglement-based dual-target CDR baselines, our
model can achieve better recommendation performance over them.
Specifically, our proposed DIDA-CDR achieves an average increase
of 8.54% in terms of HR@10 and 11.10% in terms of NDCG@10, com-
pared to the best-performing disentanglement-based dual-target
CDR baseline. This is because our model particularly takes domain-
independent user preferences into consideration, and the proposed
disentanglement module can more effectively disentangle all three
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essential components of user preferences, thus capturing more com-
prehensive user preferences. For a more detailed analysis of each
module and each component of user preferences of the proposed
DIDA-CDR, please refer to Section 4.3 and Section 4.4, respectively.

4.3 Ablation Study (for RQ2)
To show the contribution of each proposed component to the im-
provement of overall performance, we modify our proposed model
to form three variants and conduct an ablation study for three
dual-target CDR tasks.

4.3.1 Impact of Interpolative Data Augmentation. We con-
struct a variant of DIDA-CDR, namely DIDA-CDR_Fixed, by re-
placing the interpolative data augmentation module with a fixed
mixing strategy. In fact, we conducted experiments to select the best-
performing mixing coefficient, i.e., 0.5, from {0.1, 0.3, 0.5, 0.7, 0.9}
to implement the above variant. From Table 5, we can observe that
with the interpolative data augmentation, our proposed DIDA-CDR
outperforms DIDA-CDR_Fixed with an average improvement of
3.7%. This demonstrates that the interpolative data augmentation
can not only augment the sparser domain by introducing random-
ness to increase the diversity of augmentation, but also generate
representative augmented user representations by effectively mix-
ing user embeddings for subsequent disentanglement. Meanwhile,
the introduction of randomness also weakens the possible negative
transfer caused by the linear interpolation operation with fixed
weights, which can also be seen from the experimental results.

4.3.2 Impact of User Preference Disentanglement. Further-
more, another variant, namely DIDA-CDR_Base, directly feeds
the generated user embeddings to the information fusion module
and does not include the disentanglement module, thus the variant
only includes the prediction loss L𝑝𝑟𝑑 , that is 𝜇1 = 𝜇2 = 0. From
Table 5, we can observe that without the disentanglement mod-
ule, the recommendation performance of DIDA-CDR_Base would
degrade to be comparable to that of the conventional dual-target
CDR baselines, and weaker than that of disentanglement-based
ones. This shows that the disentanglement module can indeed
help the model perform more effective cross-domain knowledge
transfer without negative transfer by decoupling domain-shared,
domain-specific, domain-independent information and transfering
only domain-shared information, thus improving the performance
of cross-domain recommendations.

4.3.3 Impact of Domain Classifier. In addition, following Dis-
enCDR [3], we modify the disentanglement module in our model,
i.e., replace our domain classification losses with the standard ELBO,
to form another variant, namely DIDA-CDR_ELBO. From Ta-
ble 5, we can observe that our proposed DIDA-CDR outperforms
DIDA-CDR_ELBO with an average improvement of 5.98%. This
demonstrates that the proposed disentanglement module can in-
deed collaborate well with the domain classifier to decouple more
accurate essential components of user preferences, especially the
domain-independent information, to capture comprehensive user
preferences, thus enabling the model to achieve better recommen-
dation performance through superior disentanglement.
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Figure 3: (a)-(b): Performance comparison between ourmodel
and its four variants. (c)-(d): Performance comparison of
adopted information fusion approaches.

4.4 Impact of Various Components of User
Preferences (for RQ3)

To demonstrate that all three components of user preferences, i.e.,
domain-share, domain-specific and domain-independent informa-
tion, are essential and effective for recommendation, and do not
require transfer of domain-independent user preferences, we com-
pare DIDA-CDR with its four variants, including DIDA-CDR (w/o
sha.), DIDA-CDR (w/o spe.), DIDA-CDR (w/o ind.) and DIDA-CDR
(transfer ind.). Fig. 3(a)-(b) shows the performance comparison be-
tween our model and the above four variants3. The differences
between various variants and the impact of each component of user
preferences are elaborated in the following subsections.

