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ABSTRACT
Interference is a ubiquitous problem in experiments conducted on
two-sided content marketplaces, such as Douyin (China’s analog of
TikTok). In many cases, creators are the natural unit of experimenta-
tion, but creators interfere with each other through competition for
viewers’ limited time and attention. “Naive” estimators currently
used in practice simply ignore the interference, but in doing so incur
bias on the order of the treatment effect. We formalize the problem
of inference in such experiments as one of policy evaluation. Off-
policy estimators, while unbiased, are impractically high variance.
We introduce a novel Monte-Carlo estimator, based on “Differences-
in-Qs” (DQ) techniques, which achieves bias that is second-order in
the treatment effect, while remaining sample-efficient to estimate.
On the theoretical side, our contribution is to develop a generalized
theory of Taylor expansions for policy evaluation, which extends
DQ theory to all major MDP formulations. On the practical side, we
implement our estimator on Douyin’s experimentation platform,
and in the process develop DQ into a truly “plug-and-play” esti-
mator for interference in real-world settings: one which provides
robust, low-bias, low-variance treatment effect estimates; admits
computationally cheap, asymptotically exact uncertainty quantifi-
cation; and reduces MSE by 99% compared to the best existing
alternatives in our applications.

CCS CONCEPTS
• Applied computing → Marketing; • Computing methodolo-
gies→ Artificial intelligence;Reinforcement learning;Dynamic
programming for Markov decision processes; • Mathematics
of computing → Probability and statistics.
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1 INTRODUCTION
In recent years, large-scale online platforms have increasingly re-
lied on experimentation to measure the impact of interventions
and enhance user experiences [8, 18, 27]. Traditional randomized
controlled trials (RCTs), commonly known as A/B tests, offer a
robust framework for causal inference in settings where treatment
and control groups are independent [6, 28]. However, in many
online platforms, treatment and control outcomes are not indepen-
dent but interact through a shared system state, a phenomenon
known as "Markovian" interference [7]. Addressing this interfer-
ence is a key challenge for state-of-the-art experimentation plat-
forms [2, 12, 20, 21].

In this work, we propose a novel method to address problems
of interference that arise in online content marketplaces such as
Douyin, a leading social video platform with 600 million daily
active users as of early 2021.1 Like its US analog TikTok, Douyin’s
core product is short-form video content: creators create videos
on the app, and viewers are presented with a sequence of these
videos (determined by the company’s proprietary recommendation
algorithm). In a typical viewer session, the viewer opens the app;
the platform presents them with a video; the viewer watches this
video until they swipe to indicate they would like to advance to
the next video; and the platform then presents them with another
video. The process repeats until the viewer eventually leaves the
platform.

As with many other two-sided marketplaces, a key challenge in
experimentation at Douyin is that certain interventions can only
be tested via creator-side experiments, while many key metrics
are measured on the viewer side. To give a specific, real example:
Douyin has a new feature which will allow creators to deliver
livestreams in high definition, and Douyin wants to test the impact
1https://new.qq.com/rain/a/20210329A06EP300
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of this new feature on viewer engagement. A typical metric will be
average “dwell time” for a viewer – that is, the total time an average
viewer spends on the platform in some interval.

Because the feature is introduced at the creator level, the plat-
form cannot control which viewers will be exposed, as would be
necessary for viewer-side or two-side randomized experiments. In-
terference between creators occurs primarily because viewers have
a limited budget of resources to spend on Douyin – a budget con-
sisting of free time, attention, battery life, and other factors – and
creators in treatment compete for this budget with those in control.
See Fig. 1 for an illustrative example. In such settings, the only
existing option deployed at Douyin is naive estimation; in other
words, to ignore the interference and proceed with estimation as
in a standard RCT. However, this naive estimator is known to be
considerably biased, with the bias potentially being as large as the
treatment effect itself [2, 11].

Contributions. To address the interference problem, we first
formulate treatment effect estimation as a problem of off-policy
evaluation in a Markovian Decision Process (MDP), where states
can be arbitrarily complex – consisting for example of a viewer’s
preferences, engagement level, and viewing history. Existing off-
policy evaluation methods, despite being unbiased, fail in this set-
ting due to the prohibitively large state space, and are excessively
high variance. In contrast, the naive estimator does not require
access to the state, but it suffers from a significant bias. To over-
come these limitations, we propose a novel estimator that does
not require state access and has a second-order bias compared to
the naive estimator. Our proposed estimator can be viewed as an
instance of Differences-in-Qs (DQ) estimators, proposed in a very
recent theoretical work [7] which showed that DQ estimators enjoy
a favorable bias-variance tradeoff in average-reward MDPs.

We integrate our proposed DQ estimator into the Douyin plat-
form, incorporating various generalizations, and demonstrate its
superior performance compared to existing methods. To summarize,
our contributions are threefold:

1) A Novel and Practical Estimator.We propose a novel DQ
estimator to correct for interference in A/B tests at Douyin. This es-
timator does not require access to the state, making it more broadly
applicable compared to other off-policy evaluation methods. It has
provably second-order bias (Theorem 1) and offers practical benefits,
as it accommodates heterogeneous users, partially observable states,
andmultiple simultaneous experiments (Section 6). Additionally, we
develop doubly robust techniques to reduce variance (Section 6.3)
and enable a precise variance quantification (Section 6.4).

2) Superior Empirical Performance. We implement our esti-
mator on Douyin’s experimentation platform, and report results
from a large-scale simulator modeling this implementation in Sec-
tion 7. These experiments show that the DQ estimator significantly
outperforms state-of-the-art approaches, reducing mean squared
error (MSE) by 99% compared to the best existing alternatives. Our
work represents the first large-scale implementation of the DQ
estimator in the real world.

3) A Unified Theory for DQ. Finally, we provide theoretical
extensions to the DQ estimator and its underlying Taylor series
theory (Section 5), allowing it to accommodate the discounted
and total reward formulations more naturally suited to Douyin’s

applications. Our unifying theory yields existing average reward
results in [7] as a special case, and are of independent interest.

2 RELATEDWORK
Interference in experiments, across fields such as public medicine,
agriculture, and online markets [23, 29, 31], occurs when the out-
come of an experimental unit is affected by others, potentially
leading to biases in treatment effect estimation. Interference has
emerged as a key challenge in online platforms in particular, across
companies including eBay [2], Uber/Lyft [5, 35], Airbnb [11], and
Douyin, the setting which motivates this study.

Experimental Design. Existing approaches to interference
have primarily focused on sophisticated experimental designs. Ex-
amples include minimizing interference through clustering units
[24, 36–38], alternating randomization across time periods [3, 4, 10],
conducting randomization on both supply and demand sides in two-
sided markets [1, 15, 21], and other designs [9, 14, 32]. Despite their
potential, practical limitations such as cost and implementation con-
cerns often restrict the use of such sophisticated designs [19, 20],
as we will also see in motivating applications at Douyin. In con-
trast, as opposed to introducing more complex designs, this paper
introduces a novel estimator under simple unit-level randomization,
effectively mitigating bias induced by interference.

Off-Policy Evaluation (OPE). Our problem can be viewed as a
case of off-policy evaluation (OPE) [25, 30], an increasingly impor-
tant problem in reinforcement learning. Unbiased OPE estimators
typically suffer from high variance [22, 33, 34], and the related curse
of dimensionality in large state spaces [13, 16, 17]. Our approach
can be construed as a biased method for OPE, which incurs a small
amount of bias for a massive reduction in variance (similarly to
[7, 26]) and offers strong theoretical guarantees without the need
to access state information.

3 MODEL
We begin by developing our theory in a simplified setting, where
we observe a single trajectory (or “session”) from a single viewer. In
Section 6, we will extend this core theory to a much richer problem
formulation, capturing the complexities of applications at Douyin.

Consider a scenario in which the platform wants to test a creator-
side intervention – for example, rolling out the HD streaming fea-
ture discussed in the introduction. Due to infrastructure constraints
or concerns about the impact of the intervention, we must experi-
ment at a creator level, and therefore implement a creator-side A/B
test.

We model each session for the viewer as an MDP. At each step 𝑡 ,
a video is presented to the viewer. With probability 𝑝 , the presented
video is in the treatment group, corresponding to an action 𝑎𝑡 = 1;
otherwise the video is in the control group, corresponding to an
action 𝑎𝑡 = 0. When the viewer swipes to the next video, the
platform realizes a reward 𝑟𝑡 – e.g., the time the viewer spent
watching the previous video – and the MDP advances to the next
step. The reward 𝑟𝑡 is a (random) function of 𝑎𝑡 ∈ A, the action at
time 𝑡 , and 𝑠𝑡 ∈ S, the viewer’s state at time 𝑡 .

Critically, in real applications, the state may be arbitrarily com-
plex, and partially or totally unobservable. For example, 𝑠𝑡 may
consist of the time the viewer has spent on the platform (and im-
plicitly, the remaining time budget of the viewer), their engagement
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level, and even the whole history of videos the viewer has watched.
See Fig. 1 for an example. As we will see, we can design estimators
for which this complexity poses no challenge.

Video

Treatment

User Attention

Dwell time

Figure 1: A graphical depiction of theDouyinMDP for a given
viewer. At each timestep, the viewer is shown a video; the
video is either treatment (high definition, 𝑎𝑡 = 1) or control
(standard definition, 𝑎𝑡 = 0); and depending on the video
and the viewer’s current state (consisting of e.g., attention,
battery life, data budget, etc.), the platform then collects some
reward (i.e., the viewer’s dwell time), and moves to the next
video. Eventually the viewer runs out of attention and leaves
the platform.

A policy 𝜋 : S → A is a (random) mapping from states to
actions. We are interested in three policies:

(1) Global treatment 𝜋1, which chooses 𝜋1 (𝑠) = 1,∀𝑠 ∈ S, i.e.,
every video presented is treated. The associated transition
matrix is denoted as 𝑃1 ∈ R |S |× |S | .

(2) Global control 𝜋0, which chooses 𝜋0 (𝑠) = 0,∀𝑠 ∈ S, i.e.,
every video is untreated. The associated transition matrix is
denoted as 𝑃0 ∈ R |S |× |S | .

(3) The experiment 𝜋𝑝 , which chooses 𝜋 (𝑠) = 1 with prob-
ability 𝑝; otherwise 𝜋 (𝑠) = 0; in other words, video-side
A/B testing. The associated transition matrix is denoted as
𝑃𝑝 := (1 − 𝑝) · 𝑃0 + 𝑝 · 𝑃1. For ease of exposition, we set
𝑝 = 1/2 and discuss generalizations in Section 6.

For a given policy 𝜋 , we define the total reward of the policy as:
𝐽𝜋 =

∑∞
𝑡=0 E𝜋 [𝑟𝑡 ], where the notation E𝜋 denotes an expectation

over states 𝑠0 ∼ 𝜌init, actions 𝑎𝑡 |𝑠𝑡 ∼ 𝜋 (𝑠𝑡 ), dynamics 𝑠𝑡+1 |𝑠𝑡 ∼
𝑃𝜋 (𝑠𝑡 , 𝑠𝑡+1), and rewards.

Goal. Given observations {(𝑟𝑡 , 𝑎𝑡 )} under the experiment policy
𝜋1/2, our goal is to estimate the difference between the total rewards
obtained by 𝜋1 and 𝜋0:

ATE := 𝐽𝜋1 − 𝐽𝜋0 . (1)

In our example above, ATE corresponds to the impact to the viewer’s
dwell time in the platform by replacing the policy 𝜋0 by 𝜋1, a key
quantity of interest when deciding whether rolling out a new policy.

To ensure that 𝐽𝜋 is well-defined, we make one key assump-
tion on the Markov chain induced by each policy, which is that
the viewer eventually terminates their session; i.e., all Markov

chains are absorbing. To be precise: we say that Sabs ⊆ S is an
absorbing class under policy 𝜋 if 𝑃𝜋 (𝑠, 𝑠′) = I {𝑠′ ∈ Sabs} for all
𝑠 ∈ Sabs, and if 𝑟𝑡 = 0 a.s. when 𝑠𝑡 ∈ Sabs. We also require
that Sabs is reached in finite time almost surely starting from
any state and define the expected time to this absorption event
as 𝑇𝜋abs := max𝑠∈S

∑∞
𝑡=0 E𝜋 [I {𝑠𝑡 ∉ Sabs} |𝑠0 = 𝑠]. We then make

the following assumption:

Assumption 1. There exists a class Sabs ⊆ S and a time 𝑇abs,
such that Sabs is absorbing and 𝑇abs > 𝑇𝜋abs for each policy 𝜋 in
𝜋0, 𝜋1, 𝜋1/2.

4 A NOVEL ESTIMATOR FOR ESTIMATION
UNDER INTERFERENCE

4.1 A Naive Estimator
We begin by describing the status quo for this setting: Naive esti-
mation, wherein interference is simply ignored and the experiment
is treated as a traditional A/B test. A typical estimator is the inverse
propensity weighted estimator

ˆATENaive :=
∞∑︁
𝑡=0

(
1(𝑎𝑡 = 1)
Pr(𝑎𝑡 = 1) 𝑟𝑡 −

1(𝑎𝑡 = 0)
Pr(𝑎𝑡 = 0) 𝑟𝑡

)
(2)

=

∞∑︁
𝑡=0

2 · (1(𝑎𝑡 = 1)𝑟𝑡 − 1(𝑎𝑡 = 0)𝑟𝑡 ) (3)

which simply estimates the difference between the single-step re-
wards obtained under treatment and control – ignoring the impact
of each action on the overall trajectory.

However, the bias of this estimator can be significant. To see this,
note that in expectation

E𝜋1/2
[ ˆATENaive

]
=

∞∑︁
𝑡=0

E𝜋1/2 [𝑟 (𝑠𝑡 , 1)] − E𝜋1/2 [𝑟 (𝑠𝑡 , 0)] (4)

On the other hand, ATE =
∑∞
𝑡=0 E𝜋1 [𝑟 (𝑠𝑡 , 1)] −

∑∞
𝑡=0 E𝜋0 [𝑟 (𝑠𝑡 , 0)] .

The difference between ATE and E𝜋1/2
[ ˆATENaive

]
then results from

the fact that the expectation we compute by sampling from 𝜋1/2
does not match the expectations we would like to compute, under
𝜋0, 𝜋1.

Intuitively, then, the magnitude of the bias depends on the dif-
ference between the dynamics under 𝜋0 and under 𝜋1. We char-
acterize this difference as follows: starting from any state, let 𝛿
bound the distance between distributions over next states. Precisely,
𝛿 := max𝑠 𝐷TV (𝑃0 (𝑠, ·), 𝑃1 (𝑠, ·)) where𝐷TV measures the total vari-
ation distance2. Then, the bias of ˆATENaive is Θ(𝛿), whereas the
ATE itself is also Θ(𝛿) – i.e., the bias of Naive estimation is on the
same order as the treatment effect. We will demonstrate this in
a number of ways: Section 4.3 gives a simple example where the
Naive estimator measures an effect which is in fact only cannibal-
ization; Section 7 contains realistic experiments in which the bias
of Naive is at least 900% of the treatment effect; and Section 5.3
provides a rigorous bound to this effect.

2Note that in a typical A/B testing, 𝑃0 is often close to 𝑃1 so that 𝛿 is expected to be
small.
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4.2 The Differences-in-Qs Estimator
Intuitively, Naive’s bias results from its myopia: Naive simply ig-
nores the impact of the treatment on future rewards. This inspires
us to propose a less myopic estimator, which we show here for the
special case 𝑝 = 1/23:

ˆATEDQ :=
∞∑︁
𝑡=0

2 ·
(
1(𝑎𝑡 = 1)

( ∞∑︁
𝑡 ′=𝑡

𝑟𝑡 ′

)
− 1(𝑎𝑡 = 0)

( ∞∑︁
𝑡 ′=𝑡

𝑟𝑡 ′

))
, (5)

In other words, we simply replace the rewards 𝑟𝑡 in Eq. (2) by
long-term accumulated rewards. We refer to this as a "Differences-
in-Qs" (DQ) estimator, so called because it estimates the quantity

E𝜋1/2
[ ˆATEDQ

]
=

∞∑︁
𝑡=0

E𝜋1/2
[
𝑄𝜋1/2 (𝑠𝑡 , 1) −𝑄𝜋1/2 (𝑠𝑡 , 0)

]
(6)

where 𝑄𝜋 (𝑠, 𝑎) :=
∑∞
𝑡=0 𝐸𝜋 [𝑟𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎] is the usual state-

action value function in MDPs; i.e., the accumulated long-term
rewards starting from the state 𝑠 and the action 𝑎. This is actually
an instantiation of a broad class of DQ estimators, including prior
work [7] as a special case, which we discuss in Section 5.