4.4.1 Impact of Domain-Shared User Preferences. DIDA-
CDR (w/o sha.) extracts the domain-shared user preferences from
both domains, but does not transfer them to any domain. From
Fig. 3(a)-(b), we can see that our proposed DIDA-CDR outperforms
DIDA-CDR (w/o sha.) with an average improvement of 17.21%.
This is because the domain-shared user preferences are valuable
information, which plays an important role in cross-domain rec-
ommendation and can improve the recommendation performance
on both domains simultaneously.

4.4.2 Impact of Domain-Specific User Preferences. DIDA-
CDR (w/o spe.) does not consider the domain-specific user pref-
erences when making recommendations. From Fig. 3(a)-(b), we
can observe that our proposed DIDA-CDR outperforms DIDA-CDR
(w/o spe.) with an average improvement of 36.12%. This is because
3Due to space limitation, we only show the results on Task 1 in Fig. 3, i.e., only the
results on the pair of datasets consisting of Douban-Movie and Douban-Book are
presented, and similar trends can be observed for results on the other omitted tasks.
Similarly, Fig. 4 and Fig. 5 only shows the results on Task 1 for the same reason above.
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Figure 4: (a)-(b): Impact of the number of GCN layers. (c)-(d):
Impact of 𝛼 .

the domain-specific user preferences are inherent personalized pref-
erences of users in each domain. If it is not considered when making
recommendations, the recommendation performance of our model
will be significantly reduced.

4.4.3 Impact of Domain-Independent User Preferences.
DIDA-CDR (w/o ind.) includes the domain-shared and domain-
specific user preferences, but does not include the domain-
independent user preferences when capturing comprehensive user
preferences; DIDA-CDR (transfer ind.) disentangles the domain-
independent user preferences and then transfer them to another
domain. It can be seen from Fig. 3(a)-(b) that our proposed DIDA-
CDR outperforms DIDA-CDR (w/o ind.) and DIDA-CDR (transfer
ind.) with an average improvement of 12.40% and 26.04%, respec-
tively. In view of this, we make the following qualitative analysis.
The domain-independent user preferences seemingly exist in each
domain, but actually have different meanings. If they are not in-
cluded when capturing user preferences, the captured user prefer-
ences are incomplete, resulting in the degraded recommendation
performance of the model. Moreover, if the domain-independent
information is transferred to other domains, it will provide the
useless information and cause the performance degradation.

4.5 Impact of Various Information Fusion
Approaches (for RQ4)

After we obtain three essential user preference components, we
compare various information fusion approaches, i.e., concatenation,
element-wise sum, and attention, to fuse them into comprehensive
user preferences. The performance comparison of three used infor-
mation fusion approaches is presented in Fig. 3(c)-(d). We find that
when our model utilizes the attention mechanism for information
fusion, it improves the variants using concatenation and summation
by an average of 28.37% and 20.69%, respectively. This is because the
attention mechanism can not only capture the relationship between
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Figure 5: (a)-(b): Impact of 𝜇1. (c)-(d): Impact of 𝜇2.

various components, but also selectively highlight the key informa-
tion and weaken the redundant information by learning weights.
In this paper, the attention mechanism measures the importance
of domain-shared, domain-specific and domain-independent infor-
mation to comprehensive user preferences through weights, and
weakens the redundant information between the domain-shared
and domain-independent user preferences, thus enabling our model
to achieve better recommendation results.

4.6 Parameter Sensitivity (for RQ5)
4.6.1 Impact of 𝑙 . Stacking too many layers when training a deep
GCN is prone to over-smoothing [27]. In order to explore this effect,
we investigate the number of GCN layers 𝑙 in the range of {1, 2, 3, 4}
in the experiments and report the experimental results in Fig. 4(a)-
(b). It can be observed that 2-layer GCN is significantly better than
1-layer GCN, which indicates that stacking a moderate number of
layers is beneficial for mining higher-order user-item relationships.
However, the recommendation performance of our proposed DIDA-
CDR drops on some datasets when 𝑙 = 3 and degrades even more
when 𝑙 = 4. The reason may be that when the number of layers is
greater than 3, the problem of over-smoothing occurs, resulting in
the fact that increasing the number of layers at this time will in
turn reduce the recommendation performance of our model.