Surprisingly, this simple change yields a dramatic improvement
in the bias in estimating ATE. In fact, the bias of Eq. (5) is second-
order in 𝛿 ; precisely, we have

Theorem 1 (Bias of DQ). Assume that𝐷TV (𝑃1 (𝑠, ·), 𝑃0 (𝑠, ·)) ≤ 𝛿
for all 𝑠 ∈ S, and let 𝑟max := max𝑠,𝑎 |𝑟 (𝑠, 𝑎) |. Then,���ATE − E𝜋1/2

[ ˆATEDQ
] ��� ≤ 𝑇 3

abs𝑟max · 𝛿2 .

Reducing bias from 𝛿 to 𝛿2 produces huge gains in practice:
Section 4.3 gives a simple setting in which DQ removes bias entirely,
and empirically the bias of DQ is negligible, as we show in Section 7.

Below we remark on some salient properties of the estimator.
DQ is agnostic to state. Beyond its low bias, the greatest ad-

vantage of ˆATEDQ is its simplicity, in particular the fact that it does
not require observations of state 𝑠𝑡 to implement. This is critical
when 𝑠𝑡 is partially observed or extremely high dimensional, as in
many real applications – in the Douyin setting state consists of a
viewer’s sentiment, attention, preferences, device status, and any
number of other factors, which are only partially observable by
proxy and may be totally distinct from session to session. This lack
of state also avoids any assumptions on the functional form of𝑄𝜋1/2
and avoids any bias introduced by using function approximation
or state aggregation to estimate 𝑄𝜋1/2 .

Credit Assignment Interpretation. This estimator also has a
surprising and intuitive interpretation as an explicit “credit assign-
ment” mechanism. Rewriting Eq. (5) explicitly, we have ˆATEDQ =∑∞
𝑡=0 2 · (#𝑡 (1) − #𝑡 (0)) 𝑟𝑡 where #𝑡 (𝑎) =

∑𝑡
𝑡 ′=0 I {𝑎𝑡 ′ = 𝑎} is the

count of actions 𝑎 played up to and including time 𝑡 . In effect: we
are simply reweighting each reward 𝑟𝑡 in an intuitive way, by as-
signing credit to each action according to the relative contribution
of that action in realizing 𝑟𝑡 .

4.3 Examples
Finally, we provide some specific examples to build intuition on
each of these estimators.
3This greatly simplifies exposition; we discuss the general case in Section 6.

Example 1. (Extreme interference).Consider a scenariowhere
the viewer will watch control videos for 15 minutes each, and treat-
ment videos for 20 minutes each; however, the viewer has a fixed
attention budget of 30 minutes, after which they leave the platform,
stopping in the middle of a video if necessary. In other words, let-
ting 𝑠𝑡 be the viewer’s remaining time budget upon reaching the 𝑡 th
video, we have 𝑟 (𝑠𝑡 , 1) = min{20, 𝑠𝑡 } min and 𝑟 (𝑠𝑡 , 0) = min{15, 𝑠𝑡 }
min. Since the total dwell time is fixed, the true ATE is 0. Upon
inspection, we also see that 𝑄 (𝑠, 1) = 𝑄 (𝑠, 0) for any state, since
the total future dwell time does not depend on actions. As a result,
DQ is unbiased:

E𝜋1/2
[ ˆATEDQ

]
=

∞∑︁
𝑡=0

E𝜋1/2 [𝑄 (𝑠𝑡 , 1) −𝑄 (𝑠𝑡 , 0)] = 0.

On the other hand, one can compute that4

E𝜋1/2
[ ˆATENaive

]
=

∞∑︁
𝑡=0

E𝜋1/2 [𝑟 (𝑠𝑡 , 1) − 𝑟 (𝑠𝑡 , 0)] = 5min

This discrepancy results essentially from myopia: without account-
ing for the downstream effects (or lack thereof) of each action, the
effect measured by Naive turns out to be fully a result of cannibal-
ization.

Example 2. (No interference). Again, let 𝑟 (𝑠𝑡 , 1) = 20 min
and 𝑟 (𝑠𝑡 , 0) = 15 min. Now suppose that a viewer will watch three
videos a day, independent of the treatments. There is no interference
in this case: each action impacts watch time for a single video,
and has no impact on total videos watched; and thus the total
effect of treatment is the sum of the single-step effects. In this case
ATE = (20−15) ·3 = 15min. The naive estimator is clearly unbiased,
while the DQ estimator is unbiased as well in this scenario since
for any 𝑡 ,

E𝜋1/2

[
1(𝑎𝑡 = 1)

( ∞∑︁
𝑡 ′=𝑡

𝑟𝑡 ′

)
− 1(𝑎𝑡 = 0)

( ∞∑︁
𝑡 ′=𝑡

𝑟𝑡 ′

)]
= E𝜋1/2 [1(𝑎𝑡 = 1)𝑟𝑡 − 1(𝑎𝑡 = 0)𝑟𝑡 ] ,

i.e., 𝑎𝑡 does not impact the values of E𝜋1/2 [𝑟𝑡 ′ ] for 𝑡 ′ > 𝑡 .

5 A UNIFIED THEORY FOR DQ
While the previous section develops a high-level intuition for DQ,
herewe provide a rigorous analysis which frames DQ as a first-order
approximation to the ATE. This interpretation immediately yields
the bias bound Theorem 1, as well as a variety of generalizations of
the estimator.

More generally, whereas existing theory covers specific reward
formulations (specifically average reward [7]), one of our main the-
oretical contributions is to introduce a unified framework for Taylor
series expansions in all major reward formulations. These include
finite horizon with total reward; infinite horizon with discounted
reward; total reward in absorbing Markov chains (which models
the Douyin application); and average reward in ergodic Markov
chains [7]. Our analysis reveals the fundamental role played by the
‘effective horizon’ in various scenarios (see Table 1). In addition,
our unifying theory of DQ covers [7] as a special case by adopting
4To see this: note that 𝑟 (𝑠0, 1) − 𝑟 (𝑠0, 0) = 5, and the user has at most 15 minutes
to watch the second video, and therefore 𝑟 (𝑠1, 1) − 𝑟 (𝑠1, 0) = 0; after which the
trajectory ends.
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a distinct, yet more straightforward proof technique that can be of
independent interest.

5.1 Background
We begin by defining precisely each of the Markovian reward
settings we address: discounted, average, and total reward set-
tings. In all settings, we consider policies 𝜋, 𝜋 ′ inducing transition
matrices 𝑃𝜋 , 𝑃𝜋 ′ , and reward functions 𝑟𝜋 , 𝑟𝜋 ′ : S ↦→ R where
𝑟𝜋 (𝑠) = E𝑎∼𝜋 (𝑠 ) [𝑟 (𝑠, 𝑎)]. For each setting and policy, we will define
a “value functional” Ẽ𝜋 , such that Ẽ𝜋𝑟𝜋 is the objective of interest
(either the discounted reward, average reward, or total reward for
policy 𝜋 ) and a corresponding 𝑄 function (the ‘reward-to-go’ after
taking some action at a certain state); and we make assumptions
on 𝜋, 𝜋 ′ to ensure that these values are well-defined.

Assumption 2 (Discounted reward). Let 𝛾 ∈ [0, 1). For any
reward function 𝑟 , define Ẽ𝜋𝑟 =

∑∞
𝑡=0 𝛾

𝑡E𝜋 [𝑟 (𝑠𝑡 )] and

𝑄𝜋 (𝑠, 𝑎; 𝑟 ) =
∞∑︁
𝑡=0

𝛾𝑡E𝜋 [𝑟 (𝑠𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎] .

Assumption 3 (Average reward). Let 𝑃𝜋 , 𝑃𝜋 ′ be ergodicMarkov
chains with stationary distributions 𝜌𝜋 , 𝜌𝜋 ′ , and mixing rate
max𝑠 𝐷TV (𝑃𝑘𝜋 (𝑠, ·), 𝜌𝜋 ) ≤ 𝐶𝛽𝑘 ,∀𝑘 ∈ N for constants 𝐶 and 𝛽 < 1.

Let Ẽ𝜋𝑟 = lim𝑇→∞
1
𝑇

∑𝑇−1
𝑡=0 E𝜋 [𝑟 (𝑠𝑡 )] and

𝑄𝜋 (𝑠, 𝑎; 𝑟 ) = lim
𝑇→∞

𝑇−1∑︁
𝑡=0

E𝜋 [𝑟 (𝑠𝑡 ) − 𝐸𝜋𝑟 |𝑠0 = 𝑠, 𝑎0 = 𝑎] .

Assumption 4 (Finite horizon reward). Let 𝐻 ∈ N be the
horizon, and let Ẽ𝜋𝑟 =

∑𝐻−1
𝑡=0 E𝜋 [𝑟 (𝑠𝑡 )] and

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ; 𝑟 ) =
𝐻−1∑︁
𝑡 ′=𝑡

E𝜋 [𝑟 (𝑠′𝑡 ) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] .

Assumption 5 (Total reward in absorbingMDPs). Let 𝑃𝜋 , 𝑃𝜋 ′

be Markov chains with absorbing states Sabs ⊆ S and time to absorp-
tion bounded by 𝑇abs. Let Ẽ𝜋𝑟 =

∑∞
𝑡=0 E𝜋 [𝑟 (𝑠𝑡 )] and 𝑄𝜋 (𝑠, 𝑎; 𝑟 ) =∑∞

𝑡=0 E𝜋 [𝑟 (𝑠𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎]. This corresponds to the setting in
Section 3.

5.2 A Unified Taylor Series Framework
We can now state our main theorem:

Theorem 2. Let 𝜋, 𝜋 ′ satisfy any one of Assumptions 2, 3, 4, 5.
Then,

𝐸𝜋 ′𝑟 =

(
𝐾∑︁
𝑘=0

𝐸𝜋 [DQ(𝑘 )
𝜋,𝜋 ′ (𝑠)]

)
+ 𝐸𝜋 ′ [DQ(𝐾+1)

𝜋,𝜋 ′ (𝑠)]

where DQ(0)
𝜋,𝜋 ′ (𝑠) = 𝑟𝜋 ′ (𝑠) and

DQ(𝑘 )
𝜋,𝜋 ′ (𝑠) = E𝑎∼𝜋 ′ (𝑠 ) [𝑄𝜋 (𝑠, 𝑎; DQ

(𝑘−1)
𝜋,𝜋 ′ )]−E𝑎∼𝜋 (𝑠 ) [𝑄𝜋 (𝑠, 𝑎; DQ

(𝑘−1)
𝜋,𝜋 ′ )]

To interpret: Theorem 2 provides a 𝐾-th order approximation
to evaluating the policy 𝜋 ′, using only trajectories generated by
𝜋 – simply by taking a “sum”5 of 𝐷𝑄 (𝑘 )

𝜋,𝜋 ′ (𝑠) terms along such
trajectories. The theorem also gives an exact remainder to this
approximation, which we bound as 𝑂 (𝛿𝐾+1) in the next result:
5Appropriately weighted and normalized.

Corollary 1 (𝐾 th order remainder). Let 𝜋, 𝜋 ′ satisfy any one
of Assumptions 2, 3, 4, 5. Further assume thatmax𝑠 𝐷TV (𝑃𝜋 (𝑠, ·), 𝑃𝜋 ′ (𝑠, ·)) ≤
𝛿 . Then,�����Ẽ𝜋 ′𝑟 −

𝐾∑︁
𝑘=0

Ẽ𝜋 [DQ(𝑘 )
𝜋,𝜋 ′ (𝑠)]

����� ≤ (𝛿𝐻eff )𝐾+1∥Ẽ𝜋 ′ ∥1𝑟max

where the effective horizon 𝐻eff and scaling constant ∥Ẽ𝜋 ′ ∥1 are
defined in Table 1, and 𝑟max = max𝑠∈S |𝑟 (𝑠) |.

We note that the scaling constant simply measures how large the
value Ẽ𝜋𝑟 can be, relative to 𝑟max. The combination of Theorem 2
and Corollary 1 offers an elegant, unified theory for DQ estimators.
In the following section, we demonstrate how Theorem 1 can be
derived as a specific instance of this theory, and we reserve the
proof for Section 5.4.

Reward 𝐸𝜋𝑟 𝐻eff ∥Ẽ𝜋 ′ ∥1
Discounted (2)

∑∞
𝑡=0 𝛾

𝑡E𝜋 [𝑟 (𝑠𝑡 )] 1/(1 − 𝛾) 1
1−𝛾

Average (3) lim
𝑇→∞

1
𝑇

∑𝑇−1
𝑡=0 E𝜋 [𝑟 (𝑠𝑡 )] 2 log𝐶+1

1−𝛽 1
Finite Horizon (4)

∑𝐻−1
𝑡=0 E𝜋 [𝑟 (𝑠𝑡 )] 𝐻 𝐻

Absorbing (5)
∑∞
𝑡=0 E𝜋 [𝑟 (𝑠𝑡 )] 𝑇abs 𝑇abs

Table 1: Summary of the reward settings in Assumptions 2,
3, 4, 5, along with the constants appearing in Corollary 1.

5.3 From the Taylor expansion to DQ
Note that Corollary 1 suggests a recipe for obtaining estimators of
the ATE with bias 𝑂 (𝛿2): we simply estimate the first-order expan-
sion of 𝐽𝜋1 = Ẽ𝜋1𝑟𝜋1 , and subtract from it the same approximation
of 𝐽𝜋0 = Ẽ𝜋0𝑟𝜋0 . The bias results immediately arises from bounding
the remainder. For illustrative purposes, we will now execute this
recipe in the context of total reward Markovian interference setting
described in Section 3, which implements Assumption 5.

As a warm-up: consider the zeroth-order expansion of Theorem 2
(i.e., we set 𝐾 = 0 and omit the remainder). Then, from definitions,
we immediately have

Ẽ𝜋1 [DQ
(0)
𝜋1/2,𝜋1 (𝑠)] − Ẽ𝜋0 [DQ

(0)
𝜋1/2,𝜋0 (𝑠)] =

∞∑︁
𝑡=0

E𝜋1/2 [𝑟𝜋1 (𝑠𝑡 ) − 𝑟𝜋0 (𝑠𝑡 )]

= E𝜋1/2 ˆATENaive .

In other words: the Naive estimator simply estimates the zeroth-
order expansion of Theorem 2. Corollary 1 then immediately yields
the 𝑂 (𝛿) bound on bias in general:

��ATE − ˆATENaive
�� ≤ 𝛿𝑇 2

abs𝑟max.
To reduce bias, we naturally turn to estimating higher order

terms. Continuing with this recipe with 𝐾 = 1, we can show via
some algebra that in fact

Ẽ𝜋1 [DQ
(0)
𝜋1/2,𝜋1 (𝑠) + DQ(1)

𝜋1/2,𝜋1 (𝑠)] − Ẽ𝜋0 [DQ
(0)
𝜋1/2,𝜋0 (𝑠) + DQ(1)

𝜋1/2,𝜋0 (𝑠)]

= E𝜋1/2 [ ˆATEDQ]
In other words: the DQ estimator simply estimates the first-order

expansion of Theorem 2, and as a result the𝑂 (𝛿2) bias of Theorem 1
follows immediately from Corollary 1. Thus, we view DQ as the
first-order correction to the Naive estimator; its bias properties, and
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a recipe for DQ estimators in other settings – including other reward
formulations, experiments other than uniform randomization 𝑝 =

1/2, and in the general problem of off-policy evaluation for arbitrary
policies – follow immediately from this interpretation. Higher-order
estimators can also be derived through similar means, although
one pays a cost in variance to estimate them.

5.4 Proof of Theorem 2
All cases of Theorem 2 have elementary proofs, which follow a
unified framework. For intuition, consider the discounted reward
as defined in Assumption 2, 𝐸𝜋𝑟 . From the definition of 𝑃𝜋 , it is
well known that

𝐸𝜋𝑟 =

∞∑︁
𝑡=0

𝛾𝑡𝑃𝑡𝜋𝑟 = 𝜌
⊤
init (𝐼 − 𝛾𝑃𝜋 )

−1𝑟

where we overload notation slightly to let 𝑟 ∈ R |S | be the vector
induced by the function 𝑟 . Similar forms exist for each of the other
settings, replacing 𝛾𝑃𝜋 with an analogous matrix. To understand
how 𝐸𝜋𝑟 depends on 𝜋 , then, we must understand how the inverse
(𝐼 − 𝛾𝑃𝜋 )−1 varies with 𝜋 .

So motivated, we start with the following elementary perturba-
tion bound (which we note, applies to 𝛾𝑃𝜋 )

Lemma 1. Let 𝐴,𝐴′ ∈ R𝑛×𝑛 be matrices such that (𝐼 −𝐴)−1 and
(𝐼 −𝐴′)−1 exist. Then,

(𝐼 −𝐴′)−1 = (𝐼 −𝐴)−1 + (𝐼 −𝐴′)−1 (𝐴′ −𝐴) (𝐼 −𝐴)−1 (7)

Proof. Observe that 𝐼 −𝐴 = 𝐼 −𝐴′ +𝐴′ −𝐴. Right-multiply by
(𝐼 −𝐴)−1 and left-multiply by (𝐼 −𝐴′)−1. □

This immediately leads to a series expansion for the matrix (𝐼 −
𝐴)−1:6

Lemma 2. Let 𝐴,𝐴′ ∈ R𝑛×𝑛 be matrices such that (𝐼 −𝐴)−1 and
(𝐼 −𝐴′)−1 exist. Then,

(𝐼 −𝐴′)−1 = (𝐼 −𝐴)−1
𝐾∑︁
𝑘=0

[
(𝐴′ −𝐴) (𝐼 −𝐴)−1

]𝑘
+ (𝐼 −𝐴′)−1

[
(𝐴′ −𝐴) (𝐼 −𝐴)−1

]𝐾+1
Proof. The proof follows simply from applying Lemma 1 to

(𝐼 −𝐴′)−1 repeatedly up to 𝐾 times. □

In the discounted case, Theorem 2 then follows immediately
from Lemma 2 by letting 𝐴 = 𝛾𝑃𝜋 and 𝐴′ = 𝛾𝑃𝜋 ′ . The other total
reward cases follow from the same proof by choosing appropriate
analogs of 𝛾𝑃𝜋 ; whereas the average reward case can be shown as
a limiting regime where 𝛾 → 1. We provide these proofs in full in
the online supplement7.

6To see this as a “Taylor” expansion: suppose we let𝐴′ = 𝐴+𝛿𝐷 for some direction𝐷 .
Then, Lemma 2 immediately yields a Taylor series of the function 𝑓 (𝛿 ) = (𝐼 − 𝐴′ )−1
in 𝛿 , around 𝛿 = 0.
7https://arxiv.org/abs/2305.02542

6 IMPLEMENTING DQ AT DOUYIN
Here, we expand the model to allow for much more of the com-
plexity present in real applications, in particular in content market-
places like Douyin/TikTok. In particular, the real world introduces
two main challenges not yet discussed: first, as opposed to esti-
mating the treatment effect on a single viewer, we are interested
in the aggregate effect across all viewers; and second, as opposed
to assigning treatments independently for each viewer for each
video, treatments are instead assigned once for each creator, and
this assignment propagates to all viewers.

First, we show that the estimators and theory from Section 3
continue to work in this setting, with slight modification. Second,
we will augment these estimators with additional techniques to
fulfill practical requirements: variance reduction, tight variance
estimation, and fast implementations. Ultimately, the estimator we
describe will be one that, out of the box, provides highly accurate
and low variance treatment effect estimates under interference, that
satisfy the constraints of real applications.

6.1 A Richer Model of Content Platforms
We begin by detailing the precise model we consider. As mentioned,
the total reward formulation of Section 3 models the trajectory
of a single viewer session, whereas at the platform level, we are
interested in an aggregate effect across all viewers. Note also that
each viewer session may be completely heterogeneous. In other
words, each viewer session 𝑖 ∈ [𝑁 ] may correspond to a completely
distinct MDP, with a distinct reward function 𝑟 (𝑖 ) , transition ker-
nel 𝑃 (𝑖 ) , and total reward 𝐽 (𝑖 )𝜋 . For each session, we observe an
entire trajectory {𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑟𝑖𝑡 }𝑡≥0, where these trajectories need not
be independent across sessions. Our problem is then, given 𝑁 such
trajectories (i.e., viewer sessions), to estimate the ATE averaged
over sessions 𝑖 ∈ [𝑁 ]:

ATE =
1
𝑁

𝑁∑︁
𝑖=1

[
𝐽
(𝑖 )
𝜋1 − 𝐽 (𝑖 )𝜋0

]
(8)

Second, the treatment assignment occurs not independently across
viewers and timesteps, but rather once for each creator; and any
viewer who encounters that creator, each time they encounter that
creator, will receive the same treatment. More formally, there exists
a population of creators indexed by 𝑗 ∈ [𝑀], each with a random
treatment assignment 𝑎( 𝑗) ∼ 𝜋𝑝 . Viewer 𝑖 at timestep 𝑡 is shown
video 𝑗𝑖𝑡 , and the action played at that timestep is then 𝑎𝑖𝑡 = 𝑎( 𝑗𝑖𝑡 ).

Finally, data collection is typically much more complicated in
the real world – there may be multiple treatment groups, and the
randomization probability 𝑝 is typically much smaller than 1/2.
Casting the problem as one of off-policy evaluation allows us to
extend the framework naturally to such cases – the data collec-
tion policy can essentially be arbitrary. We defer the discussion to
Section 6.5.

6.2 Monte-Carlo Estimation At Douyin
To be precise, we begin by discussing a simple Monte-Carlo estima-
tor which can be applied to this more general problem. Recall from
Section 4 that this the estimator Eq. (5) is for a single trajectory. This
then suggests a straightforward extension to estimate the meta-
treatment effect Eq. (8), by simply aggregating DQ estimators across
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trajectories. Let ˆATE(𝑖 )DQ =
∑∞
𝑡=0

[
𝑄̂MC
𝜋1/2 (𝑠𝑖𝑡 , 1) − 𝑄̂

MC
𝜋1/2 (𝑠𝑖𝑡 , 0)

]
be the

Monte-Carlo DQ estimator for trajectory 𝑖 , where 𝑄̂MC
𝜋1/2 (𝑠𝑖𝑡 , 𝑎) =

2 · I {𝑎𝑖𝑡 = 𝑎}
∑∞
𝑡=0 𝑟𝑖𝑡 is the Monte-Carlo Q-function estimate. We

then have the aggregate estimator:

ˆATEDQ =
1
𝑁

𝑁∑︁
𝑖=1

ˆATE(𝑖 )DQ . (9)

By linearity of expectation, the bias of this estimator will be upper
bounded by the average of the bias bound in Theorem 1, averaged
over MDPs 𝑖 ∈ [𝑁 ].

Regarding the issue of creator-level treatment assignments: As
long as the treatment does not alter a video’s probability of being
shown to the user (i.e., the recommendation system), then from a
single viewer’s perspective, the marginal treatment probabilities
Pr (𝑎𝑖𝑡 = 𝑎) remain unchanged, and as a result the bias properties of
our various estimators remain unchanged. However, this correlation
of treatment assignments across viewers introduces challenges for
variance quantification, which we address in Section 6.4.8

6.3 A Doubly Robust DQ Estimator
TheMonte-Carlo estimator Eq. (9) is essentially free of assumptions,
and is trivial to implement – it requires only reward observations,
and can be computed in a single pass through the dataset. However,
this flexibility comes at a cost in terms of variance, as we show in
our experiments.