4.6.2 Impact of 𝛼 . 𝐵𝑒𝑡𝑎(𝛼, 𝛼) is Uniform distribution when 𝛼 = 1,
Bimodal distribution when 𝛼 < 1 and Bell-shaped distribution
when 𝛼 > 1 [5]. In order to explore from which distribution sam-
pling 𝜆 can help the recommendation performance of model the
most, we search 𝛼 in the range of {0.1, 0.5, 1, 2, 5}. The performance
comparison is illustrated in Fig. 4(c)-(d). We can see that the best
performance of our proposed DIDA-CDR is achieved when 𝛼 = 1,
which presents that 𝜆 sampled from the Uniform distribution can
effectively mix the user embeddings in the richer domain and the
sparser domain, thereby effectively alleviating the data imbalance
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and improving the recommendation performance of model. In con-
trast, when 𝛼 < 1 or 𝛼 > 1, sampling 𝜆 from 𝐵𝑒𝑡𝑎(𝛼, 𝛼) will result
in the performance degradation.

4.6.3 Impact of 𝜇1 and 𝜇2. To explore the effect of weights
of domain classification losses on the overall recommenda-
tion performance of our DIDA-CDR, we vary 𝜇1 and 𝜇2 in
{0.1, 0.3, 0.5, 0.7, 1, 3, 5, 10}. The results are reported in Fig. 5. It can
be seen from Fig. 5(a)-(b) that the contribution of domain classifica-
tion loss L𝑐𝑙𝑠1 to decoupling more accurate domain-specific user
preferences is small when 𝜇1 → 0. When 𝜇1 is too large, the domain
classification loss L𝑐𝑙𝑠1 receives more attention during the learning
process. As a result, the contribution of prediction loss L𝑝𝑟𝑑 to
the model is weakened, which reduces the recommendation perfor-
mance of the model. Similarly, from Fig. 5(c)-(d), a similar trend can
be observed for the weights 𝜇2 of domain classification loss 𝐿𝑐𝑙𝑠2 .
Empirically, we choose 𝜇1 = 𝜇2 = 1.

5 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a novel Disentanglement-based
framework with Interpolative Data Augmentation for dual-target
Cross-Domain Recommendation, called DIDA-CDR. DIDA-CDR
consists of an interpolative data augmentation approach to gener-
ating both relevant and diverse augmented user representations to
augment the sparser domain and explore the potential user prefer-
ences, and a user preference disentanglement module to decouple
essential components of user preferences to capture comprehensive
user preferences, all of which help improve the recommendation
performance on both domains simultaneously. Also, we have con-
ducted extensive experiments on five real-world datasets to show
the significant superiority of DIDA-CDR over the state-of-the-art
methods. In the future, we plan to extend our model to multi-target
CDR scenarios where users partially overlap.

ACKNOWLEDGMENTS
This work is partially supported by ARC Discovery Projects
DP200101441 and DP230100676.

REFERENCES
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

Learning: A Review and New Perspectives. TPAMI (2013), 1798–1828.
[2] Shuqing Bian, Wayne Xin Zhao, Jinpeng Wang, and Ji-Rong Wen. 2022. A

Relevant and Diverse Retrieval-enhanced Data Augmentation Framework for
Sequential Recommendation. In CIKM. 2923–2932.

[3] Jiangxia Cao, Xixun Lin, Xin Cong, Jing Ya, Tingwen Liu, and Bin Wang. 2022.
DisenCDR: Learning Disentangled Representations for Cross-Domain Recom-
mendation. In SIGIR. 267–277.

[4] Jiangxia Cao, Jiawei Sheng, Xin Cong, Tingwen Liu, and Bin Wang. 2022. Cross-
Domain Recommendation to Cold-Start Users via Variational Information Bottle-
neck. In ICDE. 2209–2223.

[5] Huiyuan Chen, Chin-Chia Michael Yeh, Fei Wang, and Hao Yang. 2022. Graph
Neural Transport Networks with Non-local Attentions for Recommender Systems.
In WWW. 1955–1964.

[6] Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. 2018.
Isolating Sources of Disentanglement in Variational Autoencoders. In NeurIPS.

[7] Yoonhyuk Choi, Jiho Choi, Taewook Ko, Hyungho Byun, and Chong-Kwon
Kim. 2022. Review-Based Domain Disentanglement without Duplicate Users or
Contexts for Cross-Domain Recommendation. In CIKM. 293–303.

[8] Qiang Cui, Tao Wei, Yafeng Zhang, and Qing Zhang. 2020. HeroGRAPH: A Het-
erogeneous Graph Framework for Multi-Target Cross-Domain Recommendation.
In RecSys.

[9] Wenjing Fu, Zhaohui Peng, Senzhang Wang, Yang Xu, and Jin Li. 2019. Deeply
Fusing Reviews and Contents for Cold Start Users in Cross-Domain Recommen-
dation Systems. In AAAI. 94–101.

[10] Yuqian Fu, Yanwei Fu, Jingjing Chen, and Yu-Gang Jiang. 2022. Generalized
Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target
Data. TIP (2022), 7078–7090.

[11] Yuqian Fu, Yanwei Fu, and Yu-Gang Jiang. 2021. Meta-FDMixup: Cross-Domain
Few-Shot Learning Guided by Labeled Target Data. In MM. 5326–5334.

[12] Anna Gibbs. 2015. Writing as method: attunement, resonance, and rhythm.
Affective methodologies: Developing cultural research strategies for the study of
affect (2015), 222–236.

[13] Abel Gonzalez-Garcia, Joost van de Weijer, and Yoshua Bengio. 2018. Image-to-
image Translation for Cross-domain Disentanglement. In NeurIPS.

[14] Xiaobo Guo, Shaoshuai Li, Naicheng Guo, Jiangxia Cao, Xiaolei Liu, Qiongxu Ma,
Runsheng Gan, and Yunan Zhao. 2023. Disentangled Representations Learning
for Multi-target Cross-domain Recommendation. TOIS (2023), 1–27.

[15] Marc D Hauser and Josh McDermott. 2003. The evolution of the music faculty:
A comparative perspective. Nature neuroscience (2003), 663–668.

[16] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR. 639–648.

[17] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. 2022. Towards Universal Sequence Representation Learning for Recom-
mender Systems. In KDD. 585–593.

[18] Guangneng Hu, Yu Zhang, and Qiang Yang. 2018. Conet: Collaborative Cross
Networks for Cross-Domain Recommendation. In CIKM. 667–676.

[19] Guangneng Hu, Yu Zhang, and Qiang Yang. 2019. Transfer Meets Hybrid: A Syn-
thetic Approach for Cross-Domain Collaborative Filtering with Text. InWWW.
2822–2829.

[20] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. 2021. MixGCF: An Improved Training Method for Graph
Neural Network-based Recommender Systems. In KDD. 665–674.

[21] Heishiro Kanagawa, Hayato Kobayashi, Nobuyuki Shimizu, Yukihiro Tagami, and
Taiji Suzuki. 2019. Cross-domain Recommendation via Deep Domain Adaptation.
In ECIR. 20–29.

[22] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[23] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[24] Walid Krichene and Steffen Rendle. 2022. On Sampled Metrics for Item Recom-
mendation. CACM (2022), 75–83.

[25] Chenglin Li, Yuanzhen Xie, Chenyun Yu, Bo Hu, Zang Li, Guoqiang Shu, Xiaohu
Qie, and Di Niu. 2023. One for All, All for One: Learning and Transferring User
Embeddings for Cross-Domain Recommendation. In WSDM. 366–374.

[26] Pan Li and Alexander Tuzhilin. 2020. Ddtcdr: Deep Dual Transfer Cross Domain
Recommendation. In WSDM. 331–339.

[27] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights into Graph
Convolutional Networks for Semi-supervised Learning. In AAAI. 3538–3545.