Motivated by the empirical success of doubly robust estimators
[13], we introduce a doubly robust DQ estimator. Suppose we have
an approximation to the 𝑄 function, 𝑄̂Reg (typically obtained via
regression on pre-experiment data, or on some held out set of
viewers, as we do in Section 7), which may be misspecified or
biased. Then, we define the estimator

ˆATEDQ−DR =
1
𝑁

𝑁∑︁
𝑖=1

∞∑︁
𝑡=0

[
𝑄̂DR
𝜋1/2 (𝑠𝑖𝑡 , 1) − 𝑄̂

DR
𝜋1/2 (𝑠𝑖𝑡 , 0)

]
(10)

where we now introduce an approximate 𝑄-function and use in-
stead the doubly robust Q-function estimator:

𝑄̂DR
𝜋1/2 (𝑠𝑖𝑡 , 𝑎) = 𝑄̂

Reg
𝜋1/2 (𝑠𝑖𝑡 , 𝑎) +

I {𝑎𝑖𝑡 = 𝑎}
𝜋1/2 (𝑠𝑖𝑡 , 𝑎)

[ ∞∑︁
𝑡 ′=𝑡

𝑟𝑖𝑡 ′ − 𝑄̂Reg
𝜋1/2 (𝑠𝑖𝑡 , 𝑎)

]
where 𝜋 (𝑠𝑖𝑡 , 𝑎) is the probability of selecting action 𝑎 under the
policy 𝜋 and state 𝑠𝑖𝑡 . This estimator has three salient properties.
First, 𝑄̂DR

𝜋1/2 remains an unbiased estimator of 𝑄𝜋1/2 regardless of
how poorly 𝑄̂Reg

𝜋1/2 estimates 𝑄𝜋1/2 , as long as the randomization
probabilities 𝜋 (𝑠, 𝑎) are known. This fact is key, as in the case of
partially observable state, 𝑄̂Reg

𝜋1/2 may be fit heuristically using the
observable portion of state, and may in addition perform function
approximation or regularization. Second, the introduction of 𝑄̂Reg

𝜋1/2
serves as a control variate, typically decreasing the variance of the
estimator overall; in the experiments we show that this reduces
variance by 95% relative to Monte-Carlo DQ estimation.

8In fact, a single viewer may view the same video multiple times in the same session,
creating dependence in action probabilities across time. In the online supplement, we
give a general version of our estimator which accounts for this dependence correctly.

Finally, we consider a subtler issue: robustness to the random-
ization probabilities 𝜋 (𝑠, 𝑎). In particular, in many real situations,
only an approximation of the randomization probabilities 𝜋 (𝑠, 𝑎)
is known. This arises most often in observational settings, where
𝜋 (𝑠, 𝑎) is simply unknown a priori and must be estimated from data;
but is also common in real-world experimental settings, where the
complexity of implementation can often result in bugs that skew
the realized randomization probability, a discrepancy referred to
as “sample ratio mismatch” in [20] (which also provides a wide
range of examples under which this can occur). As we will see, the
Monte-Carlo estimator Eq. (9) is only unbiased when 𝜋 = 𝜋 , and
when this does not hold the bias can be extremely large in practice.

Doubly robust estimators address this issue by sharply reducing
the dependence of the estimator on 𝜋 (𝑠, 𝑎). For intuition, consider
only the estimator 𝑄̂DR

𝜋1/2 described above, but replacing 𝜋 (𝑠, 𝑎) with
an estimate 𝜋 . The expectation E𝜋1/2𝑄̂

DR
𝜋1/2 is then

E𝜋1/2𝑄̂
DR
𝜋1/2 (𝑠, 𝑎) =

𝜋 (𝑠, 𝑎)
𝜋 (𝑠, 𝑎) [𝑄𝜋1/2 (𝑠, 𝑎) − 𝑄̂

Reg
𝜋1/2 (𝑠, 𝑎)] + 𝑄̂

Reg
𝜋1/2 (𝑠, 𝑎)

We can then immediately see that the better 𝑄̂Reg
𝜋1/2 estimates 𝑄𝜋1/2 ,

the less sensitive E𝜋1/2𝑄̂DR
𝜋1/2 will be to 𝜋 . At one extreme, if 𝑄𝜋1/2 =

𝑄̂
Reg
𝜋1/2 , then the doubly robust estimate will be completely unbiased

regardless of 𝜋 ; this (together with the fact that 𝑄̂DR
𝜋1/2 is also unbi-

ased if 𝜋 = 𝜋 ) is the well-known “doubly” robust property of such
estimators.

In our experiments Section 7, we show that that the introduction
of this doubly robust technique yields dramatically more precise
estimators, both when 𝜋 is known exactly and up to perturbation.

6.4 Variance Characterization under
Randomization Testing

A key challenge in understanding the variance of ˆATEDQ is that
actions are assigned at the streamer level; streamers are shared
across viewers; and as result 𝑎𝑖𝑡 can be arbitrarily correlated across
viewers.

Whereas exact variance characterizations are difficult in this
situation, we propose the use of rerandomization tests to test the
sharp null hypothesis 𝐻0 that the treatment has identically zero
effect on the reward distribution or problem dynamics. One typi-
cal approach to characterizing the distribution of the test statistic
ˆATEDQ under 𝐻0 is via simulation, where we randomly redraw

the assignments 𝑎( 𝑗) (the assignment of the streamer 𝑗 ), and re-
compute the test statistic under the new treatment assignments
(holding the outcomes constant, as would be prescribed under the
null). This “re-randomization” approach yields an exact distribution
of the test statistic, but is typically infeasible at Douyin’s scale: with
on the order of hundreds of millions of viewers, a SQL query for a
single realization of the treatment assignments 𝑎( 𝑗) took around
12 hours to run on Douyin’s cluster.

As it turns out, the variance of ˆATEDQ under the null hypothesis
can actually be computed in linear time. The Monte-Carlo estima-
tor Eq. (10) can actually be written as a sum over streamer-level
terms, which eventually leads to an exact characterization of the
permutation testing variance under 𝐻0. To see this, note that the
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estimator Eq. (10) is equivalent to

ˆATEDQ =

𝑀∑︁
𝑗=1

(
I {𝑎( 𝑗) = 1}

𝑝 𝑗1
− I {𝑎( 𝑗) = 0}

𝑝 𝑗0

) ©­« 1
𝑁

𝑁∑︁
𝑖=1

∞∑︁
𝑡=𝑡𝑖 𝑗

𝑟𝑖𝑡
ª®¬

where 𝑝 𝑗0 = Pr(𝑎( 𝑗) = 0), 𝑝 𝑗1 = Pr(𝑎( 𝑗) = 1), and 𝑡𝑖 𝑗 is the time
period in which viewer 𝑖 viewed streamer 𝑗 . Each of these sum-
mands is independent since each assignment 𝑎( 𝑗) is independent
from each other, and as a result we need only to characterize the
variance of each summand and sum them in order to compute the
variance of ATEDQ. To conclude this line of thought, note that
each summand is an affine function of a Bernoulli random variable,
which has closed form expression for variance:

Var( ˆATEDQ) =
𝑀∑︁
𝑗=1

𝑝 𝑗0𝑝 𝑗1

(
1
𝑝 𝑗1

− 1
𝑝 𝑗0

)2 ©­« 1
𝑁

𝑁∑︁
𝑖=1

∞∑︁
𝑡=𝑡𝑖 𝑗

𝑟𝑖𝑡
ª®¬
2

Using this variance, we can then perform a hypothesis test, either
assuming normality (reasonable in practice) or a Chebyshev-type
bound. In the experiments, we show that this test is very high-
powered in practice, detecting effect sizes of 0.2% in a day, and
achieves nearly nominal coverage.

While this gives a flavor of why linear-time permutation testing
should be possible, analogous results for 𝑝 ≠ 1

2 are much more
involved. In those cases, naively pursuing the same approach has
complexity 𝑂 (𝑀4); while a smarter, exact approach is 𝑂 (𝑀2) and
only an approximation (albeit empirically a very good one) is pos-
sible in 𝑂 (𝑀) time. We provide an implementation in the supple-
mentary source code, and show in Section 7 that this approach
empirically provides nearly exact coverage.

6.5 General Data Collection Policies
Finally, we provide some examples of how to generalize DQ estima-
tion to variety of data collection scenarios. For exposition we have
discussed DQ estimation in the specific setting of treatment effect
estimation from a A/B test with treatment probability 𝑝 = 1/2,
which yields the cleanest results. Even modifying 𝑝 , however, re-
sults in a non-intuitive generalization. In full generality, we collect
data under some data-collecting (or, commonly, “behavioral”) pol-
icy 𝜋data, and we would like to evaluate some new target policy
𝜋new (or, in some cases, a set of target policies). A range of common
scenarios fall under this umbrella:

• A/B testing with 𝑝 ≠ 1/2. Let 𝜋data = Bern(𝑝), and we treat
𝜋0, 𝜋1 individually as target policies.

• RCTs with multiple treatment groups 1 . . . 𝐾 . Let 𝜋data (𝑠)
be a distribution over 1 . . . 𝐾 , and we have target policies
𝜋1 . . . 𝜋𝐾 .

• Evaluating a new policy from logged data. Let 𝜋data be the
logging policy, and let 𝜋new be an arbitrary new policy (with
the same support over A in each state as 𝜋data).

On top of this, we also deal with the issue of actions possibly
being dependent across time. That is, defining the history H𝑡 =

{𝑠𝑡 ′ , 𝑎𝑡 ′ , 𝑟𝑡 ′ }𝑡 ′<𝑡 we now allow 𝜋data, 𝜋new to depend arbitrarily on
this history. We denote this dependence as 𝜋 (𝑠, 𝑎 |H𝑡 ).

The Taylor expansion in Theorem 2 provides a DQ analog for
each of these generalizations. To be precise: the idealized first-order

expansion becomes:

𝐽
DQ
𝜋new =

∞∑︁
𝑡=0

E𝜋data
[
E𝑎∼𝜋new [𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝑄𝜋data (𝑠𝑡 , 𝑎𝑡 ; 𝑟𝜋new )]

−𝑄𝜋data (𝑠𝑡 , 𝑎𝑡 ; 𝑟𝜋new )
]

Notably, the resulting Monte-Carlo estimator is more compli-
cated to compute, with multiple importance sampling weights, and
this introduces further challenges (and opportunities) for each of
the previous extensions to DQ. We defer details to the online sup-
plement. A key limitation of our approach, however, is that the
probabilities 𝜋data (𝑠, 𝑎 |H𝑡 ) and 𝜋new (𝑠, 𝑎 |H𝑡 ) must be known, or at
least well-estimated; this is trivial in the A/B testing case were the
system has perfect control over these probabilities, but potentially
difficult in scenarios where prior treatments affect future treatment
probabilities. While our doubly-robust estimator exhibits some ro-
bustness to misspecified treatment probabilities, the problemmerits
more thorough investigation in future work.

7 EXPERIMENTS
We now provide empirical results comparing the DQ estimator (and
various improvements) on simulations motivated by our particular
application at Douyin. Our experimental results aim to address the
following research questions:

• RQ1. Does DQ provide more accurate treatment effect esti-
mates than existing alternatives?

• RQ2. Do our hypothesis testing approaches have correct
coverage and sufficient power to detect realistic treatment
effects at realistic timescales?

• RQ3. How robust are these results under perturbations to
𝜋?

7.1 Experimental setting
A typical source of interference at Douyin is in experiments where,
due to implementation constraints, Douyin must randomize at the
creator (or streamer) level, rather than the viewer level. We take
the streaming setting discussed in the introduction as a concrete
example: Douyin has a new feature which will allow creators to
deliver livestreams in high definition (HD), but as a creator-facing
feature, experiments with this feature must be conducted at the
creator level. A priori, HD streaming is expected to increase viewer
watch time on a per-video basis, but the effect on total watch time
is likely to be overestimated by Naive estimation due to cannibal-
ization of viewer attention. Furthermore, the ATE can plausibly be
negative because the feature will tend to consume viewers’ battery
and data budgets much more quickly.

While we have tested the DQ estimator on internal simulators at
Douyin, as well as in real-world experimental settings, here we pri-
marily present results from a simulation calibrated to Douyin user
data. This approach ensures privacy protection while maintaining
the consistency of the qualitative outcomes. We represent state
as 𝑠𝑖𝑡 = (𝑤𝑡 , 𝑢𝑖 , 𝑣𝑖𝑡 ), where 𝑤𝑡 represents the amount of time the
viewer has spent watching videos so far, 𝑢𝑖 ∈ R𝑑 (here we choose
𝑑 = 5) is a latent vector representing the viewer’s preferences, and
𝑣𝑖𝑡 ∈ R𝑑 is a latent vector representing the video shown at time
𝑡 to viewer 𝑖 , such that ⟨𝑢𝑖 , 𝑣𝑖𝑡 ⟩ measures the affinity of viewer 𝑖
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for the 𝑡 th video shown. We assume that 𝑢, 𝑣 are invisible to the
agent, although in reality the agent may have access to some noisy
version of these vectors.

The viewer’s counterfactual watch time under control is then
generated as𝑤𝑖𝑡 ∼ Exp(1/(𝑘𝑢⊤

𝑖
𝑣𝑖𝑡 )), for some scalar problem pa-

rameter 𝑘 . Finally, the viewer’s actual watch time is 𝑟𝑖𝑡 = 𝑤𝑖𝑡 (1 +
𝜏∗𝑎𝑖𝑡 ); i.e. it increases by a multiplicative factor of 𝜏∗ under treat-
ment 𝑎𝑖𝑡 = 1. The viewer’s state is either their cumulative watch
time 𝑠𝑡 =

∑𝑡−1
𝑡 ′=1 𝑟𝑖𝑡 ′ , or the terminal state (denoted by 𝑠abs) which

indicates that the viewer has left the platform. At each epoch the
viewer has a probability of transitioning to the terminal state 𝑠abs
(i.e., “leaving the platform”) determined by 𝑠𝑡 as P (𝑠𝑡+1 = 𝑠abs |𝑠𝑡 ) =
exp(𝑠𝑡 )
𝛼+exp(𝑠𝑡 ) where 𝛼 is a problem parameter. We calibrated the pa-
rameters 𝑘, 𝛼 to reflect the actual distribution of watch durations
and number of videos watched in Douyin’s viewer population; we
omit the actual values here. In the experimental results below, we
generate problem instances with varying treatment effect sizes by
varying the parameter 𝜏∗.

7.2 Algorithms
We will compare the performance of both Monte-Carlo and Doubly
Robust DQ variants. For Doubly Robust DQ, we construct a simple
regression estimator for 𝑄̂Reg

𝜋1/2 : we hold out the first 1000 viewers
observed under the experiment policy, and fit via least squares a
regression model of the form 𝑄̂

Reg
𝜋1/2 ((𝑤,𝑢, 𝑣), 𝑎) = 𝛽0 + 𝛽𝑤 with

respect to the parameters 𝛽0, 𝛽 .
As mentioned, the only alternative being applied in practice is

Naive estimation. Unbiased OPE is possible via importance sam-
pling at the level of the entire trajectory; however this is not used in
practice, and as onemight expect the variance of such an approach is
astronomical. Note that each of these approaches work for partially
observable state, and are compatible with the streamer-level ran-
domization required in our scenario. To be precise, the typical Naive
estimator is ˆATENaive = 1

𝑁

∑𝑁
𝑖=1

∑∞
𝑡=0 [𝑟IS (𝑠𝑖𝑡 , 1) − 𝑟IS (𝑠𝑖𝑡 , 0)] where

𝑟IS is the importance sampling estimator 𝑟IS (𝑠𝑖𝑡 , 𝑎) =
I{𝑎𝑖𝑡=𝑎}
𝜋 (𝑠𝑖𝑡 ,𝑎) 𝑟𝑖𝑡

and the typical, stepwise importance sampling OPE estimator is

ˆATEOPE =
1
𝑁

𝑁∑︁
𝑖=1

∞∑︁
𝑡=0

[𝑟IS−OPE (𝑠𝑖𝑡 , 1) − 𝑟IS−OPE (𝑠𝑖𝑡 , 0)]

where 𝑟IS−OPE (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ) is an importance sampling estimator for the
expected reward in the 𝑡 th period under policy 𝜋𝑎 , E𝜋𝑎 [𝑟 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 )].
Here we implement the “stepwise” importance sampling estimator
[13], which improves slightly over naive trajectory-level sampling:
𝑟IS−OPE (𝑠𝑖𝑡 , 𝑎) =

(∏𝑡
𝑡 ′=0

I{𝑎𝑖𝑡 ′=𝑎}
𝜋 (𝑠𝑖𝑡 ′ ,𝑎)

)
𝑟𝑖𝑡 .