[28] Jian Liu, Pengpeng Zhao, Fuzhen Zhuang, Yanchi Liu, Victor S Sheng, Jiajie Xu,
Xiaofang Zhou, and Hui Xiong. 2020. Exploiting Aesthetic Preference in Deep
Cross Networks for Cross-Domain Recommendation. In WWW. 2768–2774.

[29] Meng Liu, Jianjun Li, Guohui Li, and Peng Pan. 2020. Cross Domain Recommen-
dation via Bi-directional Transfer Graph Collaborative Filtering Networks. In
CIKM. 885–894.

[30] Weiming Liu, Xiaolin Zheng, Jiajie Su, Mengling Hu, Yanchao Tan, and Chaochao
Chen. 2022. Exploiting Variational Domain-Invariant User Embedding for Par-
tially Overlapped Cross Domain Recommendation. In SIGIR. 312–321.

[31] Zhiwei Liu, Lei Zheng, Jiawei Zhang, Jiayu Han, and S Yu Philip. 2019. JSCN:
Joint Spectral Convolutional Network for Cross Domain Recommendation. In
Big Data. 850–859.

[32] Babak Loni, Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Cross-domain
Collaborative Filtering with Factorization Machines. In ECIR. 656–661.

[33] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing Disentangled Representations for Recommendation. In NeurIPS. 5711–5722.

[34] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu.
2020. Disentangled Self-Supervision in Sequential Recommenders. In KDD. 483–
491.

[35] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-Domain
Recommendation: An Embedding and Mapping Approach. In IJCAI. 2464–2470.

[36] Zaiqiao Meng, Siwei Liu, Craig Macdonald, and Iadh Ounis. 2021. Graph Neural
Pre-training for Enhancing Recommendations using Side Information. arXiv
preprint arXiv:2107.03936 (2021).

[37] Ashish Kumar Sahu and Pragya Dwivedi. 2020. Knowledge Transfer by Domain-
independent User Latent Factor for Cross-domain Recommender Systems. FGCS
(2020), 320–333.

[38] Kimiaki Shirahama, Kazuhisa Iwamoto, and Kuniaki Uehera. 2004. Video data
mining: rhythms in a movie. In ICME. 1463–1466.

[39] Hongzu Su, Yifei Zhang, Xuejiao Yang, Hua Hua, ShuangyangWang, and Jingjing
Li. 2022. Cross-domain Recommendation via Adversarial Adaptation. In CIKM.
1808–1817.



Domain Disentanglement with Interpolative Data Augmentation for Dual-Target CDR RecSys ’23, September 18–22, 2023, Singapore, Singapore

[40] Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming
Tang, and Xiuqiang He. 2019. Multi-Graph Convolution Collaborative Filtering.
In ICDM. 1306–1311.

[41] Ke Wang, Yanmin Zhu, Haobing Liu, Tianzi Zang, Chunyang Wang, and Kuan
Liu. 2022. Inter-and Intra-Domain Relation-Aware Heterogeneous Graph Convo-
lutional Networks for Cross-Domain Recommendation. In DASFAA. 53–68.

[42] Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. 2022. Disentan-
gled Representation Learning. arXiv preprint arXiv:2211.11695 (2022).

[43] Xin Wang, Hong Chen, Yuwei Zhou, Jianxin Ma, and Wenwu Zhu. 2022. Disen-
tangled Representation Learning for Recommendation. TPAMI (2022), 408–424.

[44] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In KDD. 950–958.

[45] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[46] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering. In SIGIR. 1001–1010.

[47] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup
for Node and Graph Classification. In WWW. 3663–3674.

[48] Shuo Xiao, Dongqing Zhu, Chaogang Tang, and Zhenzhen Huang. 2023. CATCL:
Joint Cross-Attention Transfer and Contrastive Learning for Cross-Domain Rec-
ommendation. In DASFAA. 446–461.

[49] Feng Yuan, Lina Yao, and Boualem Benatallah. 2019. DARec: Deep Domain
Adaptation for Cross-Domain Recommendation via Transferring Rating Patterns.
In IJCAI. 4227–4233.