The doubly robust approaches used to construct Eq. (10) can also
be applied to Naive and OPE estimators, to provide a more refined
baseline. We implemented state-of-the-art methods from [16]. It is
worth noting, however, that the DR variants will retain the same
bias properties; and therefore one will expect Naive-DR to also
exhibit large bias, and for OPE-DR to remain unbiased but to still
have unreasonably high variance. We also experiment with these
estimators, but defer their derivation to the online supplement.

Actual ATE (%) -0.01 -0.17
Mean SD Mean SD

DQ -0.05 (0.00) 2.01 -0.15 (0.00) 2.95
DQ-DR -0.05 (0.00) 0.03 -0.15 (0.00) 0.03
Naive 0.30 (0.00) 0.17 0.99 (0.00) 0.25

Naive-DR 0.30 (0.00) 0.01 0.99 (0.00) 0.01
OPE -0.01 (0.00) 35.42 -0.17 (0.00) 17.24

OPE-DR -0.01 (0.00) 22.05 -0.17 (0.00) 14.82

Actual ATE (%) -0.50 -1.89
Mean SD Mean SD

DQ -0.49 (0.00) 2.03 -1.92 (0.00) 2.44
DQ-DR -0.49 (0.00) 0.03 -1.92 (0.00) 0.04
Naive 2.95 (0.00) 0.17 9.43 (0.00) 0.22

Naive-DR 2.95 (0.00) 0.01 9.43 (0.00) 0.01
OPE -0.50 (0.00) 32.01 -1.89 (0.00) 26.24

OPE-DR -0.50 (0.00) 33.32 -1.89 (0.00) 20.87
Table 2: Bias and variance of each estimator, at 𝑁 = 108 view-
ers observed, as a % of the baseline outcome 𝐽𝜋0 , for problem
instances with various effect sizes (i.e., −0.01%, −0.17%, −0.50%,
and −1.89%). Parenthetical quantities are standard errors of
themean estimation. Doubly Robust DQ achieves nearly zero
bias and reduces standard deviation of DQ by about 97%.

7.3 Overall Performance Comparison (RQ1)
DQ provides much more accurate estimates of ATE than any alterna-
tive. We first consider the root mean-squared error of each estimator
in Fig. 2, as well as a breakdown into bias and variance in Table 2.
First, we note that interference leads to heavy bias in the Naive
estimator: the sign of the Naive estimator is always wrong, a mani-
festation of the intuition that the intervention is always myopically
positive, but can be negative in the long run. Not only is the sign
wrong, but the magnitude of the error is large: the Naive estimate
is around -800% of the actual ATE in all cases. Next, we turn to
the OPE variants. OPE is indeed unbiased, but the variance is so
large that its RMSE is by far the largest out of any of the estimators
considered, at all timescales considered. This holds for both doubly
robust and vanilla versions of the estimator. Neither Naive nor OPE
algorithms achieve RMSE below 100%.

Finally turning to DQ, we see that Monte-Carlo DQ achieves
much lower RMSE than any Naive or OPE variant, for sufficiently
large effect sizes and sufficient observations 𝑁 . However, its vari-
ance remains large even at 108 viewers, primarily due to the limited
number of streamers observed, and it also fails to achieve relative
RMSE below 100% on the effect sizes measured. Doubly Robust DQ,
on the other hand, provides striking performance gains: error is re-
duced by at least 97% compared to Monte-Carlo DQ in all instances,
and by up to 99% compared to Naive estimation. By 𝑁 = 108 (on
the order of one day’s worth of viewer activity), DQ-DR already
achieves relative RMSE below 100% of the treatment effect on all
treatment effects of magnitude greater than 0.17%.
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Figure 2: Relative RMSE of each estimator vs. 𝑁 , i.e., the number of viewers observed, for various effect sizes. Relative RMSE is

measured as
√︃∑𝑇

𝑖=1 ( ˆATE𝑖 − ATE)2/(
√
𝑇ATE) where ATE is the true treatment effect and ˆATE𝑖 is the estimator’s output for the

𝑖-th experiment over 𝑇 = 100 seeds. Error bars indicate standard errors over 𝑇 seeds. See Table 2 for a breakdown of bias vs.
variance for all estimators.

7.4 Power and Coverage of Hypothesis Tests
(RQ2)

Rerandomization testing detects effect sizes of 0.2% using a day of data.
We now consider the problem of hypothesis testing under DQ esti-
mation. Fig. 3 illustrates of the effectiveness of our rerandomization
tests as outlined in Section 6.4, which generalizes straightforwardly
to Doubly Robust DQ. When analyzing a sample size of 108 viewers,
which is on the same order as about one day of traffic on Douyin,
the Doubly Robust DQ estimator demonstrates its robustness by
consistently achieving 80% power for detecting effect sizes as small
as 0.15%. In addition, the test successfully adheres to the target false
positive rate of 10% when the true treatment effect is zero.

7.5 Robustness to Misspecification (RQ3)
Doubly Robust. Finally, we consider what happens to each estima-
tor when the treatment assignment probabilities are misspecified;
i.e., unbeknownst to the algorithm, rather than the nominal proba-
bility 𝑝 = 1/2, the environment actually executes an experiment
with 𝑝 = 1/2 + 1/1000. Robustness to such misspecification is a
first-order concern at Douyin: suppose, for example, that the in-
tervention causes a regression for a tiny proportion of streamers,
who then leave the platform and no longer appear in viewers’ feeds.
The realized treatment probability (i.e., percentage of videos from
treated streamers) will then be smaller than nominal. [20] describes
a number of other scenarios in which such perturbations occur.

Table 3 shows results for all estimators in this setting. Here, we
see that the bias and variance issues continue to plague Naive and
OPE, as expected. However, Monte-Carlo DQ now becomes heavily
biased as well, estimating a treatment effect of the wrong sign and
of substantially larger magnitude than the actual treatment effect,
despite the small change in the treatment probabilities. In contrast,

the bias of Doubly Robust DQ is almost unchanged, remaining
at most a few percent of the ATE. This is despite the fact that
the regression estimator we use for 𝑄̂Reg

𝜋1/2 is extremely crude, and
extremely poorly specified, speaking to the ease with which doubly
robust estimators can be constucted, and to the outsize impact of
doing so.

8 CONCLUSION
In conclusion, our study addresses the critical issue of interfer-
ence in experiments conducted on two-sided content marketplaces,
such as Douyin. We have demonstrated the limitations of naive
estimators and the impracticality of off-policy estimators due to
their high variance. To overcome these challenges, we introduced a
novel Monte-Carlo estimator based on Differences-in-Qs (DQ) tech-
niques, which provides second-order bias in the treatment effect
while remaining sample-efficient. Our theoretical contribution lies
in the development of a generalized theory of Taylor expansions
for policy evaluation, which extends DQ theory to all major MDP
formulations. This advancement significantly broadens the appli-
cability of the DQ approach in various experimental settings. On
the practical side, we successfully implemented our estimator on
Douyin’s experimentation platform, transforming DQ into a truly
"plug-and-play" estimator for interference in real-world settings.
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