[50] Tianzi Zang, Yanmin Zhu, Haobing Liu, Ruohan Zhang, and Jiadi Yu. 2022. A
Survey on Cross-Domain Recommendation: Taxonomies, Methods, and Future
Directions. TOIS (2022), 1–39.

[51] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. 2018.
mixup: Beyond Empirical Risk Minimization. In ICLR.

[52] Ruohan Zhang, Tianzi Zang, Yanmin Zhu, Chunyang Wang, Ke Wang, and Jiadi
Yu. 2023. Disentangled Contrastive Learning for Cross-Domain Recommendation.

In DASFAA. 163–178.
[53] Xinyue Zhang, Jingjing Li, Hongzu Su, Lei Zhu, and Heng Tao Shen. 2022. Multi-

Level Attention-Based Domain Disentanglement for Bidirectional Cross-Domain
Recommendation. TOIS (2022).

[54] Yin Zhang, Ziwei Zhu, Yun He, and James Caverlee. 2020. Content-Collaborative
Disentanglement Representation Learning for Enhanced Recommendation. In
RecSys. 43–52.

[55] Cheng Zhao, Chenliang Li, and Cong Fu. 2019. Cross-Domain Recommendation
via Preference Propagation Graphnet. In CIKM. 2165–2168.

[56] Xiaoyun Zhao, Ning Yang, and Philip S Yu. 2022. Multi-Sparse-Domain Col-
laborative Recommendation via Enhanced Comprehensive Aspect Preference
Learning. In WSDM. 1452–1460.

[57] Feng Zhu, Chaochao Chen, Yan Wang, Guanfeng Liu, and Xiaolin Zheng. 2019.
DTCDR: A Framework for Dual-Target Cross-Domain Recommendation. In CIKM.
1533–1542.

[58] Feng Zhu, YanWang, Chaochao Chen, Guanfeng Liu, Mehmet Orgun, and Jia Wu.
2018. A Deep Framework for Cross-Domain and Cross-System Recommendations.
In IJCAI. 3711–3717.

[59] Feng Zhu, Yan Wang, Chaochao Chen, Guanfeng Liu, and Xiaolin Zheng. 2020.
A Graphical and Attentional Framework for Dual-Target Cross-Domain Recom-
mendation. In IJCAI. 3001–3008.

[60] Feng Zhu, Yan Wang, Chaochao Chen, Jun Zhou, Longfei Li, and Guanfeng Liu.
2021. Cross-Domain Recommendation: Challenges, Progress, and Prospects. In
IJCAI. 4721–4728.

[61] Feng Zhu, Yan Wang, Jun Zhou, Chaochao Chen, Longfei Li, and Guanfeng Liu.
2021. A Unified Framework for Cross-Domain and Cross-System Recommenda-
tions. TKDE (2021), 1171–1184.

[62] Yongchun Zhu, Ruobing Xie, Fuzhen Zhuang, Kaikai Ge, Ying Sun, Xu Zhang,
Leyu Lin, and Juan Cao. 2021. Learning to Warm Up Cold Item Embeddings for
Cold-start Recommendation with Meta Scaling and Shifting Networks. In SIGIR.
1167–1176.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Single-Target and Dual-Target CDR
	2.2 Disentangled Representation Learning
	2.3 Interpolative Data Augmentation

	3 The Proposed Model
	3.1 Problem Formulation
	3.2 Overview of DIDA-CDR
	3.3 Graph Convolution and Propagation
	3.4 Interpolative Data Augmentation
	3.5 User Preference Disentanglement
	3.6 Information Fusion
	3.7 Model Prediction and Training

	4 Experiments and Analysis
	4.1 Experimental Settings
	4.2 Performance Comparison (for RQ1)
	4.3 Ablation Study (for RQ2)
	4.4 Impact of Various Components of User Preferences (for RQ3)
	4.5 Impact of Various Information Fusion Approaches (for RQ4)
	4.6 Parameter Sensitivity (for RQ5)

	5 Conclusion and Future Work
	Acknowledgments
	References

